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FORMATION OF LARGE-SCALE RANDOM STRUCTURE BY
COMPETITIVE EROSION

BY SHIRSHENDU GANGULY∗,1, LIONEL LEVINE†,2 AND SOURAV SARKAR∗,3

University of California, Berkeley∗ and Cornell University†

We study the following one-dimensional model of annihilating particles.
Beginning with all sites of Z uncolored, a blue particle performs simple ran-
dom walk from 0 until it reaches a nonzero red or uncolored site, and turns
that site blue; then a red particle performs simple random walk from 0 until
it reaches a nonzero blue or uncolored site, and turns that site red. We prove
that after n blue and n red particles alternately perform such walks, the total
number of colored sites is of order n1/4. The resulting random color configu-
ration, after rescaling by n1/4 and taking n → ∞, has an explicit description
in terms of alternating extrema of Brownian motion (the global maximum on
a certain interval, the global minimum attained after that maximum, etc.).
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1. Introduction and main results. Competitive erosion models a random in-
terface sustained in equilibrium by equal and opposite pressures on each side of
the interface. When the sources of opposite pressure are far apart, the resulting
interface remains in a predictable position with high probability [11]. When the
sources are located at the same point, a much more intricate behavior emerges,
with a macroscopically random interface. The aim of this paper is to characterize
the limiting distribution of this interface in one dimension. We will find an exact
description for the interface in terms of alternating maxima and minima of Brow-
nian motion.

1.1. Competitive erosion in one dimension. We begin with an informal de-
scription of the model; formal definitions are in Section 3.

All sites in Z begin uncolored. At every odd time step, a blue particle is emitted
from 0 and at every even time step a red particle is emitted from 0. The most
recently emitted particle performs a simple symmetric random walk on Z until it
hits a site in Z \ {0} which is either uncolored or has a particle of the opposite
color. In the former case, it occupies the site and in the latter case it annihilates
the other particle and occupies its place. These random walks happen sequentially:
each walk finishes before the next particle is emitted.

The main goals of this paper are to understand the growth rate of the number
of sites explored (Theorem 1.1) and the scaling limit of the resulting red and blue
patches (Theorem 1.2).

Let S(n) be the total number of sites explored by competitive erosion on Z

after n particles in turn have performed their random walks (see Figure 1, where n

increases from left to right, and S(n) is the length of the corresponding column of
colored sites).

THEOREM 1.1. There is a constant C > 0 such that S(n)/n1/4 converges in
distribution to the random variable C

√
X1, where

(1) X1 := sup
{
a : Ta + T ′

a ≤ 1
}
,

where Ta and T ′
a are hitting times of a for the absolute value processes |B(·)| and

|B′(·)| of independent standard Brownian motions B(·) and B′(·).
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FIG. 1. A sample of competitive erosion in Z. Time increases from left to right: each column depicts
the random configuration of red and blue sites in Z after the addition of 105 more particles of each
color. Sites near 0 (the white horizontal bar) change color often, while those far from 0 change only
rarely. According to Theorem 1.1, the total number of colored sites at time n is of order n1/4.

The exact value of the constant above turns out to be C = 2
√

2(1
2 −∑∞

j=1
1

j (j+1)2(j+2)
)−1/4. This value arises from a comparison of two time scales,

Theorem 2.3 below.

1.2. Related models. To put our model in context, consider first competitive
erosion without any red particles. Each blue particle released from the origin per-
forms simple random walk until reaching an uncolored site, then turns that site
blue. In Z

d , the resulting cluster of blue sites grows asymptotically as Euclidean
ball [19], with square root fluctuations in dimension 1 and logarithmic fluctua-
tions in higher dimensions [2–4, 15–17]. This model (known as Internal Diffusion-
Limited Aggregation: “internal” because the particles start inside the cluster, “ag-
gregation” because the cluster grows, “diffusion-limited” because the mechanism
of growth is for random walkers to reach the boundary) fits into a 2×2 family (see
Table 1).

TABLE 1
Four types of diffusion-limited boundary dynamics: Random walkers can start either inside or

outside the cluster A; when they reach the boundary ∂A they can either aggregate (enlarge A by
one point) or erode (delete one point from A). Internal Aggregation and External Erosion are

“smoothing” in the sense that fjords and peninsulas become shorter. The other two combinations
are “roughening” in the sense that fjords or peninsulas become longer

Internal External

Aggregation smoothing roughening
Erosion roughening smoothing
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To obtain a smoothing model of boundary dynamics that is symmetric the ran-
dom cluster A and its complement, Jim Propp proposed alternating steps of Inter-
nal Aggregation with External Erosion. If we color each site blue or red according
to whether it belongs to A or Ac, then each blue walker erodes a red site and each
red walker erodes a blue site, hence the name competitive erosion. The first study
of competitive erosion was on the cylinder Zn ×{0,1, . . . , n} with each red walker
started at a uniform point on top layer Zn × {n}, and each blue walker started at
a uniform point on the bottom layer Zn × {0}. The main result of [11] is that the
stationary distribution concentrates, with probability exponentially close to 1, on
configurations with o(n) fluctuations around a flat interface.

Competitive erosion on discretized plane domains is studied in [12], where the
limiting shape of the interface is shown to be invariant under conformal maps.

The techniques of [11, 12] rely on red and blue walkers starting far apart. The
present paper is motivated by the variant mentioned at the end of [11], in which red
and blue walkers instead start at the same point. The dynamics of competitive ero-
sion (with strictly alternating red and blue walkers) ensure that this mutual starting
point remains on the interface between red and blue. So the model studied in this
paper is intermediate between the “internal” and “external” columns of Table 1 in
the sense that all walkers start on the boundary. It marries the smoothness of inter-
nal DLA (which grows asymptotically as ball, with only logarithmic fluctuations)
with the wildness of external DLA (which is believed to grow fractal arms [5, 18]).

We remark that a two-color growth process very different from competitive ero-
sion is the “oil and water” model [9] in which each random walker is permitted to
move only in the presence of an oppositely colored walker. In that model, n red
and n blue walkers started at the origin spread somewhat further (to distance n1/3

instead of n1/4), and the colors display no macroscopic structure.
Competing particle systems, modeling coexistence of various species, etc., have

been the subject of intense study in physical sciences as well as mathematics; see,
for example, [7, 8] for annihilating random walks, and [1, 13] for a two-species
Richardson model (first-passage percolation).

1.3. Scaling limit of the color configuration. Our next result describes how to
read off the scaling limit of the final color configuration of competitive erosion
on Z, in terms of the random variable X1 appearing in Theorem 1.1 and certain
extremal values of the Brownian paths B, B′. Later in the article (see Lemma 5.5),
it is shown that, almost surely, exactly one of the following occurs:

(2)
X1 = max

{∣∣B′(s)
∣∣ : s ∈ [0,1 − TX1]

}
or

X1 = max
{∣∣B(s)

∣∣ : s ∈ [
0,1 − T ′

X1

]}
.

Assume, without loss of generality, that the former holds and, moreover, that
B′(T ′

X1
) > 0, so that T ′

X1
is the location of the global maximum of B′ on the

interval [0,1 − TX1]). It thus follows that the part of B′ from T ′
X1

onwards is an
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excursion below the level X1 carrying on in the time interval [T ′
X1

,1 − TX1] (ob-
serve that 1 − TX1 ≥ T ′

X1
, by definition). Now define the following alternating

sequence of global minima and maxima:

X1 = U0,M1,U1,M2,U2, . . . ,

in the following inductive way: For any j > 0, Mj is the minimum value at-
tained by B′ between the time it attained Uj−1 and 1 − TX1 ; and Uj is the max-
imum value attained by B′ between the time it attained Mj and 1 − TX1 . See
the discussion following (21) for the unicity of the times of attaining the values
M1,U1,M2,U2, . . .. Moreover, let

X2 = X1 − M1,X3 = U1 − M1,X4 = U1 − M2, . . .

(see Figure 2 for an illustration; for formal definitions, see (21)). Also let
E(n,1),E(n,2), . . . and W(n,1),W(n,2), . . . respectively denote the lengths of
the consecutive monochromatic runs starting furthest on the positive integer line
and negative integer lines, respectively (see Figure 3). With the above preparation,
we now state a refinement of Theorem 1.1.

THEOREM 1.2. Let C be as in Theorem 1.1. Then

(E(n,1),E(n,2), . . . ,E(n, k))

n1/4

d⇒ C

2

(√
X1 −

√
X2

2
,

√
X2

2
−

√
X3

2
, . . . ,

√
Xk

2
−

√
Xk+1

2

)
.

Above and throughout the paper, d⇒ denotes convergence in distribution. We
will prove in Section 4 that W(n, i) and E(n, i) differ by at most one, and hence it
suffices to consider just E(·, ·). Similar statistics related to alternating extrema of
a one-dimensional Brownian motion were also the object of study in [6].

Although competitive erosion is far from any physical model, we have found
two physical metaphors at times inspiring.

1.4. The origin of large-scale structure in the universe. It is thought that most
matter annihilated with antimatter in the early universe, and that the large-scale
structure of the remaining matter has its origin in random (quantum) fluctuations
of the early universe. The model considered in this paper resembles that scenario
in that nearly all particles are destroyed by a particle of opposite color, leaving
only on the order n1/4 surviving particles out of an initial n red and n blue. These
surviving particles are structured into long monochromatic intervals, even though
the only mechanism for generating structure in our model is simple symmetric
random walks performed by the particles.
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FIG. 2. (a) Simulations of two independent Brownian motions B (in brown) and B′ (in black) ap-
pearing in the statement of Theorem 1.1. (b) The yellow path shows the restriction of B to the interval
[TX1

,1 − T ′
X1

], and the green path shows the restriction of B′ to [T ′
X1

,1 − TX1
], where TX1

and

T ′
X1

are the hitting times as defined in (1). In this example: the first of the two events in (2) holds:

the green path is maximized at T ′
X1

, so the global maximum of B′ on the interval [0,1 − TX1
] is

attained at time T ′
X1

. Theorem 2 relates the length E(n,1) of the rightmost monochromatic interval
in competitive erosion to the square root of the difference between the maximum X1 and minimum
M1 of the green path.
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FIG. 3. Schematic of the color configuration after n particles have finished walking. SE(n) and
SW(n) denote the number of explored sites on the negative and positive integer line respectively.
E(n,1),E(n,2), . . . denote the length of the monochromatic runs starting furthest from the origin on
the positive integer line. W(n,1),W(n,2), . . . denote the analogous quantities on the negative line.
The white circle in the middle denotes the origin.

Why does the universe apparently contain more matter than antimatter? Many
offered explanations involve exotic physics beyond the standard model. Another
possibility to be considered, however, is a patchwork universe dominated by matter
in some regions and by antimatter in others. The most obvious sign that we live
in a patchwork universe would be radiation emitted from the region boundaries
where matter and antimatter meet. Measurements of the cosmic diffuse gamma-ray
background imply that if such regions exist they must be large, on the same scale
as the observable universe itself; see [10] and references therein. The question then
arises whether it is possible, even in a mathematical toy universe, for an initially
symmetric configuration of matter and antimatter with only local interactions to
evolve macroscopic asymmetries (in contrast to the mesoscopic fluctuations of the
Gaussian and KPZ universality classes). Theorem 1.2 shows that in one spatial
dimension, the answer is yes.

While our proof method is restricted to one spatial dimension, simulations sug-
gest that the macroscopic structure in competitive erosion persists also in two and
three dimensions (Figure 10).

1.5. Layering in sedimentary rock. Our second metaphor comes from geol-
ogy. In rock composed of distinct layers of accumulated sediment, the layers close
to the earth’s surface tend to be younger (i.e., deposited more recently) than the
deeper layers. Each layer was deposited over a short period of geological time, but
there can be large gaps in time between adjacent layers. These gaps reflect periods
of alternating accumulation and erosion of sediment. The time gaps between deep
layers tend to be longer than those between shallow layers (a phenomenon called
the Sadler effect, after [23]) so that the age of the rock increases faster than linearly
with depth.

In competitive erosion, we can think of each monochromatic interval of sites
as a layer of rock. Define the “age” of a given site as the elapsed time since its
most recent change in color. At any given time, adjacent sites of the same color are
likely to be close in age, but there is a large gap in age between differently colored
adjacent sites. One can see these different time scales in Figure 1: as n increases, it
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happens relatively often that the interval of colored sites expands, but its endpoints
change color only very rarely.

2. Key ideas and outline of the proofs. A “microstep” in competitive erosion
is a single random walk step of a single particle.

Throughout this article, the total number of elapsed microsteps will be denoted by t ,
and the total number of particles emitted will be denoted by n.

For x ∈ Z, let σ t (x) ∈ {−1,0,1} indicate the color of site x after t microsteps
(with −1 indicating red, 0 uncolored, and +1 blue). Let σ̂ t (x) ∈ {−1,0,1} indicate
the color and position of the currently active particle after t microsteps (with −1
indicating that x has an active Red particle, 0 that x has no active particle, and +1
that x has an active blue particle). Since only one particle at a time is active, σ̂ t (x)

is nonzero for exactly one site x ∈ Z. A key object in our analysis is the signed
sum of positions,

(3) Mt = ∑
x∈Z

xσ t (x) + 2
∑
x∈Z

xσ̂ t (x).

The first term is the signed sum of positions of all colored sites, and the second
term is twice the signed position of the currently active particle.

An easily verified, but important, property of Mt is that its increments Mt −
Mt−1 are independent ±2 with probability 1

2 each, except at those microtimes t

when a previously uncolored site becomes colored. The factor of two in (3) ensures
that this martingale property holds even at times when a colored site is converted
to the opposite color. For example, when a blue particle converts a Red site x and a
new active particle is born at 0, the color conversion increases the first sum by 2x,
but the second sum decreases by 2x (as the position of the currently active particle
is now 0 instead of x).

To prove Theorems 1.1 and 1.2, we first prove versions of those theorems at the
microstep time scale, based on the following observations:

1. We first prove certain useful combinatorial properties of this process, for
example, the number of sites explored on each side of the origin can at most differ
by 1. Thus the set of explored sites on both sides of the origin increases from
(k, k+1) or (k+1, k) to (k+1, k+1), and then from (k+1, k+1) to (k+2, k+1)

or (k + 1, k + 2), and so on (the first coordinate represents the number of explored
sites in −N and the second coordinate represents the number of explored sites in
N).

2. Now the key observation is that the microsteps corresponding to exploring
new sites are related to hitting times of different level sets for the absolute value
process |Mt |. Let τ

k,k+1
k,k be the stopping time of a symmetric random walk of step-

size 2 starting from k(k + 1) until it hits ±(k + 1)(k + 2) and let τ
k+1,k+1
k,k+1 be the

stopping time of a symmetric random walk of step-size 2 starting from (k + 1)2
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until it hits ±((k + 2)2 − 1). It turns out (see Lemma 5.1) that the law of Mt while
going from state (k, k) to either (k + 1, k) or (k, k + 1) is that of a symmetric
random walk Ek of step-size 2 whose absolute value starts from k(k + 1) until it
hits ±(k + 1)(k + 2). Similarly, the law of Mt while going from state (k + 1, k)

or (k, k + 1) to (k + 1, k + 1) is that of a symmetric random walk Fk , of step-size
2 starting from (k + 1)2 and stops on hitting ±((k + 2)2 − 1). Thus τ

k,k+1
k,k and

τ
k+1,k+1
k,k+1 are the corresponding hitting times. Standard random walk facts imply

that

Eτ
k,k
k,k−1 = k3 + k2, and Eτ

k,k+1
k,k = (k + 1)3.

Thus, EAk,k

k4 → 1
2 as k → ∞ where Ak,k is the total number of microsteps taken to

reach the state (k, k). This suggests we should scale the number of explored sites
by t1/4 to obtain a nontrivial limit.

3. From the above discussion, it follows that at microtime t the number of sites
explored on each side is roughly k if the maximum value attained by the process
(Ms)0≤s≤t is approximately k2. We might suspect that the number of explored
sites, properly normalized, in the limit should behave like the square-root of the
maximum of the absolute value of Brownian motion. However, certain combinato-
rial constraints force it to be not quite the above but the square-root of the following
related quantity:

(4) sup
a>0

{
Ta + T ′

a ≤ 1
}
,

where Ta and T ′
a are hitting times of a for |B(·)| and |B′(·)| where B(·) and B′(·)

are independent standard Brownian motions. Note that without the T ′
a term, the

above quantity would be exactly the maximum of the absolute value of Brownian
motion run up to time 1.

To see why (4) appears, note that since the ending point of Ek is the starting
point of Ek+1, one can concatenate the random walk paths {Ek}k≥1 to get an honest
random walk path E = (E0;E1;E2; . . .) of step size 2. However, the ending point
of Fk is not quite the starting point of Fk+1, but only differs by one in absolute
value which has negligible contribution. Thus by suitable translation followed by
concatenation of the segments Fk one can obtain an independent random walk
path F (see (41) for formal constructions). Now the total number of microsteps
is the number of steps traveled by E plus the steps traveled by F . However by
definition, the maximum of E and maximum of F are same up to a negligible error
(both of them are close to k2, if k sites have been explored on either side of the
origin up to microstep t). Thus normalizing by t and applying Donsker’s theorem,

we get that k2√
t

should converge to (4) up to certain deterministic multiplicative
factors (see Theorem 2.1 below for a precise statement.)
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4. Given t , as mentioned before, the state of the explored sites is (k, k) if

k−1∑
j=0

[
τ

j,j+1
j,j + τ

j+1,j+1
j,j+1

] ≤ t <

k−1∑
j=0

[
τ

j,j+1
j,j + τ

j+1,j+1
j,j+1

] + τ
k,k+1
k,k .

Similarly, the state is (k, k + 1), if

(5)
k−1∑
j=0

[
τ

j,j+1
j,j + τ

j+1,j+1
j,j+1

] + τ
k,k+1
k,k ≤ t <

k∑
j=0

[
τ

j,j+1
j,j + τ

j+1,j+1
j,j+1

]
.

Let us assume the latter case for the purposes of exposition. Thus the total number
of microsteps t is the total number of steps taken by the excursions E0, . . . ,Ek

and F0, . . . ,Fk−1 and a part of the excursion Fk . Now by Brownian scaling∑n
i=0 τ

j,j+1
j,j should converge to tTX1 and

∑n−1
i=0 τ

j+1,j+1
j,j+1 should converge to tT ′

X1

where X1 is the argmax in (4) (k2 should be thought of as
√

tX1).
Recalling the notation from Figure 3, let St , St

E and St
W be the analogues of

S(n), SE(n) and SW(n) after t microsteps, and similarly let Et (j ), Wt (j ) be the
analogues of E(n, j), W(n, j) (see Section 3 for precise definitions).

By our assumption (5), the process Mt is essentially the same as the concate-
nated path

E0;F0;E1;F1;E2;F2; . . . ,Ek

along with a part of Fk run from microstep
∑k−1

j=0[τ j,j+1
j,j + τ

j+1,j+1
j,j+1 ] + τ

k,k+1
k,k .

The extremal runs Et (1),Et (2), . . . are now determined by this final part of Fk

which can be thought of as the random walk path F = F1;F2; . . . run from time
tT ′

X1
to time t (1 − TX1) (see Figure 4).

It turns out that
√

tX1 is an approximate local maximum for the path F (and
an exact local maximum after passing to Brownian motion). The subsequent al-
ternating minima and maxima of F are related to the extremal runs, for example,
the next global minima M1 of Fn in the time interval [tT ′

X1
, t (1 −TX1)] (attained

at say, tY1), is related to Et (1) and subsequently U1 (the global maxima in the
time interval [tY1, t (1 − TX1)]) is related to Et (2) and so on (see Figure 2 for an
illustration).

We give a short example to illustrate why this must be the case: Imagine the
first time when the configuration is monochromatic up to distance k with red on
the right and blue on the left of the origin. As mentioned above Mt reaches a value
of about k2 at this point. Now suppose before any site at distance k +1 is explored,
the interval [−2k

3 , 2k
3 ], becomes monochromatic with blue on the right and red on

the left. Thus at this point there are only two runs of red and blue on the right-hand
side as well as on the left-hand side of the origin with Et(1) = k

3 and Et(2) = 2k
3 .

Also notice that at this point Mt reaches the value of about k2 − 8k2

9 and is the
current minimum after reaching the maximum k2. Thus the difference between the
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FIG. 4. The graph of Mt in terms of the microstep t . The brown (odd) segments denote the random
walks E0,E1, . . ., which are paths of step-size 2 and Ek up to a factor of −1, starts from k(k + 1)

and stops on hitting ±(k + 1)(k + 2). Similarly, the green (even) segments denote the random walks
F0,F1, . . . which are paths of step-size 2 and Fk up to a change in sign (depending on the endpoint
of Ek ) starts from (k + 1)2 and stops on hitting ±((k + 2)2 − 1). At the microsteps corresponding to
the end of the individual odd or even segments, where new sites are occupied, there are jumps in Mt

from a brown segment to a green segment or vice versa. As mentioned before, Ek captures the transi-
tion of the explored territory from (k, k) to (k + 1, k) or (k, k + 1), while Fk captures the transition
from any of the latter to (k + 1, k + 1). We illustrate the various configurations corresponding to Mt

at times t1 < t2 < · · · < t5 < t corresponding to the last microstep of every brown or green excursion.
At all but the last one, a new site is explored. Whenever two adjacent green and brown random walk
paths are stopped on hitting the same side of the x-axis, the color on either side of the origin does
not change. However, if they are stopped on hitting opposite sides, the colors switch. The last config-
uration corresponds to a partial green random walk path and is the configuration corresponding to
Mt .

maximum and the next minimum is related to the Et(1). One can continue this
argument to describe the remaining runs.

In Section 5, we formalize the above to prove the following theorems.

THEOREM 2.1. In the above setup, St
E

t1/4
d⇒ √

2X1, where X1 is the same as
in Theorem 1.1.
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We prove later in Lemma 4.1 that |St
E − St

W| ≤ 1, and hence the scaling
limit of the support is twice the right-hand side in the above theorem. Recalling
X1,X2, . . ., from Theorem 1.2, the corresponding microstep version of the latter
is the following.

THEOREM 2.2.

(6)

(Et (1),Et (2), . . . ,Et (k))

t1/4

d⇒ √
2
(√

X1 −
√

X2

2
,

√
X2

2
−

√
X3

2
, . . . ,

√
Xk

2
−

√
Xk+1

2

)
.

Note that the two theorems just stated are in terms of the total number of mi-
crosteps t . To deduce our main results, it remains to compare the total number of
microsteps to to the number of particles emitted. This is one of the key results in
the paper. Starting from the initial empty configuration, let V (n) be the number of
microsteps required for the first n particles to settle down. Theorems 1.1 and 1.2
follow in a relatively straightforward manner from Theorems 2.1, 2.2, respectively,

and the following comparison result, where
P→ denotes convergence in probability.

THEOREM 2.3 (Comparison of time scales). With the above notation, V (n)
n

P→
α, where α = (1

2 − ∑∞
j=1

1
j (j+1)2(j+2)

)−1.

Below we outline the main ingredients involved in the proof of Theorem 2.3.
Observe that whenever a particle of some color, say red, emits from the origin,
there is always a particle of opposite color, in this case blue, sitting at position
1 or −1 (since the previous blue particle has settled somewhere, either it settled
adjacent to the origin, or there was a run of blue particles adjacent to origin). Note
that Theorem 2.3 says that the number of particles emitted is comparable to the
total number of steps taken by the particles. Now let us suppose that for some odd
n, the length of the run of blue vertices adjacent to the origin is L. Thus the nth
particle emitted which is blue, stops after hitting the nearest red particle which is
at distance 1 on one side (by the above comment) and at distance L + 1 on the
other. It is a simple random walk fact that the expected number of steps taken by
the blue particle is L + 1. Thus the key ingredient to proving Theorem 2.3 is to
show that on an average, L is not too large. At a high level, this means that new
sites get explored only very rarely and most of the time particles kill particles of
opposite color near the origin.

To make this formal, we compare the original model with a killed version of
the model, which is a renewal process. The killed model is as follows. We fix
some integer L. Then we run the competitive erosion dynamics, but whenever a
particle jumps outside [−L,L], we kill it, and again start by emitting a particle
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from the origin with the appropriate color depending on the parity of the round.
Using certain combinatorial arguments we show that whenever a particle jumps
outside [−L,L], the configuration in [−L,L] is necessarily monochromatic on
both sides of the origin with opposite color (see Section 4.1). This shows that the
process is renewed every time a particle is killed. Another important property of
the killed process is that under a natural coupling, both the original model and the
killed model agree on the interval [−L,L].

The only thing left to show is that this killed model well approximates the ratio
of particles to microsteps of the original model for large L. By standard renewal
process theory, the ratio of the particles to microsteps in this killed model is close
to the ratio of the corresponding expectations. The latter is shown to converge to a
constant as L → ∞, by a suitable recursion relation between the process killed at
L and that killed at L−1. Now note that a discrepancy between the original model
and killed model occurs only when a particle jumps out of the interval [−L,L]
which implies that one of the runs adjacent to the origin is at least L. We finally
show that in the original model the proportion of microsteps when the length of
the runs adjacent to the origin is at least L is at most O( 1

L
), and hence taking L

large enough, the particle to microsteps ratio in the killed model approximates that
of the original model to arbitrary precision.

The proof of this last fact proceeds by showing that the proportion of microsteps
when the length of one of the runs adjacent to the origin is exactly � is at most
O( 1

�2 ), and hence the fraction of microsteps when one of the runs adjacent to the

origin is at least L is obtained by adding O( 1
�2 ) over � from L to ∞. To prove

the O( 1
�2 ) bound, observe that when the length of the run adjacent to the origin

of the same color as the particle currently emitted (say of color red) is exactly
�, the particle has a 1

�+2 probability of hitting the blue particle at distance � + 1
before hitting the blue particle adjacent to the origin, increasing the run length
from � to �+ 1. Thus on an average about � particles have to be emitted to achieve
this. Moreover, each of these particles stop on hitting the boundary of the interval
[−1, � + 1], and hence the expected number of microsteps taken in this process is
about � for each particle, and hence is about �2 in total. Now once the run length
has exceeded �+1, and the only way the run can be � again is if a new blue subrun
of length � is formed overriding the red run of length at least �+ 1. It is not hard to
verify that this will change the value of the martingale like process Mt by O(�2),
and hence it should roughly take O(�4) steps to achieve this.

Thus for every at most �2 steps spent when the run length is exactly � there are
at least �4 steps where the run length is not �. Thus the fraction of microsteps when
the run length is exactly � is approximately 1

�2 .

2.1. Organization of the paper. The paper is organized as follows. In the next
section, we develop the relevant notation and formal definitions used throughout
the paper and also formally define the objects used in the statement of the main
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theorems. Some combinatorial observations about the model have been put to-
gether in Section 4. In Section 5, we prove Theorems 2.1 and 2.2 analyzing the
potential function Mt . In Section 6, we analyze the relation between the number
of elapsed microsteps and the number of particles emitted, prove Theorem 2.3 and
as a consequence complete the proofs of Theorems 1.1 and 1.2.

3. Formal definitions and other notation. In this section, we shall introduce
the model formally and the relevant notation to be used throughout the paper. Fol-
lowing the convention of the previous sections, we will denote the red color by R,
blue color by B and a site with no color, by 0. For any σ ∈ {0,R,B}Z\{0}, and any
x ∈ Z\{0}, let σ(x) ∈ {0,R,B} denote the state of σ at site x. Thus the competitive
erosion can be thought of as a Markov chain on the following state space:

� = {
σ ∈ {0,R,B}Z\{0} : ∃N1,N2 ∈ N∪ {0}

such that σ(x) = 0 ∀x /∈ [−N1,N2],(7)

σ(x) �= 0 ∀x ∈ [−N1,N2] \ {0}},
which is the set of all colorings of Z \ {0} with finitely many sites adjacent to the
origin colored by red or blue. We define competitive erosion as the Markov chain
X(n) on � with X(0)(x) = 0 ∀x ∈ Z \ {0}.

Now, consider a sequence {Yn}n∈N of independent random walks on Z starting
from 0, that is, Yn(0) = 0, and Yn(i) denotes the position of the random walk
Yn at time i. For each n ∈ N, given the configuration X(n − 1), we define X(n)

as follows. Consider the set UB(n) of sites that were empty or occupied by red
particles at time n−1, that is, UB(n) := X(n−1)−1{0,R}, and similarly UR(n) :=
X(n − 1)−1{0,B}. Then let τB(n) := inf{i ∈ N : Yn(i) ∈ UB(n)}, and τR(n) :=
inf{i ∈ N : Yn(i) ∈ UR(n)}. Now, for n odd, define

X(n)(x) = X(n − 1)(x) ∀x �= Yn(τB(n)
)
, and X(n)

(
Yn(τB(n)

)) = B.

Similarly, for n even,

X(n)(x) = X(n − 1)(x) ∀x �= Yn(τR(n)
)

and X(n)
(
Yn(τR(n)

)) = R.

REMARK 3.1. If X(n − 1)(Y n(τB(n))) = 0, we say that the blue particle ex-
plores/occupies an unoccupied site, and if X(n − 1)(Y n(τB(n))) = R we say that
the blue particle “kills” a red particle and occupies its position. Also, if X(n −
1)(Y n(τB(n))) = 0, then clearly, X(n − 1)(x) = B for all x ∈ [1, Y n(τB(n)) − 1]
or [−Yn(τB(n))+ 1,−1] depending on whether Yn(τB(n)) > 0 or Yn(τB(n)) < 0,
respectively. Similar comment applies to red particles as well.

Moreover, as highlighted in Section 2 the notion of “microsteps” where we
count the steps of the individual random walks {Yn}, will be useful. Thus it will be
notationally convenient to define the following lifting of the Markov chain X(n)
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on � discussed above, which will allow us to encode the microsteps as well. Let
�′ ⊂ � ×Z× {R,B}, where � is defined in (7), be

�′ := {
(σ, x, s) : σ ∈ �,x ∈ {

z : σ(z) �= 0
} ∪ {0}, s ∈ {R,B}}.

Now, define the Markov chain Zt = (Zt
1,Z

t
2,Z

t
3) (where Zt

1 denotes the config-
uration at microstep t , Zt

2 denotes the currently moving particle, and Zt
3 denotes

the color of the currently moving particle) as follows. First, let

Z0
1(x) = 0 ∀x ∈ Z \ {0}, Z0

2 = 0, Z0
3 = B.

Also, for any n ∈ N, let

τn := τB(n) if n is odd, and,

τ n := τR(n) if n is even.
(8)

Then, for
∑n−1

i=1 τ i ≤ t <
∑n

i=1 τ i , define

(9) Zt
1 = X(n − 1), Zt

2 = Yn

(
t −

n−1∑
i=1

τ i

)
,

and Zt
3 = B if n is odd, and Zt

3 = R if n is even. Clearly, from definition,
∑n

i=1 τ i

denotes the index of the microstep when the nth particle has settled, and

Z

∑n
i=1 τ i

1 = X(n).

In this notation, the function Mt in (3) has the following description:

(10)
Mt =

[∑
x∈Z

x1
(
Zt

1(x) = B
) − ∑

x∈Z
x1

(
Zt

1(x) = R
)]

+ [
2Zt

21
(
Zt

3 = B
) − 2Zt

21
(
Zt

3 = R
)]

.

Given the above notation, we define formally the following quantities appearing
in Theorems 1.1, 1.2, 2.1 and 2.2. Define the following set of random variables.
Let

St
E = St

E(1) = sup
{
x ∈N : Zt

1(x) �= 0
}
,(11)

St
W = St

W(1) = sup
{
x ∈ N : Zt

1(−x) �= 0
}
.(12)

In these and the following definitions, whenever the relevant set is empty, we
define the supremum to be 0. Hence, St

E, St
W denote the total number of sites

occupied on either side of the origin at microstep t , and St := St
E +St

W denotes the
support at microstep t .

Once we have defined St
E(i), St

W(i) for some i ∈ N, let

St
E(i + 1) = sup

{
x ∈ [

1, St
E(i)

] : Zt
1(x) �= Zt

1
(
St

E(i)
)}

,(13)

St
W(i + 1) = sup

{
x ∈ [

1, St
W(i)

] : Zt
1(−x) �= Zt

1
(−St

W(i)
)}

.(14)
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Also, we define for each i ∈N,

(15) Et (i) = St
E(i) − St

E(i + 1); Wt (i) = St
W(i) − St

W(i + 1).

Observe that Wt (i), Et (i) denote the lengths of the ith monochromatic run counted
from the two ends at the left (west) and right (east) sides of the origin at mi-
crostep t . Also

(16) St
E(i) = ∑

j≥i

Et (j ), and St
W(i) = ∑

j≥i

Wt (j ).

Let Rt , Bt denote the number of red and blue particles at microstep t , that is,

(17) Rt = ∑
x∈Z

1
(
Zt

1(x) = R
); Bt = ∑

x∈Z
1
(
Zt

1(x) = B
)
.

Also, if
∑n

i=1 τ i denotes the microstep when the nth particle has settled, then
define, for each k ∈ N,

(18) SE(n, k) = S

∑n
i=1 τ i

E (k); SW(n, k) = S

∑n
i=1 τ i

W (k),

and

(19) R(n) = R
∑n

i=1 τ i ; B(n) = B
∑n

i=1 τ i

,

and

(20)
E(n, i) := SE(n, i) − SE(n, i + 1),

W(n, i) := SW(n, i) − SW(n, i + 1),

as the corresponding quantities at usual step n for the Markov chain X(n). Simi-
larly, the support after n particle has settled down is S(n) := S

∑n
i=1 τ i

.
We also provide the formal definitions of Mi , Ui appearing in the statement

of Theorem 1.2. Recall B, B′, X1 from Theorem 1.1. Working with the same
assumption as stated right after (2), that X1 is the maximum of B′(s) for s ∈
[0,1 − TX1], standard facts imply that it is almost surely attained uniquely at a
point in the open interval (0,1−TX1). Moreover, considering the excursion below
level X1 of B′ on the interval [T ′

X1
,1 − TX1] we define

(21) M1 := min
{
B′(s) : T ′

X1
≤ s ≤ 1 − TX1

}
,

and let the unique time between T ′
X1

and 1−TX1 at which this value M1 is attained
be Y1. Let

U1 := max
{
B′(s) : Y1 ≤ s ≤ 1 − TX1

}
,

and let the unique time4 at which this value is obtained by B′ be Z1. In general,
once we have defined Mk , Uk , Yk , Zk , we define

Mk+1 := min
{
B′(s) : Zk ≤ s ≤ 1 − TX1

}
,

4Using standard arguments (see, e.g., the chapter on Brownian excursion in [22]), one can show
that almost surely Zk−1 < Yk < 1 − TX1

, and similarly, Yk < Zk < 1 − TX1
. Uniqueness of Yk ,

and Zk follows from a similar argument as in Theorem 2.11 of [21].
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and Yk+1 as the unique time between Zk and 1 − TX1 at which the value Mk+1 is
attained. And similarly,

Uk+1 := max
{
B′(s) : Yk+1 ≤ s ≤ 1 − TX1

}
,

and Zk+1 as the unique time between Yk+1 and 1 − TX1 at which the value Uk+1
is attained. Define

(22) X2 = X1 − M1,X3 = U1 − M1,X4 = U1 − M2, . . . .

(If on the other hand X1 is the minimum of B′(s) for s ∈ [0,1 − TX1], that is,
B′(T ′

X1
) < 0, we replace B′ by −B′, Mi , Ui , Xi by −Mi , −Ui , −Xi , respec-

tively, in the definitions above to get the values of Mi , Ui , Xi in this case.) Note
that the above discussion implies that Xi > Xi+1 for i ≥ 2 and 2X1 > X2 almost
surely.

4. Some combinatorial observations. In this section, we put together some
combinatorial observations that will be used throughout the paper. However, the
proofs sometimes are a bit tedious and skipping the proofs in this section will
not affect readability of the future sections. Recall the definitions of SE(n, k),
SW(n, k), R(n), B(n) from (18) and (19).

LEMMA 4.1. For all n ∈ N, |SE(n) − SW(n)| ≤ 1. Also, for n odd, B(n) −
R(n) ≥ 0, and analogously for n even, R(n)−B(n) ≥ 0. (Recall that blue particles
are emitted at odd steps).

PROOF. This lemma follows by observing that B(n)− R(n) changes by either
1 or 2 at every step, and it changes by 1 only when an unoccupied site is occupied
by the emitted particle. Similarly, SE(n) − SW(n) also changes by at most 1, and
only when an unoccupied site is explored. Moreover, whenever an unoccupied site,
say on the right-hand side of the origin, is occupied by a particle, say blue, all the
sites on the right-hand side of the origin must have contained only blue particles
(see Remark 3.1). These observations, together with induction, proves the lemma.
The following is the induction hypothesis:∣∣SE(m) − SW(m)

∣∣ ≤ 1 for all m ≤ n, and,

B(m) − R(m) ≥ 0 for all odd m ≤ n, and,

R(m) − B(m) ≥ 0 for all even m ≤ n.

We prove that the statements hold for m = n + 1. Without loss of generality, we
assume that (n+ 1) is odd (so that at the (n− 1), n and n+ 1th steps blue, red and
blue particles are emitted, respectively). First, we show that

(23) B(n + 1) − R(n + 1) ≥ 0.
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To this end, first note from the mechanism of the erosion model, at every odd step
m when a blue particle is emitted, either it kills a red particle and occupies its
position, whence

B(m) − R(m) = (
B(m − 1) − R(m − 1)

) + 2,

or the blue particle occupies an empty site, in which case

B(m) − R(m) = (
B(m − 1) − R(m − 1)

) + 1.

An analogous observation can be made for the even step when a red particle emits.
Since the difference between the number of red and blue particles can change by
at most 2 at every step, the only way in which (23) can fail to happen given the
induction hypothesis, is to have the following:

B(n − 1) − R(n − 1) = 0, R(n) − B(n) = 2, B(n + 1) − R(n + 1) = −1.

Thus, assume B(n − 1) = R(n − 1) = k for some k ∈N. Then

B(n) = k − 1, R(n) = k + 1, and B(n + 1) = k, R(n + 1) = k + 1.

The values at steps n and n+ 1 together imply that a new site is explored by a blue
particle at (n + 1)th step, which in turn implies that at nth step, one side of the
origin, say the right/east side, consisted only of blue particles (see Remark 3.1).
Since B(n) = k − 1, this implies

SE(n) ≤ B(n) ≤ k − 1.

Since the total number of particles at step n was SE(n) + SW(n) = B(n) + R(n) =
2k, we have SW(n) ≥ k + 1, and hence SW(n) − SE(n) ≥ 2, which contradicts the
induction hypothesis. This proves (23). The only thing left to show is that

(24)
∣∣SE(n + 1) − SW(n + 1)

∣∣ ≤ 1.

We argue in a similar fashion as above. At any step m after a particle settles,
either exactly one of SE(m) or SW(m) increases by 1, or both of them remain the
same. Hence, there is nothing to prove if SW(n) = SE(n). The only other alternative
allowed by the induction hypothesis is∣∣SW(n) − SE(n)

∣∣ = 1.

Without loss of generality, assume

(25) SE(n) = SW(n) − 1.

From this, the only way (24) will not hold is if a new site is explored by the blue
particle at step n + 1, and the new explored site is on the left-hand side of the
origin. This ensures that the left-hand side has all blue particles at step n. But then

R(n) − B(n) ≤ SE(n) − SW(n) < 0,

from (25), which contradicts the induction hypothesis as n is even. This completes
the induction step and proves the lemma. �

The following lemma follows directly from Lemma 4.1.
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LEMMA 4.2. With the above definitions, for all n ∈ N,

(26)
∣∣R(n) − B(n)

∣∣ ≤ 2.

PROOF. Without loss of generality, assume that n is odd. If (26) does not hold,
then because of Lemma 4.1, B(n) ≥ R + 3. Then, at step n + 1, since R(n + 1) −
B(n + 1) can increase by at most 2, hence,

R(n + 1) − B(n + 1) < 0,

contradicting Lemma 4.1 as n + 1 is even. �

4.1. Configuration at steps of occupation of new sites. In this subsection, we
show that the configuration of colors, at the end of a round when the emitted par-
ticle has settled in an unoccupied site, looks monochromatic on either side of the
origin. Recall that this observation makes the killed process described in Section 2
as a renewal process.

Without loss of generality, assume that the step n is odd, so that the emitted
particle is blue, and it settles at an unoccupied site, say on the right-hand side of
the origin. Then clearly, the right-hand side of the origin had a string of only blue
particles at step n − 1 (see Remark 3.1). What was the configuration at that step
n − 1 on the left-hand side of the origin? We claim that, even on the left-hand
side, at step n − 1, there was a string of only red particles. This is the content
of the next lemma. Recall the definitions of τn from (8) and SE(n) := SE(n,1),
SW(n) := SW(n,1) from (18).

LEMMA 4.3. If at a step n, a new site is occupied by the emitted particle, then
at step n − 1, both sides of the origin were monochromatic and of opposite color,
that is, if X(n − 1)(Y n(τn)) = 0, then

X(n − 1)(x) = X(n − 1)(y) for all x, y ∈ [
1, SE(n − 1)

]
,

X(n − 1)(x) = X(n − 1)(y) for all x, y ∈ [−SW(n − 1),−1
]
,

and

X(n − 1)(x) �= X(n − 1)(y) for all x ∈ [
1, SE(n − 1)

]
, y ∈ [−SW(n − 1),−1

]
.

Clearly, from the above lemma, at step n as well, both sides of the origin remain
monochromatic and of opposite color. The proof of the above is a direct application
of Lemma 4.1.

PROOF. Assume without loss of generality that n is odd and a new site is
explored on the right-hand side at step n, that is, Yn(τn) > 0. Hence,

X(n − 1)(x) = B for all x ∈ [
1, SE(n − 1)

]
.
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Since

SE(n) − SW(n) = SE(n − 1) − SW(n − 1) + 1,

hence because of Lemma 4.1, at step n − 1, there are the following two possibili-
ties:

• Case (1): SE(n − 1) = SW(n − 1).
• Case (2): SE(n − 1) = SW(n − 1) − 1.

For Case (1): Let SE(n − 1) = SW(n − 1) = k for some k ∈ {0,1,2, . . .}. Since
n−1 is even, by Lemma 4.1, R(n−1) ≥ B(n−1). Since B(n−1) ≥ SE(n−1) = k,
and the total number of occupied sites

B(n − 1) + R(n − 1) = SE(n − 1) + SW(n − 1) = 2k,

it forces the left-hand side to have all its k particles red.
For Case (2): Let

SE(n − 1) = k, SW(n − 1) = k + 1 for some k ∈ {0,1,2, . . .}.
If the left-hand side contains at least one blue particle, then B(n − 1) ≥ SE(n −
1) + 1 = k + 1, and R(n − 1) ≤ SW(n − 1) − 1 = k. Hence B(n − 1) > R(n − 1),
which contradicts Lemma 4.1 as n − 1 is even. �

4.2. Formation of layers. A different and useful way of looking at the config-
uration of the various runs at a particular step, is to look at how the whole process
develops as layers one on top of the other. Fix n ∈ N, and let

NRE(n) := ∑
x∈[1,SE(n)−1]

1
(
X(n)(x) �= X(n)(x + 1)

) + 1

denote the total number of runs on the right-hand side of the origin at step n, and

NRW(n) := ∑
x∈[SW(n),−2]

1
(
X(n)(x) �= X(n)(x + 1)

) + 1

denote the total number of runs on the left-hand side of the origin at step n. Define,

(27) M(n) := M(n,1) := max
{
k ∈ [1, n] : NRE(k) ≤ 1,NRW(k) ≤ 1

}
,

and let

(28)
(
LE(n,1),LW(n,1)

) := (
SE

(
M(n)

)
, SW

(
M(n)

))
.

Thus after the nth particle has settled down, M(n) is the most recent time when
there was exactly one run on each side of the origin; and the those runs on each
side comprise the first layer.

As the number of explored sites can only increase, and by Lemma 4.3, at the
steps of exploration of new sites, the two sides are monochromatic, it follows that
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LE(n,1) = SE(n) and LW(n,1) = SW(n).5 We consider the configuration after
step M(n,1) until step n. Clearly, no new site is explored. Consider all the steps
between M(n,1) and n when there are at most two runs on either side of the origin,
and let M(n,2) denote the last step among these, that is,

M(n,2) := max
{
k ∈ [

M(n,1), n
] : NRE(k) ≤ 2,NRE(k) ≤ 2

}
,

and let

(29)

(
LE(n,2),LW(n,2)

)
:= (

SE
(
M(n,2),NRE

(
M(n,2)

))
, SW

(
M(n,2),NRW(n,2)

))
,

where SE(n, i), SW(n, i) are as defined in (18). We define (LE(n, i),LW(n, i)) for
i ∈ {3,4, . . .} successively in a similar fashion.

LEMMA 4.4. We have that LE(n, i) and LW(n, i) are nonincreasing in i for
each n and ∣∣LE(n, i) − LW(n, i)

∣∣ ≤ 1

for all i. Also the pairs of layers (LE(n, i),LE(n, i +1)), (LW(n, i),LW(n, i +1))

and (LE(n, i),LW(n, i)) for all i are of opposite colors.

PROOF. We only present a sketch of the proof omitting the details. Fix any i ∈
N and consider the ith layer (LW(n, i),LE(n, i)). After step M(n, i−1), whenever
a particle kills another particle of opposite color from previous layer (LW(n, i −
1),LE(n, i − 1)), pretending that as an exploration of a new site allows us to use
the inductive arguments in the proofs of Lemmas 4.1 and 4.2 and Lemma 4.3. Thus
considering only the particles emitted after M(n, i − 1) we recover the statements
of these lemmas for the ith layer and this completes the proof. �

DEFINITION 4.5. For any j ∈N, we define the modified run lengths (counted
from the ends) which will be useful later. Let

(30)
Em(n, j) := LE(n, j) − LE(n, j + 1),

Wm(n, j) = LW(n, j) − LW(n, j + 1).

REMARK 4.6. Observe that the nonzero elements of the modified run lengths
are exactly equal to the usual run lengths defined earlier in (20) and in the correct
order. The only difference is that Em(n, j) = 0 can occur for some j . For such a

5Note however that M(n) may not be the last step where the maximum monochromatic
run length is achieved individually on any particular side of the origin. For example, if
(LE(n,1),LW(n,1)) = (k, k), and again, for some r ∈ (M(n), n], one has X(r)([−k,−1]) =
(B,R, . . . ,R) and X(r)([1, k]) = (B, . . . ,B), then M(n) is not the last step where the maximum
monochromatic run length is achieved on the right-hand side of the origin).
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j , Wm(n, j) = 1 because of Lemma 4.4. Similarly, Wm(n, j) = 0, Em(n, j) = 1
can also occur. Also for any j , the runs corresponding to Em(n, j) and Wm(n, j)

are of opposite colors (allowing the possibility that one of them can be of length
0). Hence, if one knows the run lengths on one side of the origin, one gets the run
lengths within ±1 of the other side and their colors.

Also, for any t ∈ N, such that
∑n−1

i=1 τ i ≤ t <
∑n

i=1 τ i , where τ i are defined in
(8), let

(31) Mt :=
M(n)−1∑

i=1

τ i, Mt (j ) :=
M(n,j)−1∑

i=1

τ i,

and

(32)
(
Lt

E(j),Lt
W(j)

) := (
LE(n − 1, j),LW(n − 1, j)

)
,

and the modified run lengths

(33) Et
m(j) := Lt

E(j) − Lt
E(j + 1), Wt

m(j) = Lt
W(j) − Lt

W(j + 1).

The above defined modified run lengths would be convenient for the proofs of
Theorems 1.2 and 2.2. Note that the length of the layers are nonincreasing and on
the event that they are strictly decreasing, the modified run lengths Et

m(·) and the
original run lengths Et (·) are the same (this is shown to occur with high probability
in Lemma 5.4).

5. Scaling limit in microstep time scale. In this section, we prove Theorems
2.1 and 2.2. However, to get started we need a bit of notation. For any k ∈ N, define

Ak,k := inf
{
n ∈ N : (SW(n), SE(n)

) = (k, k)
}
,(34)

Ak,k+1 := inf
{
n ∈ N : (SW(n), SE(n)

) = (k, k + 1)

or
(
SW(n), SE(n)

) = (k + 1, k)
}
,

(35)

and let

(36) AM
k,k :=

Ak,k∑
i=1

τ i, AM
k,k+1 :=

Ak,k+1∑
i=1

τ i

be the microsteps corresponding to the step Ak,k , Ak,k+1, respectively (τ i was
defined in (8)).

By Lemma 4.1, it follows that, A0,1 < A1,1 < · · · < Ak−1,k−1 < Ak−1,k <

Ak,k < · · · are precisely the steps where new sites are explored and the support
S(n) increases (see Remark 3.1). Also, by Lemma 4.3, at any of these steps Ak,k

or Ak,k+1, both sides of the origin are monochromatic and of opposite color. As
already stated in Section 2, a simple but key observation in the paper is that Mt

behaves like a random walk between certain times. This is the content of the next
lemma (see also Figure 4 for an illustration).
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LEMMA 5.1. Fix any k ∈ N ∪ {0}. Let τ
k,k+1
k,k be the stopping time of a

symmetric random walk Ẽk(j) of step-size 2 starting from k(k + 1) until it hits

±(k + 1)(k + 2). Then, if M
AM

k,k ≥ 0, then{
Mt}

t∈[AM
k,k,A

M
k,k+1−1]

d= {
Ẽk(j)

}
j∈[0,τ

k,k+1
k,k −1],

and if M
AM

k,k ≤ 0, then{
Mt}

t∈[AM
k,k,A

M
k,k+1−1]

d= {−Ẽk(j)
}
j∈[0,τ

k,k+1
k,k −1].

Similarly, for k ∈ N ∪ {0}, let τ
k+1,k+1
k,k+1 be the stopping time of a symmetric

random walk F̃k(j) of step-size 2 starting from (k+1)2 until it hits ±((k+2)2 −1).

Then, if M
AM

k,k+1 ≥ 0, then{
Mt}

t∈[AM
k,k+1,A

M
k+1,k+1−1]

d= {
F̃k(j)

}
j∈[0,τ

k+1,k+1
k,k+1 −1],

and if M
AM

k,k+1 ≤ 0, then{
Mt}

t∈[AM
k,k+1,A

M
k+1,k+1−1]

d= {−F̃k(j)
}
j∈[0,τ

k+1,k+1
k,k+1 −1].

Above
d= denotes equality in distribution.

PROOF. The proof follows from the observation that Mt reaches an absolute
value (k + 1)(k + 2) for the first time when (St

W, SE) = (k, k + 1) or (k + 1, k).
(Note from (3) that the first time a site is explored, it contributed twice the weight).
However, since in the next round the new site explored only contributes (k + 1)

and not 2(k + 1), the absolute value of the process Mt can be thought to have
an instantaneous jump down from (k + 1)(k + 2) to (k + 1)(k + 2) − (k + 1) =
(k + 1)2. Also notice that Mt reaches an absolute value (k + 2)2 − 1 for the first
time when (St

W, St
E) = (k +1, k +1). (In this case Mt instantaneously jumps down

to (k + 2)2 − 1 − (k + 1) = (k + 1)(k + 2).) The above, along with the observation
that Mt is a random walk of step size 2 until a new site gets explored completes
the proof. �

For notational brevity in the sequel, we will denote the random walk
{Ẽk(j)}

j∈[0,τ
k,k+1
k,k ] or {−Ẽk(j)}

j∈[0,τ
k,k+1
k,k ] for the first and second case, respec-

tively, by Ek and similarly, denote the random walk {F̃k(j)}
j∈[0,τ

k+1,k+1
k,k+1 ] or

{−F̃k(j)}
j∈[0,τ

k+1,k+1
k,k+1 ] for the third and fourth case, respectively, by Fk .
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5.1. Proof of Theorem 2.1. As outlined in Section 2, the main idea of the proof
is to use Lemma 5.1. By joining the alternate segments of Mt , we get two indepen-
dent random walks, each of which hits values close to ±k2, if and only if the kth
site is explored. The proof then follows by an application of Donsker’s theorem.
Recall the definitions of St

E, St
W, St , Ak,k from Section 3 and (34). Recall that, if

St
E = k, then k − 1 ≤ St

W ≤ k + 1 by Lemma 4.1, and moreover by Lemma 5.1,

k(k + 1) ≤ Zt := max
s≤t

∣∣Ms
∣∣ ≤ (k + 1)(k + 2).

So that

(37) St
E ≤ √

Zt ≤ St
E + 2.

Thus to prove Theorem 2.1, it suffices to show the weak convergence of Zt

t1/2 . Also
for any random walk path S stopped at time τ , let N(S) = τ (the length of the ran-
dom walk path), and let S(0) and S(N(S)) denote the starting and ending points
of the random walk path S . Often we will need to translate a random walk path S
by a number s, and we will denote the translated path by S − {s} which is clearly
a random walk path started at S(0) − s.

Consider Ei and Fi , the alternate segments of random walks of step size 2
contained in Mt as defined above. Then by definition, for any k ∈ N,

(38)

(k + 1)2 − 1 ≤ Zt < (k + 1)(k + 2)

iff
∑

0≤i≤k−1

(
N(Ei ) + N(Fi )

) ≤ t <
∑

0≤i≤k−1

(
N(Ei ) + N(Fi )

) + N(Ek).

Similarly,

(39)

(k + 1)(k + 2) ≤ Zt < (k + 2)2 − 1

iff
∑

0≤i≤k−1

(
N(Ei ) + N(Fi )

) + N(Ek) ≤ t <
∑

0≤i≤k

(
N(Ei ) + N(Fi )

)
.

Also by definition, the starting and ending points of the random walk segments
have the following properties: for all i ≥ 1,∣∣Ei (0)

∣∣ = ∣∣Ei−1
(
N(Ei−1)

)∣∣; and
∣∣Fi(0)

∣∣ = ∣∣Fi−1
(
N(Fi−1)

)∣∣ + 1.

Now, we define a random walk path by joining the segments of Ei “end-to-end.”
More precisely, we define E ′

0 = E0, and for all i ≥ 1, define

(40) E ′
i = Ei if Ei (0) = E ′

i−1
(
N

(
E ′

i−1
))

, else E ′
i = −Ei .

Then the concatenated walk E ′′
k := (E ′

0;E ′
1;E ′

2; . . . ;E ′
k) is a random walk of step-

size 2 starting from 0 until it hits ±(k + 1)(k + 2) (see Figure 5(a)).
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FIG. 5. Illustrating the concatenation operations to obtain the random walk paths E ′′
k and F ′′

k .
From Lemma 5.1, it follows that the starting point of any brown segment has the same absolute
value as the ending point of the previous green segment. In (a), we join them “end-to-end” to form
a random walk path, and we inductively attach a new brown segment to the already formed path by
concatenating the new segment or concatenating after reflecting to ensure that the end point of the
path already formed agrees with the starting point of the newly added segment. The dotted curves
indicate the actual segment when it was reflected and concatenated. For consecutive green segments
as mentioned before, there is a discrepancy of ±1 between the absolute values of ending point and
starting point. Thus in (b) we translate them by ±1 to get rid of the discrepancy and then perform a
reflection-concatenation operation as with the brown segments.

Constructing a random walk path by joining the segments of Fi is slightly more
involved, since |Fi (0)| �= |Fi−1(N(Fi−1))|. In this case, we perform the opera-
tions reflection-translation-concatenation to join the segments “end-to-end.” For-
mally, we do the following. Let F ′

0 := F0 − {F0(0)} (translating the path to have
the starting point at 0). Also for i ≥ 1, if

F ′′
i−1 = (

F ′
0;F ′

1; . . . ;F ′
i−1

)
is the concatenated walk, then we define F ′

i as follows: If

(41)
Fi (0) = F ′

i−1
(
N

(
F ′

i−1
))

) ± 1,

then F ′
i = Fi − {

Fi (0) − F ′′
i−1

(
N

(
F ′′

i−1
))}

.

Otherwise, F ′
i = FR

i −{FR
i (0)−F ′′

i−1(N(F ′′
i−1))}, where FR

i = −Fi is the
reflection of Fi across the X-axis, (see Figure 5 (b)).
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Then the concatenated walk F ′′
k = (F ′

0;F ′
1;F ′

2; . . . ;F ′
k) is a random walk of

step size 2 starting from 0 and since each segment Fi is shifted by 1, the endpoint
of Fk and the endpoint of F ′′

k in absolute values differ by at most k + 1, that is,

(42)
∣∣∣∣F ′′

k

(
N

(
F ′′

k

))∣∣ − (
(k + 2)2 − 1

)∣∣ ≤ k + 1.

Also the two random walks E ′′
k := (E ′

0;E ′
1; . . . ;E ′

k) and F ′′
k := (F ′

0;F ′
1; . . . ;F ′

k)

are independent. To see this, observe that, given the endpoints of each of the seg-
ments Ei , Fi (to be precise, only whether the endpoints are positive or negative
is important, as their absolute values are fixed by definition), the segments are
independent.

Since, now both E ′′
k , F ′′

k start from 0, and the segments have been joined “end-
to-end,” E ′′

k , F ′′
k are independent. We extend these random walk segments to two

independent symmetric random walks E ′′, F ′′ starting from 0 of step-size 2, such
that the path E ′′

k is the initial segment of length N(E ′′
k ) of the path E ′′ and the

obvious corresponding statement holds for F ′′ as well.
For every a > 0, let τE ′′

a (resp., τF ′′
a ) be the number of steps required for the

random walk E ′′ (resp. F ′′) to hit ±a. Then we claim that

(43)
Zt − supa{τE ′′

a + τF ′′
a ≤ t}

t1/2
P→ 0,

where
P→ denotes convergence in probability. It is easy to see how Theorem

2.1 follows from this. Let B, B′ be two independent Brownian motions on
[0,1]. After standard interpolation, consider the random walk paths {E ′′(rt)

2t1/2 }r∈[0,1],
{F ′′(rt)

2t1/2 }r∈[0,1] as elements of C[0,1] (space of continuous functions on [0,1]
equipped with the topology of uniform convergence). Then, by Donsker’s theo-
rem,

(44)
({

E ′′(rt)
2t1/2

}
r∈[0,1]

,

{
F ′′(rt)

2t1/2

}
r∈[0,1]

)
d⇒ ({

B(r)
}
r∈[0,1],

{
B′(r)

}
r∈[0,1]

)
,

where d⇒ denotes convergence in distribution. In Lemma 5.2, it is shown that the
function

(45) h(f, g) = sup
a

{
τf
a + τg

a ≤ 1
}

is continuous for functions f,g ∈ C[0,1]. Hence, by continuous mapping,

(46)

supa{τE ′′
a + τF ′′

a ≤ t}
2t1/2 = sup

a

{
τ

E ′′(t ·)
2t1/2

a + τ

F ′′(t ·)
2t1/2

a ≤ 1
}

d⇒ sup
a

{
Ta + T ′

a ≤ 1
}
,
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where Ta and T ′
a are the hitting times of ±a for the two independent Brownian

motions B(·), B′(·). (Equivalently, Ta and T ′
a are the hitting times of a > 0 for two

independent reflected standard Brownian motions.)
Hence, the only thing left to prove is (43). Note that for any microstep t , by

definition, we have

(k + 1)2 − 1 ≤ Zt < (k + 1)(k + 2) or (k + 1)(k + 2) ≤ Zt < (k + 2)2 − 1,

for some k ∈ N. We first assume the former case. Then, by (38), (39), (42),∑
0≤i≤k−1

(
N(Ei ) + N(Fi )

) ≤ t <
∑

0≤i≤k−1

(
N(Ei ) + N(Fi )

) + N(Ek)

implies τE ′′
k(k+1) + τF ′′

(k+1)2−1−k
≤ t < τE ′′

(k+1)(k+2) + τF ′′
(k+1)2−1+k

,

which implies k2 + k ≤ sup
a

{
τE ′′
a + τF ′′

a ≤ t
} ≤ k2 + 3k + 2,

where the first implication uses the fact that
∑

0≤i≤k−1(N(Ei )) = N((E ′
0;E ′

1; . . . ;
E ′

k)) and a similar fact for Fi’s. Hence, using (38),∣∣∣Zt − sup
a

{
τE ′′
a + τF ′′

a ≤ t
}∣∣∣ ≤ 2k + 2 ≤ 2

√
sup
a

{
τE ′′
a + τF ′′

a ≤ t
} + 2,

which is a tight random variable at scale t1/4 by (46), and hence divided by t1/2

converges to zero in probability. A similar calculation using (39) would imply the
same, when (k + 1)(k + 2) ≤ Zt < (k + 2)2 − 1. Hence (43) follows.

The following short lemma provides the necessary argument for the application
of continuous mapping to the function in (45) which in turn implied (46) from
Donsker’s theorem.

LEMMA 5.2. If fn, gn, f, g ∈ C[0,1] such that fn → f , gn → g, where the
convergence is in the sup-norm (‖ · ‖∞), then

sup
a

{
τfn
a + τgn

a ≤ 1
} → sup

a

{
τf
a + τg

a ≤ 1
}
.

PROOF. Let un = ‖fn − f ‖∞ and vn = ‖gn − g‖∞. Then by hypothesis
un, vn → 0. Let z := supa{τf

a + τ
g
a ≤ 1}, and zn := supa{τfn

a + τ
gn
a ≤ 1}. More-

over, also let t1 = τ
f
z , and t2 = τ

g
z . Clearly,

z − un = ∣∣f (t1)
∣∣ − un ≤ ∣∣fn(t1)

∣∣, and, z − vn = ∣∣g(t1)
∣∣ − vn ≤ ∣∣gn(t1)

∣∣.
Thus, if rn = z − max(un, vn), then τ

fn
rn + τ

gn
rn ≤ t1 + t2 ≤ 1, and hence, zn ≥ rn =

z − max(un, vn). implying that lim inf zn ≥ z.
For the other inequality, assume that lim sup zn > z. By going to a subsequence

(we use the same notation for subsequence), this implies, there exists some ε > 0
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such that zn ≥ z + ε. Then let cn := τ
fn
z+ε , dn := τ

gn
z+ε . Then cn + dn ≤ 1. Also, for

any large n such that un < ε/2, vn < ε/2, we have

z + ε

2
≤ z + ε − un ≤ ∣∣fn(cn)

∣∣ − un ≤ ∣∣f (cn)
∣∣,

z + ε

2
≤ z + ε − vn ≤ ∣∣gn(cn)

∣∣ − gn ≤ ∣∣g(cn)
∣∣.

This implies, z = supa{τf
a + τ

g
a ≤ 1} ≥ z + ε

2 , thus arriving at a contradiction. �

5.2. Weak convergence of terminal run lengths. In this subsection, we prove
Theorem 2.2.

The proof will actually follow in a straightforward way from the following.

THEOREM 5.3. Recall the definitions Lt
E(1) = St

E,Lt
E(2), . . . from (32) and

X1,X2, . . . from (22). Then, for any fixed k > 1,

(Lt
E(1),Lt

E(2), . . . ,Lt
E(k))

t1/4
d⇒ √

2
(√

X1,

√
X2

2
, . . . ,

√
Xk

2

)
.

We postpone the proof of Theorem 5.3 and first see how Theorem 2.2 follows
directly from this.

PROOF OF THEOREM 2.2. Recall the modified run lengths counted from the
ends: Et

m(j) for j ≥ 1 from (33). Note that by continuous mapping, as a straight-
forward consequence of Theorem 5.3 we have

(47)

(Et
m(1),Et

m(2), . . . ,Et
m(k))

t1/4

d⇒ √
2
(√

X1 −
√

X2

2
,

√
X2

2
−

√
X3

2
, . . . ,

√
Xk

2
−

√
Xk+1

2

)
.

Using the above, Theorem 2.2 follows from the next lemma. �

LEMMA 5.4. Recall Et
m(j), Et (j ) from (15) and (33). Then, for any fixed

k ≥ 1,

P
((

Et
m(1),Et

m(2), . . . ,Et
m(k)

) �= (
Et (1),Et (2), . . . ,Et (k)

)) → 0.

PROOF. From the discussion after (21), it follows that, all the random vari-
ables in the RHS of (47) are strictly positive almost surely. By Remark 4.6, it
follows that

P
((

Et
m(1),Et

m(2), . . . ,Et
m(k)

) �= (
Et (1),Et (2), . . . ,Et (k)

))
≤ P

(
Et

m(j) = 0 for some j ∈ {1,2, . . . , k})
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≤
k∑

j=1

P
(
Et

m(j) = 0
)

≤
k∑

j=1

P

(
Et

m(j)

t1/4 ≤ 0
)

→ 0,

where the last conclusion follows from (47). �

We now proceed toward proving Theorem 5.3. As already mentioned in (2), we
have the following.

LEMMA 5.5. Let B, B′ and X1 be as in the statement of Theorem 1.1. Then
almost surely, exactly one of the following occurs:

A := {
X1 = max

{∣∣B′(s)
∣∣ : s ∈ [0,1 − TX1]

}}
,

A ′ := {
X1 = max

{∣∣B(s)
∣∣ : s ∈ [

0,1 − T ′
X1

]}}
.

Hence, by symmetry, P(A ) = P(A ′) = 1
2 .

REMARK 5.6. It will be useful later to observe that as a straightforward conse-
quence of continuity properties of distribution of Brownian motion, almost surely
|B′(T ′

X1
)| �= |B′(1 − TX1)| and similarly |B(TX1)| �= |B(1 − T ′

X1
)|.

We will also need the following lemma which states a refinement of the weak
convergence result in (44), conditioned on A or A ′. For this purpose, we will need
the following “discrete” versions of A and A ′. For any fixed t ∈ N, let At denote
the event that the vertical line X = t intersects the graph of Mt at Fn for some n

(see Figure 4), that is, (St
W, St

E) = (n,n + 1) or (n + 1, n) for some n. Thus Ac
t is

the event that the vertical line X = t intersects the graph of Mt at En for some n,
that is, (St

W, St
E) = (n,n) for some n. Also let B, B′ be two independent Brownian

motions as above and recall the random walks E ′′, F ′′ defined in (40) and (41).

LEMMA 5.7. Let μA
t denote the conditional distribution of ({E ′′(rt)

2t1/2 }r∈[0,1],
{F ′′(rt)

2t1/2 }r∈[0,1]) given At , and μ(A ) denote the conditional distribution of (B,B′)
given A . Then

μA
t

d⇒ μA .

Also, by symmetry, if μAc

t denotes the conditional distribution of ({E ′′(rt)
2t1/2 }r∈[0,1],

{F ′′(rt)
2t1/2 }r∈[0,1]) given Ac

t , and μA ′
denote the conditional distribution of (B,B)

given A ′. Then

μAc

t
d⇒ μA ′

.
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Note that the set A has probability half and hence the above conditional distri-
butions can be defined in a straightforward way. Before proving the above lemmas,
we complete the proof of Theorem 5.3.

PROOF OF THEOREM 5.3. We only consider the case k = 2. The proof of
the general case is obtained by repeating similar arguments and is omitted. First,
assume that At occurs, and without loss of generality that (St

W, St
E) = (n1 + 1, n1)

for some n1. More generally, let Lt
E(i) = ni (by Lemma 4.4, this implies ni − 1 ≤

Lt
W(i) ≤ ni + 1).
Also, recalling Mt from (31), we assume that SMt

E = (B, . . . ,B), and SMt

W =
(R, . . . ,R) (the other cases will be similar), and hence MMt

> 0. Thus, by the
arguments in the proof of Lemma 5.1,

(n1 + 1)(n1 + 2) ≤ max
s≤t

Ms ≤ (n1 + 2)2 − 1.

Since Lt
E(2) = n2, and n2 − 1 ≤ Lt

W(2) ≤ n2 + 1, it follows by observing the
value of Ms when the second layer got formed, that

(n1 + 1)2 − 2(n2 + 1)2 ≤ min
Mt≤s≤t

Ms ≤ (n1 + 1)2 − 2n2
2.

Recall that τE ′′
a , τF ′′

a are the (first) hitting times of ±a for E ′′, F ′′ and further let
τ̃F ′′
(a+1)2 be the last time F ′′ hits ±(a + 1)2 before time t − τE ′′

(a+1)(a+2). Then the

above statements along with the definition of F ′′ imply that

(48)

(n1 + 1)2 − 2(n2 + 1)2

≤ min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s) ≤ (n1 + 1)2 − 2n2
2.

Now, define

(49) Lt :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
s≤t

Ms −
(

min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s)
)

when MMt = F ′′(τ̃F ′′
(n1+1)2

) = (n1 + 1)2,

−min
s≤t

Ms +
(

max
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s)
)

when MMt = F ′′(τ̃F ′′
(n1+1)2

) = −(n1 + 1)2.

Hence, following similar arguments as in the proof of Theorem 2.1, it follows from
(48), that for every ε > 0,

(50) P

(∣∣∣∣Lt
E(2) −

√
Lt

2

t1/4

∣∣∣∣ > ε
∣∣∣At

)
→0.
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Thus we will use
√

Lt

2 as a proxy for Lt
E(2) since it satisfies nice continuity prop-

erties which will be convenient in proving weak convergence results.
A similar calculation follows when the event Ac

t occurs instead. Let L′
t be the

analogous definition of Lt , when the event Ac
t occurs, instead of At in the definition

of Lt .
We now claim that the distribution Lt

2t1/2 conditional on the event At converges to
the distribution of X2(B′) conditional on the event A , where X2(B′) is as defined
in (22) for standard Brownian motions B, B′. This follows from Lemma 5.7 and
continuous mapping once we establish the convergence of

maxs≤t |Ms |
2t1/2 and

(min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s))

2t1/2 ,(51)

to their Brownian counterparts. Lemma 5.2 takes care of the first term. The ar-
guments for the second term are presented later (see Lemmas 5.8, 5.9 and the
discussion preceding them). Moreover, given the above, by symmetry, the distri-

bution L′
t

2t1/2 conditional on the event A′
t converges to the distribution of X2(B)

conditional on the event A ′, where X2(B) is as defined in (22) by replacing B′
by B.

It follows easily from (50) and the above that, for any b > 0,

lim
t
P

(
Lt

E(2)

t1/4 ≤ b

)

= lim
t
P

([
Lt

E(2)

t1/4 ≤ b

] ∣∣∣At

)
P(At ) + lim

t
P

([
Lt

E(2)

t1/4 ≤ b

] ∣∣∣Ac
t

)
P
(
Ac

t

)
= lim

t
P

([√
Lt

2t1/2 ≤ b

] ∣∣∣At

)
P(At ) + lim

t
P

([√
L′

t

2t1/2 ≤ b

] ∣∣∣Ac
t

)
P
(
Ac

t

)
= P

([√
X2

(
B′) ≤ b

]|A )
P(A ) + P

([√
X2(B) ≤ b

]|A ′)
P
(
A ′)

= P
([√

X2
(
B′) ≤ b

]|A )(
P(A ) + P

(
A ′))

= P
([√

X2
(
B′) ≤ b

]|A ) = P(
√

X2 ≤ b),

where the last line follows by using symmetry. �

We now complete the proofs of Lemmas 5.5 and 5.7.

PROOF OF LEMMA 5.5. Since B, B′ are two independent Brownian motions,
their respective sets of local extrema (any point which is a local maxima or a local
minima) are disjoint with probability one. To see this, note that the set of local
extrema for Brownian motion is a countable set, and the fact that any fixed point
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is a local maxima with probability zero. The proof now follows by conditioning
on B, and showing that the probability that some t which is a local extrema of B
is also a local extrema of B′ is zero, followed by union bounding over all local
extrema of B.

Moreover, for at least one of |B|, |B′|, TX1 or T ′
X1

must be a local maxima.
This follows because otherwise, the fact that TX1 + T ′

X1
< 1 almost surely, would

contradict the maximality of X1. Also observe that if X1 is the local maxima of
|B′|, so that TX1 is not a point of local maxima of |B|, then X1 is the maximum
value of |B′| until time 1 − TX1 . To see this, observe that if there exists some
z > X1 such T ′

z < 1 − TX1 , then the fact that for any t > TX1 , there is a point
t > t0 > TX1 such that |B(t0)| > X1 (since it is not a local extrema), would imply
again that supa{Ta + T ′

a ≤ 1} > X1. �

PROOF OF LEMMA 5.7. We only prove the first claim and the second one
follows by symmetry. Using the Portmanteau theorem, it is enough to show that,
for any closed set G ⊆ C[0,1] × C[0,1],

(52)
lim sup

t
P

(({
E ′′(rt)
2t1/2

}
r∈[0,1]

,

{
F ′′(rt)

2t1/2

}
r∈[0,1]

)
∈ G

∣∣∣At

)
≤ P

(({
B(r)

}
,
{
B′(r)

}) ∈ G|A )
.

Now on the event At since (St
W, St

E) = (m,m + 1) or (m + 1,m) for some m ∈ N,
by Lemma 5.1,

(m + 1)(m + 2) ≤ max
s≤t

∣∣Ms
∣∣ ≤ (m + 2)2 − 1.

Also, if At happens, then F ′′(t − τE ′′
(m+1)(m+2)) is a part of the segment F ′

m (the
segments E ′

k , F ′
k are defined in (41)). Thus,

(m + 1)2 ≤ max
0≤s≤t−τE ′′

(m+1)(m+2)

∣∣F ′′(s)
∣∣ ≤ (m + 2)2 − 1.

Thus, on the event At , |max0≤s≤t−τE ′′
(m+1)(m+2)

|F ′′(s)| − maxs≤t |Ms || ≤ 2(m +
1) ≤ 2

√
maxs≤t |Ms | + 2, and

√
maxs≤t |Ms | is a tight random variable at scale

t1/4 since by Theorem 2.1 and (37), one has maxs≤t |Ms |
2t1/2 ⇒ X1. Hence, for any

fixed η > 0, for all large enough t ,

(53) At ⊆
{∣∣∣∣maxs≤t |Ms |

2t1/2 −
max0≤s≤t−τE ′′

(m+1)(m+2)
|F ′′(s)|

2t1/2

∣∣∣∣ ≤ η

}
=: Ct .
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Also by Donsker’s theorem,({
E ′′(rt)
2t1/2

}
r∈[0,1]

,

{
F ′′(rt)

2t1/2

}
r∈[0,1]

,
maxs≤t |Ms |

2t1/2 ,

max0≤s≤t−τE ′′
(m+1)(m+2)

|F ′′(s)|
2t1/2

)
(54)

d⇒
(
B,B′,X1, max

0≤s≤1−TX1

∣∣B′(s)
∣∣),

where B, B′ are independent Brownian motions. The convergence of the third term
in (54) follows from Theorem 2.1 and (37). The required continuity arguments
for the convergence of the fourth term in (54) is provided in Lemma 5.8 (see the
discussion preceding it). Hence, by a simple continuous mapping,

Xt :=
({

E ′′(rt)
2t1/2

}
r∈[0,1]

,

{
F ′′(rt)

2t1/2

}
r∈[0,1]

,

maxs≤t |Ms |
2t1/2 −

max0≤s≤t−τE ′′
(m+1)(m+2)

|F ′′(s)|
2t1/2

)
(55)

d⇒
(
B,B′,X1 − max

0≤s≤1−TX1

∣∣B′(s)
∣∣) =:X.

Hence, if G ⊆ C[0,1] × C[0,1] is any closed set, and

Jt :=
{({

E ′′(rt)
2t1/2

}
r∈[0,1]

,

{
F ′′(rt)

2t1/2

}
r∈[0,1]

)
∈G

}
,

J := {({
B(r)

}
r∈[0,1],

{
B′(r)

}
r∈[0,1]

) ∈ G
}
,

then

lim sup
t

P(Jt ∩At ) ≤ lim sup
t

P(Jt ∩ Ct ) = lim sup
t

P
(
Xt ∈ (

G× [−η,η]))
≤ P

(
X ∈ (

G× [−η,η]))
= P

(
J∩

{∣∣∣X1 − max
0≤s≤1−TX1

∣∣B′(s)
∣∣∣∣∣ ≤ η

})
,

where the inequality in the second line follows because of (55) and the fact that
G×[−η,η] is a closed set. By letting η → 0, one has lim supt P(Jt ∩At ) ≤ P(J∩
A ).

Moreover, by taking G = C[0,1]2, one has lim supt P(At ) ≤ P(A ). Further,
replacing E ′′ by F ′′, and using Lemma 5.5, we have lim supt P(Ac

t ) ≤ P(A ′).
Since A ′ is the complement of the event A by Lemma 5.5, this gives that P(At ) →
P(A ).
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Thus from the above we get that lim supt P(Jt ∩At ) ≤ P(J∩ A ) and P(At ) →
P(A ). Hence (52) follows. �

The only things left to prove are the necessary continuity arguments used in
the proof of Lemma 5.7 and Theorem 5.3, that is, justifying the continuity of the
second term in (51) and continuity of the fourth term in (54). Recall that for any
function f ∈ C[0,1] and a > 0, τ

f
a denotes the first time |f | hits a. Consider a

sequence of functions fn, gn, f, g ∈ C[0,1] such that fn → f , and gn → g where
the convergence is in sup-norm (‖ · ‖∞), and z is as in (56) and two sequences zn,
and z′

n converging to z. If f , g satisfy certain conditions, stated in the hypothesis
of Lemma 5.8,which Brownian motion paths almost surely do, the latter implies
that that τ

fn
zn → τ

f
z . This in turn implies that

max
0≤s≤1−τ

fn
zn

∣∣gn(s)
∣∣ → max

0≤s≤1−τ
f
z

∣∣g(s)
∣∣.

This takes care of the convergence of the fourth term in (54).
Further, if t̃ ′n, as in Lemma 5.9, denotes the last time z′

n is hit by |gn|, where |g|
attains a local maxima at τ

g
z , then Lemma 5.9 shows that t̃ ′n → τ

g
z . This, together

with Lemma 5.8 (τfn
zn → τ

f
z ), in turn imply

min
t̃ ′n≤s≤1−τ

fn
zn

gn(s) → min
τ

g
z ≤s≤1−τ

f
z

g(s),

which is the required continuity of the second term in (51). We now formally state
and prove the lemmas used in the above discussion.

LEMMA 5.8. Let fn, gn, f, g ∈ C[0,1] be such that fn → f , gn → g where
the convergence is in sup-norm (‖ · ‖∞). Let

(56) z = sup
a

{
τf
a + τg

a ≤ 1
}
.

Let zn → z, z′
n → z. Let tn = τ

fn
zn , t = τ

f
z , t ′n = τ

gn

z′
n

, t ′ = τ
g
z . Also assume tn + t ′n ≤

1, and one of the following two cases occur (by Lemma 5.5, independent Brownian
motions satisfy this property a.s.:

1. |f | attains a local maxima at t , and g is such that for all s > t ′, there exists
s > t0 > t ′ such that |g(t0)| > z.

2. |g| attains a local maxima at t ′, and f is such that for all s > t , there exists
s > t0 > t such that |f (t0)| > z.

Moreover, assume that in any open interval, |f |, |g| attain their maximums at at
most one point (A straightforward adaption of the argument in [21] yields that
Brownian motion satisfies this a.s.) and that |f (1 − τ

g
a )| �= a and |g(1 − τ

f
a )| �= a

(by Remark 5.6, this holds almost surely for independent Brownian motions by
standard continuity arguments). Then tn → t , t ′n → t ′.
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PROOF. By symmetry, it is enough to show that t ′n → t ′. Since vn := ‖gn −
g‖∞ → 0, hence,

z′
n − vn = ∣∣gn

(
t ′n
)∣∣ − vn ≤ ∣∣g(t ′n)∣∣.

If lim inf t ′n < t ′, then going to a subsequence, there exists some ε > 0 such that
t ′nk

< t ′ − ε for all nk . Since |g(s)| < z for all z < t ′ by definition, hence, because
of continuity of g,

sup
0≤s≤t ′−ε

∣∣g(s)
∣∣ =: z0 = z − δ,

for some δ > 0. Thus,

z′
nk

− vnk
≤ ∣∣g(t ′nk

)∣∣ ≤ sup
0≤s≤t ′−ε

∣∣g(s)
∣∣ = z − δ.

This contradicts that z′
n converges to z.

Now we prove the other inequality, namely that lim sup t ′n ≤ t ′. Consider Case
1. If lim sup t ′n > t ′, then going to a subsequence, there exists ε > 0 such that t ′nk

≥
t ′ + ε for all nk . Because of the assumption on g, there exists some t ′ < t0 ≤ t ′ + ε

2
such that |g(t0)| = z + δ for some δ > 0. Get nk large enough such that

∣∣gnk
(t0)

∣∣ ≥ ∣∣g(t0)
∣∣ − δ

2
= z + δ

2
.

Also choose nk large enough such that z′
nk

≤ z + δ
4 . But, t ′nk

≥ t ′ + ε ≥ t0 + ε
2 , and

the continuity of gn contradicts the definition of t ′nk
= τ

gnk

z′
nk

.

We now consider Case 2. The conditions on f , g and the definition of z imply
that (see Lemma 5.5) sup0≤s≤1−t |g(s)| = z. Assume that lim sup t ′n > t ′. Then,
since 0 ≤ t ′n ≤ 1 (since by assumption, tn + t ′n ≤ 1), there exists ε > 0 and a sub-
sequence such that t ′nk

→ t ′ + ε. Since t ′n ≤ 1 − tn and moreover the arguments in
Case 1 imply that tn → t . Thus, t ′ + ε ≤ 1 − t . Further,

z′
nk

− vnk
= ∣∣gnk

(
t ′nk

)∣∣ − vnk
≤ ∣∣g(t ′nk

)∣∣ ≤ ∣∣gnk

(
t ′nk

)∣∣ + vnk
= z′

nk
+ vnk

,

and the continuity of g imply that |g(t ′ + ε)| = z. Thus there exist two points
t ′, t ′ + ε ∈ [0,1 − t] such that∣∣g(t ′)∣∣ = ∣∣g(t ′ + ε

)∣∣ = z = sup
0≤s≤1−t

∣∣g(s)
∣∣.

Now first of all by hypothesis t ′ + ε is strictly less than 1 − t . However, this im-
plies two maxima in the open interval (0,1 − t) which then contradicts the other
assumption on g.

This contradicts the assumption on g. �
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LEMMA 5.9. Assume the conditions in Lemma 5.8 and assume that Case 2.
holds. Let

t̃ ′n = sup
{
s ≤ 1 − tn : ∣∣gn(s)

∣∣ = z′
n

}
be the last time before 1 − tn such that gn attains the value ±z′

n. Then t̃ ′n → t ′.

The proof is similar to the last part of the proof of Lemma 5.8. We briefly outline
it here.

PROOF. Since t̃ ′n ∈ [0,1], hence enough to show that every converging subse-
quence of {t̃ ′n} converges to t ′. Let t̃ ′nk

→ t0. Since t ′nk
≤ 1 − tnk

, and tnk
→ t by

Lemma 5.8, hence t0 ≤ 1 − t . Further,

z′
nk

− vnk
= ∣∣gnk

(
t̃ ′nk

)∣∣ − vnk
≤ ∣∣g(t̃ ′nk

)∣∣ ≤ ∣∣gnk

(
t̃ ′nk

)∣∣ + vnk
= z′

nk
+ vnk

,

and the continuity of g imply that |g(t0)| = z. If t0 �= t ′, then there exist two points
t0, t

′ ∈ [0,1 − t] such that∣∣g(t0)
∣∣ = ∣∣g(t ′)∣∣ = z = sup

0≤s≤1−t

∣∣g(s)
∣∣.

The arguments in the proof of the previous lemma now go through verbatim, con-
tradicting the assumptions on g. �

6. Comparison of particle and microstep time scales. In this section, we
prove Theorem 2.3. However, we first complete the proofs of Theorems 1.1 and 1.2
assuming the former. Recall the definition of V (n) from the statement of Theorem
2.3.

PROOF OF THEOREM 1.1. By definition, SE(n) = S
V (n)
E . Hence, because of

Theorem 2.3, it is enough to show that

S
V (n)
E

(V (n))1/4
d⇒ G,

where G := √
2
√

sup{a ≥ 0 : Ta + T ′
a ≤ 1}. To this end, fix any ε > 0. By Theorem

2.3,

(57) α − ε <
V (n)

n
< α + ε with probability 1 − δn,

where δn → 0 as n → ∞. Since St
E is nondecreasing in t , this implies

P

[
S

�n(α−ε)�
E

(n(α − ε))1/4

(
α − ε

α + ε

)1/4
≤ S

V (n)
E

(V (n))1/4 ≤ S
�n(α+ε)�
E

(n(α + ε))1/4

(
α + ε

α − ε

)1/4]
≥ 1 − δn.
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Thus, for any c ∈ R, using Theorem 2.1 one has

P

(
S

V (n)
E

(V (n))1/4 ≤ c

)
≤ δn + P

(
S

�n(α−ε)�
E

(n(α − ε))1/4

(
α − ε

α + ε

)1/4
≤ c

)

= δn + P

(
S

�n(α−ε)�
E

(n(α − ε))1/4 ≤ c

(
α + ε

α − ε

)1/4)

→ P

(
G ≤ c

(
α + ε

α − ε

)1/4)
.

Similarly,

P

(
S

V (n)
E

(V (n))1/4 ≤ c

)
≥ P

(
S

�n(α+ε)�
E

(n(α + ε))1/4

(
α + ε

α − ε

)1/4
≤ c

)
− δn

→ P

(
G ≤ c

(
α − ε

α + ε

)1/4)
.

Letting ε → 0 and using the continuity of the distribution function of G one has
the result. �

PROOF OF THEOREM 1.2. The arguments are a combination of the ones ap-
pearing in the previous proof along with those appearing in the proof of Theo-
rem 5.3. Hence, we just sketch the main steps and as in the proof of Theorem 5.3
we only consider the case E(n,1), since the arguments for E(n,2),E(n,3), . . ., are
similar.

Now recall (49),

Lt :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
s≤t

Ms −
(

min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s)
)

when MMt = F ′′(τ̃F ′′
(n1+1)2

) = (n1 + 1)2,

−min
s≤t

Ms +
(

max
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s)
)

when MMt = F ′′(τ̃F ′′
(n1+1)2

) = −(n1 + 1)2

as well as the terms in (51),

maxs≤t |Ms |
2t1/2 and

(min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s))

2t1/2 .

Recall that E ′′ and F ′′ properly scaled converge to Brownian motions B and B′,
respectively. Thus using the properties of B, B′ stated before during the discussion
around (21), it follows that for any δ, for all small enough ε for all large enough t
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with probability at least 1 − δ the following holds: When the first case in the above
expression of Lt holds, then simultaneously for all t∗ ∈ [t (1 − ε), t (1 + ε)],

max
s≤t∗

∣∣Ms
∣∣ = max

s≤t

∣∣Ms
∣∣,

min
τ̃F ′′
(n1+1)2

≤s≤t∗−τE ′′
(n1+1)(n1+2)

F ′′(s) = min
τ̃F ′′
(n1+1)2

≤s≤t−τE ′′
(n1+1)(n1+2)

F ′′(s).

The obvious corresponding statement holds for the second case in the above defi-
nition of Lt .

This shows that for any δ, for all small enough ε for all large enough t , Lt∗ = Lt

for all t∗ ∈ [t (1 − ε), t (1 + ε)] with probability at least 1 − δ. This allows us to
use the sandwiching statement in (57) and carry out the proof as in the proof of
Theorem 1.1; the only difference being that in the latter we relied on (57) and
Theorem 2.1, whereas here we use Theorem 5.3 instead which was used in the
proof of Theorem 2.2. �

We now dive in to the proof of Theorem 2.3 which spans over the next three
subsections.

6.1. Proportion of time when there are long monochromatic runs. Recall the
discussion from Section 2 about the strategy to compare the number of microsteps
and the total number of particles emitted. Recall from (8), that τ i is the number of
microsteps taken by the ith particle. To this end, we have the following definition.

DEFINITION 6.1. Let n be odd and without loss of generality assume that
X(n − 1)(−1) = R. For some positive integer L, we call n or the nth particle as
L-good if X(n−1)(y) = B for all 1 ≤ y ≤ L−1 and X(n−1)(L) �= B. Similarly,
we define an even n to be L-good by switching R and B. Thus the nth particle is
said to be L-good if the run adjacent to the origin of the same color as that of the
emitted particle has length L − 1 when the particle was emitted. We also call a
microstep t as L-good if

n−1∑
j=1

τ j < t ≤
n∑

j=1

τ j ,

and n is L-good, that is, the microstep was taken by a particle which was L-good.

We now prove bounds on the fraction of L-good microsteps for large L. How-
ever, it will be convenient to break the analysis into two similar parts where in one
part we consider the case when the run adjacent to the origin of size L − 1 is on
the positive axis and in the other we consider the negative axis. To this end, we call
the nth particle as (E,L)-good if the run adjacent to the origin of the same color
as that of the particle is of length L − 1 and it is on the positive axis. Similarly, we
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call the particle as (W,L)-good if the relevant run is on the negative axis. Simi-
larly, a microstep t inherits the same terminology from the corresponding particle
associated to it.

Fix L ∈ N. For any microstep t , let

(58) G(L, t) =
t∑

j=1

1
(
j th microstep is L-good

)
,

be the number of L-good microsteps up to t . For L ∈ N, let T
(0)

E,L = 0 and

T
(1)
E,L, T

(2)
E,L, . . . be the sequence of microsteps with the following properties:

• T
(j)

E,L is (E,L)-good for any j .

• For any j , there exists t such that T
(j)
E,L < t < T

(j+1)
E,L such that t is (E,L + 1)-

good.
• For any j , T

(j+1)
E,L is the earliest microstep with the above properties.

In words, consider the first time a microstep becomes (E,L)-good. Typically, the
next few microsteps are either (W, j)-good for some j or (E, �)-good for some
� ≤ L and eventually a microstep becomes (E, �)-good for some � ≥ L + 1. Then
after some time, a microstep would become (E,L)-good again for the first time.
These are the times T

(j)
E,L, when the process returns to the state of being (E,L)-

good after becoming (E, �)-good for some � ≥ L + 1. Let F (i)
E,L = T

(i)
E,L − T

(i−1)
E,L

(the waiting times between consecutive T
(i)

E,L’s) and let

F (i)
E,L,L = ∑

T
(j)
E,L<t<T

(j+1)
E,L

1
(
t is (E,L)-good

)
,

(the number of steps in F (i)
E,L that are themselves (E,L)-good). Also, let W(i)

E,L :=
T

(i+1)
E,L − t∗ where t∗ = inf{t : T

(j)
E,L < t < T

(j+1)
E,L , and t is (E, �)-good for some

� ≥ L + 1}, that is, the number of microsteps needed to get an (E,L)-good mi-
crostep, after a certain microstep has been (E, �)-good for some � ≥ L + 1. The
following two lemmas concerning the F (i)

E,L,L’s and W(i)
E,L’s would be crucial. Now

it would be obvious from the proofs and obvious symmetry of the situation that
these results hold for F (i)

W,L,L’s and W(i)
W,L as well where the latter are the obvious

analogues obtained by replacing E by W. Hence in the following for brevity we
will suppress the E subscript. It will also be convenient to keep in mind the con-
sequence of the proof of Lemma 4.4, that whenever a particle is L-good then both
the intervals [−L+1,−1] and [1,L−1] are monochromatic with opposite colors.

LEMMA 6.2. There exists c > 0, such that for all large enough r , for any
L ∈ N, conditionally on the past, for any i, the random variable, F (i)

L,L satisfies

P(F (i)
L,L ≥ L2r) ≤ e−cr .
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PROOF. To prove the lemma, we will show that, conditionally on the past,
F (i)

L,L, is dominated by the number of steps taken by a symmetric random walk on
Z started at 0, reflected at −1 to reach L. The lemma now follows using standard
random walk hitting time estimates. Now notice that a particle is (E,L)-good iff
the particle is stopped on hitting {−1,L}. Thus F (i)

L,L counts all such microsteps
before L is hit if it is at all hit. (Note that it might happen that the number of L-
good particles emitted before the interval [1,L] becomes monochromatic could be
as small as one on the event that a layer of opposite color grows to make [1,L− 1]
as the same color as L.) If a (E,L)-good particle hits −1 instead the next (E,L)-
good if any, starts at 0 which can be thought of as the previous particle reflecting
at −1 to end at 0. Thus we are done. �

LEMMA 6.3. Given L ∈ N, for each i, W(i)
L dominates the hitting time of

{±L2

4 } for a simple random walk on Z started from the origin.

PROOF. Let t̃i be the last L + j -good time in the interval T
(i)
L and T

(i+1)
L for

some j > 0 on any side of the x-axis. Thus by definition for all t̃i < t < T
(i+1)
L ,

the configuration outside [−L,L] does not change. Moreover by Remark 4.6, at
t̃i both [−L,−1] and [1,L] are monochromatic of opposite colors and at T

(i+1)
L

the intervals [−L+ 1,−1] and [1,L− 1] are monochromatic with different colors

than at t̃i . Thus |Mt̃i − MT
(i+1)
L | ≥ L2, and hence by triangle inequality

max
(∣∣Mt̃i − MT

(i)
L

∣∣, ∣∣MT
(i)
L − MT

(i+1)
L

∣∣) ≥ L2

2
,

and hence we are done as Ms is a simple random walk of step size 2. �

For any k, let N1(t) := N1(t, k) be such that T
(N1(t))

E,k < t ≤ T
(N1(t))+1
E,k . Simi-

larly, define N2(t) but replacing E by W. Then by definition,

(59)
G(k, t)

t
≤

∑N1(t)
i=1 F (i)

E,k,k

T
(1)
E,k + ∑N(t)−1

i=1 W(i)
E,k

+
∑N2(t)

i=1 F (i)
W,k,k

T
(1)
W,k + ∑N(t)−1

i=1 W(i)
W,k

,

since the first term is an upper bound on the fraction of (E, k)-good, microsteps
and the second term is a bound on (W, k)-good, microsteps.

6.2. Coupling with a killed renewal process. We now use (59) and Lemmas
6.2 and 6.3 to bound G(L,t)

t
.

PROPOSITION 6.4. Fix any δ > 0. For any L, there exists α > 0 such that for
all large t , with probability at least 1 − e−ctα , for all L ≤ k ≤ t ,

G(k, t)

t
≤ 1

k2−δ
.
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For any fixed k, it turns out that G(k,t)
t

≤ C
k2 , with high probability. However,

for our purposes, we would need the above bound, uniformly over k, and hence as
a result we pay the arbitrarily small δ in the exponent. Before proving the above
bound, we show how to prove Theorem 2.3 using it. Fix L ∈ N. As outlined in Sec-
tion 2, at this point we consider the following killed version Xkilled(·) := Xkilled

L (·)
of the erosion process. The setup is the following:

• It is a version of actual erosion process, but we now restrict our attention only
to the interval [−L,L].

• The starting configuration is either [R, . . .R︸ ︷︷ ︸
L times

,0,B, . . .B︸ ︷︷ ︸
L times

] or [B, . . .B︸ ︷︷ ︸
L times

,0,R, . . .R︸ ︷︷ ︸
L times

].

• A particle either red or blue is emitted at the origin, and then subsequently the
color of the particle is alternated until a particle exits the interval [−L,L], at
which point the process is killed.

Let R(L) and Q(L) be respectively the number of particles emitted and microsteps
taken in this process. By obvious symmetry, the laws of R = R(L) and Q = Q(L)

do not depend on whether initially [1,L] is colored red or blue or whether the
initial particle is red or blue. However, it will be convenient for us to denote
by Xkilled

a1,a2
(·), the law of the process where the initial configuration has color

a1 ∈ {R,B} on [1,L] and the starting particle has color a2 ∈ {R,B}. The next
lemma which follows directly from the discussion in the proof of Lemma 4.4 and
Remark 4.6, states that when the above process is killed, the configuration is still
monochromatic on each side, and hence looks like the configuration at time zero.

LEMMA 6.5. Xkilled
a1,a2

(R(L)) is monochromatic on each side of the origin with
opposite colors.

Thus R(L) is distributed as AL,L+1 −AL,L where the latter were defined in (34).
By Lemma 5.1, Q(L) is distributed as the number of steps of a random walk path
of step size 2 starting from L(L+ 1), stopped when it either increases by 2(L+ 1)

or decreases by −2L(L + 1) − 2(L + 1) = −2(L + 1)2, and hence E(Q(L)) =
(L + 1)3.

LEMMA 6.6. For R(L), Q(L) as defined above

(60) lim
L→∞

E(R(L))

E(Q(L))
= 1

α
,

where α appears in Theorem 2.3.

The proof of this is based on a recursion and the formal details are presented
in Section 6.3. However, first we complete the proof of Theorem 2.3. We will rely
on the following coupling between the actual process and the killed process. To
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formally state the coupling recall from (34), that AL,L is, the number of parti-
cles emitted when X(·) reaches a configuration which is monochromatic on either
side of the origin on the intervals [−L,−1] and [1,L]. The next lemma couples
the original process with a sequence of killed processes with different initial con-
figurations, and different colors of the initially emitted particles. Recall from the
statement of Theorem 2.3, that Vn is the total number of microsteps taken by the
first n particles in the process {X(i)}ni=1. Also recall the notation G(L, t) from
Proposition 6.4.

PROPOSITION 6.7. There exists a coupling of the processes {X(AL,L +
n)}n≥1 and a sequence of process {Xkilled,(i)

ai ,bi
(·)}mn

i=1
where X

killed,(i)
ai ,bi

(·) is an in-

dependent copy of the process Xkilled
ai ,bi

where ai , bi are functions of the process
{X(AL,L + n)}n≥1 and mn is a nondecreasing random sequence such that the fol-
lowing holds:

(1) |Pn −n| ≤ ∑∞
�=L+1 G(�,Vn) for all n where Pn = ∑mn

i=1 R
(L)
i where R(L)

i

is the total number of particles emitted during the ith process X
killed,(i)
ai ,bi

(·).
(2) Moreover,

Tn ≤ Vn ≤ Tn +
∞∑

�=L+1

G(�,Vn),

where Tn = ∑mn

i=1 Q
(L)
i where Q(L)

i is the total number of microsteps taken during

the ith process X
killed,(i)
ai ,bi

.

Before describing the above coupling, we show how to quickly complete the
proof of Theorem 2.3 using the above and Proposition 6.4.

PROOF OF THEOREM 2.3. Observe that, using (2) above,

Tn

n
≤ Vn

n
≤ Tn + ∑∞

�=L+1 G(�,Vn)

n
.

Moreover, notice that with probability at least 1 − e−nc
for some c > 0,

n ≤ Vn ≤ n5 ,

where the first inequality is deterministic and the second inequality follows from
standard random walk estimates (by Lemma 6.8 stated later, for δ = 1/4, with
probability at least 1 − e−nc

, supt≤n5 |Mt | ≥ n5/2−2δ , and deterministically, if

supt≤n5 |Mt | ≥ n5/2−2δ then Sn5 ≥ n5/4−δ ≥ n and hence Vn ≤ n5). Fixing L > 0,
using the above and Proposition 6.4, followed by a union bound over n ≤ t ≤
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n5 it follows that with probability at least 1 − e−nc
for some c > 0, we have∑∞

�=L+1 G(�,Vn) ≤ Vn√
L

, and thus by (2) above,

Vn

(
1 − 1√

L

)
≤ Tn ≤ Vn.

Moreover, by the law of large numbers, it follows that Pn

Tn
converges almost

surely to E(R(L))

E(Q(L))
. Now using Lemma 6.6, for any ε > 0 we can choose L large

enough so that E(R(L))

E(Q(L))
≥ 1

α
− ε, and hence for all large n with probability going

to 1, we have Pn ≥ Vn(1 − 1√
L
)( 1

α
− ε). Thus using (1) above and the preceding

discussion,

Pn

(
1 − C√

L

)
≤ n ≤ Pn

(
1 + C√

L

)
,

for some C = C(α). Thus we get

Tn

Pn

(
1 − C′

√
L

)
≤ Vn

n
≤ Tn

Pn

(
1 + C′

√
L

)
for some constant C′ = C′(α), and hence Theorem 2.3 follows. �

We now prove Proposition 6.4.

PROOF OF PROPOSITION 6.4. Recall the two terms on the RHS in (59). We
will provide bounds only for the first term and omit the completely symmetric
details for the second term. Also for notational brevity, we will drop the E in the
notation. Thus we will bound ∑N1(t)

i=1 F (i)
k,k

T
(1)
k + ∑N1(t)−1

i=1 W(i)
k

.

The proof considers two cases k ≤ tγ and k > tγ for some to-be-later specified
value of γ . The first part of the proof shows that for any k ≤ tγ , N1(t, k) is large. In
this case, for our purposes we can afford to use the following rather crude bound:

(61) P
(
N1(t, k) ≥ t1/4−δ) ≥ 1 − e−tc

which is proved in Lemma 6.9. Note that by Lemma 6.2, the terms in the numerator
in (59) are subexponential variables at scale k2. Since N1(t, k) is large for k ≤ tγ ,
this allows us to use concentration results to bound the numerator. Also notice that
by Lemma 6.3, the terms in the denominator, dominates a subexponential variable
at scale k4. This shows that the ratio in (59) is bounded approximately by 1

k2 .
Formally, we use

P

(∑N1(t,k)
i=1 F (i)

k,k

N1(t, k)
≥ 2E

(
F (1)

k,k

))
) ≤ e−tc +

t∑
m=t1/4−δ

P

(∑m
i=1 F

(i)
k,k

m
≥ 2E

(
F (1)

k

))
.
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Similarly,

P

(∑N1(t,k)
i=1 W(i),∗

k

N1(t, k)
≤ 1

2
E
(
W(1),∗

k

))
)

≤ e−tc +
t∑

m=t1/4−δ

P

(∑m
i=1 W

(i),∗
k

m
≥ 2E

(
W(1),∗

k

))
,

where W(i),∗
k are i.i.d. copies of hitting time of ± k2

4 , for a standard random walk
on Z started at the origin. Thus by simple union bound and the following estimate,
the probabilities on the LHS in the above two expressions are both at most e−tc for
some c > 0. There exists a universal c > 0 such that for any k,m > 0,

P

(∑m
i=1 F

(i)
k,k

m
≥ 2E

(
F (1)

k,k

))
) ≤ e−cm,(62)

P

(∑m
i=1 W

(i),∗
k

m
≤ 1

2
E
(
W(1),∗

k

)) ≤ e−c′m.(63)

The above follows from standard concentration of subexponential variables [14]
and Lemmas 6.2 and 6.3. Now as E(F (i)

k ) = O(k2) and E(W(i,∗)
k ) = �(k4), we

have

P

(
G(t, k)

t
≥ C

k2

)
≤ P

( ∑N1(t,k)
i=1 F (i)

k,k∑N1(t,k)−1
i=1 W(i,∗)

k

≥ C

k2

)

≤ P

(∑N1(t,k)
i=1 F (i)

k,k

N1(t, k)
≥ 2E

(
F (1)

k,k

))

+ P

(∑N1(t,k)
i=1 W(i,∗)

k

N1(t, k)
≤ 1

2
E
(
W(1,∗)

k

))
≤ e−tc .

Now fix tα ≤ k ≤ t . In this regime, we would not argue largeness of N1(t, k)

but use the fact each of the entries in the denominator of (59) is large compared
to the corresponding term in the numerator and this would suffice to show that the
ratio is small even if the number of terms in the sum N1(t, k), is small. Formally
from (59) and union bound, we have

P

(
G(t, k)

t
≥ C

k2−2δ

)
≤

t∑
i=1

P
(
F (i)

k,k ≥ k2+δ)

+
t∑

i=1

P
(
W(i,∗)

k ≤ k4−δ) + P
(
T

(1)
K ≤ k4−δ)

≤ e−tc ,
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where the last inequality follows from exponential tails of F (i)
k,k and W(i,∗)

k at scales
k2 and k4, respectively. �

We now complete the proof of (61). We will start with the following lemma.

LEMMA 6.8. For all small δ > 0, there exists c > 0, such that for all large
enough T ,

P

(
sup
t≤T

∣∣Mt
∣∣ ≥ T 1/2−2δ

)
≥ 1 − e−T c

.

PROOF. Recall the concatenated walks (E ′
1;E ′

2; . . .) and (F ′
1;F ′

2; . . .) from
(42). Also recall (38) and (39) and without loss of generality let us assume that the
former holds for some k. Now by (38), either

∑k
i=1 N(Ei ) ≥ T

2 or
∑k−1

i=1 N(Fi ) ≥
T
2 . Now as already mentioned in the discussion right after (38), the concatenated
walk (E ′

1;E ′
2; . . . ;E ′

k) is a random walk of step-size 2 run starting from 0 until it
hits {±(k + 1)(k + 2)} and has run for

∑k
i=1 N(Ei ) steps. On the other hand by

(42), (F ′
1;F ′

2; . . . ;F ′
k−1) is a random walk of step size 2 which hits {±((k +

2)2 − 1 − (k + 1))}, and has run for
∑k

i=1 N(F ′
i ) steps. Now the result follows

from the following straightforward random walk estimate: for a standard random
walk {Xs}s≥1 on Z, and any large enough m > 0,

P

(
sup
s≤m

|Xs | ≥ m1/2−δ
)

≥ 1 − e−mc

for some c = c(δ) > 0. whose proof follows by observing that there exists a
universal constant c > 0 such that uniformly from any point in the interval
[−m1/2−δ,m1/2−δ] the chance to exit the interval in the next m1−2δ is c > 0 inde-
pendent of m and δ (see [20] for more details). �

LEMMA 6.9. Fix k ≤ T γ where γ is some sufficiently small positive constant,
one has

P
(
N1(T , k) ≥ T 1/4−δ) ≤ 1 − e−T c

,

where c = c(γ ) > 0. The same result holds for N2(T , k).

PROOF. The proof is based on the fact that after T microsteps have been
taken, the number of sites to be explored is approximately T 1/4. Now for any
j large enough, we will show that there is a significant chance of a particle be-
ing (E, k)-good among the particles emitted between the times that the number
of sites explored went from j to j + 1. To this end, note that by (38) and (39),

deterministically if supt≤T |Mt | ≥ T 1/2−2δ , then ST
E ≥ T 1/4−δ

2 . Thus

P

(
ST

E ≥ T 1/4−δ

2

)
≥ P

(
sup
t≤T

∣∣Mt
∣∣ ≥ T 1/2−2δ

)
≥ 1 − e−T c

,
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where the last inequality follows from the previous lemma. Recall the notation
Ai,i and Ai,i+1 from (34). Let Zi denote the event that there is a particle with
index between, Ai,i and Ai,i+1, which is (E, k)-good. Clearly, then

N1(T , k) ≥
ST

E −1∑
i= cT 1/4−δ

2

1(Zi).

Recall from Lemma 5.1, that the microsteps between Ai,i and Ai,i+1 correspond to
a random walk segment Ei that goes from i(i + 1) or −i(i + 1) to ±(i + 1)(i + 2).
Without loss of generality, assume that the value of M starts from i(i + 1), that is,
[1, i] is colored blue and [−i,−1] is colored red. One can verify that Zi occurs if
the value of M hits i(i + 1) − 2k(k + 1) before hitting (i + 1)(i + 2) since at this
point the interval [−k,−1] is monochromatic colored blue and [1, k] is colored
red which implies that there must have been a particle that had been (E, k)-good.

By standard Gambler’s ruin computations,

P(Zi) ≥ 2(i + 1)

k(k + 1) + 2(i + 1)
≥ 1

2
,

by choosing γ sufficiently small so that 1/4 − δ > 2γ . Also the events Zi are
clearly independent. Hence,

P
(
N1(T , k) ≤ T 1/4−2δ) ≤ e−T 4c + P

(
N1(T , k) ≤ T 1/4−2δ, ST

E ≥ T 1/4−δ)
≤ e−T c +

T∑
m=T 1/4−2δ

P

(
m∑

i= T 1/4−2δ

2

1(Zi) ≤ T 1/4−3δ

)

≤ e−T c

. �

The only thing left is the proof of Proposition 6.7.

PROOF OF PROPOSITION 6.7. Recall the notation R(L)
i from the statement of

the proposition. The coupling is rather natural and simple to describe: Let us start
with the AL,L + 1th particle. By obvious symmetry and using the same random
walks, one can exactly couple X(AL,L + ·) and X

killed,(1)
a1,b1

(·) where a1 and b1 are
determined by the configuration X(AL,L) and the parity of AL,L. Note that under
this coupling, the two processes stay exact up to killing of the latter process. After
the latter process is killed, the particle which exited [−L,L] still continues to move
in the former process.

Now one of two things can happen:

• The particle settles outside [−L,L]. Note that so far exactly R(L)
1 many particles

have been emitted in both the processes. Now by Lemma 6.5, the configuration
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X(R(L)
1 ) is still monochromatic on [−L,−1] and [1,L], with opposite colors.

Thus we can again use a similar coupling as above to exactly couple X(AL,L +
R(L)

1 + ·) and X
killed,(2)
a2,b2

(·) for an appropriate choice of a2, b2.
• Note that it might also happen that the particle which exited [−L,L], eventually

returns to the origin. From this point onwards, we can couple the microsteps in
the process X(·) with X

killed,(2)
a2,b2

(·) for an appropriate choice of a2 and b2 in the
natural way until the latter process gets killed.

We continue as above to build the coupling for the entire process {X(AL,L +
n)}n≥1. Note that due to occurrences of the second case above, total number of
particles emitted in both the processes begin to differ since in the former process
the particle that returns to the origin continued to move while in the latter process
a new particle is emitted at the origin to couple with the former particle.

But by definition, the number of particles overcounted in the latter is clearly
upper bound by the number of microsteps taken in the former process that are �-
good, for some � ≥ L, and hence the first bound in the statement of Proposition
6.7 follows. The second statement about the difference in microsteps in the two
processes follows by a similar argument. We omit the details. �

6.3. Convergence of expectation. In this subsection, we prove Lemma 6.6. Let

(64) wk := E
(
Q(k)) = E(Ak,k+1 − Ak,k),

where Ak,k , Ak,k+1 are as defined in (34) and (35). The proof of the lemma relies
on the following recursive relation between wk and wk−1.

PROPOSITION 6.10. With the above definitions, w0 = 1 and

(65) wk = wk−1
(k + 1)(k + 2)

k2 − 1

k

for all k ≥ 1.

Before proving the above, we now complete the proof of Lemma 6.6.

PROOF OF LEMMA 6.6. For k ∈ N, let ck−1 = (k+1)(k+2)

k2 . Solving this re-

cursion, we get wk = w0
∏k−1

i=0 ci − ∑k
j=1

∏k−1
i=j ci

j
. Also, it is easy to see that∏k−1

i=j ci = (j+2)(j+3)2···(k+1)2(k+2)

(j+1)2(j+2)2···k2 = (k+1)2(k+2)

(j+1)2(j+2)
. Hence, wk

(k+1)2(k+2)
= w0

2 −∑k
j=1

1
j (j+1)2(j+2)

, and thus, wk

k3 → 1
2 − ∑∞

j=1
1

j (j+1)2(j+2)
, as k goes to infinity.

�

We complete with the proof of Proposition 6.10.



3696 S. GANGULY, L. LEVINE AND S. SARKAR

PROOF OF PROPOSITION 6.10. By Lemma 4.3, at steps Ak,k , Ak,k+1, both
sides of the origin are monochromatic and of opposite color. Assume without loss
of generality that Ak,k is odd, so that at step Ak,k + 1, a red particle is emitted.
Also, assume that

X(Ak,k)
([−k,−1]) = (R,R, . . . ,R), X(Ak,k)

([1, k]) = (B,B, . . . ,B),

X(Ak,k)(z) = 0 o.w.

That is, after the Ak,k th round, the monochromatic run of length k on the positive
axis is blue. Clearly, from the assumptions, and Lemma 5.1,

M
AM

k,k = k(k + 1),

where Mt is as defined in (10), and {Mt : t ∈ [AM
k,k,A

M
k,k+1} is a random walk

of step-size 2 from k(k + 1) until it hits ±(k + 1)(k + 2). The main observation
leading to the recursion in Proportion 6.10, is that, between times AM

k,k and AM
k,k+1

if we look at the intermediate time when a new particle reaches −k or k, then the
average number of particles emitted from AM

k,k until so far is wk−1. This is denoted
by the following: Let

T := inf
{
t ≥ AM

k,k : Mt ∈ {
k(k + 3),−(k − 1)k

}}
.

From Z
AM

k,k , the Markov chain ZT , as defined in (9), can be in either of the two
following states:

• State 1: Corresponding to the case MT = k(k + 3), which occurs with probabil-
ity 1 − 1

k+1 (when a red particle reaches −k).
• State 2: Corresponding to the case MT = −(k − 1)k, which occurs with proba-

bility 1
k+1 (when a red particle reaches k).

Let T P be the number of particles emitted until the microstep T . The fact that
T P − Ak,k = wk−1 is evident from the following discussion about the increments

of the process Ms . Without loss of generality, let us assume that M
AM

k−1,k−1 = (k −
1)k (instead of −(k−1)k). Now note that as the process goes from state (k−1, k−
1) to (k − 1, k) or (k, k − 1), the value of Mt reaches value ±(k(k + 1)) and then
immediately at AM

k−1,k it becomes ±k2. Let us denote this value “instantaneously”

before AM
k−1,k as M

AM
k−1,k,−. When the latter is k(k + 1), then note that

M
AM

k−1,k,− − M
AM

k−1,k−1 = k(k + 1) − (k − 1)k = 2k = k(k + 3) − k(k + 1)

= MT − M
AM

k,k ,

if T is as in State 1. When M
AM

k−1,k,− = −k(k + 1),

M
AM

k−1,k,− − M
AM

k−1,k−1 = −k(k + 1) − (k − 1)k = MT − M
AM

k,k ,
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if T is as in State 2.
We consider the following two cases separately.
State 1: Since at step Ak,k + 1, a red particle is emitted, it is easy to see that, at

T , the only configuration possible corresponding to the value of MT is

ZT
1 (x) = R for all x ∈ [−k,−1],

ZT
1 (x) = B for all x ∈ [1, k],

ZT
1 (x) = 0 o.w.,

and

ZT
2 = −k, ZT

3 = R.

Note that one can naturally couple the steps of the configuration from AM
k,k to T ,

and the steps of the configuration between AM
k−1,k−1 and AM

k−1,k (with a red particle
emitted at step Ak−1,k−1 + 1), where

(66)
X(Ak−1,k−1)(z) = R for all z ∈ [−(k − 1),−1

];
X(Ak−1,k−1)(z) = B for all z ∈ [1, k − 1];

and

(67)
X(Ak−1,k)(z) = R for all z ∈ [−k,−1];
X(Ak−1,k)(z) = B for all z ∈ [1, k − 1]

(by using the same random walks Y i for the two processes to be equal), and hence
the number of particles emitted in the two cases have the same distribution.

State 1.1: Note that at State 1, there is an extra red particle at −k. Hence, there

are two possibilities. Let Y ′(t) = YT P
(t + T − ∑T P −1

i=1 τ i) denote the steps of the
random walk performed after microstep T by this additional red particle starting
at Y ′(0) = −k. If

T1 := inf
{
j ≥ 1 : Y ′(j) ∈ {−(k + 1),1

}}
,

then either Y ′(T1) = −(k + 1), which happens with probability 1 − 1
k+2 . In this

case, we reach the configuration with explored territory of the form (k + 1, k),
and hence we reach AM

k,k+1 from T without emitting any new particle; otherwise,

Y ′(T1) = 1, which happens with probability 1
k+2 . This gives rise to the configura-

tion

(68)

Z
T1
1

([−k,−1]) = (R,R, . . . ,R), Z
T1
1

([1, k]) = (R,B,B, . . . ,B︸ ︷︷ ︸
k−1

),

Z
T1
1 (z) = 0 o.w., Z

T1
2 = 0.
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Let zk be the expected number of particles emitted starting from the above config-
uration in (68) until one reaches the configuration in Ak,k+1. We claim

(69) wk =
(

1 − 1

k + 2

)
(1 + zk) + 1

k + 2
× 1.

This is easy to see, as starting from the configuration in Ak,k , the emitted red parti-
cle either ultimately sits at 1 (with probability 1 − 1

k+2 ) yielding the configuration

in (68), or at −(k + 1) (with probability 1
k+2 ) in which case we the explored terri-

tory is (k + 1, k), and hence in the latter case only one particle was emitted while
in the former (1 + zk) many particles are emitted on average.

Thus above we have related the number of new particles emitted after State 1 has
been reached to wk . Below we discuss what happens if instead we are in State 2.

State 2: Since at step Ak,k + 1, a red particle is emitted, one can check that in
this case, at T , the configuration corresponding to the value of MT is

(70)

ZT
1
([−k,−1]) = (R,B,B, . . . ,B︸ ︷︷ ︸

k−1

); ZT
1
([1, k]) = (R,R, . . . ,R),

ZT
1 (x) = 0 o.w., ZT

2 = 0.

As in the previous case, one observes that the steps of the configuration from AM
k,k

to T can be coupled naturally with the steps of the configuration from AM
k−1,k−1 to

AM
k−1,k (with a red particle emitted at step Ak−1,k−1 + 1), where

(71)
X(Ak−1,k−1

([−(k − 1),−1
]) = (R,R, . . . ,R);

X(Ak−1,k−1)
([1, k − 1]) = (B,B, . . . ,B),

and

(72)

X(Ak−1,k

([−(k − 1),−1
]) = (B,B, . . . ,B);

X(Ak−1,k)
([1, k]) = (R,R, . . . ,R),

X(Ak−1,k)(z) = 0 o.w.

Note that (67) and (72) are the only two possible configurations at Ak−1,k to
be reached from the configuration at Ak−1,k−1 by starting with a red particle being
emitted at step Ak−1,k−1 +1, as the new site explored must be through red particle.
This formalizes the claim that the number of particles emitted up to T can be
related to wk−1, that is,

E
(
T P − Ak,k

) = wk−1.

State 2.1: However, if we start with configuration in State 2 (described in (70)),
where MT = −(k − 1)k, since ZT

2 = 0, a new particle emits at this step, and this
particle is necessarily blue. This is because R(T P ) − B(T P ) = RT − BT > 0, so
T P is even by Lemma 4.1, hence ZT

2 = B. Let T2 be the first time the random
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walk {Mt : t ≥ T } hits ±k(k + 1). As before, there are two possibilities: either
MT2 = −k(k + 1), corresponding to the configuration

(73)

Z
T2
1

([−k,−1]) = (B,B, . . . ,B);
Z

T2
1

([1, k]) = (R,R, . . . ,R),

Z
T2
1 (x) = 0 o.w., Z

T2
2 = 0,

which in turn corresponds to the journey from the configuration

(74)

σ
([−(k − 1),−1

]) = (B,B, . . . ,B);
σ
([1, k − 1]) = (R,R, . . . ,R);

σ(x) = 0 o.w.,

to

σ
([−k,−1]) = (B,B, . . . ,B);

σ
([1, k − 1]) = (R,R, . . . ,R);

σ(x) = 0 o.w.

(recall that ZT
1 (k) = R, so this gives the configuration in (73));

the other possibility is MT2 = k(k + 1), corresponding to

(75)
Z

T2
1

([−k,−1]) = (R,R, . . . ,R); Z
T2
1

([1, k]) = (B,B, . . . ,B),

Z
T2
1 (x) = 0 o.w., Z

T2
2 = 0,

which in turn can be coupled with the steps from the configuration

(76)

σ
([−(k − 1),−1

]) = (B,B, . . . ,B);
σ
([1, k − 1]) = (R,R, . . . ,R);

σ(x) = 0 o.w.,

to

σ
([−(k − 1),−1

]) = (R,R, . . . ,R);
σ
([1, k]) = (B,B, . . . ,B);

σ(x) = 0 o.w.

(note that the new territory explored must be through blue particle). Again as be-
fore the above two cases in (74) and (76) are exactly the ones involved in the
journey from Ak−1,k−1 to Ak−1,k , and hence in this stage the average number of
particles is wk−1.
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State 2.1.1: Both the end configurations in State 2.1 ((73) and (75)) correspond
to the original configuration at Ak,k we started from. So it takes further wk ex-
pected number of particles from here to go to the configuration at Ak,k+1. Thus,
bringing all this together,

wk = wk−1 +
(

1 − 1

k + 1

)
1

k + 2
zk + 1

k + 1
(wk−1 + wk),

where by (69), zk = k+2
k+1(wk − 1

k+2) − 1. Simplifying, we get (65). �

7. Variants of competitive erosion. Competitive erosion is quite sensitive to
changes in the model definition. In this concluding section, we discuss several
variants.

7.1. Random color sequence. In the model we studied, the color of the new
particle alternates deterministically between red and blue (Figure 6(a)). A different

FIG. 6. Samples of competitive erosion in Z with (a) alternating red and blue particles; and (b)
independent random colors, red and blue each with probability 1/2. In each case, time increases
from left to right, and each column depicts the random color configuration on Z after the addition
of 2 · 105 more particles. In (a) the color configuration is approximately antisymmetric about 0 (by
Lemma 4.4), and the number of occupied sites is order n1/4 (by Theorem 1.1). In (b) the color
configuration seems approximately symmetric about 0, and the number of occupied sites seems to be
order n1/2. To highlight the size difference between n1/4 and n1/2, the two figures are drawn at the
same scale.
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FIG. 7. Sample of competitive erosion in Z with 3 mutually antagonistic colors. Time increases
from left to right: each column depicts the random color configuration on Z after the addition of 105

more particles of each color. Is the number of occupied sites after n particles still of order n1/4?

behavior emerges if instead the color of the new particle is random, red or blue with
probability 1/2 independent of the past (Figure 6(b)).

7.2. Three colors in periodic sequence. Consider c ≥ 1 mutually antagonistic
colors. At the nth timestep, a particle of color n mod c is released at the origin. The
new particle performs simple random walk in Z until reaching a site of Z−{0} that
is either uncolored or colored differently from itself, and converts that site to its
own color. The case c = 1 is internal DLA (starting with the origin occupied). The
case c = 2 is the one studied in this paper. The case c = 3 is pictured in Figure 7.

A different kind of behavior can be seen if the periodic sequence of colors has
repeated terms. Figure 8 shows the result of period 5 with color sequence blue,
red, blue, red, green. In this case, it appears that the number of occupied sites is
order n1/2, nearly all of them red.

7.3. Cyclically antagonistic colors in periodic sequence. Consider c ≥ 1 col-
ors as before, with a different stopping rule: A walker of color k stops only upon
reaching a site of Z that is either uncolored or of color k − 1 mod c. If c ≥ 3,

FIG. 8. Sample of competitive erosion in Z with periodic color sequence blue, red, blue, red, green.
Time increases from left to right: each column depicts the random color configuration on Z after the
addition of 5 × 104 more particles. Nearly all sites end up red, with a few blue sites and a very few
green sites surviving near the origin. After n particles, is the number of red sites order n1/2? Is the
number of blue and green sites order 1?
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FIG. 9. Sample of competitive erosion in Z with periodic color sequence and cyclic antagonism:
Blue walkers take over red and uncolored sites, Red walkers take over green and uncolored sites,
green walkers take over blue and uncolored sites. Time increases from left to right: each column
depicts the random color configuration on Z after the addition of 105 more particles of each color.
Compared with mutual antagonism (Figure 7), more sites become colored. What is the growth rate
of the number of colored sites?

then there is no need to forbid stopping at the origin. The case c = 3 is shown in
Figure 9.

7.4. More spatial dimensions. Consider the competitive erosion process with
red and blue particles alternately emitted from the origin in Z

d for d ≥ 2. Each
particle in turn performs simple random walk on Z

d stopped when it first hits
an uncolored or oppositely colored site of Zd − {0}, and converts that site to its
own color. Figure 10 shows the resulting random color configuration on Z

2, and a
slice of the resulting configuration on Z

3; each displays surprisingly coherent red
and blue territories. The pictures suggest that the set of colored sites grows quite
slowly, as most colored sites are repeatedly converted from red to blue and back.

A natural approach to predict the growth rate, and perhaps also to prove the
coherence of the red and blue territories, is to use higher-dimensional analogues
of the “signed sum of positions” (3). This leads to a heuristic prediction that after
n particles alternating in color are released at the origin in Z

d , the total number of
colored sites is order nd/(2d+2). However, a crucial combinatorial ingredient in our
one-dimensional argument was that whenever an uncolored site becomes colored,
the existing color configuration is necessarily monochromatic on each side of the
origin; this constraint allowed us to compute the precise value Mt must take when
a new site becomes colored.

In dimensions two and above, there is no such exact combinatorial constraint.
On the other hand, Zd for d ≥ 2 supports a richer family of discrete harmonic
functions. Any discrete harmonic function h : Zd → R gives rise to a process Mt

h

(defined as the sum of values of h at the red points minus the values of h at the blue
points, with double weight given to the currently walking particle). This Mt

h is a
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FIG. 10. Samples of competitive erosion in Z
2 (left) and in Z

3 (right: the two-dimensional slice
through 0 is shown). Each square pixel displays the color of a single site of Z2 (left) or Z

2 × {0}
(right) after 5 · 108 particles of each color were alternately released at 0 (the white pixel in the
center). Most blue particles convert red sites and vice versa, so that a relatively small number of sites
become colored. After n particles, is the total number of colored sites of order nd/(2d+2)?

martingale except at times when a previously uncolored site becomes colored. The
existence of coherent red and blue territories constrains the joint distributions of
the (Mt

h) as h varies over a space H of harmonic test functions (such as the discrete
harmonic polynomials on Z

d ). One way to quantify the coherence of the territories
would be to find a small subset S of the dual space H ∗ such that h �→ Mt

h belongs
to S with high probability. In principle, one could prove this by finding a Lyaponov
function which has negative drift where its value is too high. The challenge is to
find a tractable Lyaponov function f , such that configurations with a small value
of f have coherent territories.
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