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Smoking is one of the leading preventable threats to human health and
a major risk factor for lung cancer, upper aerodigestive cancer and chronic
obstructive pulmonary disease. Estimating and forecasting the smoking at-
tributable fraction (SAF) of mortality can yield insights into smoking epi-
demics and also provide a basis for more accurate mortality and life ex-
pectancy projection. Peto et al. (Lancet 339 (1992) 1268–1278) proposed a
method to estimate the SAF using the lung cancer mortality rate as an indi-
cator of exposure to smoking in the population of interest. Here, we use the
same method to estimate the all-age SAF (ASAF) for both genders for over
60 countries. We document a strong and cross-nationally consistent pattern
of the evolution of the SAF over time. We use this as the basis for a new
Bayesian hierarchical model to project future male and female ASAF from
over 60 countries simultaneously. This gives forecasts as well as predictive
distributions that can be used to find uncertainty intervals for any quantity
of interest. We assess the model using out-of-sample predictive validation
and find that it provides good forecasts and well-calibrated forecast intervals,
comparing favorably with other methods.

1. Introduction. Smoking is known to have adverse impacts on health and is one of the
leading preventable causes of death (Peto et al. (1992), Bongaarts (2014), Mons and Bren-
ner (2017)). It is a major risk factor for lung cancer, chronic obstructive pulmonary disease
(COPD), respiratory diseases and vascular diseases; tobacco use causes approximately six
million deaths per year (Britton (2017)). For instance, tobacco use causes more than 480,000
deaths per year in the United States, accounting for about 20% of the total deaths of U.S.
adults, even though smoking prevalence in United States has declined from 42% in the 1960s
to 14% in 2018 (Mons and Brenner (2017)).

The smoking attributable fraction (SAF) is the proportion by which mortality would be
reduced if the population were not exposed to smoking. It is defined as

SAF = nS

nD

,

where nS is the number of smokers who died because of their smoking habit and nD is the
total number of people who died. It can be shown that this is equivalent to

SAF = p(r − 1)

p(r − 1) + 1
,(1.1)

where p is the underlying prevalence of smoking in the population and r is the risk of dying
of smokers divided by the risk of dying of nonsmokers in the population (Rosen (2013)).

Estimating and forecasting the SAF of mortality is essential for assessing how the smoking
epidemic influences mortality measures from the past to the future. First of all, nonlinear
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patterns of increase in life expectancy over time are partially due to the smoking epidemic.
Bongaarts (2006) used the SAF to calculate the nonsmoking life expectancy which turned out
to evolve in a more linear fashion than overall life expectancy (including smoking effects).
Janssen, van Wissen and Kunst (2013) used a similar technique to calculate the nonsmoking
attributable mortality and showed that its decline is more linear than that of overall mortality.

Second, smoking partly accounts for regional variations in mortality. In most developed
regions in the world including Western Europe, North America and some East Asian coun-
tries, the smoking epidemic among males started earlier than elsewhere, in the first half of the
20th century. The adverse effect of the smoking epidemic accumulated for several decades,
leading to SAF peaking in these countries around the 1980s. With the continuous decline
of male smoking prevalence in these countries due to antismoking movements and tobacco
control, years of life lost due to smoking began to decrease in recent decades. In contrast,
many developing countries are currently in the early stage of the smoking epidemic, with
high and increasing smoking prevalence among males, even though tobacco control policies
are in place.

Smoking also accounts for some subnational differences in mortality. For example,
Fenelon and Preston (2012) found that smoking accounts for the southern mortality disad-
vantage relative to other regions of the United States. They showed that smoking explained
65% of the subnational variation in male mortality in 2004.

Third, changes in smoking mortality largely account for changes in the between-gender
differences in mortality. The gap in mortality between males and females has tended to first
widen and then narrow in most developed countries, and reduced between-gender differences
in smoking largely explain the current closing of the between-gender mortality gap (Pampel
(2006), Preston and Wang (2006)). Indeed, in these countries the female smoking epidemic
usually started one or two decades later than the male epidemic and thereafter followed a
similar pattern. In mid- to low-income countries, female smoking-related mortality remains
low but still follows a similar rising-peaking-falling trend to the male one. The SAF for males
and females clearly follows the same general increasing-peaking-decreasing trend but with
different times of onset, times-to-peak and maximum values (see Figure 1).

Therefore, estimating and forecasting the SAF can help to improve mortality forecasts
by taking the nonlinearity of mortality decline together with between-country and between-
gender differentials into account (Bongaarts (2006), Janssen, van Wissen and Kunst (2013),
Stoeldraijer et al. (2015)). Here, we propose a new Bayesian hierarchical model to project
SAF that captures the observed increasing-peaking-declining trend so that it could be used
for making better mortality forecasts.

Estimating the SAF is not easy for several reasons (Bongaarts (2014), Tachfouti et al.
(2014)). First, the smoking habits of individuals can differ in terms of smoking intensity,
smoking history, types of tobacco used as well as first-hand or second-hand smoking, so that
estimating the prevalence of smoking (p in equation (1.1)) based on smoking behavior data
is not straightforward. Second, to estimate the relative risk of smoking (r in equation (1.1))
requires accurate cohort data. Such data are challenging to collect because smoking is not
a direct killer but rather has a lifelong impact, with deaths occurring mostly at older ages.
The American Cancer Society’s Cancer Prevention Study II (CPS-II), which began in 1982,
is so far the largest study that collects such data (Tachfouti et al. (2014)). Third, the quality
of registration and survey data varies across countries and between genders which makes
estimation and comparison of SAF across countries difficult.

Three categories of methods have been proposed to estimate SAF. The first is prevalence-
based analysis in cohort studies (SAMMEC) (Levin (1953)). This uses estimated smoking
prevalence from surveys and relative risk from CPS-II. The second method is prevalence-
based analysis in case-control studies. This method is similar to the first one, except that the
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FIG. 1. United States: All-age smoking attributable fractions of mortality for males and females from 1950 to
2015, estimated using the Peto–Lopez method.

relative risk is estimated from a case-control study. It has been used for India (Gajalakshmi
et al. (2003)), Hong Kong (Lam et al. (2001)) and China (Niu et al. (1998)). The main draw-
back of prevalence-based methods is the scarcity of reliable historical data on smoking preva-
lence, especially for developing countries.

The third method, which overcomes this limitation, is an indirect method. It is called the
Peto–Lopez method and was first proposed by Peto et al. (1992). This method estimates
the proportion of the population exposed to smoking using lung cancer mortality data, since
most lung cancer deaths are due to smoking in developed countries. According to Centers for
Disease Control (2019), cigarette smoking is associated with more than 80% of lung cancer
deaths in the United States. Simonato et al. (2001) also concluded by case-control studies in
six developed European countries that smoking is associated with over 90% of lung cancer
cases. We use this method to estimate the SAF, and we describe the procedure in Section 2.3.

Another indirect method, the PGW method of Preston, Glei and Wilmoth (2009), also uses
lung cancer mortality rate as an indicator of the cumulative hazard of smoking. Instead of us-
ing relative risks from the CPS-II, as the Peto–Lopez method does, the PGW method adopts a
regression-based procedure. We discuss these two methods in Section 5.1. More comparisons
among different estimation methods of SAF can be found in Pérez-Ríos and Montes (2008),
Tachfouti et al. (2014), Kong et al. (2016) and Peters, Mackenbach and Nusselder (2016).

Figure 1 plots the estimated all-age SAF (ASAF) of males and females for the United
States from 1950 to 2015. It can be seen that the evolution of SAF over time follows a re-
markably strong pattern, first rising and then falling. Qualitatively, very similar patterns were
found in most countries that we studied, although in countries with less good data, higher lev-
els of measurement error can be seen. It seems intuitive to expect that such a regular pattern



384 Y. LI AND A. E. RAFTERY

could be used to obtain good forecasts. Here, we describe our method for doing this. It turns
out that, indeed, good forecasts can be obtained, thanks to the strong and consistent pattern
of SAF over time. Here, we propose, using a Bayesian hierarchical model, a new probabilis-
tic projection method for the SAF. Our method will provide estimates and projections of the
SAF for both genders jointly for more than 60 countries.

The paper is organized as follows. The data, the detailed SAF calculation based on the
Peto–Lopez method and the proposed Bayesian hierarchical model are described in Section 2.
An out-of-sample validation experiment is reported in Section 3. We then discuss general
estimation and forecasting results for all the countries considered in this work, with detailed
case studies for four countries chosen from North America, South America, Asia and Europe
in Section 4. We conclude with a discussion in Section 5.

2. Method.

2.1. Notation. We use the symbol y to denote the estimated (observed) all-age smok-
ing attributable fraction (ASAF), which is defined as the smoking attributable fraction for
all age groups combined, and we use the symbol h to denote the true (unobserved) ASAF.
All of these quantities are indexed by country c, gender s and year t . The quantities of in-
terest are the unobserved true past and present ASAF together with their future projections.
Here, the estimation time period is 1950–2015, and the projection time period is 2015–2050.
Section 2.3 describes the estimation procedure for ASAF using the Peto–Lopez method for
all available countries. A Bayesian hierarchical model will be used to model the estimated
ASAF. In the Bayesian hierarchical model, the country-specific parameter vector determin-
ing the time evolution pattern of ASAF for country c and gender s is denoted by θc,s and the
global parameters by ψ .

2.2. Data. We use the annual death counts by country, age group, gender and cause of
death from the WHO Mortality Database (World Health Organization (2017)) which cov-
ers data from 1950 to 2015 for more than 130 countries and regions around the world.
This dataset comprises death counts registered in national vital registration systems and is
coded under the rules of the International Classification of Diseases (ICD). There are five
raw datasets available by the most recent update on 11 April 2018. The first three datasets are
labeled as ICD versions 7, 8 and 9, respectively, and the last two are labeled as ICD version
10.

Each version of ICD codes causes of death differently, and a summary of the codes, used
for estimating ASAF in Section 2.3, is given in Table 1. For each country, the death counts
data can differ by geographical coverage, number of years available and age group break-
down. Some countries, such as China, only have data from selected regions, and these coun-
tries will not be included here.

We use the quinquennial population by five-year age groups from the 2017 Revision of
the World Population Prospects (United Nations (2017)) for each country, gender and age
group. Since this dataset provides population estimates at five-year intervals, we use linear
interpolation to obtain annual population estimates for each five-year age group.

2.3. ASAF estimation. We apply the original Peto–Lopez indirect method to estimate
ASAF for male and female separately. This method uses the lung cancer mortality rate as
an indicator of the accumulated hazard of smoking to estimate the proportion of population
exposed to smoking. As commented in Peto et al. (1992), it is very rare to observe lung cancer
cases among nonsmokers in developed countries, even in areas with pollution sources such as
radon and asbestos. The original papers (Peto et al. (1992, 1994, 2006)) applied the method
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TABLE 1
ICD codes for different cause-of-death categories across versions

Causes ICD-7 (A-list) ICD-8 (A-list) ICD-9 (09A, 09B)

Lung Cancer A050 A051 B101
Upper Aerodigestive Cancer A044, A045, A040 A045, A046, A050 B08, B090, B100
Other Cancer rest of A044–A059 rest of A045–A060 rest of B08–B14
COPD A092, A093 A093 B323, B324, B325
Other Respiratory rest of A087–A097 rest of A089–A096 rest of B31–B32
Vascular Disease A079–A086 A080–A088 B25–B30
Liver Cirrhosis A105 A102 A347
Other nonmed A138–A150 A138–A150 B47–B56
Other medical rest rest rest
All causes A000 A000 B00

Causes ICD-9 (09N) ICD-10 (101) ICD-10 (103, 104, 10M)

Lung Cancer B101 1034 C33–C34
Upper Aerodigestive Cancer B08, B090, B100 1027, 1028, 1033 C00–C15, C32
Other Cancer rest of CH02 rest of 1027–1046 rest of C00–C97
COPD B323, B324, B325 1076 J40–J47
Other Respiratory rest of CH08 rest of 1072 J00–J99
Vascular Disease CH07 1064 I00–I99
Liver Cirrhosis S347 1080 K74, K70
Other nonmed CH17 1095 V00–Y89
Other medical rest rest rest
All causes B00 1000 AAA

to developed countries only, especially in Western Europe and North America. With the shift
of global smoking pattern, and diffusion of smoking in middle- and low-income countries,
this method has been extended to less developed countries (Ezzati and Lopez (2003, 2004),
Pampel (2006)).

For estimating ASAF using the Peto-Lopez method, we need first to estimate age- and
cause-of-death-specific SAF. The age groups used for estimation are 0–34, 35–59, 60–64,
65–69, 70–74, 75–79 and 80+. For each age group, annual death counts of the following
nine categories of causes of death are obtained from the five raw datasets of WHO Mortality
Database: lung cancer, upper aerodigestive cancer, other cancers, COPD, other respiratory
diseases, vascular diseases, liver cirrhosis, nonmedical causes and all other medical causes.
A detailed list of codes from ICD 7, 8, 9 and 10 for these nine categories is provided in
Table 1.

The ICD categorizes death count data, according to availability, using so-called sublists
which can be one of A-list or several others; see Table 1. The sublists we use are those
satisfying the minimum requirements for ASAF calculation. More specifically, for ICD 7 and
8, only countries whose ICD sublist is A-list are used. For ICD 9, only those countries whose
ICD sublist is 09A-, 09B- or 09N-list are used. For ICD 10, countries whose ICD sublist is
one of 101-, 103-, 104-, 10M-list are used. In addition, we only calculate age-specific SAF
for countries whose age group breakdown is finer than the following age group breakdown:
0–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75+. This corresponds to
the age group format number 00, 01, 02, 03, 04 in the raw datasets.

To estimate the proportion of a population exposed to smoking, that is, p in equation (1.1),
the method compares the observed lung cancer mortality rate with the lung cancer mortality
rate of smokers estimated from CPS-II. The estimated proportion, indexed by country c, age
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group a, gender s and year t is estimated by

pc,a,s,t = dc,a,s,t − dS
a,s

dS
a,s − dNS

a,s

,

where dc,a,s,t is the observed country-age-gender-year-specific lung cancer mortality rate,
and dS

a,s and dNS
a,s are age-gender-specific lung cancer mortality rates for smokers and non-

smokers from the CPS-II, respectively. Here, the observed lung cancer mortality rate dc,a,s,t

is the observed lung cancer death count divided by the population estimated from the 2017
Revision of the World Population Prospects for country c, age group a, gender s and year t .

The Peto–Lopez method uses the CPS-II to estimate the relative risk of dying for each
cause of death for smokers and nonsmokers, that is, r in equation (1.1). Specifically, the
Cochran–Mantel–Haenszel method is used to estimate the relative risk for age group 35–59
by combining five subage groups (35–39, 40–44, 45–49, 50–54, 55–59). The relative risk is
indexed by cause-of-death k, age group a and gender s. Here, k takes integer values 1–9,
corresponding to the nine categories mentioned above.

The excess mortality rate attributable to smoking is denoted by erk,a,s for cause-of-death
k, age group a and gender s. For lung cancer, the excess mortality rate attributable to smoking
is calculated as er1,a,s = r1,a,s − 1. For all other categories, except liver cirrhosis (k = 7) and
nonmedical causes (k = 8), the excess risk is discounted by 50%, that is, erk,a,s = 0.5(rk,a,s −
1) for k = 2,3,4,5,6,9, so as to control for confounding factors. The excess risks for liver
cirrhosis and nonmedical causes are set to 0, that is, er7,a,s = er8,a,s = 0. The country-cause-
age-gender-year-specific SAF, denoted by yc,k,a,s,t , is then

yc,k,a,s,t = pc,a,s,t × erk,a,s

pc,a,s,t × erk,a,s + 1
.

Any estimated negative values are set to 0.
Since the hazard due to smoking is accumulated across years and mostly causes deaths at

older ages, the fraction of deaths due to smoking for ages 0–34 is typically very small and
is set to 0. In addition, the SAF for ages 80+ is set to the same value as that for ages 75–79
since smoking data are unreliable for very old ages. Finally, the country-gender-year-specific
ASAF, denoted by yc,s,t , is a weighted average of the age-specific smoking attributable frac-
tions yc,k,a,s,t . Thus,

yc,s,t = ∑
a

∑
k

yc,k,a,s,t × dc,k,a,s,t ,

where dc,k,a,s,t is the country-cause-age-gender-year-specific mortality rate.
We chose the Peto–Lopez method to estimate the ASAF because it has been validated and

widely used (Preston, Glei and Wilmoth (2009), Bongaarts (2014), Tachfouti et al. (2014),
Kong et al. (2016)). Also, the data required for the estimation are cause- and age-specific
death counts and population which are provided with high quality by the WHO Mortality
Database and the 2017 Revision of the World Population Prospects.

There are some variants of the Peto–Lopez method which also assume that the lung can-
cer mortality rate is a good indicator for measuring smoking exposure. Some of the modi-
fications include using different relative risk estimation instead of the CPS-II to extend the
method to developing countries (Ezzati and Lopez (2003)) or using a regression-based ap-
proach (Preston, Glei and Wilmoth (2009)). Section 5.1 contains more detailed discussion
and comparison of these methods.

2.4. Model. We develop a four-level Bayesian hierarchical framework to model male and
female ASAF jointly for multiple regions simultaneously.
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Random walk with drift for the true ASAF. The observed ASAF data show a strong and
consistent pattern of increasing, then leveling and then declining again for both genders
(Stoeldraijer et al. (2015)) (see Figure 1 for the example of United States). This pattern can
be captured by the following five-parameter double logistic curve:

g(t |θ) = k

1 + exp{−a1(t − 1950 − a2)} − k

1 + exp{−a3(t − 1950 − a2 − a4)} ,(2.1)

where t is the year of observation and θ is the double-logistic parameter vector, θ =
(a1, a2, a3, a4, k).

Models based on the double logistic curve have been used quite widely for human popula-
tion measures such as life expectancy and total fertility rates (Marchetti, Meyer and Ausubel
(1996), Raftery et al. (2013), Alkema et al. (2011))). Due to its natural scientific interpretabil-
ity, the double logistic curve has also been used in other scientific fields such as hematology
(Head and McCarty (1987), Head et al. (2004)), phenology (Yang et al. (2012)) and agri-
cultural science (Shabani et al. (2018)). This function has also been used to describe social
change, diffusion and substitution processes (Grübler, Nakićenović and Victor (1999), Fokas
(2007), Kucharavy and De Guio (2011)).

Most developed countries have had male smoking prevalence that started before 1950 and
peaked around the 1950s or 1960s when the adverse impacts of smoking on health became
known and tobacco control measures started being put in place. This led to a peak in smoking-
related mortality a generation or so later, followed by a continuous decline since then. Pampel
(2005) argued that the smoking epidemic involves diffusion from males to females, and
from more developed countries to less developed ones. Hence, the strong increasing-peaking-
decreasing trend of ASAF observed in most countries is a consequence of the smoking epi-
demic diffusion process, and the double logistic curve can naturally describe its dynamics.

For the five-parameter double logistic function in equation (2.1), a2 controls the first (left)
inflection point of the curve and a4 controls the distance between the first (left) and the second
(right) inflection points. The rates of change at these inflection points are controlled by a1 and
a3, respectively. The parameter k is an upper bound for the maximum value of the curve. See
the upper panel of Figure 2 for an illustration.

To represent this and also to take account of the observed pattern of variability, we model
changes in the true ASAF between adjacent time points using a random walk with drift given
by the difference between the double logistic curve at the two points. This takes the form

hc,s,t = hc,s,t−1 + g(t |θc,s) − g(t − 1|θc,s) + εh
c,s,t ,(2.2)

where g(·|θc,s) (i.e., equation (2.1)) quantifies the expected change of the true ASAF gov-
erned by the country- and gender-specific parameters θc,s = (a

c,s
1 , a

c,s
2 , a

c,s
3 , a

c,s
4 , kc,s) and

εh
c,s,t are independent Gaussian noises. This random walk with drift model is designed to

capture the variability of the true ASAF and allows the uncertainty of the forecast to increase
when projecting further into the future.

Male-female joint model. Since the female smoking epidemic usually starts one to two
decades after the male one, the start of the increase in the female ASAF is also later than
that of the male ASAF. For most countries, the observed female ASAF is still in the in-
creasing or leveling phase up to 2015. However, as the smoking epidemic diffuses from the
male to the female population, it is reasonable to assume that the female ASAF will follow
the same trend of increasing-leveling-declining as that of the male ASAF. This has already
been observed for several countries with early smoking epidemics, such as the United King-
dom, Denmark and Japan (Pampel (2005), Peto et al. (2006), Janssen, van Wissen and Kunst
(2013), Bongaarts (2014), Stoeldraijer et al. (2015)). For these countries, the female ASAF
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FIG. 2. Upper: The five-parameter double logistic curve. a2 controls the left inflection point, a4 controls the
distance between left and right inflections points, a1, a3 determine the rate of change at left and right inflection

points and k approximates the maximum value. Lower: The difference of country-specific am
2 and a

f
2 plotted

against the difference between the country-specific peaks for males and females. The peak and a2 are estimated
from the countries whose male and female ASAF have all passed the maximum by 2015, according to the results
of the nonlinear least squares estimation. The solid line is the 45 degree line.

follows the same trend as that of the male ASAF but differs mainly in terms of the rate of
increase or decrease, the number of years taken to reach the peak and the peak ASAF value.

For males, we need only estimate the rate of decline of the ASAF. For females, especially
for those countries whose observed ASAF data have not levelled yet, one needs first to de-
termine the time and value of leveling. By modeling male and female data jointly, the lower
panel of Figure 2 shows that for countries whose male and female ASAF both passed the
leveling period, the difference between the years of maximum of male and female is approx-
imately the same as the difference in the a2 parameter estimated from equation (2.1). The
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a2 parameter represents the time point where the speed of the increasing part of the double
logistic curve begins to slow down.

The difference between the times-to-peak of male and female ASAF also differs among
countries. For example, the time-to-peak of the female ASAF in the United States is about 15
years later than that of the male ASAF, while the time-to-peak of the ASAF happened at about
the same time for both genders in Hong Kong. To incorporate these observations, we model
the difference between male and female country-specific ac

2 using a Gaussian distribution,

a
c,f
2 = a

c,m
2 + �c

a2
, �c

a2
|�a2, σ

2�a2
∼N

(�a2, σ
2�a2

)
,(2.3)

where a
c,m
2 and a

c,f
2 are the country- and gender-specific values of a2 and �c

a2
is the country-

specific difference between these two parameters with prior mean �a2 and variance σ 2�a2
.

Moreover, since there are very few countries whose female ASAF have begun to decline
by 2015, while the male ASAF has been declining for many years in most countries, we set
the same global parameters for the gender-specific parameters a

c,m
4 and a

c,f
4 for each country,

namely,

a
c,m
4 , a

c,f
4 |a4, σ

2
a4

ind∼ N
(
a4, σ

2
a4

)
.(2.4)

Except for ac
4, the other four country-specific parameters of the double logistic curve are

conditioned on their own gender-specific global parameters.

Measurement error model for observed ASAF. The observed country-gender-year-specific
ASAF yc,s,t are modeled based on the true (unobserved) ASAF hc,s,t by incorporating mea-
surement error due to the variability of data quality across different countries:

yc,s,t |hc,s,t , σ
2
c ∼

ind
N

(
hc,t,s , σ

2
c

)
.(2.5)

We assume that the variance of the observed ASAF for each country is time- and gender-
invariant based on exploratory analyses that indicate that the data quality is consistent across
time and between genders within the same country.

Summary of model. We combine the Bayesian hierarchical model and measurement error
model into a four-level Bayesian hierarchical model. We model the observed ASAF estimates
using the measurement error model in Level 1, conditional on the true (unobserved) ASAF
data which are modeled with a random walk with drift in Level 2, conditional on the country-
specific parameters. Country-specific parameters are modeled in Level 3, where parameters
for male and female ASAF are modelled jointly conditional on the global parameters, whose
prior distributions are specified in Level 4.

The overall model is specified as follows:

Level 1: yc,s,t |hc,s,t ∼ N
(
hc,s,t , σ

2
c

);
Level 2: hc,s,t0,c

= g(t0,c|θc,s) + εh
c,s,t0,c

,

hc,s,t = hc,s,t−1 + g(t |θc,s) − g(t − 1|θc,s) + εh
c,s,t for t > t0,c,

εh
c,s,t

ind∼ N
(
0, σ 2

h

);
Level 3: θc,s ∼ f (·|ψ),

σ 2
c ∼ Lognormal

(
ν,ρ2);

Level 4: ψ,ν,ρ2, σ 2
h ∼ π(·).
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Here, t0,c is the year of the first available ASAF data for country c, g denotes the five-
parameter double logistic curve in equation (2.1), f denotes the conditional distribution of
the country-specific parameters θc,s and π denotes the hyperpriors for the global parameters
ψ,ν,ρ2, σ 2

h . The country-specific parameters θc,s = (a
c,s
1 , a

c,s
2 , a

c,s
3 , a

c,s
4 , kc,s) are gender-

specific and the interaction between male and female parameters are governed by equa-
tions (2.3) and (2.4). The global parameters ψ = (am

1 , am
2 , am

3 , a4, k
m, a

f
1 , a

f
3 , kf ,�a2, σ

2
am

2
,

σ 2
a4

, σ 2
km, σ 2

kf , σ 2�a2
) are also gender-specific, except for �a2, σ

2�a2
, a4, σ

2
a4

. More information
about the specification of the full model is given in the Appendix.

Estimation and prediction. Statistical analysis of the model is carried out in two phases,
estimation and prediction. The goal of the estimation phase is to obtain the joint posterior
distribution of the true ASAF hc,s,t during the estimation period 1950–2015 and the country-
specific parameters for the underlying double-logistic curve. The aim of the prediction phase
is to forecast the future ASAF of both genders for the prediction period 2015–2050 based
on the observed ASAF for over 60 countries whose male ASAF data are classifed as clear-
pattern (see Section 2.5 for the definition of clear-pattern).

The functional form of the prior distribution π(·) is assessed using results from nonlinear
least squares estimation based on clear-pattern countries (see Section 2.5 for details). Specif-
ically, the priors for (am

1 , am
2 , am

3 , a4, k
m,σ 2

am
2
, σ 2

a4
, σ 2

km, σ 2
am

2
, σ 2

a4
, σ 2

km) are based on nonlinear
least squares results from the male ASAF of over 60 clear-pattern countries; the prior for
a

f
1 is estimated based on nonlinear least squares results from the female ASAF of 52 clear-

pattern countries. The priors for (a
f
3 , kf , σ 2

a
f
3

) are set to the same priors as their counterparts

for males, while the priors for (�a2, σ
2�a2

) are estimated based on 19 countries for which both

male and female ASAF have passed the leveling stage by 2015. The priors for ν,ρ2, σ 2
h are

estimated by pooling male and female ASAF from all clear-pattern countries. A complete
specification of the model is given in the Appendix.

2.5. ASAF categorization. We categorize estimated ASAF for 127 countries and regions
into two categories according to the data availability and quality: clear-pattern and nonclear-
pattern. On one hand, the Peto–Lopez method is not guaranteed to produce reliable ASAF
estimates for some less developed countries because of poor data quality. On the other hand,
modeling only with clear-pattern countries can improve estimation and projection accuracy
without introducing too much random noise.

The classification is based on nonlinear least squares estimation of the following model
for each country and gender separately:

yt = g(t |θ) + εt ,

where g(t |θ) is as in equation (2.1) and εt are independent standard Gaussian errors. Its fit to
the data in a given country provides an indication of data quality for that country.

Our categorization is based on the number of observations, maximum of observed values
and the R2 value of the nonlinear least squares fit. Due to the differences between the dif-
fusion processes of smoking in the male and female populations (Pampel (2006)), we use
different criteria for male and female data. For male data, we require that: (1) the number of
available annual observations up to 2015 be greater than 10; (2) at least one of the observa-
tions be greater than 0.05; and (3) that the R2 value be greater than 0.5.

For female data, since the smoking epidemic in general started one to two decades later
than the male one, the onset and the value of the ASAF is later and smaller than that of the
male epidemic (Pampel (2005), Preston and Wang (2006)). The criteria for female data are
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that: (1) the number of observations up to 2015 be greater than 10; (2) at least one of the
observations be greater than 0.01; and (3) that the R2 value be greater than 0.6.

By these rules, there are over 60 countries whose male data are classifed as clear-pattern
(two in Africa, 16 in the Americas, nine in Asia, 40 in Europe and two in Oceania) and 52
countries whose female data are classified as clear-pattern (12 in the Americas, seven in Asia,
31 in Europe and two in Oceania).

2.6. Estimation. Estimation is based on the male and female ASAF data from over 60
countries whose male ASAF is classified as clear-pattern for the period 1950–2015. The
reason why we chose clear-pattern ASAF data is that nonclear-pattern data either have too
few observations, very low values or their shapes are not identifiable.

We used the Rstan package (Version 2.18.2) in R to obtain the joint posterior distribu-
tions of the parameters of interest (Carpenter et al. (2017)). Rstan uses a No-U-turn sampler
which is an adaptive variant of Hamiltonian Monte Carlo (Neal (2011), Hoffman and Gelman
(2014)). We ran three chains with different initial values, each of length 10,000 iterations with
a burn-in of 2000 without thinning. This yielded a final, approximately independent sample
of size 8000 for each chain. We monitored convergence by inspecting trace plots and using
standard convergence diagnostics.

We also conducted a sensitivity analysis on the hyperparameters that specify the priors
π(·) for the global parameters ψ and concluded that the proposed model is not sensitive to
the choice of hyperparameters. More information about the convergence diagnostics and the
sensitivity analysis is given in the Supplementary Material (Li and Raftery (2020)).

2.7. Projection. We produce projections of future ASAF for the period 2015–2050 for
over 60 countries whose male ASAF is classified as clear-pattern. The prediction of future
ASAF for each country is based on past and present ASAF. We sample from the joint poste-
rior distribution of the country-specific parameters θc,s and of the past and present true ASAF
hc,s,t . We then use equations (2.2) and (2.5) to generate a sample of trajectories of future true
and observed ASAF, respectively, from their joint posterior predictive distribution. It is pos-
sible that the quantity generated by equation (2.2) and equation (2.5) is negative, and we set
such values to zero. This yields a sample from the joint posterior predictive distribution of
the future ASAF for over 60 countries and for both genders, taking account of uncertainty
about the past observations as well as the future evolution. We include the plots of ASAF
projections for both genders and all countries considered in this work in the Supplementary
Material (Li and Raftery (2020)).

3. Results. We assess the predictive performance of our model using out-of-sample pre-
dictive validation.

3.1. Study design. The data we used for out-of-sample validation cover the period 1950–
2015. We assess the quality of our model based on different choices of estimation and vali-
dation data from the observed data. Since the trend of increasing-leveling-declining pattern
plays an important role for estimation and projection, assessing how the model works when
only part of the trend has been observed is crucial. We consider different choices for estima-
tion and validation periods, namely (1) 1950–2000 for estimation and 2000–2015 for vali-
dation; (2) 1950–2005 for estimation and 2005–2015 and for validation; and (3) 1950–2010
for estimation, 2010–2015 for validation. The countries used for validation in each time-split
scenario are required to be clear-pattern countries based on the male ASAF, to contain more
than 10 observations in the estimation period, and to have at least one observation in the pre-
diction period. This results in 63, 66 and 66 countries used for validation under choices (1),
(2) and (3), respectively.
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Since we are making probabilistic projections, our evaluation is based on both accuracy
of point prediction and calibration of prediction intervals. Our goal is not only to produce
accurate point predictions but also to account for variability of future predictions based on
historic data, especially for those countries whose data in the estimation period reveal only
part of the pattern. If the proposed model works well, we would expect the point predictor to
have small gender-specific mean absolute error (MAE), which is defined as

MAEs = 1

N

∑
c∈C

∑
t∈Tc

|ŷc,s,t − yc,s,t |,(3.1)

where C is the set of countries considered in the validation, Tc is the set of country-year
combinations used for validation, ŷc,s,t is the posterior median of the predictive distribution
of ASAF at year t for country c and gender s and N is the total number of data used for
validation.

We wish the prediction to be well calibrated and sharp, that is, the coverage of the predic-
tion interval to be close to the nominal level with its half-width as short as possible. Thus, we
include the empirical coverage and the half-width of the prediction interval in the validation.
To assess the overall predictive performance, we also calculate the gender-specific continuous
ranked probability score (CRPS) (Gneiting and Raftery (2007)), which is defined as

CRPSs = 1

|C|
∑
c∈C

[
1

|Tc|
∑
t∈Tc

∫ ∞
−∞

{
Fc,s,t (y) − 1(yc,s,t ≤ y)

}2
dy

]
,(3.2)

where Fc,s,t (y) is the predictive distribution of the future ASAF for country c, gender s and
time t , and 1(·) is equal to 1 if the condition in the parenthesis is satisfied and 0 otherwise.
CRPS is a summary statistic measuring the quality of the probabilistic forecast which eval-
uates model calibration and sharpness simultaneously. The smaller the CRPS, the closer the
predictive distribution to the true data-generating distribution.

3.2. Out-of-sample validation results. To our knowledge, no other method is available in
the literature to produce probabilistic forecasts for male and female ASAF for developed and
developing countries jointly. Janssen, van Wissen and Kunst (2013) and Stoeldraijer et al.
(2015) developed methods for projection of age-specific SAF and age-standardized SAF, and
their methods are based on age-period-cohort analysis which cannot be trivially extended to
ASAF. See Section 5.2 for more discussion of their procedures and comparison to the present
ones.

As benchmarks against which to compare our method, we consider four other forecast
procedures. The first one is the persistence forecast which takes the last observed value as the
forecast for the prediction period. The second method is the Bayesian thin plate regression
spline method (Wood (2003)), implemented in the mgcv package (Version 1.8-27) in R. The
third method is the Bayesian structural time series model (Harvey (1990), Durbin and Koop-
man (2012)), implemented in the bsts package (Version 0.8.0) in R. Here, we choose to use
two state components—local linear trend and autocorrelation with lag 1—to build the struc-
tural time series model. Our fourth comparison method is a nonhierarchical version of our
proposed model, namely, our proposed model without Level 4 (i.e., the global parameters).
This is included to see whether the hierarchical structure is necessary.

We summarize the validation results in Table 2 for males and females separately. This
shows the MAE, the coverage and half-width of the prediction intervals and the continuous
ranked probability score (CRPS). For males, our method improved the prediction accuracy for
all three scenarios over the persistence forecast. For forecasting one and two five-year periods
ahead, our method improved the MAE by 30% and 21%, respectively. Since most male ASAF
series had passed the peak by 2005 and had experienced declines for several years, the double
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TABLE 2
Predictive validation results for all-age smoking attributable fraction (ASAF). The first and second columns
indicate the estimation and validation periods. The “Gender” and “n” columns indicate the gender and the

number of countries used for the validation. In the “Model” column, “Bayes” represents the Bayesian
hierarchcial model with measurement error and random walk with drift, “Bayes(S)” represents the same model

as “Bayes” without the global parameters, “Persistence” represents the persistence forecast, “Spline”
represents the Bayesian thin plate regression spline method and “BSTS” represents the Bayesian structural time
series method. The “MAE” column contains the mean absolute prediction error defined by equation (3.1). The

“Coverage” columns show the proportion of validation observations contained in the 80%, 90%, 95% prediction
intervals with their average half-widths in parentheses. The “CRPS” column contains the continuous ranked

probability score defined by equation (3.2)

Coverage

Training Test n Gender Model MAE 80% 90% 95% CRPS

1950–2010 2010–2015 66 Male Persistence 0.010 – – – –
Bayes 0.007 0.78 (0.011) 0.86 (0.014) 0.90 (0.017) 0.00523
Bayes(S) 0.007 0.86 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00505
Spline 0.008 0.58 (0.009) 0.65 (0.011) 0.72 (0.013) 0.00648
BSTS 0.008 0.85 (0.015) 0.94 (0.020) 0.94 (0.025) 0.00570

Female Persistence 0.009 – – – –
Bayes 0.007 0.83 (0.012) 0.93 (0.015) 0.96 (0.018) 0.00507
Bayes(S) 0.008 0.88 (0.014) 0.94 (0.018) 0.97 (0.022) 0.00538
Spline 0.010 0.42 (0.007) 0.52 (0.009) 0.61 (0.011) 0.00763
BSTS 0.008 0.80 (0.013) 0.89 (0.016) 0.94 (0.020) 0.00562

1950–2005 2005–2015 66 Male Persistence 0.014 – – – –
Bayes 0.011 0.72 (0.014) 0.83 (0.018) 0.89 (0.022) 0.00797
Bayes(S) 0.010 0.85 (0.020) 0.93 (0.027) 0.97 (0.033) 0.00795
Spline 0.014 0.54 (0.014) 0.65 (0.018) 0.72 (0.021) 0.01096
BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female Persistence 0.012 – – – –
Bayes 0.010 0.80 (0.015) 0.90 (0.020) 0.92 (0.025) 0.00721
Bayes(S) 0.011 0.88 (0.021) 0.93 (0.028) 0.95 (0.035) 0.00808
Spline 0.014 0.44 (0.011) 0.51 (0.014) 0.58 (0.016) 0.01133
BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802

1950–2000 2000–2015 63 Male Persistence 0.017 – – – –
Bayes 0.016 0.65 (0.020) 0.76 (0.026) 0.84 (0.031) 0.01214
Bayes(S) 0.018 0.84 (0.031) 0.92 (0.042) 0.95 (0.052) 0.01278
Spline 0.018 0.59 (0.019) 0.69 (0.024) 0.76 (0.029) 0.01335
BSTS 0.016 0.85 (0.039) 0.93 (0.053) 0.98 (0.068) 0.01281

Female Persistence 0.015 – – – –
Bayes 0.011 0.81 (0.021) 0.90 (0.029) 0.95 (0.037) 0.00817
Bayes(S) 0.012 0.88 (0.027) 0.96 (0.039) 0.98 (0.050) 0.00887
Spline 0.016 0.48 (0.014) 0.59 (0.018) 0.70 (0.022) 0.01151
BSTS 0.012 0.79 (0.022) 0.89 (0.030) 0.94 (0.039) 0.00831

logistic curve captures this trend well. For predictions three five-year periods into the future,
during which the male ASAF series for some countries were just reaching the peak, our
method still improved the MAE by 6%. For females, we observed similar improvements.
Our method decreased the MAE by 22%, 17% and 27% for predictions one, two and, three
five-year periods ahead compared to those of the persistence forecast.

Also, compared with other probabilistic forecast methods, our method produced shorter
prediction intervals with empirical coverages close to the nominal level for one and two five-
year predictions, while it produced prediction intervals with reasonably close to nominal for
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FIG. 3. Forecast of U.S. female ASAF based on data before 2000 using Bayesian spline method (left) and
Bayesian structural time series method (right). Observed ASAF values are represented by black dots. The solid
lines and dashed lines represent the posterior median and the 95% prediction interval, respectively.

the three five-year predictions for the male ASAF. On the other hand, since most female
ASAF series have not yet reached the peak, capturing the variability of future female ASAF
is essential. The coverage of our method is close to the nominal level, indicating that our
method is well calibrated.

Overall, our proposed BHM yielded the smallest CRPS among all methods in most cases
for both the male and female epidemics. Among all five methods compared in the validation
exercise, the Bayesian spline method was worst in terms of forecast accuracy and tended to
underestimate the variability of future values. The Bayesian structural time series model pro-
duced prediction interval close to the nominal level with slightly larger average half-width
than our method. However, a significant drawback of the persistence forecast, the Bayesian
spline method and the Bayesian structural time series model is that they tend to produce unre-
alistic forecasts when all the observed data are before the peak, since they do not incorporate
the increasing-peaking-decreasing information in the model. The left panel of Figure 3 indi-
cates that the Bayesian thin plate spline method projected a monotonically increasing ASAF
for United States’ females based on data before 2000, where the entire prediction interval
missed the observed data after 2000. The right panel of Figure 3 shows that the Bayesian
structural time series model did cover the data but with an unrealistically wide prediction
interval.

The Bayesian model without the global level parameters produced results similar to those
from our BHM for projecting short term male ASAF. When forecasting three five-year peri-
ods ahead or the female ASAF, in both of which cases the peak has often not been reached,
the Bayesian model without the global level parameters was worse in accuracy and CRPS.
This indicates that the hierarchical structure did indeed improve the overall forecast when
only part of the trend has been observed by sharing information among all the countries.

Table 3 gives validation results for subgroups of countries, categorized by membership of
the Organization for Economic Cooperation and Development (OECD). Most of the countries
in the OECD are regarded as developed countries with high GDP and human development
index (HDI). For male ASAF, our BHM improved most of the forecasts for OECD coun-
tries, especially the longer term projections. For OECD countries, the increasing-peaking-
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decreasing pattern is clearer and stronger, which fits with our modeling well. In contrast, our
BHM performed less well among non-OECD countries.

Figure 4 shows validation results for the male ASAF of four countries or regions for pre-
dictions three five-year periods ahead. We see that our method works quite well for the United

TABLE 3
Predictive validation results for all-age smoking attributable fraction (ASAF) for categories of countries. The

“OECD” column represents whether the countries in the subgroup belong to the OECD. The number of
countries in the subgroup used for the validation is in parentheses. All the other columns are the same as those in

Table 2

Coverage

Training Test Gender OECD Model MAE 80% 90% 95% CRPS

1950–2010 2010–2015 Male Y(34) Persistence 0.011 – – – –
Bayes 0.006 0.81 (0.011) 0.90 (0.014) 0.95 (0.016) 0.00448
Bayes(S) 0.006 0.88 (0.013) 0.94 (0.017) 0.99 (0.021) 0.00459
Spline 0.007 0.60 (0.008) 0.67 (0.010) 0.73 (0.012) 0.00565
BSTS 0.007 0.86 (0.014) 0.95 (0.018) 0.98 (0.022) 0.00529

N(32) Persistence 0.008 – – – –
Bayes 0.009 0.75 (0.011) 0.81 (0.015) 0.84 (0.018) 0.00601
Bayes(S) 0.008 0.85 (0.015) 0.92 (0.019) 0.94 (0.023) 0.00554
Spline 0.010 0.56 (0.010) 0.63 (0.012) 0.70 (0.015) 0.00736
BSTS 0.009 0.86 (0.017) 0.95 (0.023) 0.98 (0.028) 0.00629

Female Y(34) Persistence 0.009 – – – –
Bayes 0.007 0.82 (0.011) 0.92 (0.015) 0.94 (0.018) 0.00505
Bayes(S) 0.008 0.86 (0.013) 0.93 (0.017) 0.96 (0.021) 0.00560
Spline 0.010 0.42 (0.007) 0.51 (0.008) 0.58 (0.010) 0.00762
BSTS 0.009 0.78 (0.012) 0.85 (0.015) 0.91 (0.019) 0.00616

N(32) Persistence 0.008 – – – –
Bayes 0.008 0.83 (0.012) 0.95 (0.015) 0.95 (0.018) 0.00507
Bayes(S) 0.007 0.89 (0.015) 0.95 (0.019) 0.98 (0.023) 0.00516
Spline 0.011 0.42 (0.008) 0.54 (0.010) 0.63 (0.012) 0.00764
BSTS 0.007 0.82 (0.013) 0.89 (0.017) 0.94 (0.021) 0.00506

1950–2005 2005–2015 Male Y(34) Persistence 0.016 – – – –
Bayes 0.010 0.73 (0.014) 0.85 (0.018) 0.90 (0.021) 0.00676
Bayes(S) 0.010 0.84 (0.019) 0.93 (0.025) 0.97 (0.032) 0.00717
Spline 0.013 0.52 (0.012) 0.61 (0.015) 0.69 (0.018) 0.01008
BSTS 0.012 0.85 (0.028) 0.91 (0.039) 0.97 (0.049) 0.01000

N(32) Persistence 0.011 – – – –
Bayes 0.012 0.70 (0.014) 0.81 (0.019) 0.88 (0.022) 0.00928
Bayes(S) 0.011 0.87 (0.021) 0.93 (0.029) 0.96 (0.035) 0.00879
Spline 0.015 0.57 (0.016) 0.68 (0.020) 0.76 (0.024) 0.01189
BSTS 0.013 0.83 (0.026) 0.90 (0.035) 0.95 (0.043) 0.00989

Female Y(34) Persistence 0.012 – – – –
Bayes 0.009 0.82 (0.015) 0.92 (0.020) 0.95 (0.025) 0.00669
Bayes(S) 0.010 0.88 (0.019) 0.95 (0.025) 0.96 (0.032) 0.00736
Spline 0.012 0.38 (0.008) 0.45 (0.011) 0.52 (0.013) 0.00945
BSTS 0.012 0.82 (0.019) 0.90 (0.026) 0.92 (0.033) 0.00851

N(32) Persistence 0.013 – – – –
Bayes 0.011 0.78 (0.015) 0.88 (0.020) 0.90 (0.025) 0.00780
Bayes(S) 0.012 0.88 (0.023) 0.91 (0.031) 0.93 (0.039) 0.00885
Spline 0.017 0.51 (0.013) 0.58 (0.017) 0.66 (0.020) 0.01333
BSTS 0.011 0.77 (0.017) 0.88 (0.023) 0.93 (0.029) 0.00802
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TABLE 3
(Continued)

Coverage

Training Test Gender OECD Model MAE 80% 90% 95% CRPS

1950–2000 2000–2015 Male Y(33) Persistence 0.018 – – – –
Bayes 0.014 0.67 (0.020) 0.79 (0.026) 0.88 (0.032) 0.01063
Bayes(S) 0.017 0.83 (0.030) 0.90 (0.040) 0.95 (0.050) 0.01221
Spline 0.017 0.58 (0.015) 0.68 (0.020) 0.74 (0.023) 0.01338
BSTS 0.018 0.88 (0.035) 0.93 (0.047) 0.97 (0.060) 0.01308

N(30) Persistence 0.017 – – – –
Bayes 0.019 0.63 (0.020) 0.72 (0.026) 0.80 (0.031) 0.01377
Bayes(S) 0.018 0.86 (0.032) 0.93 (0.042) 0.95 (0.053) 0.01341
Spline 0.018 0.60 (0.022) 0.71 (0.029) 0.79 (0.034) 0.01331
BSTS 0.016 0.85 (0.045) 0.94 (0.063) 0.98 (0.082) 0.01308

Female Y(33) Persistence 0.016 – – – –
Bayes 0.011 0.80 (0.021) 0.89 (0.029) 0.95 (0.037) 0.00817
Bayes(S) 0.013 0.84 (0.028) 0.94 (0.038) 0.97 (0.048) 0.00981
Spline 0.016 0.41 (0.012) 0.54 (0.015) 0.62 (0.018) 0.01230
BSTS 0.011 0.73 (0.016) 0.86 (0.022) 0.92 (0.027) 0.00777

N(30) Persistence 0.013 – – – –
Bayes 0.010 0.82 (0.017) 0.92 (0.023) 0.95 (0.030) 0.00699
Bayes(S) 0.010 0.93 (0.028) 0.98 (0.040) 0.99 (0.052) 0.00784
Spline 0.016 0.56 (0.017) 0.66 (0.022) 0.79 (0.026) 0.01066
BSTS 0.010 0.86 (0.022) 0.94 (0.030) 0.95 (0.039) 0.00735

States and Hong Kong, and the prediction interval captures the variability of the male ASAF
of Chile. Figure 5 shows the results from Scenario (1) where most female ASAF of countries
among the examples have not reached the peak by the year 2000. We see that the posterior
median of the predictive distribution captures the general trend of future female ASAF of the
United States, the Netherlands and Chile reasonably well. For countries or regions like Hong
Kong, whose female ASAF already passed the peak, our method also accurately estimates
the rate of decline.

4. Case studies. Probabilistic forecasts of ASAF to 2050 are given in the Supplementary
Material for over 60 countries. Broadly, the patterns in the OECD countries are similar, with
male ASAF having declined from about 30% in the 1990s to around 15% in 2015 and with
further declines projected to 2050 reaching around 5%. The patterns vary more for females
in OECD and for both males and females in non-OECD countries because they are currently
at different stages of the epidemic.

We now give four cases studies which illustrate various aspects of the proposed method
for estimating and forecasting ASAF.

4.1. United States. The annual ASAF for both male and female for the time period 1950–
2015 is shown in Figure 1. The very clear pattern is due to the high quality of the data,
reflecting the fact that the United States has one of the the best vital registration systems in
the world.

The smoking epidemic in the male population in the United States started in the earlier
1900s, and there was a substantial decrease of smoking prevalence and lung cancer mortality
rate after the 1950s. Smoking prevalence among U.S. male adults was approximately 60%
in 1950s, went down to about 20% in the 1990s and the general decline is still continuing
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FIG. 4. Validation of male all-age smoking attributable fraction for the United States, Netherlands, Hong
Kong and Chile. Past observed ASAF values are shown by black dots for 1950–2000 and by black squares for
2000–2015. The posterior median for 2000–2015 is shown by the solid line, and the 80% and 95% prediction
intervals are shown by the dotted and dashed lines, respectively.

(Burns et al. (1997), Islami, Torre and Jemal (2015)). The observed ASAF levelled around
the 1990s and declined afterward. We forecast that by 2050, the median observed ASAF for
US males will be around 4.3% (with 95% prediction interval [0.0%, 8.3%]). Because the
measurement error for the US is tiny, the projected true ASAF (long dashed line for posterior
mean and dotted line for 95% prediction interval in Figure 6) for U.S. males is almost equal
to that of the observed ASAF.

The female smoking epidemic started two decades later than the male one, and the maxi-
mum prevalence was around 30% in the 1960s and then declined to about 20% in the 1990s
(Burns et al. (1997)). The pattern of smoking prevalence among U.S. females is similar to that
for males but around 20 years behind (Burns et al. (1997), Islami, Torre and Jemal (2015)).
The female ASAF started to rise around the 1960s and reached its peak of 23% around 2005.
We forecast that by 2050 the median observed ASAF for U.S. females will be around 2.7%
(with 95% prediction interval [0.0%, 9.3%]). Similarly, the projected U.S. female true ASAF
follows closely with that of the observed ASAF. Figure 6 shows the historical records of the
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FIG. 5. Validation of female all-age smoking attributable fraction for the United States, Netherlands, Hong
Kong and Chile. Past observed ASAF values are shown by black dots for 1950–2000 and by black squares for
2000–2015. The posterior median for 2000–2015 is shown by the solid line, and the 80% and 95% prediction
intervals are shown by the dotted and dashed lines, respectively.

observed male and female ASAF during the time period 1950–2015, along with projections
up to 2050 with posterior median and prediction intervals.

4.2. The Netherlands. The Netherlands is a high-income western European country
whose smoking epidemic started relatively early. Smoking prevalence reached 90% in the
1950s and dropped to 30% in the 2010s. The male observed ASAF in Netherlands passed its
maximum ASAF around the 1990s, and we project that it will go down to around 5.7% (with
95% prediction interval [1.4%, 9.7%]) in 2050.

For females, smoking prevalence is also relatively high and reached its peak of about
40% in the 1970s and dropped to 24% in the 2010s (Stoeldraijer et al. (2015)). The female
ASAF in Netherlands is among the few that is already experiencing the leveling stage. By our
projection, the median year-to-peak for the female ASAF will be around 2020, which is about
30 years after the male peak, and will reach 16.6% (with 95% prediction interval [12.4%,
18.5%]). By 2050, the median observed female ASAF will be 4.7% (with 95% prediction
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FIG. 6. United States: The left and right panels show the projection of ASAF up to 2050 under the proposed
model for male and female, respectively. The solid and long dashed lines show the posterior median of projected
observed ASAF and true ASAF, respectively. The dashed and dotted lines represent 95% prediction intervals for
observed ASAF and true ASAF, respectively.

interval [0.0%, 19.3%]). Similarly to the case of the U.S., the projected true ASAF follows
that of the observed ASAF closely, due to the small measurement error. Figure 7 shows the
historical records of the observed male and female ASAF during time period 1950–2015,
and projections are given up to 2050 with posterior median and prediction intervals for both
observed and true ASAF.

4.3. Hong Kong. Hong Kong has an advanced smoking epidemic but had a decrease in
male smoking prevalence from about 40% in the 1980s to 22% in 2000. A decline has also
been observed in female smoking prevalence, from 5.6% to 3.3% (Au et al. (2004)). Like

FIG. 7. Netherlands: The left and right panels show the projection of ASAF up to 2050 under the proposed
model for male and female, respectively. The solid and long dashed lines show the posterior median of projected
observed ASAF and true ASAF, respectively. The dashed and dotted lines represent 95% prediction intervals for
observed ASAF and true ASAF, respectively.
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FIG. 8. Hong Kong: The left and right panels show the projection of ASAF up to 2050 under the proposed
model for male and female, respectively. The solid and long dashed lines show the posterior median of projected
observed ASAF and true ASAF, respectively. The dashed and dotted lines represent 95% prediction intervals for
observed ASAF and true ASAF, respectively.

Japan, Singapore and South Korea, both male and female ASAF have passed the leveling
stage and have been declining for two decades. Unlike in most western developed countries,
the time trend of the ASAF has been almost identical for males and females in Hong Kong
with similar times of onset and times-to-peak. Au et al. (2004) showed that the time trends of
lung cancer incidence were similar for both genders.

By our projection, the observed ASAF will reach 9.7% for males (with 95% prediction
interval [4.9%, 14.3%]) and 4.1% for females (with 95% prediction interval [0.0%, 8.1%])
by 2050. Compared with the U.S. and the Netherlands, the projected true ASAF of Hong
Kong will have narrower prediction intervals than those of the observed ASAF due to larger
measurement error exhibited in the historical data. However, the difference becomes less and
less since the majority uncertainty of the future ASAF will be account mainly by the variance
from the random walk model of the true ASAF.

As discussed by Lam et al. (2001), Hong Kong may be a good indicator for the future de-
velopment of the smoking epidemic and its impact on mortality in mainland China and other
developing countries. Figure 8 shows the historical records of the observed male and female
ASAF during time period 1950–2015, along with projections up to 2050 with posterior me-
dian and prediction intervals.

4.4. Chile. Chile is one of the South America countries that have clear-pattern ASAF
data for both males and females. It also has relatively high smoking prevalence. A decline
in prevalence among males and females has been observed in recent years but is modest
compared to the decline in the United States (Islami, Torre and Jemal (2015)). Also, female
smoking prevalence is far behind that of males.

Our method projects that the male ASAF will decline gradually. By 2050, the projected
median observed ASAF for the male population will be 4.3% (with 95% prediction interval
[0.0%, 9.1%]). For females, we expect an increase for another 10 years with the median ob-
served ASAF reaching the maximum 7.6% (with 95% prediction interval [2.0%, 11.8%]) by
2030. By 2050, the median observed female ASAF be 5.36% (with 95% prediction interval
[0.0%, 15.2%]); see Figure 9. Similarly to Hong Kong, Chile also has larger measurement
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FIG. 9. Chile: The left and right panels show the projection of ASAF up to 2050 under the proposed model for
male and female, respectively. The solid and long dashed lines show the posterior median of projected observed
ASAF and true ASAF, respectively. The dashed and dotted lines represent 95% prediction intervals for observed
ASAF and true ASAF, respectively.

error and the pattern is less clear, so that the projected true ASAF has wider prediction inter-
vals compared with previous cases and the difference between true and observed projections
also appears in the short term.

5. Discussion.

5.1. Comparison between SAF estimation methods. In Section 1, we briefly described
three categories of estimation methods for SAF. Prevalence-based methods depend heavily
on smoking prevalence history. Since the lag between smoking prevalence and SAF is usually
around two or three decades, in order to use smoking prevalence to estimate and predict SAF,
especially for those countries whose onset of SAF is before 1950, one needs data at least back
to the 1920s or 1930s. However, such smoking prevalence history is not available for most
countries and reconstruction of such data is challenging. Ng et al. (2014) provided estimates
of smoking prevalence for many countries only from 1980 onward.

Insufficient historical data is a major obstacle to using smoking prevalence for estimation
and projection of SAF, and with currently available historical data the predictive power using
smoking prevalence data is not very high. In addition, smoking prevalence only reveals one
aspect of the smoking epidemic which cannot capture other aspects, such as smoking inten-
sity and duration, and thus has been argued to be a poor indicator of the smoking exposure
of the population (Shibuya, Inoue and Lopez (2005), Luo et al. (2018)). Prevalence-based
estimation and projection have generally been applied only to specific countries on an indi-
vidual basis, and examples include Taiwan (Wen et al. (2005)) and the United States (Ma
et al. (2018)).

There are two main indirect methods used widely in the literature, and both use the lung
cancer mortality rate as an indicator for the accumulated hazard of smoking. The first one
is the Peto–Lopez method, which we have used here. This has been widely used in the de-
mographic literature, in part because its data requirements are relatively modest. It has been
validated in many studies (Preston, Glei and Wilmoth (2009), Kong et al. (2016)).

One drawback of the Peto–Lopez method is that it uses the CPS-II to estimate the rel-
ative risk. Since the CPS-II was conducted in 1982 with volunteer participants only from
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the United States and most of them were middle-class, the CPS-II might not be fully repre-
sentative and may potentially underestimate lung cancer mortality in nonsmokers (Tachfouti
et al. (2014)). Moreover, the Peto–Lopez method assumes that the relative risk is constant
over time and homogeneous across nations. Mehta and Preston (2012), Teng et al. (2017)
and Lariscy, Hummer and Rogers (2018) have shown that the risks from smoking are chang-
ing over time. Also, in China and India the lung cancer mortality rate among nonsmokers
is higher than that of the developed countries such as that in the CPS-II (Liu et al. (1998),
Gajalakshmi et al. (2003)). Another issue is that the original Peto–Lopez paper reduced the
smoking excess risk of each cause-of-death, except lung cancer, by 50% to control for other
confounders. As stated in their paper, this reduction is somewhat arbitrary. To avoid some
of these issues, here we have used only data from clear-pattern countries which avoids some
countries for which the Peto–Lopez method may not give good estimates.

Some variants of the Peto–Lopez method have been proposed. For example, Ezzati and
Lopez (2003) reduced the correction factor for excess risk from 50% to 30% for all coun-
tries and extended this method to less developed countries by estimating the nonsmoker lung
cancer mortality rate based on household use of coal in poorly vented stoves. They also pro-
vided an analysis of uncertainty. Mackenbach et al. (2004) used a simplified version which
only used the all-cause relative risk in the CPS-II study and avoided calculations for the nine
disease categories separately. Janssen, van Wissen and Kunst (2013) used this version to cal-
culate age-specific SAF to partition mortality into smoking and nonsmoking attributable parts
and projected them separately.

Muszyńska, Fihel and Janssen (2014) and Stoeldraijer et al. (2015) used the same method
to calculate an age-standardized SAF, whose purposes are to compare the role of smoking
in different regions of Poland and to estimate and compare smoking attributable fraction of
mortality among England and Wales, Denmark and the Netherlands, respectively. While age-
standardization is used mainly to compare SAF among different populations, ASAF provides
the all-cause SAF with all age-groups aggregated and is the main quantity reported in the
literature, for example, Peto et al. (1992, 1994, 2006), Preston, Glei and Wilmoth (2009).

Based on these concerns about the Peto–Lopez method, Preston, Glei and Wilmoth (2009,
2011) came up with the PGW method which used a regression-based method to connect lung
cancer mortality rate with other causes of death mortality rate instead of using the CPS-II.
The PGW method avoids the relative risk problem faced by the Peto–Lopez method and
provides estimates of uncentainty. However, its authors stated that the Peto–Lopez method
might work better for countries where the cause-of-death structure is very different from that
observed in developed countries, such as tropical African countries. They also pointed out
that both methods would not work well for countries whose lung cancer mortality rate is also
influenced largely by some other factors, such as air pollution. As discussed by Preston, Glei
and Wilmoth (2009), the PGW method produces similar estimates to the Peto–Lopez method
in general for both males and females.

5.2. Projection methodology. To our knowledge, there are only two other methods avail-
able for projecting SAF based on the Peto–Lopez method. Janssen, van Wissen and Kunst
(2013) proposed the first method to forecast age-specific SAF and to our knowledge it has
so far been applied only to the Netherlands. For projecting male age-specific SAF, a constant
decline rate (−1.5%) based on the current trend of all-age combined SAF is applied for each
age group. For females, it first estimates the time-to-peak and value of peak of female SAF. It
uses age-period-cohort (APC) analysis to find the cohort with the highest lung cancer mortal-
ity rate and then adds 68, which is the average age of dying from lung cancer, to that cohort to
estimate the year which the all-age combined female SAF would reach the maximum. Then,
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the difference between year-to-peak of male and female SAF with all ages combined is esti-
mated and applied to get the time-to-peak and, thus, the age-specific female SAF. Finally, the
rate of decline of female age-specific SAF is set to the same as that of the male.

The other method proposed for projecting SAF is first to estimate and to project lung
cancer mortality rate by considering the cohort effect and use it to calculate the age-specific
SAF. Stoeldraijer et al. (2015) used an APC model to estimate and forecast the lung cancer
mortality rate of three countries: England and Wales, Denmark and the Netherlands. For
female data, they first estimated the time-to-peak for each age group by assuming that the
time-to-peak of age-specific lung cancer mortality rate for females is when it reaches the
corresponding rate for males. By assuming that the female lung cancer mortality will follow
the same increasing-leveling-declining time trend as that for males for each age group, the
authors argued that their method could provide long-term projections of lung cancer mortality
rate while previous work, which only used historic trends in APC analysis, could only provide
short-term projections.

APC analysis is widely used, but it is also plagued by the unidentifiability issue resulting
from the perfect linear relationship between the three effects. To resolve this requires extra
constraints on the parameter space, many of which are not desirable (Luo (2013), Smith and
Wakefield (2016)). Also, projection of the future lung cancer mortality rate also requires the
projection of age, period and cohort effects which introduces additional projection error even
more so for young cohorts for which historical data are not available.

Another way to resolve the unidentifiability issue in APC analysis is by introducing cohort
explanatory variables (Smith and Wakefield (2016)). Cohort smoking history is one such
powerful tool for estimating and projecting mortality. Preston and Wang (2006) and Wang
and Preston (2009) used the average year of smoking before 40 of a cohort as a covariate
to explain the mortality differences between genders and forecasted mortality in the United
States for both genders up to 2035. Shibuya, Inoue and Lopez (2005) and Luo et al. (2018)
used APC anlaysis with selected smoking covariates such as cigarette tar exposure to estimate
and project the lung cancer mortality rate. Cohort smoking history is a powerful tool, but it
requires additional data (Burns et al. (1997)) that are not available for many of the countries
we considered.

5.3. China and India. According to Reitsma et al. (2017), China and India are the two
countries that have seen the largest percentage increase in smoking prevalence. As a result,
the ASAF for these two countries is important for understanding and projecting the world
trend of the effect of smoking on mortality since the diffusion of the smoking epidemic from
developed countries to developing countries has already started.

Parascandola and Xiao (2019) found that smoking-related health issues in China have
increased over the past two decades, and the trend resembles the early pattern observed in
high income countries such as the U.S. and Japan. Smoking prevalence among Chinese men
has remained high (around 60%) since the 1980s with a modest decrease to 52% by 2015.
Smokers born after 1970 tended to start smoking earlier and more intensely than those born
before 1970.

Chen et al. (2015) analyzed two nationwide prospective cohort studies on smoking con-
ducted in China during 1991–1999 and 2006–2014. They found that the excess risk among
smokers almost doubled over the 15-year period. They reported that the SAF of males aged
40–79 increased from 11% in the first study to 18% in the second study, and they predicted
that it would be over 20% in the mid-2010s.

In contrast, female smoking prevalence decreased from 7% in the 1980s to 3% in 2015
(Parascandola and Xiao (2019)). However, second-hand smoking remains high among Chi-
nese females. Zheng et al. (2018) estimated that 65% of Chinese female nonsmokers were
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exposed to second-hand smoking in 2012. Nonetheless, the SAF for Chinese females aged
40–79 years was around 3% in 2006–2014.

There are also substantial geographic differences in smoking prevalence. In big cities, like
Beijing and Shanghai, smoking control measures have developed more rapidly than in other
areas.

After China, India has become the country with the second largest cigarette consumption
in the world. Smoking, including manufactured cigarettes, bidis and chewing tobacco is one
of the major causes of death for middle-aged Indians. Mishra et al. (2016) estimated that
smoking prevalence among male Indians aged 15–69 years declined modestly from 27% in
1998 to 24% in 2010, while smoking prevalence among young adults aged 15–29 years rose.

We have not included these two countries in our analysis for the following two reasons.
First, we do not have enough data to estimate the ASAF for China and India. Even though
there are some records of lung cancer death count data in the W.H.O. Mortality Database
for China (World Health Organization (2017)), these are only regional data and so could
be biased. India has a reasonably good vital registration system, but it also has lung cancer
mortality data only for selected regions and locations.

Second, as pointed out by Preston, Glei and Wilmoth (2009), neither the Peto–Lopez orig-
inal method nor the PGW method will provide reliable estimates of SAF for countries like
China since smoking is not the only major factor that can cause lung cancer. The main as-
sumptions of the Peto–Lopez and PGW methods are that lung cancer mortality is primarily
caused by smoking and that the lung cancer mortailty rate is very low among nonsmokers.
Therefore, as proposed by Ezzati and Lopez (2003) and others, some extra covariates such as
household use of coal in poorly vented stoves are used to adjust the estimates. Incorporating
China and India in the joint model could be feasible in the future if better ASAF estimation
methods and related data become available.

5.4. Decision-making and covariates. A main purpose of our method is to help improve
mortality forecasts. One could also ask whether our approach could be used directly for policy
making. One possible use would be to provide a baseline forecast of what would happen with
a continuation of current trends in general health, development and tobacco control measures.
This could help to assess the effectiveness of additional policies in accelerating the decline of
smoking-related mortality. This could be done, retrospectively, by considering a time point
in the past at which a new tobacco control policy was introduced and then comparing the
probabilistic forecast based on data up to that point with what actually happened.

To do this prospectively would require the addition of covariates to the model. This is
challenging and would be a good topic for further research. A difficulty with forecasting
using covariates is that the covariates themselves need to be forecast, and the covariates can
be harder to forecast than the quantity being forecast. This is especially the case when, as
here, the quantity being forecast has a strong time trend and, thus, may well itself be easier
to forecast than the covariates. In this situation, adding covariates can lead to forecasts that
are noisier. This is one reason why, after decades of research, the majority of demographic
studies do not use covariates in forecasting demographic quantities.

APPENDIX: FULL BAYESIAN HIERARCHICAL MODEL

The details of the four-layer Bayesian Hierarchical model described in Section 2.4 are as
follows. Here, N u

l (a, b) represents a normal distribution with mean a, and variance b, trun-
cated at interval [l, u] (l(u), is omitted if it takes value −∞ (∞)). Gamma(a, b) represents a
Gamma distribution with shape a and rate b. Lognormal(a, b) represents a log-normal distri-
bution with parameters a, b. InvGamma(a, b) represents a inverse-Gamma distribution with
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shape a and scale b:
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SUPPLEMENTARY MATERIAL

Supplementary material for “Estimating and forecasting the smoking-attributable
mortality fraction for both genders jointly in over 60 countries” (DOI: 10.1214/19-
AOAS1306SUPP; .pdf). The Supplementary Material includes three sections: 1: MCMC con-
vergence diagnostics; 2: Hyperparameter sensitivity analysis; 3: All-age smoking attributable
fraction projection for over 60 countries for both genders up to 2050.
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MUSZYŃSKA, M. M., FIHEL, A. and JANSSEN, F. (2014). Role of smoking in regional variation in mortality in
Poland. Addiction 109 1931–1941.

NEAL, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo. Chap-
man & Hall/CRC Handb. Mod. Stat. Methods 113–162. CRC Press, Boca Raton, FL. MR2858447

NG, M., FREEMAN, M. K., FLEMING, T. D., ROBINSON, M., DWYER-LINDGREN, L., THOMSON, B., WOL-
LUM, A., SANMAN, E., WULF, S. et al. (2014). Smoking prevalence and cigarette consumption in 187 coun-
tries, 1980–2012. Journal of the American Medical 311 183–192.

NIU, S.-R., YANG, G.-H., CHEN, Z.-M., WANG, J.-L., WANG, G.-H., HE, X.-Z., SCHOEPFF, H., BORE-
HAM, J., PAN, H.-C. et al. (1998). Emerging tobacco hazards in China: 2. Early mortality results from a
prospective study. BMJ 317 1423–1424.

PAMPEL, F. (2005). Forecasting sex differences in mortality in high income nations: The contribution of smoking.
Demogr. Res. 13 455–484. https://doi.org/10.4054/DemRes.2005.13.18

PAMPEL, F. C. (2006). Global patterns and determinants of sex differences in smoking. Int. J. Comp. Sociol. 47
466–487. https://doi.org/10.1177/0020715206070267

PARASCANDOLA, M. and XIAO, L. (2019). Tobacco and the lung cancer epidemic in China. Transl. Lung Cancer
Res. 8 S21–S30. https://doi.org/10.21037/tlcr.2019.03.12

PÉREZ-RÍOS, M. and MONTES, A. (2008). Methodologies used to estimate tobacco-attributable mortality: A re-
view. BMC Public Health 8 22.

PETERS, F., MACKENBACH, J. and NUSSELDER, W. (2016). Do life expectancy projections need to account for
the impact of smoking. Netspar. Design Papers 2016 1–54.

PETO, R., BOREHAM, J., LOPEZ, A. D., THUN, M. and HEATH, C. (1992). Mortality from tobacco in developed
countries: Indirect estimation from national vital statistics. Lancet 339 1268–1278.

PETO, R., LOPEZ, A. D., BOREHAM, J., THUN, M. and HEATH, C. (1994). Mortality from smoking in devel-
oped countries 1950–2000. Indirect estimates from national statistics.

https://doi.org/10.1007/s13524-018-0707-2
https://doi.org/10.1214/19-AOAS1306SUPP
https://doi.org/10.1016/j.lungcan.2018.09.001
https://doi.org/10.1016/0040-1625(96)00001-7
https://doi.org/10.1136/tobaccocontrol-2016-053008
http://www.ams.org/mathscinet-getitem?mr=2858447
https://doi.org/10.4054/DemRes.2005.13.18
https://doi.org/10.1177/0020715206070267
https://doi.org/10.21037/tlcr.2019.03.12
https://doi.org/10.1016/j.lungcan.2018.09.001


408 Y. LI AND A. E. RAFTERY

PETO, R., LOPEZ, A. D., BOREHAM, J. and THUN, M. (2006). Mortality from smoking in developed countries.
Population 673290 300245.

PRESTON, S. H., GLEI, D. A. and WILMOTH, J. R. (2009). A new method for estimating smoking-attributable
mortality in high-income countries. Int. J. Epidemiol. 39 430–438.

PRESTON, S. H., GLEI, D. A. and WILMOTH, J. R. (2011). Contribution of smoking to international differ-
ences in life expectancy. In International Differences in Mortality at Older Ages: Dimensions and Sources
(E. M. Crimmins, S. H. Preston and B. Cohen, eds.) 105–31. The National Academies Press, Washington, DC.

PRESTON, S. H. and WANG, H. (2006). Sex mortality differences in the United States: The role of cohort smoking
patterns. Demography 43 631–646.
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