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To obtain a probabilistic model for a dependent variable based on some
set of explanatory variables, a distributional approach is often adopted where
the parameters of the distribution are linked to regressors. In many classi-
cal models this only captures the location of the distribution but over the
last decade there has been increasing interest in distributional regression ap-
proaches modeling all parameters including location, scale and shape. No-
tably, so-called nonhomogeneous Gaussian regression (NGR) models both
mean and variance of a Gaussian response and is particularly popular in
weather forecasting. Moreover, generalized additive models for location,
scale and shape (GAMLSS) provide a framework where each distribution
parameter is modeled separately capturing smooth linear or nonlinear effects.
However, when variable selection is required and/or there are nonsmooth de-
pendencies or interactions (especially unknown or of high-order), it is chal-
lenging to establish a good GAMLSS. A natural alternative in these situ-
ations would be the application of regression trees or random forests but,
so far, no general distributional framework is available for these. Therefore,
a framework for distributional regression trees and forests is proposed that
blends regression trees and random forests with classical distributions from
the GAMLSS framework as well as their censored or truncated counterparts.
To illustrate these novel approaches in practice, they are employed to ob-
tain probabilistic precipitation forecasts at numerous sites in a mountainous
region (Tyrol, Austria) based on a large number of numerical weather pre-
diction quantities. It is shown that the novel distributional regression forests
automatically select variables and interactions, performing on par or of-
ten even better than GAMLSS specified either through prior meteorological
knowledge or a computationally more demanding boosting approach.

1. Introduction. In regression analysis a wide range of models has been de-
veloped to describe the relationship between a response variable and a set of co-
variates. The classical model is the linear model (LM) where the conditional mean
of the response is modeled through a linear function of the covariates (see the left
panel of Figure 1 for a schematic illustration). Over the last decades this has been
extended in various directions including:
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FIG. 1. Parametric modeling developments. (Generalized) linear models (left), generalized addi-
tive models (middle), generalized additive models for location, scale and shape (right).

• Generalized linear models (GLMs, Nelder and Wedderburn (1972)) encompass-
ing an additional nonlinear link function for the conditional mean.

• Generalized additive models (GAMs, Hastie and Tibshirani (1986)) allowing
for smooth nonlinear effects in the covariates (Figure 1, middle).

• Generalized additive models for location, scale and shape (GAMLSS, Rigby
and Stasinopoulos (2005a)) adopting a probabilistic modeling approach. In
GAMLSS, each parameter of a statistical distribution can depend on an addi-
tive predictor of the covariates comprising linear and/or smooth nonlinear terms
(Figure 1, right).

Thus, the above-mentioned models provide a broad toolbox for capturing different
aspects of the response (mean only vs. full distribution) and different types of
dependencies on the covariates (linear vs. nonlinear additive terms).

While in many applications conditional mean regression models have been re-
ceiving the most attention, there has been a paradigm shift over the last decade
towards distributional regression models. An important reason for this is that in
many fields forecasts of the mean are not the only (or not even the main) con-
cern but instead there is an increasing interest in probabilistic forecasts. Quantities
of interest typically include exceedance probabilities for certain thresholds of the
response or quantiles of the response distribution. Specifically, consider weather
forecasting where there is less interest in the mean amount of precipitation on the
next day. Instead, the probability of rain vs. no rain is typically more relevant or,
in some situations, a prediction interval of expected precipitation (say from the
expected 10% to 90% quantiles). Similar considerations apply for other meteo-
rological quantities and hence attention in the weather forecasting literature has
been shifting from classical linear deterministic models (Glahn and Lowry (1972))
towards probabilistic models such as the nonhomogeneous Gaussian regression
(NGR) of Gneiting et al. (2005). The NGR typically describes the mean of some
meteorological response variable through the average of the corresponding quan-
tity from an ensemble of physically-based numerical weather predictions (NWPs).
Similarly, the variance of the response is captured through the variance of the en-
semble of NWPs. Thus, the NGR considers both the mean as well as the uncer-
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FIG. 2. Tree and forest developments. Regression tree (top left), distributional tree (bottom left),
random forest (top middle) and distributional forest (top right).

tainty of the ensemble predictions to obtain probabilistic forecasts calibrated to a
particular site.

In summary, the models discussed so far provide a broad and powerful toolset
for parametric distributional fits depending on a specified set of additive linear or
smooth nonlinear terms. A rather different approach to capturing the dependence
on covariates are tree-based models.

• Regression trees (Breiman et al. (1984)) recursively split the data into more
homogeneous subgroups and can thus capture abrupt shifts (Figure 2, top left)
and approximate nonlinear functions. Furthermore, trees automatically carry out
a forward selection of covariates and their interactions.

• Random forests (Breiman (2001)) average the predictions of an ensemble of
trees fitted to resampled versions of the learning data. This stabilizes the re-
cursive partitions from individual trees and hence better approximates smooth
functions (Figure 2, top middle).

While classical regression trees and random forests only model the mean of the
response we propose to follow the ideas from GAMLSS modeling—as outlined in
Figure 1—and combine tree-based methods with parametric distributional models,
yielding two novel techniques:

• Distributional regression trees (for short: distributional trees) split the data into
more homogeneous groups with respect to a parametric distribution, thus captur-
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ing changes in any distribution parameter like location, scale or shape (Figure 2,
bottom left).

• Distributional regression forests (for short: distributional forests) utilize an en-
semble of distributional trees for obtaining stabilized and smoothed parametric
predictions (Figure 2, top right).

In the following, particular focus is given to distributional forests as a method
for obtaining probabilistic forecasts by leveraging the strengths of random forests:
the ability to capture both smooth and abruptly changing functions along with si-
multaneous selection of variables and possibly complex interactions. Thus, these
properties make the method particularly appealing in case of many covariates with
unknown effects and interactions where it would be challenging to specify a distri-
butional regression model like GAMLSS. However, distributional forests should
not be considered as a replacement of GAMLSS but rather as a complement-
ing technique for flexible distributional regression—much like GAMs and random
forests are complements for conditional mean regression.

In weather forecasting, the flexibility of distributional forests is especially ap-
pealing in mountainous regions and complex terrain where a wide range of local-
scale effects are not yet resolved by the NWP models. Thus, effects with abrupt
changes and possibly nonlinear interactions might be required to account for site-
specific unresolved features. To illustrate this in practice, precipitation forecasts
are obtained with distributional forests at 95 meteorological stations in a mountain-
ous region in the Alps, covering mainly Tyrol, Austria, and adjacent areas (see the
map in Figure 8). More specifically, a Gaussian distribution left-censored at zero,
is employed to model 24-hour total precipitation so that the zero-censored point
mass describes the probability of observing no precipitation on a given day (see
Figure 3). Forecasts for July are established based on data from the same month
over the years 1985–2012 including 80 covariates derived from a wide range of dif-
ferent NWP quantities. As Figure 3 shows, the station-wise forests yield a full dis-
tributional forecast for each day—here for one specific day (July 24) at one station
(Axams) over four years (2009–2012)—based on the previous 24 years as learning
data. The corresponding observations conform reasonably well with the predic-
tions. In Section 3 we investigate the performance of distributional forests in this
forecasting task in more detail. Compared to three alternative zero-censored Gaus-
sian models distributional forests perform at least on par and sometimes clearly
better while requiring no meteorological knowledge about the atmospheric pro-
cesses which drive formation of precipitation for the model specification. The three
alternatives are: a standard ensemble model output statistics approach (EMOS,
Gneiting et al. (2005)) based on an NGR, a GAMLSS with regressors prespecified
based on meteorological expertise (following Stauffer et al. (2017a)) and a boosted
GAMLSS (Hofner, Mayr and Schmid (2016)) using nonhomogeneous boosting
(Messner, Mayr and Zeileis (2017)) as an alternative technique for variable selec-
tion among all 80 available regressors.
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FIG. 3. Total precipitation predictions by a distributional forest at station Axams for July 24 in
2009, 2010, 2011 and 2012 learned on data from 1985–2008. Observations are non-negative and
modeled by a Gaussian distribution left-censored at zero. The observations are depicted by crosses
and the predicted point mass from the model by filled circles.

2. Methodology. To embed the distributional approach from GAMLSS into
regression trees and random forests, we proceed in three steps. (1) To fix notation,
we briefly review fitting distributions using standard maximum likelihood in Sec-
tion 2.1. (2) A recursive partitioning strategy based on the corresponding scores
(or gradients) is introduced in Section 2.2, leading to distributional trees. (3) En-
sembles of distributional trees fitted to randomized subsamples are employed to
establish distributional forests in Section 2.3.

The general distributional notation is exemplified in all three steps using the
Gaussian distribution left-censored at zero (for short: zero-censored Gaussian).
The latter is employed in the empirical case study in Section 3 to model power-
transformed daily precipitation amounts.

2.1. Distributional fit. A distributional model D(Y, θ) is considered for the
response variable Y ∈ Y using the distributional family D with k-dimensional
parameter vector θ ∈ � and corresponding log-likelihood function �(θ;Y). The
GAMLSS framework (Rigby and Stasinopoulos (2005a)) provides a wide range
of such distributional families with parameterizations corresponding to location,
scale and shape. Furthermore, censoring and/or truncation of these distributions
can be incorporated in the usual straightforward way (see e.g., Long (1997, Chap-
ter 7.2)).

To capture both location and scale of the probabilistic precipitation forecasts
while accounting for a point mass at zero (i.e., dry days without rain), a zero-
censored Gaussian distribution with location parameter μ and scale parameter σ

is employed. Therefore, the corresponding log-likelihood function with parameter
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vector θ = (μ,σ ) is

(2.1) �(μ,σ ;Y) =

⎧⎪⎪⎨
⎪⎪⎩

log
{

1

σ
· φ

(
Y − μ

σ

)}
if Y > 0,

log
{
�

(−μ

σ

)}
if Y = 0,

where φ and � are the probability density function and the cumulative distribu-
tion function of the standard normal distribution N (0,1). Other distributions D
and corresponding log-likelihoods �(θ;Y) could be set up in the same way, for
example, for censored shifted gamma distributions (Scheuerer and Hamill (2015))
or zero-censored logistic distributions (Gebetsberger et al. (2017)).

With the specification of the distribution family and its log-likelihood function
the task of fitting a distributional model turns into the task of estimating the distri-
bution parameter θ . This is commonly done by maximum likelihood (ML) based
on the learning sample with observations {yi}i=1,...,n of the response variable Y .
The maximum likelihood estimator (MLE) θ̂ is given by

(2.2) θ̂ = argmax
θ∈�

n∑
i=1

�(θ;yi).

Equivalently, this can be defined based on the corresponding first-order conditions

(2.3)
n∑

i=1

s(θ̂, yi) = 0,

where s(θ;yi) is the associated score function

(2.4) s(θ;yi) = ∂�

∂θ
(θ;yi).

The latter is subsequently employed as a general goodness-of-fit measure to assess
how well the distribution with parameters θ fits one individual observation yi .

2.2. Distributional tree. Typically, a single global model D(Y, θ) is not suffi-
cient for reasonably representing the response distribution. Therefore, covariates
Z = Z1, . . . ,Zm ∈ Z are employed to capture differences in the distribution pa-
rameters θ . In weather forecasting, these covariates typically include the output
from numerical weather prediction systems and/or lagged meteorological observa-
tions.

To incorporate the covariates into the distributional model, they are considered
as regressors in additive predictors gj (θj ) = fj,1(Z)+fj,2(Z)+· · · in GAMLSS.
Link functions gj (·) are used for every parameter θj (j = 1, . . . , k) based on
smooth terms fj,k such as nonlinear effects, spatial effects, random coefficients
or interaction surfaces (Klein et al. (2015)). However, this requires specifying the
additive terms and their functional forms in advance which can be challenging in
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practice and potentially require expert knowledge in the application domain, espe-
cially if the number of covariates m is large.

Regression trees generally take a different approach for automatically including
covariates in a data-driven way and allowing for abrupt changes, nonlinear and
nonadditive effects, and interactions. In the context of distributional models the
goal is to partition the covariate space Z recursively into disjoint segments so that
a homogeneous distributional model for the response Y can be found for each seg-
ment with segment-specific parameters. More specifically, the B disjoint segments
Bb (b = 1, . . . ,B) partition the covariate space

(2.5) Z = ⋃̇
b=1,...,B

Bb,

and a local distributional model D(Y, θ (b)) (i.e., with segment-specific parame-
ters θ (b)) is fitted to the response Y in each segment.

To find the segments Bb that are (approximately) homogeneous with respect to
the distributional model with given parameters, the idea is to use a gradient-based
recursive-partitioning approach. In a given subsample of the learning data this fits
the model by ML (see equation (2.2)) and then assesses the goodness of fit by
assessing the corresponding scores s(θ̂;yi) (see equation (2.4)).

To sum up, distributional trees are fitted recursively via:

1. Estimate θ̂ via maximum likelihood for the observations in the current subsam-
ple.

2. Test for associations (or instabilities) of the scores s(θ̂, yi) and Zl,i for each
partitioning variable Zl (l = 1, . . . ,m).

3. Split the sample along the partitioning variable Z∗
l with the strongest associa-

tion or instability. Choose the breakpoint with the highest improvement in the
log-likelihood or the highest discrepancy.

4. Repeat steps 1–3 recursively in the subsamples until these become too small or
there is no significant association/instability (or some other stopping criterion
is reached).

Different inference techniques can be used for assessing the association between
scores and covariates in step 3. In the following we use the general class of permu-
tation tests introduced by Hothorn et al. (2006) which is also the basis of condi-
tional inference trees (CTree, Hothorn, Hornik and Zeileis (2006)). Alternatively,
one could use asymptotic M-fluctuation tests for parameter instability (Zeileis and
Hornik (2007)) as in model-based recursive partitioning (MOB, Zeileis, Hothorn
and Hornik (2008)). More details are provided in the Appendix.

For obtaining probabilistic predictions from the tree for a (possibly new) set
of covariates z = (z1, . . . , zm), the observation simply has to be “sent down” the
tree and the corresponding segment-specific MLE has to be obtained. Thus, in
practice θ̂(z) does not have to be recalculated for each new z but one can simply
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extract the parameter estimates for the corresponding segment which have been
computed already while learning the tree. However, to understand this estimator
conceptually it is useful to denote it as a weighted MLE where the weights select
those observations from the learning sample that fall into the same segment:

(2.6) wtree
i (z) =

B∑
b=1

1
(
(zi ∈ Bb) ∧ (z ∈ Bb)

)
,

where 1(·) is the indicator function. The predicted distribution for a given z is then
fully specified by the estimated parameter θ̂(z) where

(2.7) θ̂(z) = argmax
θ∈�

n∑
i=1

wtree
i (z) · �(θ;yi).

2.3. Distributional forest. While the simple recursive structure of a tree model
is easy to visualize and interpret, the abrupt changes are often too rough, instable,
and impose steps on the model even if the true underlying effect is smooth. Hence,
ensemble methods such as bagging or random forests (Breiman (2001)) are typ-
ically applied to smooth the effects, stabilize the model and improve predictive
performance.

The idea of random forests is to learn an ensemble of trees, each on a differ-
ent learning data obtained through resampling (bootstrap or subsampling). In each
node only a random subset of the covariates Z is considered for splitting to reduce
the correlation among the trees and to stabilize the variance of the model. For a
simple regression random forest the mean of predictions over all trees is consid-
ered. In that way changes in the location of the response across the covariates are
detected (e.g., in Breiman and Cutler’s random forests, Breiman (2001)). This idea
is now taken one step further by embedding it in a distributional framework based
on maximum-likelihood estimation. Distributional forests employ an ensemble of
T distributional trees which pick up changes in the “direction” of any distribution
parameter by considering the full likelihood and corresponding score function for
choosing splitting variables and split points.

To obtain probabilistic predictions from a distributional forest, it still needs to
be specified how to compute the parameter estimates θ̂(z) for a (potentially new)
set of covariates z. Following Hothorn and Zeileis (2017) we interpret random
forests as adaptive local likelihood estimators using the averaged “nearest neighbor
weights” (Lin and Jeon (2006)) from the T trees in the forest

(2.8) wforest
i (z) = 1

T

T∑
t=1

Bt∑
b=1

1((zi ∈ Bt
b) ∧ (z ∈ Bt

b))

|Bt
b|

,

where |Bt
b| denotes the number of observations in the b-th segment of the t-th tree.

Thus, these wforest
i (z) ∈ [0,1] whereas wtree

i (z) ∈ {0,1}. Hence, weights cannot
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only be 0 or 1 but change more smoothly, giving high weight to those observa-
tions i from the learning sample that co-occur in the same segment Bt

b as the new
observation z for many of the trees t = 1, . . . , T . Consequently, the parameter es-
timates may, in principle, change for every observation and can be obtained by

(2.9) θ̂(z) = argmax
θ∈�

n∑
i=1

wforest
i (z) · �(θ;yi).

In summary, this yields a parametric distributional regression model (through the
score-based approach) that can capture both abrupt effects and high-order interac-
tions (through the trees) and smooth effects (through the forest).

Distributional forests share some concepts and algorithmic aspects with other
generalizations of Breiman and Cutler’s random forests. Nearest neighbor weights
are employed for aggregation in survival forests (Hothorn et al. (2004)), quan-
tile regression forests (Meinshausen (2006)), transformation forests (Hothorn and
Zeileis (2017)) and generalized random forests for causal inferences (Athey, Tib-
shirani and Wager (2019)). These procedures aggregate over trees fitted to specific
score functions (e.g., log rank scores in survival trees, model residuals in transfor-
mation or generalized forests). Distributional forests, in contrast to nonparametric
approaches, provide a compromise between model flexibility and interpretability:
The parameters of a problem-specific distribution (zero-censored Gaussian for pre-
cipitation) have a clear meaning but may depend on external variables in a quite
general way.

3. Probabilistic precipitation forecasting in complex terrain. Many statis-
tical weather forecasting models leverage the strengths of modern numerical en-
semble prediction systems (EPSs; see Bauer, Thorpe and Brunet (2015)). EPSs
not only predict the most likely future state of the atmosphere but provide infor-
mation about the uncertainty for a specific quantity and weather situation. This
is done by running the NWP model several times using slightly perturbed initial
conditions and model specifications to account for uncertainties in both, the initial
atmospheric state and the NWP model (and its parametrizations). One frequently-
used method based on distributional regression models is the ensemble model out-
put statistics (EMOS) approach first proposed by Gneiting et al. (2005) to pro-
duce high-quality forecasts for specific quantities and sites. In case of precipitation
forecasting, EMOS typically uses the ensemble mean of “total precipitation” (tp)
forecasts as the predictor for the location parameter μ and the corresponding en-
semble standard deviation for the scale parameter σ , for example, assuming the
observations to follow a zero-censored Gaussian distribution. This distributional
approach of modeling both parameters allows to correct for possible errors of
the NWP ensemble in both, the expectation but also the uncertainty of a specific
forecast. Thus, a basic EMOS specification typically models the two distribution
parameters by two linear predictors, for example, μ = β0 + β1 · mean(tp) and
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log(σ ) = γ0 +γ1 · log(sd(tp)) with regression coefficients β0, β1, γ0 and γ1 (where
the log link assures positivity of the scale parameter, following Gebetsberger et al.
(2017)).

While this approach alone is already highly effective in the plains, it typically
does not perform as well in complex terrain due to unresolved effects in the NWP
system (Bauer, Thorpe and Brunet (2015)). For example, in the Tyrolean Alps—
considered in the following case study—the NWP grid cells of 50 × 50 km2 are
too coarse to capture single mountains, narrow valleys, etc. Therefore, it is often
possible to substantially improve the predictive performance of a basic EMOS by
including additional predictor variables, either from local meteorological observa-
tions or an NWP model. Unfortunately, it is typically unknown which variables
are relevant for improving the predictions. Simply including all available variables
may be computationally burdensome and can lead to overfitting but, on the other
hand, excluding too many variables may result in a loss of valuable information.
Therefore, selecting the relevant variables and interactions among all possible co-
variates is crucial for improving the statistical forecasting model.

In the following, it is illustrated how distributional forests can solve this prob-
lem without requiring prior expert knowledge about the meteorological covariates.
For fitting the forest only the response distribution and the list of potential pre-
dictor variables need to be specified (along with a few algorithmic details) and
then the relevant variables, interactions and potentially nonlinear effects are de-
termined automatically in a data-driven way. Here, we employ a zero-censored
Gaussian distribution and 80 predictor variables computed from ensemble means
and spreads of various NWP outputs. The predictive performance of the forest
is compared to three other zero-censored Gaussian models: (a) a basic EMOS,
(b) a GAMLSS with prespecified effects and interactions based on meteorological
knowledge/experience, and (c) a boosted GAMLSS with automatic selection of
smooth additive terms based on all 80 predictor variables.

3.1. Data. Learning and validation data consist of observed daily precipita-
tion sums provided by the National Hydrographical Service (BMLFUW (2016))
and numerical weather forecasts from the U.S. National Oceanic and Atmospheric
Administration (NOAA). Both observations and forecasts are available for 1985–
2012 and the analysis is exemplified using July, the month with the most precipi-
tation in Tyrol.

Observations are obtained for 95 stations all over Tyrol and surroundings, pro-
viding 24-hour precipitation sums measured at 0600 UTC and rigorously quality-
checked by the National Hydrographical Service. NWP outputs are obtained from
the second-generation reforecast data set of the global ensemble forecast system
(GEFS, Hamill et al. (2013)). This data set consists of an 11-member ensemble
based on a fixed version of the numerical model and a horizontal grid spacing of
about 50 × 50 km2 initialized daily at 0000 UTC from December 1984 to present
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providing forecasts on a 6-hourly temporal resolution. Each of the 11 ensemble
members uses slightly different perturbed initial conditions to predict the situation-
specific uncertainty of the atmospheric state.

From the GEFS, 14 basic forecast variables are considered with up to 12 varia-
tions each such as mean/maximum/minimum over different aggregation time peri-
ods. A detailed overview is provided in Table 1, yielding 80 predictor variables in
total.

TABLE 1
Basic covariates together with the number (#) and the type of variations. Time periods indicate

aggregation time periods in hours after NWP model initialization (e.g., 6–30 corresponds to +6 h to
+30 h ahead forecasts, 0600 UTC to 0600 UTC of the next day)

Basic covariates # Variations

tp: total precipitation, 12 ensemble mean of sums over 24h,
power transformed (by 1.6−1) ensemble std. deviation of sums over 24h,

cape: convective available ensemble minimum of sums over 24h,
potential energy, ensemble maximum of sums over 24h
power transformed (by 1.6−1) all for 6–30

ensemble mean of sums over 6h
for 6–12, 12–18, 18–24, 24–30

ensemble std. deviation of sums over 6h
for 6–12, 12–18, 18–24, 24–30

dswrf : downwards short wave 6 ensemble mean of mean values,
radiation flux (“sunshine”) ensemble mean of minimum values∗,

msl: mean sea level pressure ensemble mean of maximal values,
pwat: precipitable water ensemble std. deviation of mean values,
tmax: 2m maximum temperature ensemble std. deviation of minimum values∗,
tcolc: total column-integrated ensemble std. deviation of maximal values,

condensate all over 6–30
t500: temperature on 500 hPa
t700: temperature on 700 hPa
t850: temperature on 850 hPa

tdiff500850: temperature 3 ensemble mean of difference in mean,
difference 500 to 850 hPa ensemble minimum of difference in mean,

tdiff500700: temperature ensemble maximum of difference in mean
difference 500 to 700 hPa all over 6–30

tdiff700850: temperature
difference 700 to 850 hPa

msl_diff : mean sea level pressure 1 msl_mean_max − msl_mean_min
difference over 6–30

Note: ∗Minimum values of dswrf over 24 h are always zero and thus neglected.
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To remove large parts of the skewness of precipitation data, a power trans-
formation (Box and Cox (1964)) is often applied, for example, using cubic
(Stidd (1973)) or square root (Hutchinson (1998)) transformations. However, the
power parameter may vary for different climatic zones or temporal aggregation
periods and hence we follow Stauffer et al. (2017b) in their choice of 1.6−1 as
a suitable power parameter for precipitation in the region of Tyrol. The same
power transformation is applied to both the observed precipitation sums and the
NWP outputs “total precipitation” (tp) and “convective available potential en-
ergy” (cape).

3.2. Models and evaluation. The following zero-censored Gaussian regres-
sion models are employed in the empirical case study, see Table 2 for further de-
tails:

• Distributional forest: All 80 predictor variables are considered for learning a
forest of 100 trees. Subsampling is employed for each tree using a third of
the predictors in each split of the tree (argument mtry in our implementation
distforest, with more “computational details” provided at the end of the
manuscript). Parameters are estimated by adaptive local likelihood based on the
forest weights as described in Section 2. The stopping criteria are the minimal
number of observations to perform a split (minsplit= 50), the minimal num-
ber of observations in a segment (minbucket = 20) and the significance level

TABLE 2
Overview of models with type of covariate dependency and included covariates for each distribution

parameter. A ∗ B indicates an interaction between covariate A and B

Model Type Location (μ) Scale (log(σ ))

Distributional forest recursive all all
partitioning

EMOS linear tp_mean tp_sprd

Prespecified GAMLSS spline tp_mean, tp_sprd,
in each tp_max, dswrf_sprd_mean,

tp_mean1218 ∗ tp_sprd1218 ∗
cape_mean1218, cape_mean1218,

dswrf_mean_mean, tcolc_sprd_mean,
tcolc_mean_mean, tdiff500850_mean
pwat_mean_mean,
tdiff500850_mean,
msl_diff

Boosted GAMLSS spline all all
in each
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for variable selection (alpha = 1). The latter means that no early stopping (or
“prepruning”) is applied based on results of the statistical tests.

• EMOS: The basic ensemble model output statistics models use the ensemble
mean of total precipitation as regressor in the location submodel and the cor-
responding ensemble standard deviation in the scale submodel. The parameters
are estimated by maximum likelihood, using an identity link for the location
part and a log link for the scale part (following the advice of Gebetsberger et al.
(2017)).

• Prespecified GAMLSS: Smooth additive splines are selected for the most rele-
vant predictors based on meteorological expert knowledge following Stauffer
et al. (2017a). More specifically, based on the 80 available variables, eight terms
are included in the location submodel and five in the scale submodel. Both in-
volve an interaction of tp and cape in the afternoon (between 1200 UTC and
1800 UTC) to capture the potential for thunderstorms that frequently occur in
summer afternoons in the Alps. The model is estimated by maximum penalized
likelihood using a backfitting algorithm (Stasinopoulos and Rigby (2007)).

• Boosted GAMLSS: Smooth additive splines are selected automatically from
all 80 available variables, using noncyclic boosting for parameter estimation
(Hofner, Mayr and Schmid (2016), Messner, Mayr and Zeileis (2017)). This
updates the predictor terms for the location or scale submodels iteratively by
maximizing the log-likelihood only for the variable yielding the biggest im-
provement. The iteration stops early—before fully maximizing the in-sample
likelihood—based on a (computationally intensive) out-of-bag bootstrap esti-
mate of the log-likelihood. The grid considered for the number of boosting iter-
ations (mstop) is: 50,75, . . . ,975,1000.

The predictive performance in terms of full probabilistic forecasts is assessed
using the continuous ranked probability score (CRPS, Hersbach (2000)). For each
of the models this assesses the discrepancy of the predicted distribution function F

from the observation y by

(3.1) CRPS(y,F ) =
∫ ∞
−∞

(
F(z) − 1(y ≤ z)

)2
dz

where 1(·) is the indicator function. In the subsequent applications, the mean CRPS
is always evaluated out of sample, either using cross-validation or a hold-out data
set (2009–2012) that was not used for learning (1985–2008). CRPS is a proper
scoring rule (Gneiting and Raftery (2007)) often used within the meteorological
community. Lower values indicate better performance.

To assess differences in the improvement of the forests and GAMLSS mod-
els over the basic EMOS, a CRPS-based skill score with EMOS as the reference
method is computed:

(3.2) CRPSSmethod = 1 − CRPSmethod

CRPSEMOS
.
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3.3. Application for one station. In a first step, we show a detailed comparison
of the competing models for one observation site, Axams in Tyrol (in the center of
the study area, see Figure 8). As for all other stations, daily precipitation observa-
tions and numerical weather predictions are available for the month of July from
1985 through 2012. In Figure 3 in the introduction the probabilistic forecasts from
the distributional forest, trained on 1985–2008, for July 24 in 2009–2012 have al-
ready been shown as a motivational example. In particular, the figure depicts the
forecasted point mass at zero (i.e., the probability of a dry day) along with the
forecasted probability density function for the total amount of precipitation. Based
on this illustration it can be observed that the four sample forecasts differ consid-
erably in location μ, scale σ , and the amount of censoring while conforming quite
well with the actual observations from these days. While this is a nice illustrative
example we are interested in the overall predictive performance and calibration of
the distributional fits. More details of this assessment as well as an application to
14 further meteorological stations is provided in Supplement B (Schlosser et al.
(2019b)).

FIG. 4. Out-of-sample residual QQ plots (2009–2012) for station Axams based on models learned
on data from 1985–2008.
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To assess calibration, Figure 4 shows residual QQ plots for out-of-sample
predictions (2009–2012) from the different models trained on 1985–2008. Due
to the point masses at zero 100 draws from the randomized quantile residuals
(Dunn and Smyth (1996)) are plotted in semi-transparent gray. Overall, the ran-
domized quantile residuals conform quite well with the theoretical standard nor-
mal quantile (i.e., form a straight line close to the diagonal), indicating that all four
models are sufficiently well calibrated. This is also supported by the correspond-
ing probability integral transform (PIT, Gneiting, Balabdaoui and Raftery (2007))
histograms for station Axams in Supplement B (Schlosser et al. (2019b)) which
contains a more detailed explanation of residual QQ plots and PIT histograms.

To assess the predictive performance, a full cross-validation is carried out rather
than relying on just the one fixed test set for the years 2009–2012. To do so,
a 10 times 7-fold cross-validation is carried out where each repetition splits the
available 28 years into 7 subsets of 4 randomly-selected (and thus not necessarily
consecutive) years. The models are learned on 6 folds (= 24 years) and evaluated
on the 7th fold (= 4 years) using the average CRPS across all observations. The
resulting 10 CRPS skill scores are displayed by boxplots in Figure 5 using EMOS
as the reference model (horizontal line at a CRPSS of 0). Both GAMLSS models
and the distributional forest perform distinctly better than the EMOS model. While
the two GAMLSS lead to an improvement of around 4 percent, the distributional
forest has a slightly higher improvement of around 5.5 percent in median.

Finally, it is of interest how this improvement in predictive performance by the
distributional forest is accomplished, that is, which of the 80 covariates are selected
in the trees of the forest. As the 100 trees of the forest do not allow to simply
assess the variables’ role graphically, a common solution for random forests in

FIG. 5. CRPS skill score from the 10 times 7-fold cross-validation at station Axams (1985–2012).
The horizontal orange line pertains to the reference model EMOS.
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FIG. 6. CRPS-based variable importance for the top 10 covariates in the distributional forest.
Based on data for station Axams, learning period 1985–2008 and assessed in 2009–2012.

general is to consider variable importance measures. Here, this is defined as the
amount of change in CRPS when the association between one covariate and the
response variable is artificially broken through permutation (and thus also breaking
the association to the remaining covariates).

Figure 6 shows the 10 covariates with the highest permutation importance (i.e.,
change in CRPS) for station Axams. As expected the NWP outputs for total precip-
itation (tp) are particularly important along with total column-integrated conden-
sate (tcolc). Also, both variables occur in various transformations such as means
(either of the full day or certain parts of the afternoon), spreads or minima/maxima.
Thus, while the covariates themselves are not surprising, selecting a GAMLSS
with a particular combination of all the transformations would be much more chal-
lenging.

3.4. Application for all stations. After considering only one observational site
up to now, a second step evaluates and compares the competing methods on all 95
available stations. As in the previous section, all models are learned on the first 24
years and evaluated by the average CRPS on the last 4 years. More specifically, the
CRPS skill score against the EMOS model is computed for the out-of-sample pre-
dictions at each station and visualized by parallel coordinates plots with boxplots
superimposed in Figure 7. Overall, distributional forests have a slightly higher
improvement in CRPSS compared to the two GAMLSS which is best seen by
looking at the boxplots and the green line representing the results for station Ax-
ams. The underlying parallel coordinates additionally bring out that the prespec-
ified GAMLSS sometimes performs rather differently (sometimes better, some-
times worse) compared to the two data-driven models. Values below zero show
that, for some stations, EMOS performs better than the more complex statistical
methods.
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FIG. 7. CRPS skill score for each station (gray lines with boxplots superimposed). Station Axams
is highlighted in green and the horizontal orange line pertains to the reference model EMOS. The
models are learned on 1985–2008 and validated for 2009–2012.

To assess whether these differences in predictive performance are due to differ-
ences in the topography, Figure 8 shows a brief spatial summary of all stations.
Each station is illustrated by a symbol that conveys which model performed best
in terms of CRPS on the last four years of the data. Additionally, the color of
the symbol indicates the CRPS difference between distributional forest and the
best-performing other model. Green signals that the distributional forest performs
better than the other models whereas red signals that another model performs bet-
ter. Overall the distributional forest performs on par (gray) or better (green) for
the majority of stations. Only for a few stations in the north-east EMOS performs
best, and in East Tyrol the prespecified GAMLSS performs particularly well in
the validation period (2009–2012). Partially, this can be attributed to random vari-
ation as the differences at several stations are mitigated when considering a full
cross-validation rather than a single split into learning and validation period (see
Supplement B, Schlosser et al. (2019b) and the corresponding discussion in the
next section). Further differences are possibly due to East Tyrol lying in a different
climate zone, south of the main Alpine Ridge. Hence, long-term climatological
characteristics as well as the precipitation patterns in 2009–2012 differ from North
Tyrol, conforming particularly well with the additive effects from the prespecified
GAMLSS.

4. Discussion. Distributional regression modeling is combined with tree-
based modeling to obtain a novel and flexible method for probabilistic forecast-
ing. The resulting distributional trees and forests can capture abrupt and nonlinear
effects and interactions in a data-driven way. By basing the split point and split
variable selection on a full likelihood and corresponding score function, the trees
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FIG. 8. Map of Tyrol coding the best-performing model for each station (type of symbol) when
learned on 1985–2008 and validated for 2009–2012. The color codes whether the distributional for-
est had higher (green) or lower (red) CRPS compared to the best of the other three models. The gray
background shows the local topography (Robinson, Regetz and Guralnick (2014)). Station Axams is
highlighted in bold.

and forests can not only pick up changes in the location but also the scale or shape
of any distributional family.

Distributional forests are an attractive alternative when prespecifying or boost-
ing all possible effects and interactions in a GAMLSS model is challenging. Dis-
tributional forests are rather straightforward to specify requiring only little prior
subject matter knowledge and also work well in the presence of many potential co-
variates. The application to precipitation forecasting in complex terrain illustrates
that distributional forests often perform on par or even better than their GAMLSS
counterparts. Hence, they form a useful addition to the already available toolbox
of probabilistic forecasts for disciplines such as meteorology.

Variable selection. Generally, there are many possibilities how to specify the
variables that are to be included in a distributional regression model. Especially for
a low number of covariates, the GAMLSS approach offers a powerful framework
in which penalized estimation of both smooth main effects and corresponding in-
teraction surfaces yields models that often balance good predictive performance
with high interpretability (see e.g., Wood, Scheipl and Faraway (2013); Goicoa et
al. (2018); Ugarte, Adin and Goicoa (2017b)). However, if the number of covari-
ates is high, including all (or many) main effects and interactions in a GAMLSS
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typically becomes challenging both in terms of interpretability and computational
complexity/stability (see also Hofner, Mayr and Schmid (2016)).

In the precipitation forecasting application, as presented in Section 3, 80 covari-
ates are considered which corresponds to 3160 potential pairwise interactions (and
even more higher-order interactions). Therefore, only main effects are considered
for the boosted GAMLSS while the prespecified GAMLSS also includes selected
interactions chosen based on meteorological expert knowledge. In contrast, the dis-
tributional forest requires no prespecification as covariates and corresponding in-
teractions are selected automatically. Thus, distributional forests are an appealing
alternative to (boosted) GAMLSS in weather forecasting tasks as the main concern
is typically not so much interpretability but forecasting skill and (semi-)automatic
application on a larger domain (see also the discussion in Rasp and Lerch (2018)).

Distributional specifications for precipitation modeling. Choosing an ade-
quate distributional family is an important step for establishing a well-fitting
model. A zero-censored Gaussian distribution is employed in this manuscript as
this has been found to be an appropriate choice for precipitation modeling in ear-
lier literature (e.g., Stauffer et al. (2017b)). To test for robustness against distri-
butional misspecification, two alternative distributional specifications have been
considered in Supplement A (Schlosser et al. (2019a)): Using the same evaluations
as in Section 3.4, all models are additionally fitted for 15 meteorological stations
using a zero-censored logistic distribution in order to account for heavier tails and
a two-part Gaussian hurdle model combining a binary model for zero vs. positive
precipitation and a separate Gaussian model, truncated at zero, for the positive
precipitation observations. Both specifications yield qualitatively similar results as
for the zero-censored Gaussian distribution. For some stations the two-part hurdle
model leads to small improvements, however at the expense of increased variabil-
ity across stations (especially for EMOS and the boosted GAMLSS). Overall, the
results from this manuscript are quite robust across these distributional specifica-
tions, especially for the distributional forests.

Moreover, one could consider a distribution including an additional parameter
for capturing skewness (as in Scheuerer and Hamill (2015), Baran and Nemoda
(2016)). However, this would go beyond the mean/variance specification of the
NGR that is widely used in ensemble post-processing. Therefore, this contribution
investigates the effects of using the same distributional family with a novel strategy
for specifying dependence on covariates.

More general distributional specifications. Beyond the task of modeling pre-
cipitation it is of interest how well distributional forests perform in combination
with other more general distributional specifications. It has been shown previously
in the literature that using a score- or gradient-based selection of splitting vari-
ables outperforms a mean-based selection with subsequent flexible distributional
modeling: For example, both Athey, Tibshirani and Wager (2019, Figure 2) and
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Hothorn and Zeileis (2017, Figure 1) demonstrated (independently) that their re-
spective score-based random forest algorithms outperform the mean-based quan-
tile regression forests of Meinshausen (2006) in a setup where only the variance
of a normal response variable changes across the considered covariates. However,
if all distribution parameters are closely correlated with the distribution mean the
forests with different splitting strategies all perform similarly, provided a suffi-
ciently flexible distribution is employed for the final predictions (see Hothorn and
Zeileis (2017), Section 7).

Similarly, the score-based distributional forests introduced in this manuscript
proved to be quite robust to the different distributional specifications considered.
While all specifications focus on capturing mean-variance effects note that these
parameters are never fully orthogonal but can actually become quite closely corre-
lated due to the censoring (or truncation and/or zero-inflation considered in Sup-
plement A (Schlosser et al. (2019a))).

However, exploring extensions to more flexible parametric distributions (e.g.,
such as the Dagum distribution considered by Klein et al. (2015) in GAMLSS-
type models) as well as transformation model specifications (e.g., as in Hothorn
and Zeileis (2017)) are of interest for future research.

Axams vs. other meteorological stations. Axams was chosen as the meteoro-
logical station for the more extensive evaluations in Section 3.3 as it yields fairly
typical results and is geographically in the center of the study area and closest
to Innsbruck, the capital of Tyrol and the work place of three of the authors. To
show that qualitatively similar results are obtained for other meteorological sta-
tions, Supplement B (Schlosser et al. (2019b)) carries out the same evaluation for
14 further stations. These cover a wide range of geographical locations/altitudes
and a mix of different best-performing models in the single-split setting reported
in Section 3.4.

The supplement shows that some of the differences in forecast skill from Fig-
ure 8 even out in the cross-validation with distributional forests typically perform-
ing at least as well as the best of the other models at most stations. In particular,
this also includes three stations in East Tyrol where the prespecified GAMLSS per-
forms best in the single-split setting (learning based on 1985–2008 and validation
for 2009–2012).

Tuning parameters. Selecting tuning parameters for flexible regression mod-
els is important not only in terms of predictive accuracy but also computational
complexity. For the application in Section 3 tuning parameters are selected based
on advice from the literature as well as our own experiences. As Hastie, Tibshi-
rani and Friedman (2001) and Breiman (2001) recommend to build full-grown
trees, early stopping upon nonsignificance is disabled (alpha = 1) and low val-
ues are used for minsplit (= 50) and minbucket (= 20), while assuring that
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minsplit is sufficiently large for reasonably obtaining MLEs of all parameters
in each segment of the tree.

Applying the Law of Large Numbers it can be shown that random forests do not
overfit as the number of trees increases (Biau and Scornet (2016), Breiman (2001),
Hastie, Tibshirani and Friedman (2001)). Therefore, in principle, forests can be
built with a very large number of trees (ntree) as this cannot deteriorate the pre-
dictions. However, “[. . . ] the computational cost for inducing a forest increases
linearly with the number of trees, so a good choice results from a trade-off be-
tween computational complexity and accuracy” (Biau and Scornet (2016, p. 205)).
Following this advice, we decided to build forests consisting of 100 trees.

Computational difficulties. As stated by Hofner, Mayr and Schmid (2016)
the AIC-based variable selection methods implemented in the R package gamlss
“[...] can be unstable, especially when it comes to selecting possibly different sets
of variables for multiple distribution parameters.” We have noticed computational
problems when applying gamlss in certain settings within the cross-validation
framework as it did not succeed in fitting the model. In these cases the prespeci-
fied GAMLSS was not taken into consideration in the comparison of all applied
models.

Computational details. The proposed methods are implemented in the R
package disttree (version 0.1.0) based on the partykit package (version 1.2.3),
both available on R-Forge at (https://R-Forge.R-project.org/projects/partykit/).
The function distforest learns the distributional forests proposed in this
manuscript by combining the general cforest function from partykit with the
function distfit for fitting distributional models by maximum likelihood. Anal-
ogously, disttree can learn a single distributional tree by combining ctree
with distfit. All functions can either be used with GAMLSS family objects
from the R package gamlss.dist (Stasinopoulos and Rigby (2007), version 5.0.6)
or with custom lists containing all required information about the distribution fam-
ily.

In addition to disttree, Section 3 employs R package crch (Messner, Mayr and
Zeileis (2016), version 1.0.1) for the EMOS models, gamlss (Stasinopoulos and
Rigby (2007), version 5.1.0) for the prespecified GAMLSS and gamboostLSS
(Hofner, Mayr and Schmid (2016), version 2.0.1) for the boosted GAMLSS.

The fitted distributional forest for July 24 and observation station Axams
(including Figure 3) is reproducible using demo("RainAxams", pack-
age = "disttree"). This also includes fitting the other zero-censored
Gaussian models considered in this paper and generating the corresponding
QQ plots (Figure 4) and PIT histograms (Schlosser et al. (2019b), Supplement
B). Full replication of all results can be obtained with demo("RainTyrol",
package = "disttree") requiring the companion R package RainTyrol
(version 0.1.0), also available within the R-Forge project. The results presented

https://R-Forge.R-project.org/projects/partykit/
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in Supplement A (Schlosser et al. (2019a)) and Supplement B (Schlosser et al.
(2019b)) can be reproduced using demo("RainDistributions", pack-
age = "disttree") and demo("RainStationwise", package =
"disttree"), respectively.

APPENDIX: TREE ALGORITHM

In the following, the tree algorithm applied in the empirical case study dis-
cussed in this paper is explained. For notational simplicity, the testing and splitting
procedure is described for the root node, that is, the entire learning sample with
observations {yi}i=1,...,n, n ∈ N. In each child node the corresponding subsample
depends on the foregoing split(s).

After fitting a distributional model D(Y, θ) to the learning sample with obser-
vations {yi}i=1,...,n as explained in Section 2.1 the resulting estimated parameter
θ̂ = (θ̂1, . . . , θ̂k), k ∈ N can be plugged in the score function s(θ, Y ). In that way a
goodness-of-fit measurement is obtained for each parameter θj and each observa-
tion yi . To use this information, statistical tests are employed to detect dependen-
cies between the score values

(A.1) s(θ̂, y) =

⎛
⎜⎜⎝

s(θ̂, y1)1 s(θ̂, y1)2 . . . s(θ̂, y1)k
...

...
. . .

...

s(θ̂ , yn)1 s(θ̂, yn)2 . . . s(θ̂ , yn)k

⎞
⎟⎟⎠

and each variable Zl ∈ {Z1, . . . ,Zm}. More formally, the following hypotheses are
assessed with permutation tests:

Hl
0 : s(θ̂, Y ) ⊥ Zl.(A.2)

The permutation tests are based on the multivariate linear statistic

(A.3) Tl = vec

(
n∑

i=1

vl(Zli) · s(θ̂, Yi)

)
,

where s(θ̂, Yi) ∈ R
1×k and the type of the transformation function vl depends on

the type of the split variable Zl . If Zl is numeric then vl is simply the identity
function vl(Zli) = Zli and therefore Tl ∈ R

k as the “vec” operator converts the
1×k matrix into a k column vector. If Zl is a categorical variable with H categories
then vl(Zli) = (I(Zli = 1), . . . , I(Zli = H)) such that vl is a H -dimensional unit
vector where the element corresponding to the value of Zli is 1. In this case the
statistic Tl ∈ R

H ·k as the “vec” operator converts the H × k matrix into a H · k

column vector by column-wise combination. Observations with missing values
are excluded from the sums.

With the conditional expectation μl and the covariance 
l of Tl as derived by
Strasser and Weber (1999) the test statistic can be standardized. The observed mul-
tivariate linear statistic tl which is either a k- or k · H -dimensional vector, depend-
ing on the scale of Zl , is mapped onto the real line by a univariate test statistic c.
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In the application of this paper a quadratic form is chosen, such that

(A.4) cquad(tl,μl,
l) = (tl − μl)

+
l (tl − μl)

�

where 
+
l is the Moore–Penrose inverse of 
l . Alternatively, the maximum of the

absolute values of the standardized linear statistic can be considered (cmax).
Strasser and Weber (1999) showed that the asymptotic conditional distribution

of the linear statistic tl is a multivariate normal with parameters μl and 
l . Hence,
the asymptotic conditional distribution of c(tl,μl,
l) is either normal (for cmax)
or χ2 (for cquad).

The smaller the p-value corresponding to the standardized test statistic
c(tl,μl,
l) is the stronger the discrepancy from the assumption of indepen-
dence between the scores and the split variable Zl . After Bonferroni-adjusting
the p-values it has to be assessed whether any of the resulting p-values are be-
neath the selected significance level. If so, the partitioning variable Zl∗ with the
lowest p-value is chosen as splitting variable. Otherwise no further split is made
in this node as the stopping criterion of no p-values being below the significance
level is fulfilled. This type of early-stopping in building a tree is sometimes also
referred to as “prepruning”. For random forests prepruning is often switched off
by setting the significance level to 1.

The breakpoint that leads to the highest discrepancy between score functions
in the two resulting subgroups is selected as split point. This is measured by the
linear statistic

(A.5) T
qr
l∗ = ∑

i∈Bqr

s(θ̂, Yi)

for q ∈ {1,2} where B1r and B2r are the two new subgroups, without any particular
ordering, that are defined by splitting in split point r of variable Zl∗ . The split point
is then chosen as follows:

(A.6) r∗ = argmin
r

( min
q=1,2

(
c
(
t
qr
l∗ ,μ

qr
l∗ ,


qr
l∗

))
.

One repeats the testing and splitting procedure in each of the resulting subgroups
until some stopping criterion is reached. This criterion can for example be a mini-
mal number of observations in a node or a minimal p-value for the statistical tests.
In that way prepruning is applied in order to find right-sized trees and hence avoid
overfitting.

This permutation-test-based tree algorithm is presented in Hothorn, Hornik and
Zeileis (2006) as the CTree algorithm. A different framework to build a likelihood-
based tree is provided by the MOB algorithm which is based on M-fluctuation tests
(Zeileis, Hothorn and Hornik (2008)).
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SUPPLEMENTARY MATERIAL

Supplement A: Different response distributions (DOI: 10.1214/19-
AOAS1247SUPPA; .pdf). To assess the goodness of fit of the Gaussian distri-
bution, left-censored at zero, this supplement employs the same evaluations as in
the main manuscript but based on two other distributional assumptions: A logistic
distribution, left-censored at zero, is employed to potentially better capture heavy
tails—and a two-part hurdle model combining a binary model for zero vs. positive
precipitation and a Gaussian model, truncated at zero, for the positive precipitation
observations.

Supplement B: Stationwise evaluation (DOI: 10.1214/19-AOAS1247SUPPB;
.pdf). To show that Axams is a fairly typical station and similar insights can be
obtained for other stations as well, this supplement presents the same analysis as
in Section 3.3 of the main manuscript for 14 further meteorological stations.
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