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Identifying undocumented or potential future interactions among species
is a challenge facing modern ecologists. Recent link prediction methods rely
on trait data; however, large species interaction databases are typically sparse
and covariates are limited to only a fraction of species. On the other hand,
evolutionary relationships, encoded as phylogenetic trees, can act as proxies
for underlying traits and historical patterns of parasite sharing among hosts.
We show that, using a network-based conditional model, phylogenetic in-
formation provides strong predictive power in a recently published global
database of host-parasite interactions. By scaling the phylogeny using an evo-
lutionary model, our method allows for biological interpretation often miss-
ing from latent variable models. To further improve on the phylogeny-only
model, we combine a hierarchical Bayesian latent score framework for bipar-
tite graphs that accounts for the number of interactions per species with host
dependence informed by phylogeny. Combining the two information sources
yields significant improvement in predictive accuracy over each of the sub-
models alone. As many interaction networks are constructed from presence-
only data, we extend the model by integrating a correction mechanism for
missing interactions which proves valuable in reducing uncertainty in unob-
served interactions.

1. Introduction. As we enter into a data revolution in the study of biodiversity (La Salle,
Williams and Moritz (2016)), global databases of species interactions are becoming readily
available (Wardeh et al. (2015), Stephens et al. (2017), Poelen, Simons and Mungall (2014)).
However, most ecological networks that represent the interactions among organisms are only
partially observed, and fully characterizing all interactions via systematic sampling involves
substantial effort that is not feasible in most situations (Jordano (2016)). Approaches to pre-
dict highly probable, yet previously undocumented links in ecological networks will help
to expand our understanding of biodiversity, and can aid in the proactive surveillance of
pathogens that infect multiple host species (Farrell, Berrang-Ford and Davies (2013)).

Many potential approaches exist for link prediction in networks; a large group of them
can be classified under covariate or feature models, where covariates of a pair of nodes are
used to determine the likelihood of their interaction. The latent space model, introduced by
Hoff, Raftery and Handcock (2002), came to augment the former approach by representing
each node (i) as a point si in a latent low-dimensional space. The likelihood of the edge (i, j)

is driven by the individual covariates of each node and a form of distance d(si, sj ) of the
corresponding pairs in the latent space. Such an approach proved valuable in link prediction
for social networks for many reasons, including: (i) the abundance of covariate data in social
networks, and (ii) most applications favour predictive power over interpretability.
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A number of recent approaches for link prediction in ecological networks rely on trait data
and node-specific features, such as body size or similarity of trophic interactions (Williams
and Martinez (2000), Petchey et al. (2008), Gravel et al. (2013), Bartomeus (2013), Stock
et al. (2017), Dallas, Park and Drake (2017), Bastazini et al. (2017), Olival et al. (2017)).
While these approaches work well for small-scale datasets, they scale poorly to large-scale
ecological datasets in which traits determining species interactions are often unknown or are
available only for a limited subset of species (Morales-Castilla et al. (2015)). When trait in-
formation is limited, evolutionary relationships among species may be used as a proxy to
study species interactions (Webb et al. (2002)). Phylogenetic trees are a representation of the
evolutionary relationships among species which provide means to quantify ecological simi-
larity (Wiens et al. (2010)) and co-evolutionary history (Davies and Pedersen (2008)). Just
as many species traits co-vary with phylogeny, species interactions are also phylogenetically
structured (Gómez, Verdú and Perfectti (2010)). Incorporating phylogeny into ecological link
prediction has the added benefit that it is universally applicable across all systems and offers
added biological interpretability over current latent variable models.

Different approaches have been proposed to incorporate phylogeny-based similarity in link
prediction (Ovaskainen et al. (2016, 2017), Chiu and Westveld (2011), Bastazini et al. (2017),
Pearse and Altermatt (2013)). Despite the emerging interest in this topic, currently proposed
models treat the phylogeny as fixed or linearly scaled and do not offer approaches to capture
the underlying evolutionary processes that determine species differences.

Evolutionary biologists have developed methods of transforming phylogenies to represent
alternative modes of evolution (Pagel (1999), Harmon et al. (2010)). Rescaling the tree using
these approaches alters the dependence structure among hosts, yielding improved predictions
that can also be interpreted in the context of a model of trait evolution. This allows for added
flexibility in the incorporation of phylogenetic information, as the dissimilarity of potential
traits underlying ecological interactions may evolve under different processes than that ex-
pected by the inferred phylogeny.

In this work we show that single-parameter (nonlinear) tree scaling based on evolutionary
models improves predictive performance and allows for predictions that would otherwise
be overlooked by contemporary link prediction models. Shifting away from linearity results
in theoretical and computational issues. Theoretically, the conditional nature of phylogenies
forces interaction probabilities to be specified conditionally on other interactions, hence, the
joint distribution (if it exists) might be inaccessible. As a consequence, efficient and scalable
sampling methods are required, as proposed in this work. To our knowledge, this work is the
first to incorporate phylogenetic scaling in link prediction.

We develop a phylogeny-based framework for predicting undocumented links using a re-
cent global database of host-parasite interactions (Stephens et al. (2017)). In host-parasite net-
works, parasite community similarity is often constrained by evolutionary distances among
hosts (Gilbert and Webb (2007), Davies and Pedersen (2008), Streicker et al. (2010), Braga,
Razzolini and Boeger (2015), Huang et al. (2015)). We focus on wild mammal hosts that are
most closely related to domesticated ungulates and carnivores, as these species are known
to harbour diseases of concern for humans and livestock (Cleaveland, Laurenson and Tay-
lor (2001)) and include many species that are threatened with extinction due to infectious
diseases (Pedersen et al. (2007)). We incorporate phylogenetic information as a weighted
network, where weights quantify pairwise host similarities. This approach allows for easy
expansion to different forms of dependency, if phylogenetic information is unavailable or if
other dependency structures are preferred. However, we show that phylogenetic information
alone can generate accurate point estimate predictions. We improve our initial point estimate
by incorporating a single-parameter tree scaling model which results in posterior distributions
for the probabilities of each host-parasite interaction.
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We then show that this phylogeny-only model can be extended by using node-specific
affinity (sociability) parameters, mimicking that of covariate-based network models, such as
Hoff, Raftery and Handcock (2002), Hoff (2005), Chung and Lu (2006), Bickel and Chen
(2009).

To facilitate the construction of the full joint distribution, we first augment the model using
a hierarchical latent variable framework. The latent variable acts as an underlying scoring sys-
tem, with higher scores attributed to more probable links. Second, we apply a method similar
to the iterated conditional modes approach in auto-dependent models of Besag (1974) to deal
with the conditional dependency imposed by phylogeny and include a method to account for
uncertainty in unobserved interactions. Our approach allows for robust predictions for large
species interaction networks with limited covariate data and can be extended to any bipartite
network with a dependency structure for one of the interacting classes.

2. Data. We illustrate our framework on the Global Mammal Parasite Database version
2.0 (GMPD), described in Stephens et al. (2017). The GMPD contains over 24,000 docu-
mented associations between hosts and their parasites collected from published reports and
scientific studies. The assumed interactions are based on empirical observations of associ-
ations between host-parasite pairs using a variety of evidence types (visual identification,
serological tests or detection of genetic material from a parasite species in one or more host
individuals). Associations are reported along with their publication reference. The GMPD
gathers data on wild mammals and their parasites (including both micro- and macropara-
sites) which are separated into three primary databases based on host taxonomy: Primates,
Carnivora, and ungulates (terrestrial hooved mammals in the orders Artiodactyla and Peris-
sodactyla). We restricted our analyses to the ungulate and Carnivora subsets because of prior
experience with these data (Farrell et al. (2015)) and tractability of the size of the resulting
network.

We use the ungulate and Carnivora subsets of the GMPD to construct a bipartite binary
matrix, where rows represent hosts and columns parasites and documented associations (at
least one piece of evidence that a parasite infects a given host species) are indicated by 1.
We construct host pairwise similarities as the inverse of phylogenetic distances calculated
from the mammal phylogeny of Fritz, Bininda-Emonds and Purvis (2009) which involved
collapsing host subspecies to species. We excluded parasites that were not reported to species
level. This resulted in a GMPD subset with 4178 pairs of interactions among 236 hosts and
1308 parasites. Out of these 1308 parasites, 695 were found to associate with a single host
(≈54% of parasites and ≈17% of total interactions).

One of the models proposed in Section 3.1 (the phylogeny-only model) can only be spec-
ified for multihost parasites. Thus, for the purpose of model comparison we remove single-
host parasites, reducing the GMPD to 3483 interactions among 229 hosts and 613 parasites.
In subsequent analyses we refer to the database without single-host parasites, unless other-
wise specified.

Figure 1 shows the left-ordered interaction matrix Z of GMPD and corresponding host
phylogeny. The matrix Z is sparse, and the degree distributions of both hosts and parasites
exhibit a power-law structure (Supplementary Material, Figure S5, Elmasri et al. (2020)).

3. Bayesian hierarchical model for prediction of ecological interactions.

3.1. Network-based latent score model. Conditional modelling is common in many bi-
ological network models, where the class of auto-models of Besag (1974) and latent space
models of Hoff, Raftery and Handcock (2002) are widely applied. One example is the use
of a network-based auto-probit model in Jiang, Gold and Kolaczyk (2011), where a protein-
protein association network is used as a prior to predict protein functional roles conditional
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FIG. 1. (a) The host phylogeny and (b) the left-ordered interaction matrix Z of the GMPD without single-host
parasites.

on the roles of neighbouring proteins. Such network-based models rely on a pre-existing bi-
nary or weighted network with a clearly defined neighbourhood structure. Probabilities are
then derived by averaging over neighbouring nodes.

Evolutionary distances among species, represented by phylogenies, translate to a fully con-
nected weighted network. Since pairwise distances among species are measured relative to
their most recent common ancestor, the same distance may be assigned to multiple host pairs.
A neighbourhood structure can be constructed with weights on the fully connected network,
or a threshold method can be applied, but with two main drawbacks: (i) the complexity of
inferring the threshold parameter, and (ii) the interpretation of the threshold with respect to
evolutionary distance.

In the case of host-parasite interactions, parasites are often found to interact with closely
related hosts, but in some cases may make large jumps in the phylogeny and interact with
distantly related hosts (Parrish et al. (2008), Park et al. (2018)). To account for such behaviour
and to overcome the drawbacks of the threshold method, we let the probability of a host-
parasite interaction be driven by the sum of evolutionary distances to the documented hosts
of the parasite.

Let Z be an H × J host-parasite interaction matrix, where the binary variable zhj de-
notes whether an interaction between host h and parasite j has been observed. Quantifying
divergences starting from the root of the tree, let Thi be a unit-free pairwise phylogenetic
distances among hosts h and i, and their common ancestor k, such that Thi = Thk + Tik =
(th − tk) + (ti − tk). Phylogenetic distances are commonly measured in millions of years, so
to arrive at the unit-free distance we divide all distances by the total depth of the tree.

A valid and basic conditional probability distribution of host h interacting with parasite j

can be defined in terms of the pairwise phylogenetic distances from host h to all other hosts
interacting with parasite j , as

(1) P(zhj = 1 | z(−h)j ) = 1 − exp(−δhj ), δhj =
H∑
i=1
i �=h

zhj

Thi

,

where z(−h)j is the set of interactions of the j th parasite among the H hosts (z.j =
(z1j , . . . , zHj )), excluding that of the hth host.
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The conditional distribution (1) allocates higher probabilities when closely related hosts
interact with a given parasite or when many distantly related hosts also interact. The more
distantly related the hosts are, the smaller the value of 1/Thi . Of course, the probability
distribution in (1) is conditional on a probabilistic model for T .

The exponential choice in (1) is motivated by the power-law structure shown in Figure 1
and Supplementary Material Figure S5 (Elmasri et al. (2020)), thus we expect interaction
probabilities to decay exponentially with respect to the parameters. Other probability struc-
tures are viable, though with no tractability guarantees. We later show that, under such con-
struction, a tractable probabilistic framework is possible for a class of latent variables with
tail probabilities as in (1). The next section introduces a family of single-parameter models
that have meaningful biological interpretation.

3.1.1. Evolutionary models and phylogeny transformations. A focus of macroevolution-
ary research has been to develop models of trait evolution. A well-known model, and default
in many ecological applications, is Brownian motion; however, transformations of the phylo-
genetic tree can be made to reflect alternatives in the tempo and mode of evolution. Common
evolutionary models that can be defined by a single parameter transformation include the
early-burst (EB), delta, kappa, lambda and the Ornstein–Uhlenbeck transformation (Pagel
(1999), Harmon et al. (2010)); each scales phylogenetic distances according to a model of
evolution. We term this the phylogeny-only model and define it as

(2) P(zhj = 1 | z(−h)j ) = 1 − exp(−δhj ), δhj =
H∑
i=1
i �=h

zhj

φ(Thi, η)
,

where φ(Thi, η) is the transformed distance under a given evolutionary model controlled by
a single parameter η.

With further investigation we find that the EB model stands out by displaying a nontrivial
convex relationship with predictive power, as shown in Figure 2. In this figure we are evalu-
ating the potential predictive accuracy of a simple phylogeny-only model (2) with phylogeny
scaled according to the early-burst method for the database in Section 2 (for more details
refer to Supplementary Material, Figure S1, Elmasri et al. (2020)).

This supports the assumption that scaled phylogenies, based on explicit models of niche or
trait evolution, can result in better predictions. The EB model allows evolutionary change to

FIG. 2. Area under the ROC curve evaluated over a fine grid under the phylogeny-only model (2) with ear-
ly-burst tree transformational method with GMPD (including single-host parasites).
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FIG. 3. Examples of the early-burst transformation in the Carnivora subset of GMPD.

accelerate or decelerate through time, for example, evolutionary change may be fastest early
in a clades history but slows through time. The rate of change in the EB model is adjusted by
a single parameter η ∈ R, with positive values of η indicating that evolution is faster earlier
in history, while negative values suggests the opposite. Figure 3 illustrates the EB model for
different values of η.

Under the EB model the phylogenetic distance between a pair of hosts (h, i) with a most
recent common ancestor k is quantified as

(3) φ(Thi, η) = φ(Thk, η) + φ(Tik, η) = 1

η

(
eηth − eηtk

) + 1

η

(
eηti − eηtk

)
.

Thus, for η = 0, EB reduces to the original tree distance as φ(Thi,0) = Thi . While this
represents one form of uncertainty in the phylogeny, future work may also incorporate uncer-
tainty in tree topology as well as distance by using posterior distributions of trees resulting
from Bayesian phylogenetic inference.

3.1.2. Full model. Species interactions can be predicted using phylogenetic trees, though
not completely, since interactions can also be driven by traits that are independent of phy-
logeny. In general, many network-based models assume that edge probabilities are driven by
independent node affinity parameters, for example, Chung and Lu (2006), Bickel and Chen
(2009) and many others. Here, we model the conditional probability of an interaction by com-
bining both sources of information, phylogenetic distances and individual species affinities.
Affinity parameters govern the general propensity for each organism to interact with mem-
bers of the other class; larger affinities correlate with higher likelihood that an organism will
interact. Let γh > 0 be the affinity parameter of host h and ρj > 0 of parasite j . The full
conditional model is then

(4) P(zhj = 1 | Z−(hj)) = 1 − exp
(−γhρj δhj (η)

)
,

with δhj (η) as in (2) under the EB transformation, and Z−(hj) is the interaction matrix Z,
excluding zhj . The default value is δhj (η) = 1, if no neighbouring interactions exist, reducing
to the affinity-only model for this interaction. Alternative defaults are possible, such as the
average pairwise distances in T .

The affinity-only model results in a workable network prediction model which has been
shown in the literature on exchangeable random networks (Hoff, Raftery and Handcock
(2002)). However, affinity-only models tend to generate adjacency matrices with many hy-
peractive columns and rows. This is because whenever a node has a sufficiently high affin-
ity parameter, it forms edges with almost all other nodes, which is likely to be unrealistic
for most ecological networks. In Section 5 we show that both models, the affinity-only and
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phylogeny-only, independently result in useful predictive models that represent some varia-
tion in the data. However, each model captures different characteristics of the network and
by layering them we obtain a nontrivial improvement.

Finally, we find it advantageous to use latent variables in modelling the binary variables
zhj . This facilitates the construction of the network joint distribution while accounting for
the Markov network dependency imposed by δhj (η). In addition, the latent variable construc-
tion becomes essential in addressing the ambiguity associated with the case when zhj = 0,
which entails two possibilities: a yet to be observed positive interaction, or a true absence of
interaction due to incompatibility (implemented in Section 4).

Thus, for each zhj we define latent score shj ∈R such that

(5) zhj =
{

1 if shj > 0

0 otherwise,

where shj ∈ R is a continuous random variable acting as a latent score determining the proba-
bility of zhj being an interaction. Although unobserved, shj completely determines the binary
variables zhj . Therefore, the conditional model in (4) can be completely specified in terms of
the latent score as

(6) P(zhj = 1 | Z−(hj)) = E[I{shj>0} | Z−(hj)] = P(shj > 0 | S−(hj)),

where S−(hj) represents the interaction matrix S excluding shj ; it replaces Z as it carries the
same probability events in its sign distribution.

The current formulation is flexible in the choice of distribution for shj | S−(hj , the only
imposed requirement is absolute continuity with an exponentially decaying tail probability
as in (4). One possible choice is the Gumbel with mean parameter log(γhρj δhj (η)) and a scale
of 1. Since we are only interested in positive reals, we use a zero-inflated Gumbel distribution
for the latent score with the following density:

(7) p(shj | S−(hj)) = τhj exp
(−shj − τhj e

−shj
)
I{shj>0} + exp(−τhj )I{shj=0},

where τhj = γhρj δhj (η). Hence, the conditional joint distribution becomes

(8)
P(zhj = 1, shj | Z−(hj)) = P(zhj = 1 | shj )p(shj | S−(hj))

= p(shj | S−(hj))I{shj>0}.

The choice of a zero-truncated Gumbel was made to facilitate the construction of the joint
distribution, in a manner similar to the Swendsen–Wang algorithm (Swendsen and Wang
(1987)), where a product of densities transforms to a sum in the exponential scale, improving
the tractability of posteriors. Alternatively, the truncated exponential distribution can be used,
as shj ∼ min{1,Exp(τhj )}, having the tail distribution in (1) though it does not admit the
direct interpretability as a latent score, as does the Gumbel distribution.

The proposed latent score model, though intricate in formulation, is no more inferentially
complex than the auto-logit model of Besag (1974). The reasons we use our model are: i) it
exhibits a simple joint distribution for each row of Z conditional on all others; ii) there are
simple posterior distributions for the affinity parameters; and iii) we have the ability to cor-
rect for uncertainty using the latent score formulation (shown in Section 4). We could adopt
other network-based conditional models, for example, the family of auto-models by Besag
(1986). One particular example is the multivariate Gaussian latent variable with a conditional
mean structure of Jiang, Gold and Kolaczyk (2011), which has a similar complexity to the
phylogeny-only model in (2), modelling each column of Z independently without affinity
parameters. Other auto-models would also require the development of an efficient sampling
scheme and to make a proper choice for the conditional interaction probability, as done here.
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3.2. Prior and posterior distribution of choice parameters. By the Hammersley–Clifford
theorem (Robert and Casella (2013)), it is straightforward to verify that the joint distribution
exists, as briefly shown in Supplementary Material Section S3 (Elmasri et al. (2020)). Even
though the form is complicated, we do not need to access the joint density and instead may
use a Gibbs sampler as in Geman and Geman (1984). An iterative algorithm can then be
used to sample from conditionally independent components of the joint distribution, with
the posterior sample obtained by averaging. This approach is similar in spirit to the iterated
conditional modes (ICM) algorithm of Besag (1986).

In the proposed model the joint distribution of rows are conditionally independent given
the rest. Let Z−(h.) be Z excluding the hth row zh.. With similar notations for S, the joint
distribution of the hth row is

(9) P(zh., sh. | Z−(h.)) = γ
nh

h

[
J∏

j=1

(
ρjδhj (η)

)zhj

]
exp

(
−

J∑
j=1

shj + γhρj δhj (η)e−shj

)
,

where nh = ∑J
j=1 zhj such that the row-wise joint posterior distribution is

(10) P(sh., γh,ρ, η | Z) ∝ P(zh. | sh.)P(sh. | S−(h.), γh,ρ, η)P(γh)P(ρ)P(η),

where P(zh. | sh.) = ∏J
j=1 P(zhj | shj ) = 1 and ρ is the parasite affinity parameter set.

In a sweeping manner for h = 1, . . . ,H rows of Z, one samples γh from its full posterior,
and ρ(h) = (ρ

(h)
1 , . . . , ρ

(h)
J ) and η(h) from their hth row conditional posteriors. Obtaining an

MCMC sample of ρ and η is done by averaging over the H samples from the row posteriors.
For prior specifications we choose a gamma distribution for both affinity parameters be-

cause of their conjugacy property. Thus, let γh
iid∼ Gamma(αγ , τγ ) and ρj

iid∼ Gamma(αρ, τρ).

The full posterior distributions of γh and the h-row partial posterior of ρ
(h)
j , respectively, are

(11)

ρ
(h)
j | zh., sh. ∼ Gamma

(
αρ + zhj , τρ + γhδhj (η)e−shj

)
,

γh | zh., sh. ∼ Gamma

(
αγ + nh, τγ +

J∑
j=1

ρjδhj (η)e−shj

)
.

In the case of the scaling parameter η, we assume a constant prior for simplicity and
computational stability, although this could be readily modified to any subjective prior.

The latent score is updated, given all other parameters as

(12) shj | zhj ,S−(hj) ∼
{
χ0 if zhj = 0,

tGumbel
(
logγhρj + log δhj (η),1,0

)
if zhj = 1,

where χ0 is an atomic measure at zero and tGumbel(τ,1,0) is the zero-truncated Gumbel
with density

exp(−(s − τ + e−(s−τ))

1 − exp(−eτ )
χ(0,∞)(s).

The adaptive Metropolis–Hastings algorithm (Haario, Saksman and Tamminen (2001))
within Gibbs is used to update the model parameter. For additional details on the model and
the MCMC method sampling algorithm, refer to Supplementary Material Section S1 (Elmasri
et al. (2020)).
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4. Uncertainty in unobserved interactions. In ecological networks it is unlikely that all
potential links will be represented or observed. Some unobserved exist but are undocumented
due to limited or biased sampling, while others may be true absences or “forbidden” links
(Morales-Castilla et al. (2015)). Evidence used to support an interaction will vary depending
on the nature of the system, but it is often assumed that an interaction exists if at least one
piece of evidence indicates so (Jordano (2016)).

This raises concern about the uncertainty of interactions in two ways. The first is due to un-
certainty in documented interactions as false positive detection errors may occur, potentially,
as a result of species misidentification, sample contamination or, for parasites, unanticipated
cross-reactions in serological tests (Aguirre et al. (2007)). We believe it would be useful
for the scientific community to identify weakly supported interactions that may require ad-
ditional supporting evidence; however, our primary motivation is identification of “novel”
interactions which is complicated by uncertainty in unobserved interactions.

The second concern arises when unobserved associations are, by default, assumed to be
true absences. As discussed earlier, ecological networks are often undersampled, and some
fraction of unobserved interactions may occur, but are currently undocumented, or represent
potential interactions that are likely to occur given sufficient opportunity. Based on this as-
sumption, we build a measure of uncertainty in unobserved interactions by modifying our
proposed model in (4). In (5) we have assumed that P(zhj = 1 | shj > 0) is degenerate at 1
given shj . Thus, we have only sampled positive scores for the case when zhj = 1, as shown
in (12). As a result the posterior predictive distribution is only considered for the case when
a pair has no documented associations (zhj = 0), underlining the assumption that the data
is complete and trusted. In presence-only data the objective is to model the nontrivial object
P(zhj = 1, “a missing link” | shj > 0). To account for such uncertainty, we attempt to approx-
imate the proportion of interactions that are missing links in the latent space by measuring
the percentage of positive scores where the input is 0 (zhj = 0) as

(13) p(zhj = 0 | shj , g) =
{

1 if shj = 0,

g if shj > 0,

where g is the probability that an interaction is unobserved when the latent score indicates an
interaction should exist. If g is large and close to 1, it is likely that many of the unobserved
interactions could or should exist. Introducing g to the model affects all parameter estimates
and the notion of Z. Therefore, the posterior predictive distribution is now considered for both
cases. For the case of a documented association, the probability of an interaction is defined
in (4), and for the case of no documentation the same probability is weighted by g as shown
in detail in (14).

Here, we implicitly assume that g is common to all pairs of interactions. It is possible to
assign a different parameter to groups of interactions. Nonetheless, by the principle of parsi-
mony, we favoured simplicity. This kind of construction has been used earlier by Weir and
Pettitt (2000), when modelling spatial distributions to account for uncertainty in regions with
unobserved statistics, and later by Jiang, Gold and Kolaczyk (2011) in modelling uncertainty
in protein functions.

4.1. Markov chain Monte Carlo algorithm. Introducing a measure of uncertainty in the
model does not alter the MCMC sampling schemes introduced in Section 3.2. The variables
γ , ρ and η are still only associated with S; nonetheless, by introducing the measure of uncer-
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tainty the conditional sampling of each individual shj is now

(14) p(shj | S−(hj),Z, g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

ψ(s̄hj )
τhj exp

(−(
shj + τhj e

−shj
))

, shj > 0, zhj = 1,

0, shj = 0, zhj = 1,
g

θ(g, s̄hj )
τhj exp

(−(
shj + τhj e

−shj
))

, shj > 0, zhj = 0,

1

θ(g, s̄hj )
1 − ψ(s̄hj ), shj = 0, zhj = 0,

where τhj = γhρj δ
η
hj , ψ(s̄hj ) = ∫ ∞

0 p(s | S−(hj))ds = 1 − exp(−γhρj δ
η
hj ) and θ(g, s̄hj ) =

gψ(s̄hj ) + 1 − ψ(s̄hj ).
Sampling the uncertainty parameter is performed using the row-wise conditional distribu-

tion as

(15) P(g | sh., zh.) ∝ P(zh. | sh., g)P(sh. | S−(h.))P(g) ∝ gN−+(1 − g)N++,

where N−+ = #{(h, j) : zhj = 0, shj > 0}, N++ = #{(h, j) : zhj = 1, shj > 0} and P(g) is the
uniform distribution. Since the sampling is done by iteratively cycling through the rows of Z,
in analogy to the ICM method, a sample of g is the average of the H row samples.

5. Alternative models and comparison by cross-validation. To validate the predictive
performance of the proposed latent score full model, we compare it to the two submodels
of Section 3.1 (the affinity-only and the phylogeny-only models) and to the bilinear latent-
distance model with two of its submodels (the bilinear and the latent-distance models) (Hoff,
Raftery and Handcock (2002), Hoff (2005)). The bilinear model excludes phylogenetic infor-
mation and assumes a logit formulation with an intercept and an affinity coefficient for each
node; hence, it correlates with the affinity-only model in interpretation. The latent-distance
mode assumes a one-dimensional latent variable for each node, and pairwise distances be-
tween nodes are the Euclidean distance between their respective latent variables, aligning
it with the phylogeny-only model in interpretation. Therefore, the latent-distance model ex-
cludes explicit phylogenetic information, and distances are not informed by the association
matrix, as in the case of our phylogeny-only model. Additional latent dimensions can be
added to the latent-distance model which might improve prediction, though at an extra cost of
interpretation. The bilinear latent-distance model combines both former components, and all
three variates of this model are implemented using latentnet R-package (Krivitsky and Hand-
cock (2008, 2017)), as ergmm(Z~rsociality), ergmm(Z~euclidean(d=1)), and
ergmm(Z~rsociality+euclidean(d=1)), respectively. The latentnet package read-
ily provides alternative forms of distances, though, for this dataset, we found that the Eu-
clidean distance has a better performance.

Finally, we also compare our proposed model to a nearest-neighbour (NN) algorithm in
which we set the distances between hosts proportional to the number of parasite species they
share, also known as the Jaccard distance. This form of distance does not require additional
data other than Z. Hence, for this algorithm we let the probability of a host-parasite inter-
action be equal to the average number of host-neighbours with documented association to
the parasite, within the k-closest host-neighbours. A host can share different sets of parasites
with different hosts, though at times the size of the different sets might be the same, yielding
exact Jaccard pairwise distances to multiple hosts. Therefore, we let k be driven by the num-
ber of shared parasites, excluding the parasite of interest. For example, k = 2 would define a
neighbourhood of all hosts that have at least the second highest number of shared parasites
for a host of interest. In brief, k is chosen by cross-validation; the details of the optimization
criterion is discussed later.
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Link probabilities in many network models, as the one proposed here, are driven by the
count of links of their respective nodes. Hence, in cross-validation it is natural to hold a
random portion of the observed links out from the training set and validate with them. In
our settings the predictive performance of each model is evaluated using the average of five-
fold cross-validations, where in each fold we set a different set of the observed interactions
(zhj = 1) in Z to unknowns (zhj = 0) while attempting to predict them using the remaining
interactions. The same folds are used across all evaluated models. The predictive perfor-
mance of each fold is assessed methodologically, using the proper scoring rules proposed by
Gneiting and Raftery (2007) and Ehm et al. (2016), graphically, using the receiver operating
characteristic (ROC) curves, and numerically, using the percentage of recovered interactions.

The recent work of Ehm et al. (2016) has shown that, under unimportant regularity con-
ditions, every score (loss) function consistent for the probability of binary events admits a
representation as a mixture of the form

L(p,y) =
∫ 1

0
Lθ(p, y)dH(θ),

with H being a nonnegative measure and

(16) Lθ(p, y) =

⎧⎪⎪⎨
⎪⎪⎩

θ, y = 0,p > θ,

1 − θ, y = 1,p ≤ θ,

0, otherwise,

for a predictive probability p of binary event y, and θ ∈ [0,1]. The choice of the mixing mea-
sure H determines the score function. For example, when H is twice the Lebesgue measure, L
is the ubiquitous Brier score with L(p,0) = p2 and L(p,1) = (1 −p)2. For alternative score
functions of dichotomous events, please refer to Table 1 in Gneiting and Raftery (2007).

In applied problems θ in (16) has an economic interpretation, for example, in binary set-
tings θ can represent the cost of a false positive prediction, 1−θ is the cost of a false negative,
while true positive has no cost. Hence, for a fixed θ , an optimal strategy is to predict posi-
tive events with probability > θ and negative events with probability < θ . This has a direct
implication on model comparison; if a model receives consistently a lower mean score for
every θ in comparison to alternative models, then the model dominates in predictive power.
The choice of a proper scoring function becomes irrelevant in this case as the model would
dominate for any other proper scoring rule (Ehm et al. (2016)).

In empirical settings one can compare competing models graphically by plotting the so-
called Murphy’s diagrams which display, for each model considered, the mean of the elemen-
tary score function Lθ over different values of θ ∈ [0,1]. In our settings, for a fixed value of
θ , we calculate the average of Lθ over the test set of each cross-validation fold with posterior
predictive from its training set. The final score curve for each model is the average of scores
over cross-validation folds.

The ROC curves is a popular graphical tool for the assessment of discrimination ability
in binary prediction problems. For each model an ROC curve is obtained by thresholding
the predictive probabilities of the full unknowns in each cross-validation fold, calculating the
true and false positive rates on each fold and then averaging them over the five-folds. With
this process the posterior predictive interaction matrix is obtained at the threshold value that
maximizes the area under the ROC curve (AUC). Moreover, for each fold the k parameter of
the NN algorithm is chosen as the value that maximizes the AUC over the training set of that
fold.

The phylogeny-only model in (2) is ill-formulated for the case of single-host parasites,
since δhj (η) = 0. Therefore, for comparison across the models, each held-out portion is con-
structed to ensure that at least two interactions are kept in each column of Z. By this restric-
tion each held-out portion is approximately 11% and 13% of documented associations for the
datasets with and without single-host parasites, respectively.
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6. Results.

6.1. Parameter estimation for the latent score full model. For the GMPD we first fit the
model proposed in Section 3.1. We run 20,000 MCMC iterations and the same for burn-in for
posterior estimates. In total we have J + H + 1 parameters to estimate: an affinity parameter
for each host and each parasite, and a tree scaling parameter for the host phylogeny.

Standard convergence diagnostics showed that all parameters had converged (For con-
vergence and diagnostic plots refer to Supplementary Material, Section S4 (Elmasri et al.
(2020))). It is worth noting that the posterior distributions of the host parameters (γ ) show
large variation which reflect that some hosts are more likely to interact with parasites or have
been more intensively studied. The magnitude of the unit-free scaling parameter η is found
to concentrate around 1.702 with 95% credible interval as (0.391,5.805), indicating acceler-
ating evolution compared to the original tree.

From Figure 4(a), the predictive performance of the proposed LS-net full model dominates
its competitors, with the NN algorithm performing the least well. All other models, except
the phylogeny-only, have mixed performance making it harder to infer predictive dominance.
Nonetheless, it is worth noting that phylogeny-only model performs equivalently to LS-net
full model, contrary to other neighbourhood-based conditional models. The weaker perfor-
mance of the Jaccard-based neighbourhood models (NN and latent-distance) in comparison
to the phylogeny-only model suggest phylogeny may provide more power over Jaccard dis-
tances in predicting host-parasite interactions. Jaccard distances, based on parasite sharing,
should in principle mimic evolutionary distances for hosts and parasites that are relatively
well studied and show phylogenetic structure among hosts, as in the GMPD. As a result,
phylogeny-based models may be more favourable than the NN algorithm for sparser datasets.
Murphy’s diagrams on GMPD, including single-host-parasites, follow similar pattern and are
depicted in Supplementary Material Figure S6 (Elmasri et al. (2020)).

Evident from five-fold average ROC curves in Figure 4(b), the LS-net full model outper-
forms its two submodels and their counterparts, which confirms the notion that each of the
simpler models capture different characteristics of the data, and layering them yields better

FIG. 4. Murphy’s diagrams and ROC curves of the latent score network (LS-net) model and two of its sub-
models, in comparison to competing models, the NN algorithms, the bilinear latent-distance models and two of
its submodels (bilinear and latent-distance). Results are based on an average of five-fold cross-validations on
GMPD, excluding single-host parasites.
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FIG. 5. Posterior association matrix comparison for the GMPD, excluding single-host parasites: between the
affinity-only (left), phylogeny-only (middle) and full model (right).

results. The NN algorithm and the bilinear latent-distance model seem to have equivalent per-
formance to the LS-net full model. Although the performance of the phylogeny-only model is
subpar to its analogs (NN and the latent-distance model), it outperforms significantly in Mur-
phy’s diagrams (Figure 4(a)) which is a stronger indicator of predictive performance than
ROC curves.

For a visual interpretation Figure 5 illustrates posterior predictive matrices for the affinity-
only (Figure 5(a)), phylogeny-only (Figure 5(b)) and the full model (Figure 5(c)). To show
the full effect of different models, posterior predictive probabilities for all interactions in Z,
observed and unobserved, are used to generate the matrices in Figure 5. From these figures the
affinity-only model does not appear to account for any neighbourhood structure and results
in hyperactive hosts, while the phylogeny-only model results in greater differences among
parasites. The overall shape of the original Z in Figure 1 is best captured by the full model.
In addition, the full model generates clear blocks of interacting hosts and parasites, reflect-
ing interactions among particular host clades. For predictive matrices of competing models,
please refer to Supplementary Material Figure S3 (Elmasri et al. (2020)).

For an analytical comparison we followed the recommendation of Demšar (2006) to use
the single-sided paired Wilcoxon signed-rank test on the five-fold cross-validations rather
than a fully Bayesian method (which could be implemented using a Wilcoxon-like statistic
derived from posterior predictive samples). The paired test version is used since all models
are tested using the same folds. For the GMPD, excluding single-host parasites, we obtain a
p-value less than 0.035 when comparing the full model to all other models, except the bilinear
latent-distance model and the NN algorithm. This indicates, for a 5% level of significance,
that the full model outperforms its two submodels and the bilinear submodels, namely the
bilinear and the latent-distance models. The combined bilinear latent-distance model and the
NN algorithm are of equivalent statistical performance to the full model.

Single-host parasites comprise a nonnegligible portion of the total interactions (≈17%)
and including them in the calculation of host affinity parameters increases predictive perfor-
mance, even though they are not included in the cross-validation set. To assess the effect of
including single-host parasites on model performance, we repeated all analyses while keep-
ing these in the original data. Table 1 shows the five-fold average AUC and true positive
prediction results when the single-host parasites are kept or removed from the GMPD. The
predictive strength of the full model is now more evident. The increase in AUC for the full
model is directly attributed to the inclusion of single-host parasites, since both the AUC and
the percent of ones recovered increased for the same held-out portion. This pattern is also
more evident in the phylogeny-only model. For the other competing models the AUC increase
is coupled with a weaker improvement in the recovery of positive interactions, suggesting a
stronger explanatory power of phylogenetic distances over Jaccard-based distances.
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TABLE 1
Area under the curve and prediction values for tested models

No single-host parasites With single-host parasites

Model AUC % 1’s recovered AUC % 1’s recovered

LS-net: full model 0.921 87.46 0.959 92.56
LS-net: affinity-only 0.876 80.99 0.933 88.79
LS-net: phylogeny-only 0.823 79.75 0.917 90.34
Nearest-neighbour 0.926 88.61 0.948 91.10
Bilinear latent-distance model 0.929 86.35 0.936 86.40
Bilinear model 0.868 78.55 0.914 84.05
Latent-distance model 0.872 77.32 0.890 78.69

Since the single-host parasites are not part of the hold-out set, we infer that the improved
AUC is due to the increased proportion of zeros in the larger database, as the held-out por-
tion is kept constant. For the GMPD, including single-host parasites, the single-sided paired
Wilcoxon signed rank test results in a p-value less than 0.035 when comparing the full model
to all other models. This indicates a stronger performance in comparison to the results of the
GMPD, excluding single-host parasites in terms of all measures, the proper scoring rules,
ROC curves, and percent of ones recovered.

Computationally, we found that our ICM method, implemented in R, runs at least as fast
as the latentnet R-package and, most of the time, twice as fast. For more details refer to
Supplementary Material Table S1 (Elmasri et al. (2020)).

6.2. Uncertainty in unobserved interactions. We improve our latent score model by ac-
counting for uncertainty in unobserved interactions, as shown in Section 4. This addition
increases the posterior predictive accuracy by estimating the proportion of missing interac-
tions in the latent space, and reducing scores for unobserved interactions. Using the model in
Section 4, we infer the uncertainty parameter g, using 20,000 MCMC iterations with half as
burn-in. The posterior mean of g is found to be 0.232 (posterior histograms in Figure 6(a)).
Documented associations in the GMPD are identified through systematic searches of peer-

FIG. 6. Posterior histogram for g (left) for GMPD, and comparison of ROC curves (right) for the full model
with g and without g for GMPD, excluding single-host parasites.
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reviewed articles that support an interaction, therefore, we expect those associations to be of
high confidence, reflecting the relatively low value of g.

Introducing g to the model affects all interactions, including known ones. Therefore, to
measure the predictive accuracy, we require a different cross-validation method to the one
of Section 5. We divide the GMPD into two sets, a training and a validation set. Since as-
sociations in the GMPD are sourced only from peer-reviewed articles, we were able to use
information on article publication dates to create the training and test datasets. This mimics
the discovery of interactions in the system rather than random hold-out of observations. Tak-
ing the earliest annotated year for each association, we set the training set as all associations
documented prior to and including 2006, and the validation set as all associations up to 2010.
There are 3755 pairs of documented associations in the GMPD, including single-host para-
sites, up to and including 2006. By 2010, the associations increased to 4178, with 236 hosts
and 1308 parasites, approximately a 10% increase. For the training sets using the GMPD
up to 2006, we used an average of five-fold cross-validations, constructed as in Section 5,
to estimate the parameters of the model, where each fold ran for 20,000 iterations with half
as burn-in. Since the full model is used, cross-validation is no longer restricted to multihost
parasites as in Section 5, nonetheless, to avoid empty columns at least one interaction is kept
for each parasite.

Figure 6(b) illustrates the improvement in potential predictive accuracy between the mod-
els with or without g. Essentially, incorporating uncertainty results in probability estimates
for all interactions, undocumented and documented, where the former is penalized propor-
tional to g. This reduces the overlap in posterior probability densities between interacting
and noninteracting pairs, refer to Supplementary Material Figure S4 (Elmasri et al. (2020))
for the posterior histogram of both categories.

The model with g outperforms the full model on both AUC and proportion of positive
interactions predicted, including and excluding the single-host parasites (Table 2). These re-
sults represent the evaluation on the whole dataset, up to 2010, not only the held-out and
undocumented portions as in Section 5. The model with g is able to predict 90.90% of the
documented interactions in the 2010 GMPD, approximately 3798 out of 4178 interactions,
where the model without g predicts approximately 194 fewer interactions.

Another method of model comparison is through the proportion of recovered interactions
from the full data. This can be quantified by sorting all pairwise interactions, based on their
posterior predictive probabilities, and examining the top x pairs with the highest predictive
probabilities, as they represent interactions with highest confidence. By counting the number
of true interactions recovered in those x selected pairs and by scaling x from 1 to 4000, we
find the model with g again outperforms the full model by recovering more than double the
number of interactions (Figure 7(a)). Finally, for comparison with Figure 5, the posterior in-
teraction matrix for the model with g excluding single-host parasites is shown in Figure 7(b).

Incorporating phylogenetic information identifies interactions that would not be consid-
ered likely under the affinity-only model. To illustrate this, we plot the number of documented
interactions (node degree) for both hosts and parasites included in the 100 most probable, yet

TABLE 2
Area under the curve and prediction values for the model with(out) g

No single-host parasites With single-host parasites

AUC % 1’s recovered AUC % 1’s recovered

With g 0.924 88.98 0.944 90.90
Without g 0.865 76.80 0.918 86.26



236 ELMASRI, FARRELL, DAVIES AND STEPHENS

FIG. 7. Number of pairwise recovered interactions from the original 2010 GMPD data (left) and the poste-
rior interaction matrix for the 2010 GMPD, excluding single-host parasite, using the model that accounts for
uncertainty with g.

previously undocumented, interactions for each model (Figure 8). When fitting the model,
including single-host parasites, we find that the top 100 predicted links for the phylogeny-
only model tend to include hosts and parasites with fewer observed links in the original data.
In fact, all top 100 novel predictions made by the phylogeny-only model include parasites
that have one documented interaction, all of which would be given low probability by pref-
erential attachment models (including our affinity only model). By contrast, in the top 100
predictions made by the affinity only model, the parasite with the fewest number of observed
interactions has 26 known host species. This suggests that the inclusion of phylogenetic in-
formation allows the identification of highly probable interactions for rare or understudied
species.

FIG. 8. Comparison of the number of documented interactions (node degree) for both hosts (grey) and parasites
(white) included in the 100 most probable, yet previously undocumented, interactions across each of the three
sub-models. Results are split into models: (a) with single-host parasites, and (b) without single-host parasites.
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7. Discussion. We introduced a latent score model for link prediction in ecological net-
works and illustrate it using a recently published global database of host-parasite interactions.
The proposed model is a combination of two separate models, an affinity based exchange-
able random network model overlaid with a Markov network dependency informed by phy-
logeny (2). The affinity-only model is characterized by independent affinity parameters for
each species, while the phylogeny-only model is characterized by a scaled species similar-
ity matrix. Both parts perform reasonably well alone, and by overlaying them the posterior
prediction is significantly improved.

Many advantages arise from integrating host phylogenies. By utilizing known evolution-
ary models, phylogenies provide remarkable predictive power, comparable to state-of-the-art
latent-distance models (Hoff, Raftery and Handcock (2002), Hoff (2005)), but with added
biological interpretation. Such tree-scaling models could also be integrated in existing link
prediction frameworks, such as that outlined by Chiu and Westveld (2011) and elaborated by
Ovaskainen et al. (2017). However, computational issues might arise as the full joint distri-
bution becomes intractable and is not guaranteed to exist.

To our knowledge, our framework is the first to attempt to incorporate this type of evo-
lutionary information in link-prediction models. Computational issues arise from integrating
this procedure, and we solve this by imposing minimal conditions on the latent variable,
which produces promising results. We used the early-burst model to scale the phylogeny, but
any other evolutionary model that scales the species covariance matrix could be fit.

While we incorporated phylogeny as the dependence structure, the model can easily ac-
commodate different similarity matrices or types of dependence in an additive manner. For
host-parasite networks, host traits or geographic overlap, or parasite similarity based on phy-
logeny, taxonomy or traits may improve prediction (Pedersen et al. (2005), Davies and Ped-
ersen (2008), Luis et al. (2015)). Introducing different similarity measures affects the model
characteristics in two ways: it changes the topology of the probability domain, and it in-
creases the number of parameters to estimate due to introduced scaling parameters. The
latter is easily integrated since the number of estimated parameters increases by one for
each new scaling parameter. It is also possible to introduce different tree scaling param-
eters for different host-groups, allowing for a richer representation and added flexibility
with minimum cost, which should improve performance. In addition, covariate data, such
as species traits, can easily be integrated in the model in an additive manner. For example, set
τhj = γhρj δ(η) exp(−βixi − βjxj ). Alternatively, they could be included in a hierarchical
manner as a function of the affinity parameter. Each case represents a different interpreta-
tion, with covariates in the former driving the interaction probability directly while the latter
influence the affinity parameters.

A particular dependence structure that does not require additional data is a similarity based
on the number of shared interactions, as used in the NN algorithm (Section 5). In host-parasite
networks, parasite community similarity is often well predicted by evolutionary distance
among hosts (Gilbert and Webb (2007), Davies and Pedersen (2008)). In this case the NN
similarity is likely capturing some of the phylogenetic structure in the network and could be
a reasonable approach if a reliable phylogeny is unavailable. However, as phylogeny is es-
timated independently from the interaction data, it will likely be more robust to incomplete
sampling of the original network than NN type dependence structures.

Many ecological and other real world networks display power-law degree distributions
(Albert and Barabási (2002)). This is also the case with the host-parasite database used in this
paper, where both hosts and parasites exhibit power-law degree distributions. The affinity-
only version of the proposed model in (4) has been shown to generate a power-law behaviour
when a generalized gamma process is used (Brix (1999), Lijoi, Mena and Prünster (2007),
Caron and Fox (2017)). In fact, when γh = γ for all h, the affinity-only model behaves much
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like the stable Indian buffet process of Teh and Gorur (2009) that has a power-law behaviour.
Nonetheless, we find the full model to show a significant improvement in predictive accuracy
over the affinity-only model, though it does not yield a degree distribution with a power-
law. However, when accounting for uncertainty in the full model, the posterior predictions
we regain a power-law degree distribution for hosts and parasites (Supplementary Material,
Figure S5, Elmasri et al. (2020)). It would be interesting in future work to explore which
other network properties are maintained using this model.

While the intent of this research is to identify undocumented interactions, this model can
also account for uncertainty in observed interactions. In this case, our model may be used
to identify weakly supported interactions that are false positives or sampling artefacts in the
literature that may benefit from additional investigation. In the case of host-parasite interac-
tions, our approach could form an integral component of proactive surveillance systems for
emerging diseases (Farrell, Berrang-Ford and Davies (2013)). However, the framework illus-
trated here is not limited to host-parasite networks but is well suited to multiple ecological
networks such as plant-herbivore, flower-pollinator or predator-prey interactions.
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SUPPLEMENTARY MATERIAL

Supplement: A hierarchical Bayesian model for predicting ecological interactions
using scaled evolutionary relationships (DOI: 10.1214/19-AOAS1296SUPP; .pdf). Full
model development, MCMC diagnostics and additional results.
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