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We study possible relations between Alzheimer’s disease progression
and the structure of the connectome which is white matter connecting dif-
ferent regions of the brain. Regression models in covariates including age,
gender and disease status for the extent of white matter connecting each pair
of regions of the brain are proposed. Subject inhomogeneity is also incorpo-
rated in the model through random effects with an unknown distribution. As
there is a large number of pairs of regions, we also adopt a dimension reduc-
tion technique through graphon (J. Combin. Theory Ser. B 96 (2006) 933–
957) functions which reduces the functions of pairs of regions to functions of
regions. The connecting graphon functions are considered unknown but the
assumed smoothness allows putting priors of low complexity on these func-
tions. We pursue a nonparametric Bayesian approach by assigning a Dirichlet
process scale mixture of zero to mean normal prior on the distributions of the
random effects and finite random series of tensor products of B-splines pri-
ors on the underlying graphon functions. We develop efficient Markov chain
Monte Carlo techniques for drawing samples for the posterior distributions
using Hamiltonian Monte Carlo (HMC). The proposed Bayesian method
overwhelmingly outperforms a competing method based on ANCOVA mod-
els in the simulation setup. The proposed Bayesian approach is applied on a
dataset of 100 subjects and 83 brain regions and key regions implicated in the
changing connectome are identified.

1. Introduction. Alzheimer’s disease (AD) is a neurodegenerative disorder
that affects approximately five million people in the US and 30 million globally.
Current thought is that detecting pathologic changes in the brain before the devel-
opment of clinical symptoms will allow for a successful treatment. In particular
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one area of active investigation is how changes in white matter, which constitutes
the brain’s structural network or “connectome,” occur alongside Alzheimer’s dis-
ease progression (Phillips et al. (2015)). Recent research has found that changes
in structural connectivity become more widespread with Alzheimer”s disease pro-
gression (Tucholka et al. (2018)) and that changes in the connectome appear to
preferentially affect less connected areas of the brain (Daianu et al. (2015)). Fur-
ther, changes in white matter are correlated with amyloid plaque burden which is
one of the pathological hallmarks of the AD and has been shown to become ele-
vated years before the onset of clinical symptoms (Prescott et al. (2014)). From a
methodological viewpoint all these papers rely on modelling specific scalar met-
rics, such as connectivity indices which are derived from the connectivity graphs
obtained via image processing brain scans (described later in methods). One draw-
back of this approach is that the conclusions can depend on the choice of met-
ric (Phillips et al. (2015)). In this paper we overcome this dilemma by modelling
changes to the entire graph of the network.

Our study is performed using data obtained by Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI—adni.loni.usc.edu). Using T1-weighted magnetic resonance
(MR) images from ADNI, the cortex of the brain is divided into several regions
using a standard anatomic atlas. These regions are connected by white matter
fibers and identified by using diffusion tensor imaging (DTI) MR. The data used
in this study were from the ADNI 2 study and included all subjects with diffusion-
weighted imaging as of November 2012. Readers can be referred to the “Materials
and Methods” section of Prescott et al. (2014) for details of MR image acquisition
and processing. The graphical representation of these white matter connections be-
tween cortical regions is referred to as the connectome. It is thought that some of
these connections between brain regions become weakened over time due to the
AD. Some other factors like age or sex might also affect the connectome, as well as
subject-specific random effects. We model the connectome using graph-theoretic
metrics, accounting for patients’ specific effects and implement a Bayesian analy-
sis.

Here, we consider a connectome with 83 cortical regions in the brain. Mathe-
matically, the connectome can be viewed as a graph (V ,E), where V denotes the
set of nodes or vertices standing for brain regions and E for the edges between
pairs of vertices whenever present. As in a graphical model, edges are marked
with certain measurements. In our context the measurements consist of observing
the presence or absence of white matter fibers connecting two regions, the number
of white matter fiber and the mean length of white matter fibers between them.
Our aim is to identify the significant pairs of regions corresponding to different
covariates in the connectome. The aspects of the presence of a connection, the
number of connections and the mean length are modeled respectively by a binary
regression model with a probit link, a Poisson regression model with an exponen-
tial link and a normal regression model. Interactions of covariates with pairs of
regions are considered. Because the number of region-pairs is prohibitively high,

http://adni.loni.usc.edu
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it leads to a very high dimensional regression model if a naive approach is taken.
Hence, we use a dimension reduction technique that introduces a latent variable
for each region and expresses functions of region-pairs in terms of a single smooth
unknown function of each pair of latent variables as in a graphon model (Lovász
and Szegedy (2006)). If (ajk : j, k = 1, . . . , J ) is an array of parameters, then we
model ajk = g(uj , uk), where u1, . . . , uJ are latent variables and g is a function
of two arguments. Symmetry of the matrix ((ajk)) is respected if g is symmet-
ric in its arguments. The original motivation for this representation is that if ajk ,
j, k = 1, . . . , J are random variables such that the matrix ((ajk)) is distribution-
ally invariant under permutations of rows and columns, then ajk = g(uj , uk) for
some latent variables u1, . . . , uJ that can be assumed to be uniformly distributed
and for a function g, to be called a graphon function. In the present context if the
parameters ajk , j, k = 1, . . . , J are treated as random, then such row and column
wise exchangeability conditions are natural noninformativeness conditions. Given
the graphon function, thus the strength of connections is determined by only 83
latent variables linked with each region instead of being

(83
2

) = 3486 making huge
computational savings. The graphon function is also treated as an unknown with-
out any specific parametric form and is nonparametrically estimated from the data.
More specifically, we put a finite random series prior based on tensor products
of B-splines, where the coefficients are given appropriate prior distributions. Fi-
nite random series priors are widely used in the literature to construct priors on
various functions and are systematically studied, for instance in Shen and Ghosal
(2015), but it seems to have not been used before for putting prior distributions on
graphon functions. The assumed smoothness of the graphon function helps keep
the number of basis function required for the basis expansion relatively small. This
is because to approximate a function in [0,1]d of smoothness index f by a finite se-
ries within accuracy ε, one needs to use only O(ε−d/f) many elements of standard
bases like polynomials, B-splines or wavelets, that is, fewer functions are needed
for smoother functions. The proposed Bayesian procedure can be shown to lead
to consistent posterior in the setting where the number of regions remains fixed,
but the number of subjects increases to infinity. The result goes beyond the partic-
ular application we are addressing in the present paper. Although the proof uses
the standard hypothesis testing and prior positivity of Kullback–Leibler neighbor-
hoods approach developed by Schwartz, our major technical contribution is the
construction of exponentially consistent tests for random effects in a Poisson re-
gression model, along with weakening conditions on the predictor variables to
include a larger variety of applications. Details on posterior consistency are shown
in the Supplementary Material (Roy et al. (2019)).

The rest of the paper is organized as follows. In the next section we describe the
details of modeling the connectome dataset from ADNI. In Section 3 we describe
the prior construction and develop posterior computing techniques. A simulation
study comparing the proposed Bayesian procedure with ANCOVA-based ones is
conducted in Section 4. The real-data on connectome from ADNI is analyzed in
Section 5. Finally, Section 6 ends with some concluding remarks.
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2. Data description and modeling. Data used in the preparation of this arti-
cle were obtained from the ADNI database. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers
and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early AD. Here, we examine
if the connectome can be used as a biomarker. In the ADNI dataset on connec-
tome, the brain is divided into J = 83 regions. For each pair of brain regions, the
number of white matter fibers between them and their average lengths is obtained.
The data is obtained for n = 100 subjects, for whom information regarding disease
prognosis, sex and age are also available. For many edges the mean lengths are not
defined where there are no white matter fibers. There are three disease prognosis
states—Alzheimer, mild cognitive impairment (MCI) and no cognitive impairment
(NC).

Except for age, the other two covariates, sex and disease prognosis, are categor-
ical. Since the disease prognosis has three possible states, we introduce dummy
variables ZMCI and ZAD respectively standing for the onset of MCI and AD, set-
ting NC at the baseline. Similarly, the dummy variable ZM indicating male gen-
der is introduced setting females at the baseline. Let Z = (ZMCI,ZAD,ZM,Age)′
stand for the whole vector of covariates and Zi stand for its value for the ith sub-
ject. Let Nijk stand for the number of white matter fiber connecting brain regions
j and k in the ith subject, and Lijk the mean length of such fibers, provided that
Nijk ≥ 1. In ADNI dataset there were no missing values in Nijk or Lijk . For three
individuals gender and age were missing. They were imputed using R package
MICE (van Buuren and Groothuis-Oudshoorn (2010)). Under the assumption that
missing data are Missing At Random (MAR), the dataset is imputed based on con-
ditional distributions of each variable. MAR means that the probability that a value
is missing depends only on the observed values. In this technique multiple imputed
datasets are generated in parallel to reduce uncertainty in imputation.

It seems natural to consider a Poisson model for the counts of fibers connecting
two regions in a subject. However, as shown in Figure 1, the proportions of con-
nected edges among individuals are between 10% to 30%. Thus, the abundance of
zero connections makes the Poisson model somewhat inappropriate. We overcome
the problem by considering a zero-inflated Poisson model, by boosting the proba-
bility of zero through a binary latent variable �ijk with parameter �(πijk), where
� stands for the standard normal distribution function and πijk is a real-valued
parameter. If �ijk = 0, then Nijk is set at zero, while if �ijk = 1, the number of
connections Nijk is assumed to be Poisson distributed with some positive mean
eλijk . Note that in our formulation �ijk is not completely identifiable since the
value Nijk = 0 is compatible with both possible values of �ijk . If Nijk ≥ 1, we
assume that the mean fiber length, in the logarithmic scale, is normally distributed
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FIG. 1. Histogram of proportion of connected edges and average log connection widths across
individual. dip.test of R package diptest (Maechler (2013)) suggests that these are unimodal
with kurtosis (μ4/μ2

2 − 3) of 3.74 and 3.79 respectively, in comparison to kurtosis of normal, being
zero.

with some mean μijk , and variance σ 2/Nijk for some unknown σ > 0. The heuris-
tic justification of the choice of the variance σ 2/Nijk stems from the fact that Lijk

is an average of Nijk (independent) variables and should be approximately normal
with variance inversely proportional to the number Nijk of averaging variables.
Since fiber lengths are positive, the model seems to fit the data better in the log-
arithmic scale, and the heuristics for the choice of the variance extends to the
logarithmic scale by the delta method, at least when Nijk is large. Thus we can
represent the data generating process as

�ijk ∼ Bin
(
1,�(πijk)

)
,

Nijk|{�ijk = 1} ∼ Poisson
(
eλijk

)
,

(1)
logLijk = μijk + εijk,

εijk|{Nijk ≥ 1} ∼ N
(
0, σ 2/Nijk

)
.

A simple analysis of covariance (ANCOVA)-type model can be formulated to
describe linear effects of the covariates Zi on each unrestricted parameter πijk ,
λijk and μijk for each pair of brain regions (j, k):

μijk = ((μ0))j,k + Z′
iχjk + η1i ,

πijk = ((π0))j,k + Z′
iβjk + η2i ,(2)

λijk = ((λ0))j,k + Z′
iνjk + η3i ,
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where ((μ0))j,k , ((π0))j,k and ((λ0))j,k are baseline values of μijk , πijk and λijk

respectively, for covariate value Zi = 0. Let

χjk = (
((χMCI))j,k, ((χAD))j,k, ((χM))j,k, ((χAge))j,k

)′
,

βjk = (
((βMCI))j,k, ((βAD))j,k, ((βM))j,k, ((βAge))j,k

)′
,(3)

νjk = (
((νMCI))j,k, ((νAD))j,k, ((νM))j,k, ((νAge))j,k

)′
be regression coefficients for the average length, connection probability and num-
ber of connections respectively, and ((·))j,k denote (j, k)th element of a matrix,
and ηi = (η1i , η2i , η3i)

′, i = 1, . . . , n, be independent random effects of the ith
subject distributed according to an unknown common distribution. It may be noted
that the normal distribution function � and the exponential function are used re-
spectively as link functions for binary and Poisson regression. For the latter, the
exponential link is almost a universal choice, while for binary regression both lo-
gistic and probit (i.e., �) links are commonly used and usually give similar results.
Our preference for the probit link is due to its computational advantage in a Gibbs
sampling scheme for Bayesian computation, through a data-augmentation tech-
nique (see Albert and Chib (1993)).

For a preliminary analysis we fit the model using a generalized heteroscedastic
ANCOVA, ignoring the zero-inflation aspect and the random effects in the model.
The model thus has 3× (83

2

) = 10,458 parameters and 34,860 observations of mean
length and number of white matter fibers corresponding to 100 subjects and 3486
potential edges between different brain regions. We observed that for several edges
(j, k), the maximum likelihood method failed to give estimates of either μ0,jk or
χjk . For the Poisson regression the glm function in R did not converge for several
pairs (j, k). This is due to an insufficient number of observations. Thus, it suggests
using a dimension reduction of the parameter space through further modeling if we
want to conduct an edge-wise analysis. The dimension reduction also helps with
computation and gives easy interpretability of the results.

Since the parameters are indexed by edges, a substantial reduction of dimension
will be possible if these can be viewed as arising from some latent characteris-
tics of nodes through some fixed but unknown function. This can be motivated
from exchangeability considerations. In the absence of initial information about
connections between regions, exchangeability seems to be an appealing assump-
tion. By a well known representation theorem of exchangeable random graphs (cf.
Aldous (1981), Hoover (1979)), a function of edge (j, k) can then be represented
as f (ξi, ξj ), where ξi , for each node i is a latent variable independently and iden-
tically distributed and f is a fixed function, called a graphon, irrespective of the
size of the network. Assuming that the function f is sufficiently smooth, a basis
expansion can approximate it using only a few terms. Thus the graphon technique
in our context will be able to reduce a parameter array of size

(83
2

) = 3486 to only
a parameter vector of size 83 + K , where K is the number of parameters used to
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approximate the unknown smooth graphon function. Typically, a modest number
of terms suffices for well-behaved functions using standard bases such as B-splines
or polynomials. As a result a substantial dimension reduction is possible through
the graphon technique. This leads to modeling the arrays of baseline values and
regression coefficient as

((μ0))j,k = μ(ξj , ξk), ((π0))j,k = π(ξj , ξk), ((λ0))j,k = λ(ξj , ξk),

((χl))j,k = χl(δj , δk), l = MCI, AD, M, Age,
(4)

((βl))j,k = βl(δj , δk), l = MCI, AD, M, Age,

((νl))j,k = νl(δj , δk), l = MCI, AD, M, Age,

where, with an abuse of notations, μ, π , λ, χMCI, χAD, χM, χAge, βMCI, βAD, βM,
βAge, λMCI, λAD, λM and λAge are smooth functions on the unit square [0,1]2 and
symmetric in their arguments, and ξ1, . . . , ξJ and δ1, . . . , δJ are latent variables
taking values in the unit interval. The reason for choosing two separate sets of
latent variables ξ and δ is to distinguish between fixed and main effects.

3. Prior specification and posterior computation.

3.1. Prior specification. To proceed with a nonparametric Bayesian analysis,
we put prior distributions on the smooth functions appearing in the graphon rep-
resentation through basis expansion in tensor products of B-splines and on the
coefficients of the basis expansion. The coefficients can be arranged in the form of
a square matrix. The symmetry of the matrices of coefficients ensures symmetry
of the resulting functions in its arguments as required by graphon functions. Given
other sets of parameters and values of the random effects, (independent) normal
priors on the coefficients of the tensor products of B-splines will lead to conjugacy
in the normal regression model for the length, allowing a simple and fast poste-
rior updating rule. In the binary regression model for the connection probability,
normal prior still leads to conjugacy using the data augmentation technique of
Albert and Chib (1993). Since no conjugacy is possible for the Poisson regression
for the number of connections, gradient-based Hamiltonian Monte Carlo (HMC)
sampling algorithm is applied. Alternatively, adaptive rejection sampling can be
applied to obtain posterior updates. On the distribution G of the random effects,
we put a Dirichlet process scale mixture of zero mean normal prior (see Chapter 5
of Ghosal and van der Vaart (2017) and West (1987)) for scale mixture of nor-
mal). The histogram plot of Figure 1 as well as Figure 1 from the Supplementary
Material motivate us that the distributions of random effects are symmetric but
nonnormal with higher kurtosis.

More specifically, the prior can be completely described by the following set of
relations:
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(i) Graphon functions:

μ(ξj , ξk) =
K∑

m=1

K∑
m′=1

θ1,mm′Bm(ξj )Bm′(ξk),

π(ξj , ξk) =
K∑

m=1

K∑
m′=1

θ2,mm′Bm(ξj )Bm′(ξk),

λ(ξj , ξk) =
K∑

m=1

K∑
m′=1

θ3,mm′Bm(ξj )Bm′(ξk),

and for l = MCI,AD,M,

χl(δj , δk) =
K∑

m=1

K∑
m′=1

γ1l,mm′Bm(δj )Bm′(δk),

βl(δj , δk) =
K∑

m=1

K∑
m′=1

γ2l,mm′Bm(δj )Bm′(δk),

νl(δj , δk) =
K∑

m=1

K∑
m′=1

γ3l,mm′Bm(δj )Bm′(δk),

where θt,mm′ = θt,m′m for all t = 1,2,3, and γtl,mm′ = γt,m′m for all t =
1,2,3, l = MCI,AD,M, and that

(a) graphon coefficients: For some chosen a > 0,

θt,mm′
ind∼ N

(
0, a2)

, γtl,mm′
ind∼ N

(
0, a2)

, 1 ≤ m ≤ m′ ≤ K,

for t = 1,2,3, l = MCI,AD,M;
(b) latent variables:

logit(ξ1), . . . , logit(ξJ )
ind∼ N

(
0, a2)

, logit(δ1), . . . , logit(δJ )
ind∼ N

(
0, a2)

,

here, logit stands for the logit(x) = log(x/(1 − x)).

(ii) Random effects distribution: For t = 1,2,3 and i = 1, . . . , n,

ηti |τti
ind∼ N

(
0, τ 2

t i

)
, τ 2

t i

ind∼ Gt, t = 1,2,3, Gt
ind∼ DP

(
αt IG(b1, b2)

)
,

where DP stands for the Dirichlet process, IG for the inverse-gamma distribu-
tion and the precision parameter αt of the Dirichlet process is given a gamma
prior αt ∼ Ga(c1, c2).

(iii) Error variance: σ−2 ∼ Ga(d1, d2).
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3.2. Posterior updating. Introduce a latent variable Ij the indicator of the
Un(0,1) component of the distribution of δj , j = 1, . . . , J . Now, the conditional
log-likelihood is given by

(5)

C − ∑
i,j,k

exp
{ ∑

m,m′

[
θ3,mm′Bm(ξj )Bm′(ξk)

+ ∑
l

γ3l,mm′Bm(δj )Bm′(δk)Zil

]
+ η3i

}

+ ∑
i,j,k

Nijk

[∑
m,m

(
θ3,mm′Bm(ξj )Bm′(ξk)

+ ∑
l

γ3l,mm′Bm(δj )Bm′(δk)Zil

)
+ η3i

]

− 1

2σ 2

∑
i,j,k

Nijk

[
logLijk −

K∑
m=1

K∑
m′=1

(
θ1,mm′Bm(ξj )Bm′(ξk)

+ ∑
l

γ1l,mm′Bm(δj )Bm′(δk)Zil

)
+ η1i

]2

+ ∑
i,j,k

I (Nijk = 0) log�

( ∑
m,m′

(
θ2,mm′Bm(ξj )Bm′(ξk)

+ ∑
l

γ2l,mm′Bm(δj )Bm′(δk)Zil

)
+ η2i

)

+ ∑
i,j,k

(
1 − I (Nijk = 0)

)
log

(
1 − �

( ∑
m,m′

(
θ2,mm′Bm(ξj )Bm′(ξk)

+ ∑
l

γ2l,mm′Bm(δj )Bm′(δk)Zil

)
+ η2i

))

− 1

2a2

∑
m≤m′

(
θ2

1,mm′ + θ2
2,mm′ + θ2

3,mm′
)

− 1

2a2

∑
m≤m′

∑
l

(
γ 2

1,mm′l + γ 2
2,mm′l + γ 2

3,mm′l
)

+ log
(
(1 − Ij )δ

M−1
j (1 − δj )

M−1 �(M)2

�(2M)
+ Ij

)

+ Ij logq + (1 − Ij ) log(1 − q)

− (
nJ 2/2 + d1 − 1

)
logσ 2 − d2/σ

2,
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where C involes only hyperparameters a, M , K , b1, b2, c1, c2, d1, d2, q and the
observations, but not the parameters, of the model.

The parameters having conjugacy are updated using Gibbs sampling scheme
and most of the other parameters are updated using gradient based HMC. Detailed
calculations of all the posterior updates are shown in the Supplementary Material.

3.3. Tuning. The leapfrog parameter is kept fixed at 10. The step length is
tuned after each 100 iterations to ensure an acceptance rate between 55% to 90%.
The number of B-spline basis functions (K) is tuned via a grid search over a se-
quence of values in the range 7–20. For each possible values of K , we generate 10
sets of latent variables. For each set of latent variables, we can fit a simple linear
regression to estimates the B-spine coefficients and calculate average the Akaike
Information Criterion (AIC) over all the sets of latent variables. Based on these
AIC values, we pick the K with the lowest AIC value or the smallest value after
which there is not much improvement in the AIC.

4. Simulation. In this section we study the performance of the proposed
Bayesian method in comparison with ANCOVA. For computational simplicity we
do not consider the random effects in the data generating process as well as in the
model, that is, we consider the following analog of (1):

(6)

�ijk ∼ Bin
(
1,�(πijk)

)
,

Nijk|{�ijk = 1} ∼ Poisson
(
eλijk

)
,

logLijk = μijk + εijk,

εijk|{Nijk ≥ 1} ∼ N
(
0, σ 2/Nijk

)
,

πijk = ((π0))j,k + Z′
iβjk,

μijk = μ0,jk + Z′
iχjk,

λijk = λ0,jk + Z′
iνjk.

We consider n = 50,100,200,500,1000,2000 subjects for data generation
with J = 20 and n = 100,250,500,1000 for J = 40 nodes. There is another sim-
ulation setup with sample size 100 and J = 80 which is similar to our real-data
application.

Data generation:
The true matrices are generated as follows with εl,jk = (el,jk + el,kj )/2 and

ejk ∼N(0, (
√

0.05)2) for l = 1, . . . ,15,

μ0(j, k) = (
(−0.5ξj − 0.4ξk)

3 + (−0.4ξj − 0.5ξk)
3)

/2 + ε1,jk,

π0(j, k) = (
(−0.7ξj − ξk)

3 + (−ξj − 0.7ξk)
3)

/2 + ε2,jk,

λ0(j, k) = (
(−0.5ξj − 0.4ξk)

3 + (−0.4ξj − 0.5ξk)
3)

/2 + ε3,jk,
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χMCI(j, k) = (
exp(−0.5δj − 0.4δk) + exp(−0.4δj − 0.5δk)

)
/2 + ε4,jk,

βMCI(j, k) = (
exp(−0.7δj − δk) + exp(−δj − 0.7δk)

)
/2 + ε5,jk,

νMCI(j, k) = (
exp(−0.5δj − 0.4δk) + exp(−0.4δj − 0.5δk)

)
/2 + ε6,jk,

χAD(j, k) = (
sin(−0.5δj − 0.4δk) + sin(−0.4δj − 0.5δk)

)
/2 + ε7,jk,

βAD(j, k) = (
sin(−0.7δj − δk) + sin(−δj − 0.7δk)

)
/2 + ε8,jk,

νAD(j, k) = (
sin(−0.5δj − 0.4δk) + sin(−0.4δj − 0.5δk)

)
/2 + ε9,jk,

χM(j, k) = (
cos(−0.5δj − 0.4δk) + cos(−0.4δj − 0.5δk)

)
/2 + ε10,jk,

βM(j, k) = (
cos(−0.7δj − δk) + cos(−δj − 0.7δk)

)
/2 + ε11,jk,

νM(j, k) = (
cos(−0.5δj − 0.4δk) + cos(−0.4δj − 0.5δk)

)
/2 + ε12,jk,

χAge(j, k) = (
(−0.5δj − 0.4δk) + (−0.4δj − 0.5δk)

)
/2 + ε13,jk,

βAge(j, k) = (
(−0.7δj − δk) + (−δj − 0.7δk)

)
/2 + ε14,jk,

νAge(j, k) = (
(−0.5δj − 0.4δk) + (−0.4δj − 0.5δk)

)
/2 + ε15,jk.

If �ijk is generated as zero, the edge (j, k) of ith individual will be missing. The
generated data based on these functions have similar missingness compared to the
real-data. We add the error component along with the functional values to deviate
it a little bit from an exact functional form. We have performed 50 replications for
each case. We collect 5000 MCMC samples after burning in 5000 initial samples
to draw the inference. The result for J = 40 are based on 30 replications and 3000
post-burn samples after burning in 3000 initial samples.

Choice of the hyperparameters: We choose the hyperparameters a = 10, M =
10, b1 = b2 = 0.1 and c1 = c2 = 10 in (5). We take seven B-spline basis functions
based on the AIC values over a grid of possible number of B-spline basis functions.
For all of the simulated datasets, it always produces the optimal number as seven,
as the number of nodes is fixed at 20.

For the ANCOVA based estimation we use the weighted least squares technique
for the normal model and the generalized linear regression for a Poisson regression
model with the exponential link function.

We present a comparative plot of squared bias, variance and MSE of the esti-
mates across different sample sizes in Figure 3 for small sample sizes and Figure 4
for large sample sizes for J = 20. For J = 40, we present similar plots for sam-
ple sizes 100, 250, 500 and 1000 in Figure 5. We have not included the Bayesian
ANCOVA estimates in any of these plots as estimation MSEs since the frequentist
ANCOVA and the Bayesian ANCOVA estimates are very similar. For the largest
sample size 2000 with J = 20, Table 1 contains the bias squares and variance
values for both of these two methods. These comparisons are also made for the
sample size 100 with J = 80 in Table 2. The bias squares and variances of the
estimated matrices are calculated after averaging over bias squares and variances
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TABLE 1
Comparison of estimation accuracy of order 10−2 for n = 2000 with J = 20

Bayes Graphon ANCOVA Bayes ANCOVA

Square bias Variance MSE Square bias Variance MSE Square bias Variance MSE

χMCI 1.363 0.018 1.381 45.5 4.1 49.6 52.181 5.905 58.087
χAD 1.057 0.011 1.068 25 2.63 27.63 27.669 3.845 31.515
χM 1.768 0.006 1.775 82.5 2.4 84.9 82.162 3.520 85.682
χAge 1.298 0.004 1.302 24.3 0.6 24.9 25.806 0.932 26.739
βMCI 1.041 0.019 1.059 25.5 1.2 26.7 40.037 5.321 45.358
βAD 1.825 0.012 1.837 61.3 1 62.3 77.604 4.069 81.674
βM 1.418 0.013 1.431 45.2 0.6 45.8 54.186 3.214 57.4
βAge 2.375 0.004 2.378 84.3 0.2 84.5 87.355 0.898 88.254
νMCI 7.427 0.023 7.449 43.7 0.7 44.4 45.838 0.530 46.368
νAD 3.549 0.015 3.563 23.2 0.5 23.7 24.249 0.366 24.615
νM 9.066 0.007 9.072 81.3 0.4 81.7 83.559 0.369 83.928
νAge 3.126 0.005 3.132 23.9 0.1 24 24.082 0.106 24.188

of the individual entries. In the case of ANCOVA, there are several missing values
in the estimates of these matrices. Thus, the bias square and variances cannot be
calculated at those entries. Thus, these are calculated by averaging over only the
available ones. In Tables 3, 4 and 5, we present the prediction MSE and the mean
predictive likelihood for the logarithm of the connection width and the number of
connections, respectively.

TABLE 2
Comparison of estimation accuracy of order 10−2 for n = 200 with J = 80

Bayes Graphon ANCOVA

Square bias Variance MSE Square bias Variance MSE

χMCI 2.58 0.04 2.63 74.16 94.93 169.09
χAD 3.86 0.02 3.89 35.19 70.73 105.92
χM 1.82 0.01 1.83 83.43 82.76 166.19
χAge 4.16 0.01 4.18 30.10 19.07 49.17
βMCI 2.63 3.35 × 10−02 2.63 16.66 0.92 17.58
βAD 8.73 1.87 × 10−02 6.73 38.66 0.66 39.32
βM 5.71 1.98 × 10−02 5.71 25.95 0.65 26.60
βAge 18.05 6.96 × 10−03 18.05 61.84 0.12 61.96
νMCI 14.26 1.65 × 10−06 14.26 104.99 82.21 187.19
νAD 8.36 1.09 × 10−06 8.36 40.52 53.97 94.49
νM 19.05 4.48 × 10−07 19.05 71.58 64.94 136.52
νAge 8.86 5.17 × 10−07 8.86 37.90 15.94 53.84
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TABLE 3
Comparing prediction performances for different sample sizes across different models for J = 20. Prediction MSE is used for mean-width and Predictive

mean log-likelihood is used for the number of connections. Half of the recorded sample size is used to estimate model parameters and the rest half is
used to evaluate prediction performance

Bayes Graphon ANCOVA Bayes ANCOVA

Total sample size 2000 1000 500 2000 1000 500 2000 1000 500
Mean-width 1.30 1.32 1.32 1.61 1.63 1.70 1.61 1.64 1.73
Number of connections −168.61 −169.21 −210.26 −735.28 −835.21 −811.41 −181.43 −184.18 −288.50
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TABLE 4
Comparing prediction performances for different sample sizes across different models for J = 40. Prediction MSE is used for mean-width, and

Predictive mean log-likelihood is used for the number of connections. Half of the recorded sample size is used to estimate model parameters and the rest
half is used to evaluate prediction performance

Bayes Graphon ANCOVA Bayes ANCOVA

Total sample size 2000 1000 500 2000 1000 500 2000 1000 500
Mean-width 1.33 1.33 1.33 1.64 1.69 1.86 1.63 1.72 1.90
Number of connections −644.199 −645.43 −809.2 −260.897 −2737.39 −3262.96 −696.38 −711.95 −832.11
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TABLE 5
Comparing prediction performances for total sample size 200 across different models for J = 80.

Prediction MSE is used for mean-width, and Predictive mean log-likelihood is used for the number
of connections. Half of the recorded sample size is used to estimate model parameters, and the other

half is used to evaluate prediction performance

Bayes Graphon ANCOVA Bayes ANCOVA

Mean-width 1.33 2.44 2.55
Number of connections −2704.31 −36,791.27 −3802.34

In Figure 2 we see that the proposed Bayesian method identifies the true struc-
ture in most of the cases. For some cases it captures the structure, but the color
levels are different. Usually, the differences are very small as can be observed in
Tables 1 and 2. But for ANCOVA, even for a sample size as large as 2000, it could
not capture the true structures. Figure 3 suggests that bias squares and variances
of ANCOVA estimates are not decreasing as sample size increases for small sizes
due to the varying missing entries for different sample sizes. As the sample size
increases the number of missing values in the estimate goes down. Thus, more
parameters can be estimated. More parameters become estimable as sample size
increases, but this change is not huge. Thus for larger sample sizes, bias squares
and variances of the ANCOVA estimates are decreasing. From Figure 4 we can
also conclude that the proposed Bayesian method performs much better than AN-
COVA for sample sizes as large as 500, 1000 or 2000. This is evident from Table 1
where bias squares values for the Bayesian estimates are around 40 times smaller,
and variances are 300 times smaller for the Bayesian estimates than ANCOVA. It
may be recalled that estimation by the Bayesian method is consistent. For J = 40
in Figure 5, we can see that the Bayesian method overwhelmingly outperforms
ANCOVA. In both Table 3 and Table 4, in terms of prediction accuracy, the pro-
posed Bayesian method performs much better than other alternatives.

5. Real-data analysis. We analyze a real-dataset of 100 individuals, collected
from ADNI. A demographic summary of the data is provided in Table 6. In disease
categories we have fewer females than males. The baseline subject is a female
subject of the average age of 73.9 with no cognitive impairment. In Figure 6 we
show that the total number of connected edges and the total length of the fibers vary
with gender, disease state and age. We can see that these distributions are different
for male and female. Also, the individuals with Alzheimer’s disease seem to have
more short-range connections.

5.1. Modeling. As described in Section 3, we first generate 10 sets of latent
variables for ξ and δ. Then, we model the graphon functions with seven to 20
B-spline basis functions and calculate AIC values using standard R packages for
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FIG. 2. Heatmap of the truth along with estimates from the Bayesian methods and the ANCOVA
for sample size 2000 with 20 nodes. First and fourth columns are the true parameter, and subsequent
columns present the corresponding Bayesian and ANCOVA estimates, averaged over 50 replications.

linear and generalized linear regressions, given each set of latent variables. Af-
ter that we take the average of the AIC values for each case of a number of B-
spline basis functions. After comparing these average AIC values, 13 B-spline
basis functions are considered for the graphon functions in estimation for the real
data. Other hyperparameters are kept the same as the simulation, that is, a = 10,
M = 10, b1 = b2 = 0.1 and c1 = c2 = 10. We collect in total 10,000 MCMC sam-
ples. Out of those, 5000 are postburn samples, collected after burning-in the first
5000 samples. We perform a test of significance for each edge by checking if zero
is included in the 95% credible region, constructed from the postburn samples.
After that we rank those by calculating the probability of greater than zero or less
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FIG. 3. Plot of squared bias and variance for different parameters against sample sizes for
Bayesian method and ANCOVA estimates for small sample sizes 50, 100 and 200 with J = 20.

than zero depending on whether zero is in the left tail or in the right tail of the
empirical distribution, constructed from the postburn samples. This can be used
as an alternative for the p-value in the frequentist setup. If this comparison is in-
conclusive, that is, we get zero as the probability, we then compare the lengths of
the credible sets. The shorter the length, the more significant that edge is. This is
because a shorter length would suggest more concentration of the posterior distri-
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FIG. 4. Plot of squared bias and variance for different parameters against sample sizes for
Bayesian method and ANCOVA estimates for large sample sizes 500, 1000 and 2000 with J = 20.

bution around the posterior mean. All of the estimated effects of the covariates for
the top 10 significant edges are negative for the connection probability, that is, the
probit regression part of the model as in Tables 5 to 8 in the Supplementary Ma-
terial. For the number of connection, the estimated effects corresponding to AD,
gender and age are mostly negative in their corresponding top ten edges. Some es-
timated effects corresponding to MCI are also negative. These results can be found
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FIG. 5. Plot of squared bias and variance for different parameters against sample sizes for
Bayesian method and ANCOVA estimates for small sample sizes 100, 250, 500 and 1000 with J = 40.

in Tables 9 to 12 in the Supplementary Material. For edge-length all the estimated
effects corresponding to gender and age are negative among the top 10 significant
edges in Tables 3 to 4 in the Supplementary Material. Some estimated effects of
MCI and AD are negative in their corresponding top 10 significant edges as in the
first two tables of the Supplementary Material (Roy et al. (2019)).



1810 ROY, GHOSAL, PRESCOTT AND ROY CHOUDHURY

TABLE 6
Demographic table

Covariates Female Male

No cognitive impairment (NC) 17 22
Alzheimer’s disease (AD) 6 15
Mild cognitive impairment (MCI) 14 26
Average Age 71.80 75.15

(6.74) (7.04)

Significant edges are plotted for each parameter of interest. The circles are the
different regions, and their names are mentioned in the legend. These plots are in
Figures 7, 8 and 9. We find that for each part of the model, that is, mean connection
length, a number of connections and the binary variable signifying the presence or
absence of connection, there are separate sets of regions that have the most number
of significant edges, connected with them. In the Supplementary Material, there are
additional tables containing top 10 significant edges for each covariate.

FIG. 6. Comparison of the distribution of total number of connected white matter fibers and their
total length across gender, disease states and age.
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FIG. 7. Effect of different covariates on average connection length, each circle denotes different
cortical brain regions.

There are some regions that have many connected edges in these plots like in-
sula, pallidum, inferior temporal, parsorbital, precentral, posterior cingulate, su-
perior temporal, superior parietal, middle temporal, paracentral, caudal middle
frontal etc. In some of the previous studies on Alzheimer’s disease, they were
mentioned. Some of those are mentioned in Section 6.

6. Conclusions and discussion. We study the effects of some common mea-
surable covariates on the human brain connectome. Our work extends statistical
inference on graph structure from the two sample problem (Tang et al. (2017))
to a more general regression modeling framework. We propose regression mod-
els to explain the extent of connections between different cortical brain regions.
In this setup traditional techniques of separately regressing connections, between
each pair of regions and the covariates, are not appropriate due to missingness at
several edges of the connectome. We solve this problem by using graphon func-
tions to reduce the dimension of the parameter space through a fewer number of
fundamental parameters and develop a Bayesian method to estimate those. Subject
inhomogeneity is incorporated through random effects, and the distributions of the
random effects are estimated by using Dirichlet process scale mixture of normal
(DPSMN) prior. Figure 2 suggests that our Bayesian method identifies the true
structure for all the cases in the simulation setting. ANCOVA could not capture
the true structures even when the sample size is as large as 2000. Figure 3 sug-
gests that the small sample performance of ANCOVA is poor. The variance of the



1812 ROY, GHOSAL, PRESCOTT AND ROY CHOUDHURY

FIG. 8. Effect of covariates on connection-probability, each circle denotes different cortical brain
regions.

FIG. 9. Effect of covariates on number of connections, each circle denotes different cortical brain
regions.
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ANCOVA estimate is the key issue here. Even for large sample sizes, we conclude
that the proposed Bayesian method performs better than ANCOVA as shown in
Figure 4.

The regions that have many connected edges are summarized here. We also
cite next to each region’s name previous literature that studied those regions in
the context of Alzheimer’s disease or dementia and found significant. These re-
gions are insula (Bonthius, Solodkin and Van Hoesen (2005)), precuneus (Karas
et al. (2007), Klaassens et al. (2017)), pallidum (Lehéricy et al. (1991)), inferior
temporal (Scheff et al. (2011)), parsorbital (McLimans and Willette (2016)), pre-
central (Canu et al. (2011)), posteriorcingulate (Leech and Sharp (2014)), superior
temporal (Gao et al. (2018)), superior parietal (Migliaccio et al. (2015)), middle
temporal (Jack et al. (1998)), paracentral (Karavasilis et al. (2017)) and caudal
middle frontal (Bakkour et al. (2013)).

The greater magnitude of the negative effect on a number of white matter fiber
connections between regions for AD subjects than for MCI subjects suggests that
white matter connectivity is progressively degraded by lost connections across the
clinical spectrum of dementia. In the current analysis the most significant rela-
tionships between a number of white matter connections and MCI or AD status
are among widely distributed regions of the brain. In particular they include con-
nections between regions in the right hemisphere and left hemisphere. They also
predominantly involve the frontal, temporal and parietal lobes and the cingulate
cortex. These regions are generally involved with the widespread damage asso-
ciated with the AD. The preferential loss of “long-range” fibers (i.e., fibers be-
tween the cerebral hemispheres) in these widely distributed regions corresponds
with prior work which has demonstrated that long-range connections become de-
graded with progression along the AD spectrum, leaving highly connected and
short-range “hub” networks relatively intact until late in the disease course (Gao
et al. (2014), Sanz-Arigita et al. (2010)).
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SUPPLEMENTARY MATERIAL

Contents (DOI: 10.1214/19-AOAS1257SUPP; .pdf). There are four sections in
this. Section S-1 describes posterior computation. Section S-2 contains tables that
are mentioned in Section 5. Section S-3 contains more supporting plots and Section
S-4 states and proves posterior consistency results of our proposed methodology.
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