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In situ transmission electron microscope (TEM) adds a promising in-
strument to the exploration of the nanoscale world, allowing motion pictures
to be taken while nano objects are initiating, crystalizing and morphing into
different sizes and shapes. To enable in-process control of nanocrystal pro-
duction, this technology innovation hinges upon a solution addressing a sta-
tistical problem, which is the capability of online tracking a dynamic, time-
varying probability distribution reflecting the nanocrystal growth. Because
no known parametric density functions can adequately describe the evolving
distribution, a nonparametric approach is inevitable. Towards this objective,
we propose to incorporate the dynamic evolution of the normalized particle
size distribution into a state space model, in which the density function is
represented by a linear combination of B-splines and the spline coefficients
are treated as states. The closed-form algorithm runs online updates faster
than the frame rate of the in situ TEM video, making it suitable for in-process
control purpose. Imposing the constraints of curve smoothness and temporal
continuity improves the accuracy and robustness while tracking the proba-
bility distribution. We test our method on three published TEM videos. For
all of them, the proposed method is able to outperform several alternative
approaches.

1. Introduction. The nanoparticle self-assembly process produces nanocrys-
tals from small building blocks such as atoms and molecules that are spontaneously
arranged into order structures at the nanoscale. It is considered a promising method
of producing nanocrystals in large quantities (Li, Schnablegger and Mann (1999),
Boal et al. (2000)). To produce nanocrystals with desired sizes and shapes, its
growth process should be monitored and controlled (Grzelczak et al. (2010)), but
accomplishing this goal is rather challenging, due to the existence of multiple
growth mechanisms (Zheng et al. (2009)), complex interactions among hundreds
of nanoscale particles (Park et al. (2015)), and after all, the stochastic nature of
the growth processes. Critical to the mission of achieving in-process control is
a recent technology innovation in nanoscale metrology, the in situ transmission
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electron microscope (TEM) (Zheng et al. (2009)). An in situ TEM uses a special
sample holder in which a nanocrystal growth process takes place, allowing mo-
tion pictures to be taken while the nanocrystals in the sample holder are initiating,
crystalizing and morphing into different sizes and shapes.

The morphological features extracted from a TEM video are the sizes and
shapes of the nanocrystals and their evolving trajectories over time. In this study,
we focus primarily on particle size, because all the TEM videos we have at hand
contain nanocrystals of rather uniformly round shape throughout their growth pro-
cess. We note that the current progress by research communities in handling dy-
namic TEM images (i.e., videos) is still at the stage of dealing with size, rather
than both size and shape.

When an image frame of the process is recorded, an image processing tool is
used to extract the contours of the nanocrystals in the frame, count the quantity
and calculate the particle sizes. After that, an estimate of the normalized parti-
cle size distribution (NPSD) is created and used as the observational input to the
subsequent modeling. Here, the NPSD is the original particle size distribution nor-
malized by the average radius of the nanocrystals at a given moment. Studies show
that NPSD provides a better indicator than the average absolute size to anticipate
and detect phase change point in nanocrystal growth (Woehl et al. (2013), Zheng
et al. (2009), Qian, Huang and Ding (2017)). Research has been conducted by
domain experts to shed insights on asymptotic solutions of NPSD under certain
growth mechanisms (Lifshitz and Slyozov (1961), Aldous (1999)).

Understanding and modeling the evolution of NPSD appear to be an enabling
prerequisite to process control of a nanocrystal growth process. Estimating NPSD
using particle size data extracted from TEM images is a statistical problem of prob-
ability density estimation. Empirical analyses in Zheng et al. (2009) and Woehl
et al. (2013) demonstrate that the density function of NPSD can change from a
multi-modal, asymmetric function in the early stages of growth to a uni-modal,
symmetric one in the late stages. Since it is hard to specify a parametric func-
tion of NPSD to adequately describe different growth mechanisms in a multi-stage
growth process (Lifshitz and Slyozov (1961), Aldous (1999)), a nonparametric
approach appears inevitable.

Direct application of standard nonparametric methods, however, does not pro-
duce good density estimation, due to the fact that too few nanocrystals are available
in the image at a single time frame of the TEM video. To overcome the small sam-
ple size problem, Qian, Huang and Ding (2017) observe that the NPSD changes
gradually over time during each nanocrystal growth stage, so one can borrow infor-
mation across time frames to obtain a more reliable density estimation. Following
Eilers and Marx (1996), they model the log density function at each time frame as
a linear combination of B-spline basis functions and employ the penalized Poisson
likelihood of binned data with a smoothness penalty. The formulation of Eilers
and Marx (1996) is further extended in Qian, Huang and Ding (2017) by pooling
the log-likelihoods from all time frames together and including a second penalty
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to ensure that the estimated density functions have certain degree of “temporal
continuity.” As TEM videos are captured at discrete times, here the temporal con-
tinuity means that the NPSD evolves gradually from one image frame to the next,
so that the estimated NPSDs at neighboring image frames should be close to each
other, especially so when two frames are in the same growth stage. Using the ex-
tended formulation embedding two smoothness penalties, Qian, Huang and Ding
(2017) estimate the time varying NPSD density functions, via a modified alternat-
ing direction method of multipliers (ADMM) algorithm that efficiently solves the
resulting optimization problem.

The method developed in Qian, Huang and Ding (2017) is a retrospective ap-
proach conducted offline. It uses the observations from all video frames and min-
imizes a loss function embodying all available data. Should this retrospective
approach be applied to an online application, it ought to solve the optimization
problem whenever a new image frame (or a couple of new images) comes. Doing
so takes more time than allowed in a real-time processing. For instance, it takes a
couple of minutes to solve the optimization problem using the algorithm in Qian,
Huang and Ding (2017) for the 76-second video clip (Video 1, Section 2), not a big
deal for offline analysis but not practical for online applications. The retrospective
approach is hence inefficient and ill suited for online applications. The goal of the
current paper is to develop a prospective method by furthering the development in
Qian, Huang and Ding (2017).

Before we discuss our contributions in this paper, we would like to empha-
size that there is a strong need for a prospective method for real-time process-
ing, because our goal is online monitoring and tracking, and only through this
online capability does it enable in-process control of an ongoing process. Since
the nanocrystal growth process is stochastic and volatile, it is difficult to foresee
control opportunities ahead of time. When a control opportunity presents itself,
one needs to react rapidly, as the window of opportunity may not stay long in such
stochastic dynamic environment. A retrospective method does not enable process
control capability since one waits for the process to complete and by then the con-
trol opportunity is long gone. For an online analysis, the model updating to capture
the NPSD change needs to be fast enough; how fast is enough is dictated by the
imaging speed (in Video 1 of Section 2, about 15 frames per second).

Same as in Qian, Huang and Ding (2017), we estimate the NPSD density at each
time frame by smoothing the histogram data using penalized B-splines. Departing
from Qian, Huang and Ding (2017), we characterize the dynamics of the NPSD
using a state space model in which the spline coefficient vector at each time frame
is treated as the hidden state and its time evolution is modeled through a random
walk. The random walk state equation naturally ensures the temporal continuity
among the states. To ensure the estimated density function at each time frame
to be a smooth function, we introduce a new state vector that encodes the sec-
ond order differences of the spline coefficients at each time frame, thus achieving
smoothness by controlling the magnitude of time increment of such differences.
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FI1G. 1. The framework of a prospective analysis of in situ TEM videos.

To deal with the non-Gaussian natural of our state space model, we develop an
iterative local Gaussian approximation, in the form of an extended Kalman filter
(Ljung (1979)), and derive a closed form state-updating equation for updating the
time-varying NPSD when new observations come. Our algorithm is fast enough to
catch up with the imaging rate for the TEM videos that are available to us. The im-
position of the two constraints on B-splines alleviates overfitting and reduces the
estimation sensitivity to observational variability. Figure 1 presents an overview of
the proposed online, prospective analysis.

Related to this work, there are two main branches of research: (1) nano image
processing, (2) estimation of time-varying nonparametric density functions.

In the first branch of literature, the vast majority of the existing methods for
analyzing TEM measurements, including several of our own, are for handling still
images (Muneesawang and Sirisathitkul (2015), Park et al. (2012, 2013), Qian
et al. (2016)). These methods laid the foundation for handling dynamic images in
TEM videos. One can even use them to process the images one frame at a time. Of
course, processing one frame at a time is inefficient and also overlooks the dynam-
ics and correlation among the adjacent video frames. A few approaches are avail-
able for handling dynamic TEM images, including Qian, Huang and Ding (2017),
but the current approach, with the exception of Qian, Huang and Ding (2017),
is to identify and track individual nanocrystals (Park (2014), Park et al. (2015))
and characterize the growth dynamics by looking at the trajectories of individual
nanocrystals. This object-tracking approach assumes traceability of nanocrystals
across image frames, which may not be possible in practice.

Among the second branch of literature, Rodriguez and Ter Horst (2008),
and Mena and Ruggiero (2016) studied a dynamic hierarchical model for time-
varying distributions. Under their framework, the time-varying distribution fol-
lows a Dirichlet mixture prior (Lo (1984)), the parameters of the Dirichlet process
change over time according to a time series model, and posterior sampling is used
for inference. Another set of papers (Ma, Kockelman and Damien (2008), Zhang,
Chen and Li (2017)), which develop the dynamic multivariate count data model,
is conceptually useful for our work too, because of the connection between the es-
timation of density functions and the estimation of intensities of Poisson counts in
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a histogram (Eilers and Marx (1996)). However, the sampling-based solution ap-
proaches advocated in those works are computationally slow, hence ill-equipped
to satisfy the online model updating objective (recall the 15 frames per second
imaging rate).

The remaining parts of the article are organized as follows. In Section 2, we
discuss the data used in this study. In Section 3, we present the state space model
and devise an extended Kalman filter for online updating and tracking of the parti-
cle size distribution. In Section 4, we explain how to estimate the parameters used
in the state space model. In Section 5, we apply our method to analyze three seg-
ments of TEM videos and demonstrate the merits of the proposed method. Finally,
we conclude our work in Section 6.

2. Data. As a newly emerged technology and rather expensive, there are not
many in situ TEMs available yet in the United States. There are a very limited
number of TEM videos available in the public domain. In this study, we use three
clips of in situ TEM video: two clips published by Zheng et al. (2009) and one clip
published by Woehl et al. (2013). The three videos clips capture, respectively, 76.6,
42.5, and 112 seconds of a nanocrystal growth process, and there are 1,149, 637,
and 112 image frames in the respective clip. We label them as Video 1, Video 2
and Video 3, respectively. Figure 2 presents four frames of Video 1, capturing the
growth of platinum nanocrystals.

The data processing works as follows. When an image frame of the nanocrystal
growth process is recorded by an in situ TEM, we first process the image and
extract the nanocrystal information, which is the number and the corresponding
size of the nanocrystals in the frame. The specific tool for processing individual
images is from Qian et al. (2016), a method particularly potent for handling noisy
TEM images with low contrast. The result of one frame from each video clip is
shown in Figure 3. Of the three video clips, Videos 1 and 2 are of 290 x 242 pixels
in size and Video 3 is of 496 x 472 pixels. Considering their relatively small image
size, the image preprocessing can be done fairly quickly. For Video 1 and Video 2,
the image processing takes only 0.04 seconds per frame and for Video 3 it takes
0.2 seconds per frame.
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FIG. 2. Four frames from the in situ TEM video studied by Zheng et al. (2009). The dark spots are
nanocrystals.
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FI1G. 3. The nanocrystal detection results of a single frame, one each from the three TEM video
clips. The green line shows a nanocrystal’s edge and the red “+” shows a nanocrystal’s center.
Videos 1 and 2 were published by Zheng et al. (2009) and Video 3 was published by Woehl et al.
(2013).

After all nanocrystals in the frame of time ¢ are detected, we calculate At(1), the
area of the ¢th nanocrystal attime 7, for £ =1, ..., N;, where M is the total number
of nanocrystals in the frame of time ¢. Following Woehl et al. (2013), we use At@)

to compute the average radius of the £th nanocrystal, namely r¢(t) = ,/A¢(t) /7,
to represent the size of each nanocrystal. The mean radius for each image frame,
r(t), can be readily obtained. Finally, we normalize rt(t) by 7(¢) to obtain the
normalized radius x¢(¢), such that x¢(r) = rt(¢) /r(t). We note that here “size”
is represented by the radius, so that the normalized particle size distribution is in
fact the normalized particle radius distribution. Such modeling choice follows the
domain science’s convention and treatment (Aldous (1999), Lifshitz and Slyozov
(1961), Woehl et al. (2013)).

To facilitate the subsequent computation in estimation and updating, we bin
the observations to create a histogram and then use the histogram as the input
to the dynamic state space model. We limit the range of x‘(¢) to [0, 2.0], as the
nanocrystals twice as large as the average size are very few at any given time.
We divide the range into m intervals of equal size §. Here we use a constant m =
21 throughout the monitoring process and denote by x; the normalized particle
size corresponding to the center of the ith interval, i =1, ..., m. We will further
elaborate in Section 3.1 the reasons behind binning the observations and conduct
in Section 5.2 a sensitivity analysis on the number of intervals used in the input
histogram. The resulting histogram for the frame of time ¢ is denoted by the vector
of Y; = [Yis; Yar: ... Yime ], where Yj; is the number of the observed x¢(7)’s falling
into the ith interval of the histogram.

3. State space modeling and updating. Our primary objective is to estimate
the probability density function, f;(x), of the normalized particle size using x¢(t),
available up to time 7. As mentioned in Section 1, direct application of the ret-
rospective method developed in Qian, Huang and Ding (2017) is inefficient and
does not serve the purpose of real-time processing. In this section, we develop a
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computationally efficient state space modeling approach that allows us to update
the density estimation at time ¢ 4+ 1 using the density estimation at time ¢ and the
new data observed at time ¢ + 1.

3.1. State space model for normalized particle size distribution. Since it is
difficult to find a parametric method to be adaptive enough to model various types
of NPSDs at different growth stages of nanocrystals, we naturally resort to a non-
parametric method for density estimation. Among many available nonparamet-
ric methods for density estimation, we follow the procedure in Eilers and Marx
(1996), which presents a sufficiently flexible spline representation of f;(x) by fit-
ting a Poisson model to the histogram data Y;. This modeling choice is made
mainly because doing so allows us to implement a real-time estimation algorithm
on the time-varying distribution.

As Y;; is the count of observations falling in [x; — 6/2, x; +§/2], it is a standard
approach to assume that Y;; follows the Poisson distribution with expectation of
Air (Bishop, Fienberg and Holland (1975)):

3.1 Y;; ~Poisson{r;;}, i=1,...,m.

Following the treatment in Eilers and Marx (1996), we model the count data with
B-splines. We adopt a generalized linear model with a log link function to represent
A as

n
(3.2) loghi = > ajiBj(x;),
j=1

where 7 is the number of basis functions, B;(x) is the jth B-spline basis function,
and «a, is its coefficient at time ¢. Using the log link function can guarantee a
positive A;;, which is needed in our application. Collectively, [a1;; ao;; ... onr]
can be represented as a vector of a;. If we write the B-spline basis functions as a
matrix B, such that (B);; = B;(x;), the Poisson model of Y;; is then expressed as

(3.3) Y;; ~ Poisson{(exp[Ba,]),}, i=1,...,m.

Equation (3.3) is referred to as a Poisson-exponential model.
The maximum likelihood method can be used to estimate the spline coefficient

vector ;. Once o is estimated, we can further obtain the normalized particle size
distribution f;(x) as follows. As Ay oc [ 5‘3/22 fi(x)dx, hir ¢ fi(x;) when § is
small, so that f;(x) can be estimated by the continuous form of equation (3.2) as

1 n

(3.4) fi(x) =

where C;(o;) is a normalizing constant to guarantee f;(x) integrating to one. To
ensure the smoothness of the estimated density function, Eilers and Marx (1996)
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proposed to use a small § and use a penalized Poisson likelihood with a smoothness
penalty that has the form of sum of squared second-order differences of the spline
coefficients.

The above approach adopted from Eilers and Marx (1996) is an approximation
and simplification of the standard approach of directly fitting the raw data to the
model in (3.4), which is through the maximization of the log-likelihood of

Ni: n

> log fi(x () =D > ;i Bj(x" (1)) — Ny log Ci ().
y4

t=1j=1

By applying the penalized Poisson likelihood to the binned data, the approach
of Eilers and Marx (1996) can avoid computing the integral in the normalizing
constant,

n
3.5) Ci(ay) Z/exp[Zaj,Bj(x)] dx.
X _/:1

This simplification turns out to be critical for us to develop an online updating algo-
rithm. When a small § is used, the binning action does not cause much information
loss as compared to using the original observations of x*(r), and the smoothness
penalty helps prevent overfitting. To focus on developing an online algorithm, we
postpone our discussion regarding the smoothness penalty to Section 3.3.

With the B-spline representation in place, we can use the B-spline coefficient
vector, o;, as the state vector in the proposed state space model, because the change
in o, indicates the change of the underlying normalized particle size distribution
ft(x). Previous studies (Lifshitz and Slyozov (1961), Aldous (1999)) show that
ft(x) undergoes small fluctuations during a growth stage in which the command-
ing physical growth mechanism remains the same, while f;(x) will see a much
greater change as a different growth mechanism takes over. Based on this under-
standing, we assume that the state vector, o, follows a random walk model

(3.6) o =01 + Wy,

where the innovation, w;, is the disturbance vector of the state and assumed to
follow the distribution of normal(0, Q). The covariance matrix Q will be treated
as a constant matrix throughout the process. The state updating equation (3.6) and
the observation equation (3.3) constitute our state space model, which will serve as
the basis for developing an online updating algorithm using an extended Kalman
filter.

Our use of the random walk model is based on a trade-off between flexibility
and tractability. We would like to choose a model that is flexibility enough but
is still tractable. The main concern for tractability is fast computation that allows
real time online processing. Although using a stationary time series process such
as ARMA in the state space model is possible, real time updating of both the



FAST DYNAMIC NONPARAMETRIC DISTRIBUTION TRACKING 1545

ARMA parameters and the state variables is a daunting task for online processing.
Moreover, it may be tempting to build the change point/regime transition into our
model, but this certainly hurts the tractability.

We found that the simple random walk model can cope very well with the
nanocrystal growth process. Within a specific stage of nanocrystal growth, the nor-
malized particle size distribution undergoes small fluctuations, and this is well cap-
tured by the random walk model. In a transition period moving from one growth
stage to another, the random walk model serves as a prior distribution on the state
variables, and the Kalman filter is able to adapt to structure changes by calculating
the posterior after receiving new observations. When the Kalman filter outputs a
large value in the innovation series, it signals possible growth mechanism changes,
providing a simple way of identifying change points; see Figure 7 presented later
for an illustration.

3.2. Online updating of state a;. Updating the estimation of NPSD is thus
equivalent to updating the state vector in the state space model. In the dynamic
systems and control theory, the Kalman filter (Kalman (1960)) is arguably the most
popular method used for conducting such update. For linear state space models
with Gaussian observations, a Kalman filter (Kalman (1960)) uses the posterior
mean E(e;|Y1,...,...,Y;), denoted as &;, to iteratively estimate a;. There are
two main steps in a Kalman filter. The first step, known as prediction, is to predict
the prior mean, &t_, and the prior covariance matrix, P; , of the state at time ¢,
based on the observations received up to time ¢ — 1. When the new observation of
Y, arrives, the Kalman filter undertakes a correction step to obtain the posterior
mean, &;, and the posterior covariance matrix, P,. For a Gaussian system, the
Kalman filter has a closed-form solution for both prediction and correction steps
and can thus run very efficiently.

Unfortunately, our state space model of the time-varying NPSD is not a Gaus-
sian system since Y; follows a Poisson distribution with an exponential link func-
tion in equation (3.3). To solve for the posterior mean E(e;|Yq,...,Y;), one
possible solution approach is to use sampling methods, such as particle filtering
(Doucet, Gordon and Krishnamurthy (2001), Ma, Kockelman and Damien (2008),
Zhang, Chen and Li (2017)), to simulate the posterior distribution of the state
o;. But the sampling approach is not ideal for online estimation because the ap-
proach’s computational speed can hardly meet the online updating requirement.
After knowing the model set up, the shortcoming of the sampling approach is even
more obvious. To estimate the NPSD accurately, both Y; and «; should have a
moderate to high dimension; for instance, m > 10 and n > 10. To sample from
a space of such dimension for approximating a posterior distribution, the sample
size are rather large, making its computational efficiency a daunting task to be
addressed.

Our solution is to extend the Kalman filter by adopting Durbin and Koopman
(1997)’s method to find a good Gaussian approximation, locally around the current
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estimation &, of the Poisson observation in equation (3.3). Rather than approxi-
mating the Poisson distribution globally, a Gaussian distribution can have a similar
shape as the Poisson within the neighborhood of &;. As the Kalman filter usually
updates &, near its current position, such a local approximation can lead to an effi-
cient and accurate estimation. When used in our context, this means that we want
to have the following approximation:

3.7 Y; ~ normal(Be; + u,, Hy),

so that the probability density functions of equations (3.3) and (3.7) have the same
first and second derivatives with respect to o; near &,. Following this thought, we
can derive the following expressions for the mean vector i, and the covariance
matrix H; (please see the derivation details in Appendix A (Qian et al. (2019))):

=Y, — Ba, — eXP(—B&t)[Yt - exp(B&t)],

(3.8)
H; = diag[exp(—Ba&;)].

As such, the original state space model is converted into an approximated Gaus-
sian state space model, now constituting of equation (3.7) and equation (3.6). Tech-
nically, a standard Kalman filter can then be devised and applied.

A remaining problem is that &, is unknown when we calculate u, and H; in
equation (3.8). To address that issue, we use an iterative strategy to find &;: first
we use the prior estimator &, to calculate s, and H,, then update &, by the Kalman
filter; and after that, we update u, and H, using the newly estimated &;. Repeat
this process until &; converges. According to both Durbin and Koopman (1997)
and our own experiments, this process routinely converges in fewer than five steps.

Algorithm 1 presents the detailed estimation and updating process. We put in
Appendix B the basic steps and explanations of the Kalman filter for readers who
are not familiar with it (Qian et al. (2019)).

After we obtain the posterior estimation of the state &;, the corresponding NPSD
ﬁ (x) can be represented as

~ 1 n R
(3.9) o) = s exp[ZaﬂB,(x)}

j=1

where @ ; is the jth element of &;. The normalizing constant C;(e;) is computed
by numerical integration after Algorithm 1 converges. Figure 4 highlights the main
online updating steps for tracking the time-varying NPSD.

REMARK. The variance stabilizing transformation provides a simple global
Gaussian approximation of Poisson distribution. For Y ~ Poisson(i), /Y + % is

approximately N (WA, }‘) (Anscombe (1948)). Based on this fact, Brown et al.
(2010) studied a root-unroot nonparametric density estimation method. As pointed
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Algorithm 1 Online updating method of the state space model

1.

Nk

[S—

S e

Set t = 1 and initialize &¢ and Py.

Predict the prior estimator of the state as &, = &;—1.
Predict the prior covariance matrix as P, =P;_1 + Q.
Set &t = &l‘_

Calculate u, and H; as

r, =Y; —Ba;, —exp(—Ba;)[Y, — exp(Ba,)].
H; = diag[exp(—Ba&;)].

Compute the innovation and its covariance matrix:
v=Y,—B& —pn; F,=BP;B’ +H,.

Compute the Kalman gain as K; = P;BTF;I.

Update the posterior estimator with measurement Y;: &; =&, + K;v;.
Repeat Step 5 to 8 until &, converges.

Update the posterior covariance matrix as P, =P; (I — K,B)T.

Set t =t + 1, repeat from Step 2 until the process ends.

out by a referee, this work suggests a potentially simple solution to our online den-
sity updating problem, as follows—One first models the square-root of the density
by a B-spline, that is, v/A; = Ba,, applies the standard Kalman filter to the square-
root transformed bin counts, and then unroots the estimator to obtain a proper
density function.

We found this root-unroot approach does not work well, for two reasons: (1) The

approximation of using the square root transformation has a large bias when A is
close to 0. Both Anscombe (1948) and Brown et al. (2010) noted that the bias is

Predict @; and P,
Estimated @,_, and P,_; — according to the state
update

Update @; and P, as:
K, = P/BT(BP;B” + H,)™!
t=t+1 a, =a; +K.(y. —Ba; —pp)
P, = P (I-K:B)"

Approximate the observation equation as
Y; ~ normal(Ba, + p;, H;)

FI1G. 4. The illustration of main online updating steps.
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proportional to 2 ~2/3. In our context of probability density estimation using binned
data, since there are many bins with zero counts (corresponding to small A’s), this
approximation is too crude. (2) If we apply the standard Kalman filter to update
/A = Ba,, we may end up with a negative value for 4/A;. Although its square still
gives a positive density estimation, there is an upward bias. In fact, when A, is near
zero, updating the state variables to reduce the value of A; may yield a negative
updated value of Ba; and thus can lead to a larger absolute value of A;, contrary to
the purpose of reducing A;, creating the bias.

As a comparison, the quality of our local Gaussian approximation does not de-
pend on the value of A. Moreover, it is used in an iterative manner, so that the
approximation improves along the iterations. Our numerical results show that the
local Gaussian approximation works rather well in the presence of empty bins,
especially once the smoothness constraint is imposed.

3.3. Curve smoothness for distribution estimation. While Algorithm 1 can
provide an online estimation and updating of the time-varying NPSD, it does
not impose any requirement on the smoothness of the estimated density function.
Without a proper smoothness constraint, the resulting density estimation could be
sensitive to choices like the number of intervals in the histogram Y, and the num-
ber of B-spline basis functions, and could become considerably inaccurate in the
cases that some middle intervals in the input histogram turn out empty. So our goal
here is to incorporate the curve smoothness constraint and make it work with the
state space model.

We plan to impose the curve smoothness constraint on the B-spline density
estimation by penalizing the squared norm of the second order difference of the
spline coefficient vector &, which is denoted as an n — 2 dimension vector A%,
and defined as

—aqy + 200 — a3

Aza, _ —ar + ‘2‘Of3t — 04y
| — -2y + 20 (n—1)r — Uns
(3.10) -1 2 -1 --- 0 0 O
0 -1 2 .. 0 0 O
= oy,
L 0 0 o -~ -1 2 -1

In the smoothing spline literature, the commonly used penalty to enforce smooth-
ness is the squared second derivative penalty [, (f” (x))% dx (Wahba (1990)). Sec-
tion 3 of Eilers and Marx (1996) pointed out that the squared second difference
penalty || A%a;||> adopted here can be viewed as a convenient approximation with
the B-spline representation. The precise relation of the two penalties is given in
equation (11) of Eilers and Marx (1996).
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To put a constraint on || A2e;,||2, we propose to transform linearly the original
state o, into another state y,. The new state y, includes A2a; but should ideally
have the same dimension as «;. We therefore make the last n — 2 elements of y,
equal to A%a; and then add something else as its first two elements for the purpose
of making the new vector an n dimensional vector.

A straightforward choice for the first two elements is to let y|; be the summation
of all the even numbered coordinates of a; and y»; be the summation of all the odd
numbered coordinates of a;. This choice ensures these two elements are orthog-
onal and have similar magnitudes. Because of the later property, we can set the
variances of the corresponding innovations, w;, at the same value. Consequently,
we obtain an invertible transformation from o, to y, as

[n/2] [r/2]
G yu= ) eeh.  va= ) eeji-vn Yam =AM,
j=1 j=1

where [n/2] is the largest integer smaller than or equal to n/2. We can also write
this linear transform in a matrix format, such that o; = Cy,, where

-1 —1 . .
Cip=1 Crojony="L Jj=1....[n/2];
(3.12) . .
-1, Cj(j_1)=2, ij =—1, j=2,...,m
and other elements of C~! are equal to 0.
By using the new state y,, we express the state space model as

Y;; ~ Poisson{(exp[BCy,]);},

jG-2 =

(3.13)
Yi=Vi—1 T W,

where w; ~ normal(0, Q). Here we slightly abuse the notations—even though w;
and Q are used again, they are of different values from those in equation (3.6).

This transformation in the state vector allows us to use the structure of Q to add
the smoothness constraint on the estimated density f,(x). Aware that [y1;, yo;] are
the summations of the even and odd terms of «;, respectively, and [y3;, ..., Vur]
are the second differences of a;, we assume that their innovations are indepen-
dent to each other, making Q a diagonal matrix, denoted as diag(alz, 022, R crnz),
in which 012, 022 are the variances of wy;, wy;, and 032, e ,% are the variances
of w3y, ..., wy. For simplicity, we further assume that 012 and 022 have the same
value, denoted as ao%, and all the remaining 032, ey ,% are equal, their value de-
noted as 03. According to the previous analysis, requiring oo% > 03 for the new
state vector is effectively forcing the second order difference of a; to be small
and thus resulting the smoothness constraint imposed onto the estimated density
curves. We can still use Algorithm 1 to update y, after replacing B and &; with BC
and y,, respectively, so that the fast computation and online estimation/updating
capability are retained.
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4. Parameter estimation and selection. In order for our prospective analysis
to work, we do need a short starting up period, which is to gather a limited amount
of training video data to initialize the parameters in the model. We typically use
the first few hundreds of frames for parameter estimation, equivalent to the first 15
to 20 seconds of the process.

In our state space model, there are two parameters 00% and 062 that need to be
estimated using the training data from the short starting up period, from # = 1 until
time 7. The two parameters determine the covariance matrix of w;: oo% represents
the degree of variability of the underlying state y,, whereas 062 controls its second
order, indicating the smoothness of the estimated density curve. It is not convenient
to find the values of 0(3 and 062 by maximized likelihood estimation (MLE), as
calculation of the likelihood of such a mixed system needs complicated process
like importance sampling (Durbin and Koopman (1997)) or simulation smoothing
(de Jong and Shephard (1995)). It is even harder to optimize the likelihood to
estimate its parameters. Here, we adopt a Bayesian approach to obtain the two
parameters in the covariance matrix.

4.1. Bayesian modeling. We regard o2 and o2 as latent random variables and
choose their prior distributions first. Then, we obtain their posterior distribution
through a sampling method and use the corresponding posterior means as the esti-
mate of the parameters.

Since 02 and o2 define the covariance matrix of w,, which we assume follow
a normal distribution, we choose the corresponding conjugate prior as an inverse-
gamma distribution, making the posterior distribution in the same family. We can
write the hierarchical structure of the Bayesian model as

Y;; ~ Poisson{(exp[BCy,1);},

4.1) y,—y,_; =w; ~normal(0, Q), Q= diag(ao%, 05, 062, ey 062),
03 ~ inverse-gamma(ay, by), 062 ~ inverse-gamma(as, b2),
where the initial state p is set as [—2, —2, ..., —2] so that f(x) will evolve from

a zero function.

To determine the hyper-parameters in the inverse-gamma distributions of cr(f and
062, we choose the noninformative prior (Spiegelhalter et al. (1996)) as a; = 1.0
and b = 1.0 for 6. To make sure o2 3> 02, we choose the same shape parame-
ter, that is, ap = 1.0, but a much smaller scale parameter b, for ‘752 (the mean of
the inverse-gamma distribution is proportional to the scale parameter). We recom-
mend choosing by such that by /b, = 100. The robustness check of this choice is
discussed in Section 4.3.

Compared with the original state space model, the hierarchical model adds an-
other layer associated with the prior distributions of 02 and o2. Once observing
Yy, ..., Y7 in the starting up period, we employ a Markov chain Monte Carlo
(MCMC) sampling method to update the posterior distributions of o(f and 062, and
then use the posterior means as the estimate of the two parameters.
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4.2. MCMC sampling. Denote the values in the kth iteration of MCMC by

y(lk), e, ygfc), (02)® and (62)®. After the initialization, we sample (o2)®) and

(052)(k) through the Gibbs sampling, given ygk_l), e, ygc_l). Since we adopt the

conjugate priors, the posterior distributions are still inverse-gamma as

(03 )(k) ~ inverse—gamma(ali)ost’ b]fogt),

“4.2) k t t
(062)( )~ inverse—gamm::l(agOs ,bgos ),
St st t t .
where a{m , brl’os R agos and bgos are determined by ay, b1, az, b> and the sam-

pled y ;kil). The derivation of the posterior distribution of (03)(]‘) and (062)(") is
included in Appendix C (Qian et al. (2019)).

Then, we sample ygk),...,ygc), given Q(k) = diag[(ag)(k), (a(f)(k), (03)("),
ey (03)(")] and the observations, Yy, ..., Yr. Unfortunately, the posterior distri-
butions of y ,(k) are not of a standard type. We therefore implement a Metropolis—
Hastings algorithm to sample y t(k) from ¢t =1 to T. For each individual ¢, we first
draw y,(k) from the following proposal distribution:

(4.3) yt(k) ~ normal(ygk_l), R),

where R = diag(olz, 012, 0*22, el 022) shares a similar structure as Q. The accep-

tance ratio of a newly sampled ygk), r, is defined in a standard way, as the ratio of
the conditional pdf given the current y ;k) to that given the previous y ;k_l). After
getting r, we compare it with a uniform random variable, u, in [0, 1], to determine
whether to accept the new y,(k) or not.

After repeating the above sampling iterations K times, the posterior means can

be obtained by

A 1 X k) 2 1 X 21 (k)
(4.4) T D 7 A = Y (})",
o K—Kp, 0 « € K—Kp, = ¢

where K p is the amount of the burn-in steps. We list the detailed steps in Algo-
rithm 2.

4.3. Select the hyper-parameters. In this subsection, we discuss the choices of
the hyper-parameters in the Bayesian model (4.1) and the MCMC algorithm: ay,
b1, a> and b; in the prior distribution, the initial values of the MCMC sampling,
yfo), (0(3)(0) and (062)(0), and 012 and 022 in the covariance matrix R of the proposal
distribution. The parameters in the MCMC sampling matter less, as a long burn-in
stage (namely a large enough K p) makes the MCMC robust to initialization. As
long as the MCMC has a good mixing, different proposal distributions give similar
estimation outcomes. We set those parameters in the following way: (o*(f)(o) =
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Algorithm 2 parameter estimation through Bayesian sampling
1. Initialize y(O) cee yT) (02)(0) and (02)(0)

2. Set k = 1, then sample (05)(") and (02)(k) as (02)(k) ~
inverse- gamma(apOSt, bﬁmt) and (062)(]‘) ~ inverse- gamma(ap ost pogt)
where

PO post _ 1 & w k=1) _ (k=1)
a =a+ T -1, b QZZ Vie "~ VYja- 1)]

post n—2 post (k—1) (k—1)
G =at+——T -1, b =b+ts ZZ i =i
] =3t=2
3. Let QM =diag[(c2)®, (62)®), (62D, ..., () ®].
4. Sett =1, sample y,(k) from a proposal distribution: yﬁk) ~ normal(ygk_l), R).
5. Calculate the acceptance rate r as

k k k k k—
r= (]_[ Ppoi (Yie [BCY 1) Poor (12171, Q©) por (19 &Y, Q“”))
i=1

m
(l_[ Pp01 ll‘l ch(k 1)] )Pnor()’gk_l)b’;li) ’Q(k))

(k—1 k—1
x pror(yi Py &Y Q("))>,

where ppoi(+]-) is the pdf of a Poisson distribution and pyor(-|-, ) is the pdf of a
multivariate normal distribution.

6. Generate a uniform random number, u, in [0, 1]. If r > u, accept y,(k); otherwise

k k-1
set y ) =y,

7. Sett=t+1, and repeat Step4to6until t =T

8. Setk =k + 1, and repeat Step 2 to 7 until k = K.
9. Estimate O'O% and 062 as the posterior means:
2 1 i 2\ (k) 2 1 i NG
Aot =% _ - (Ua) > Ae =% _ - (Ue) :
K —Kp k=Kg+1 K—Kp k=Kp+1

4 x 10_2, (03)(0) =2 X 10_3, run the extended Kalman filter in Algorithm 1 to
obtain yz(o), and let 012 =2x 1072 and 022 =1x1073,

While ay, by and a, are specified in Section 4.1, we run the MCMC to find a
suitable value for b,. We found that as long as b1 /b, is large enough, say, more than
an order of magnitude, the estimation outcome appears robust. Table 1 presents
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TABLE 1
The parameters, &3 and &52, and their 90% credible intervals, estimated using Video 1 data and
under different by values. In the following, ay =ay =b; =1.0

by by /by &2 &2 62/62
0.1 10 5.94 (4.44,7.70) x 10~2 4.03 (3.52,4.64) x 1073 14.73
0.05 20 6.47 (4.89,8.41) x 102 3.92 (3.44,4.54) x 1073 16.49
0.01 100 6.39 (4.46,8.77) x 1072 3.82 (3.27,4.35) x 1073 16.72
0.005 200 6.39 (4.80, 8.16) x 102 3.66 (3.25,4.18) x 1073 17.46

the posterior means of the two parameters estimated from Video 1, with a total
of K =1 x 10 iterations and Kz = 4 x 10* burn-in steps. Despite significantly
different b,’s are used, the estimated results for other parameters stay similar. In
practice, we recommend using by = 0.01 as the default setting. We also check
the convergence of the MCMC by plotting the chains of (ao%)(k) and (062)0‘) with
multiple initial values and find that all the chains mix well after the burn-in stage.

5. Application to TEM videos. We test our state space model and its online
updating on the three clips of in situ TEM video described in Section 2. The num-
ber of the B-spline basis functions is fixed at 20 in all three cases. Because of
incorporation of the smoothness constraint in our state space model, our final esti-
mation of the NPSD is not sensitive to the choices of this parameter. To save space,
we discuss the full results on Video 1 clip. For the other two clips, we present lim-
ited analysis results to confirm the generality of the modeling and analysis.

5.1. Analysis of the three videos. Our first step is to find 03 and 03 for each
clip of videos. In Video 1, there are 1149 frames in total, with 15 frame per second
(fps) rate. We choose the first 300 frames as the training set, corresponding to the
first 20 seconds of the process. Using the Bayesian estimation method in Section 4
with the default parameter setting, our estimate of the two system parameters is
62=6.39x 1072 and 62 =3.82 x 1073,

Next we apply our updating method to the whole video. In our test, the TEM
videos have already been fully recorded. We mimic a prospective analysis, starting
at the end of the initialization period. For the remaining 849 frames in Video 1, the
total processing time of using our algorithm is 1.23 second, or 1.5 x 10~* seconds
per frame, much faster than the frame rate of the video (which is 15 frames per
second or 0.067 seconds per frame). Combined with the image processing time
(0.04 seconds per frame), the overall model processing is still fast enough for
online monitoring. Figure 5 illustrates the updating process running from 25.67
second through 28.33 second. The upper row shows the input histograms, whereas
the lower row shows the updated NPSDs. To demonstrate the difference of the
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F1G. 5. Illustration of the updating outcomes of the state space model.

estimated distributions, the time difference between two consecutive images in
that plot is chosen to be 10 frames.

We also show in Figure 6 the estimated NPSDs in different growth stages at 15 s,
30 s, 45 s and 60 s, respectively. Figure 6(a) presents the NPSD at the beginning
of the growth stage when the nanocrystals are initializing in the chemical solution.
The variance of the particle sizes is large and the support of the distribution is
broad. Figure 6(b) presents a NPSD at the orientated attachment (Aldous (1999))
growth stage, at which time the smaller particles collide with each other and are
merged into larger ones. The variance of the particle sizes is smaller than that of
the first stage. There is a noticeable bimodal pattern in the NPSD, in which the
two peaks correspond to the sizes of the smaller particles and the merged (larger)
particles, respectively. The final two plots in Figure 6(c) and (d) are in the final
growth stage, known as the Ostwald ripening (Lifshitz and Slyozov (1961)) stage.
In that stage, the larger particles grow at the expense of dissolving smaller parti-
cles. The size distribution tends to get concentrated and become uni-modal. The
variance continues to decrease. Material scientists expect to get nanocrystals hav-
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FI1G. 6. The estimated NPSD of Video 1 at different growth stages.
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ing more uniform sizes at the end of the growth process. Our state space model’s
online tracking results are consistent with the manual analysis results presented in
the original report (Zheng et al. (2009)).

The last part of analysis performed on Video 1 is to show the innovation se-
quence of this nanocrystal growth process. Loosely speaking, the innovation se-
quence is the difference between what is newly observed at time ¢ and what is
anticipated, based on the state space model and historical observations. In the lit-
erature, the innovation sequence is commonly used to indicate a process change:
if the underlying process is stable, then the innovation is supposedly to be random
noise, whereas if the underlying process is going through a change, then the in-
novation sequence shows departure from random noise. The innovation at time ¢,
denoted by v, and its covariance matrix F;, is computed in Step 6 of Algorithm 1.
To monitor the multivariate vector v;, we calculate the Mahalanobis squared dis-
tance (Mahalanobis (1936)) between v; and 0 at each ¢, such that

(5.1) Ay =vIF v,

The sequence {A, A», ..., } for Video 1 is plotted in Figure 7. We observe that
there is a noticeable process change between the 20 second and 40 second time
marks with an increased variance. Before and after that period, the innovation se-
quence appears to have smaller magnitudes. This observation is consistent with
the physical understanding discovered by Zheng et al. (2009), that is, the begin-
ning stage of the growth is driven by the mechanism of orientated attachment, the
latter stage is driven by the mechanism of Ostwald ripening, and there is a tran-
sition period in between. The timing of the transition period, discovered in the
retrospective analysis (Qian, Huang and Ding (2017)), is between 25.8 second and
39.9 second. We also plot the 3-sigma control limits for the two stages in Figure 7,
where the peaks in the transition period are far greater than the upper control lim-
its. The result in Figure 7 shows that by tracking the innovation sequence of the
state space model, it offers the opportunity to detect possible mechanism changes
in the process.

150
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Innovation (At)

Time (sec)

FI1G. 7. Statistic, A;, obtained from the innovation sequence of the Kalman filter with the 3-sigma
control limits for the two growth stages.
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Next, we test our algorithm on Video 2, which was published in the same paper
as Video 1 (Zheng et al. (2009)) and captures a similar nanocrystal self-assembly
growth process. There are a total of 637 frames in Video 2 with 15 fps frame
rate. We still choose the first 300 frames to estimate the parameters. The Bayesian
method produces the estimate of oj as 7.24 x 1072 and that of 062 as 4.19 x 1073,
Using these parameters, we estimate the NPSDs and show some results in Figure 8.
The total updating time is 0.098 seconds, or 1.54 x 10~ seconds per frame; this
computational performance is consistent with that for processing Video 1 (and the
image processing also takes 0.04 seconds per frame). Video 2 is a shorter clip
and contains fewer particles. By observing the density plots in Figure 8, we are
satisfied with the density curves estimated by our state space model.

Lastly, we test our algorithm on Video 3. It was published in Woehl et al. (2013)
and captures a different growth process than that in Videos 1 and 2. This process
is of silver nanocrystal growth. There are only 112 frames in this video clip with
1 fps frame rate, so we pick the first 50 frames as the training set to estimate the
parameters For the process in Video 3, the parameters are accordingly estimated
as 0 =1.75 x 107! and 062 =7.56 x 1073, Applying our updating method to
Vrdeo 3, the total run time is 0.02 seconds, or 1.79 x 10~ seconds per frame. The
image processing time for Video 3 is 0.2 seconds per frame, so that the combined
computation is again faster than the frame rate. Figure 9 presents the estimated
NPSD of Video 3. In this process, the NPSD is always uni-modal and its variance
gets larger in the process.

5.2. Comparison with alternative methods. In this subsection, we demonstrate
the merits of the proposed method, especially the benefit of having both the curve
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smoothness and temporal continuity constraints. We demonstrate all comparison
results using Video 1 but the same insight holds true for other videos. We do not
compare our method with a retrospective method because a retrospective (offline)
method sees all data and has the luxury of time, whereas a prospective (online)
method only sees a subset of the data, unless it reaches the very end of the video,
and must be time conscious.

The first comparison is to conduct an out-of-sample quantitative test, comparing
the proposed state space method with three types of alternatives: the first type is a
pure histogram-based treatment (no smoothness constraint at all), the second type
is to impose the curve smoothness within a frame but estimate the NPSD one frame
at a time without considering and imposing temporal continuity, and the third type
is a state space model without the curve smoothness (i.e., with temporal continuity
across frames but no curve smoothness within a frame). In the second type of
alternative, we include three popular methods: the smoothed histogram (Simonoff
(1983)), the kernel estimation (Sheather and Jones (1991)) and the penalized B-
splines (Eilers and Marx (1996)). For the state space model without the curve
smoothness, we use o; instead of p, as the state, and the covariance matrix Q is set
as diag(a(f, oo%, ey O’O%). The single parameter 0(3 can be estimated by a simplified
Bayesian model, assuming JO% ~ inverse-gamma(l, 1). The first 300 frames are
still used for the training purpose. The Bayesian estimate of o, is 5.9 x 1072,
which is rather close to that estimated in the previous subsection.

The out-of-sample test calculates the log-likelihood of the estimated probability
density functions based on a number of observed nanocrystals. We randomly pick
90% the observed nanocrystals in each and every image frame and use them to
establish our model and estimate the NPSD. Then, we use the remaining 10%
observed nanocrystals in each and every frame to calculate the log-likelihood. For
a given testing nanocrystal observation having a normalized particle size x* at
frame ¢, its log-likelihood is

(5.2) log f;(x*) = > B;(x)[Cy,]; —log C;(Cy,).
j=1

We proceed to calculate the summation of the log-likelihoods for all of the 10%
out-of-sample testing nanocrystals at all time frames and then use this summation
as the accuracy metric for the distribution estimation. We repeat the out-of-sample
test 500 times for each of the six methods. The means of the log-likelihood results
are summarized in Table 2.

In the out-of-sample test, the shortcoming of using the histogram directly is
highlighted—almost all the log-likelihoods obtained are negative infinity. When
certain samples fall into an empty interval of the histogram (meaning that this
interval does not have any training observations), the direct histogram method sets
the likelihood of this testing sample as 0, causing the log-likelihood to be negative
infinity.
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TABLE 2
Comparison results of the out-of-sample test among six approaches: using the observed histograms
directly, three estimation methods considering the curve smoothness only, the state space method
without the curve smoothness and the proposed method; all tested on Video 1

Mean of

Methods log-likelihoods
Observed histograms (no constraint) —00
Curve smoothness only Smoothed histograms —41.6

Kernel estimation —24.4

Penalized B-splines —46.7
State space model (with temporal continuity) Without curve smoothness 129.8

With curve smoothness 196.1

The distribution estimation methods with the curve smoothness can overcome
this negative infinity problem. However, these methods estimate the distribution
from each frame independently, lacking the ability to borrow information across
time frames. When the number of observations at individual frames is not large
enough, they fail to produce a quality estimate, as evident by the poor results in
the out-of-sample test.

By using the state space transition equations, the two state space methods in-
corporate the temporal continuity, allowing the estimators to borrow information
from other image frames and leading to much better performances than the other
alternatives.

Between the state space models with and without the curve smoothness, the one
with the curve smoothness produces a much higher log-likelihood measure. We
conduct a statistical testing and see whether the log-likelihood difference between
the two approaches is significant. A one-way ANOVA, in which the null hypothesis
is that the two log-likelihoods have the same mean, yields a p-value of 6 x 107162,
which confirms that the difference is indeed significant.

Given the benefit of using the state space framework demonstrated above, we
hence set the focus of the next two comparisons to be between the two state space
models, with and without the curve smoothness.

The second comparison is to inspect the resulting NPSD obtained by the two
state space models. In Figure 10, we show the NPSDs at 15 s, 30 s, 45 s and 60 s,
respectively, estimated by the state space model without the curve smoothness.
Comparing the results in Figure 6 obtained at the same time marks by the state
space model with the curve smoothness, the estimated distributions in Figure 10
are worse, as the state space model without the curve smoothness apparently over-
fits the histogram, and consequently, it is sensitive to small changes in the number
of particles in a bin. To see this point, consider the following observations. In Fig-
ure 10(b), while the orientated attachment growth mechanism suggests a bimodal
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F1G. 10. The estimated NPSDs of Video 1 by the state space model without the curve smoothness.

distribution, the estimated distribution gives us three peaks. Between Figure 10(c)
and (d), the variance is supposed to decrease, as this is in the Ostwald ripening
growth stage, but the estimated distribution shows an increasing variance. When
displaying the online distribution estimation frame by frame, it is obvious to us
that the state space model without the curve smoothness produces a time-varying
NPSD that is far more volatile and often reacts too dramatically to noises and
disturbances.

The third comparison is to show the robustness of the proposed method to pos-
sible changes in the number of intervals in the input histograms. In the previous
studies, we set the length of interval as 0.1 which gives 20 intervals in a histogram.
In this comparison experiment, we test the cases by setting the length of interval to
0.2, 0.15, 0.08 and 0.05, respectively, and then estimate the corresponding NPSD,
using the state space model with and without the curve smoothness. We compare
the resulting NPSDs with that obtained under the default setting, that is, the length
of interval 0.1 or 20 intervals in the histogram. The difference between the two
NPSDs is measured by a L, norm of the two density function curves.

In Figure 11(a), we plot the L,-norm differences at each time frame between the
NPSDs estimated, respectively, using the binned data with 10 intervals (the length
of an interval 0.2) and 20 intervals (the length of an interval 0.1). It is apparent
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5
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(a) (b)
FI1G. 11. Ljp-norm difference between two NPSDs: (a) Lo-norm differences at each time frame be-

tween the NPSDs estimated using the histograms with 10 intervals and 20 intervals; (b) the summa-
tion over all time frames of the Lo-norm differences between the NPSDs estimated using histograms
of various lengths of intervals and the default setting.
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that inclusion of the curve smoothness leads to an estimation less sensitive to the
number of intervals, especially in the later stage of the process. In Figure 11(b),
we present the summation over all frames of the L,-norm differences between the
NPSDs estimated, respectively, using binned data of a various number of intervals
and the default setting (i.e., 20 intervals or interval length 0.1). In the broad range
of choices, the curve smoothness penalty generally decreases the L,-norm differ-
ences due to the change of intervals by half. Those results show that the proposed
method can alleviate the overfitting when using a small interval for binned data.

6. Summary. In this paper, we propose an online method for monitoring the
evolution of certain population characteristics observed in dynamic imaging (i.e.,
videos). Our model injects a flexible and robust modeling ability into a fast and
closed-form updating algorithm. We demonstrate its application in monitoring the
particle size distribution as a nanocrystal growth process is being observed by an
in situ TEM.

The contributions of this work can be summarized as follows:

e The recursive, nonparametric method that models a time-varying probability
density function and its specific tailoring to an evolving nanocrystal growth pro-
cess;

e A closed-form updating algorithm in the form of an extended Kalman filter for
tracking the nanocrystal growth in real time;

e The incorporation of both the curve smoothness and temporal continuity in the
state space model for estimating the time-varying NPSD.

Even though our method is demonstrated in the context of estimating the nor-
malized particle size distribution, we believe that the resulting method has some
degree of generality and could be applicable to other online distribution estimation
problems. For other applications, one needs to replace the normalized particle size
with a population characteristic of specific interest to that application. One impor-
tance assumption that may face challenges is the random walk assumption on the
disturbance vector. Nonetheless, the random walk assumption appears a broadly
accepted choice that can be a good starting point in a modeling effort, unless there
exist contradicting evidences associated with a specific application to override its
use.
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SUPPLEMENTARY MATERIAL

Supplement A: Appendices (DOI: 10.1214/19-A0AS1245SUPPA; .pdf).
A pdf document including Appendices A, B and C. This document provides the
derivations of the Gaussian approximation of the Poisson distribution, the detailed
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steps of Kalman filter and the derivation of the posterior distributions of the system
parameters for the proposed model.

Supplement B: Data and codes (DOI: 10.1214/19-A0OAS1245SUPPB; .zip).
A zip file including the description of the testing videos and the MATLAB codes
to reproduce the results in the paper. A “Data and Codes.docx” file provides the
detailed guidance to use the data and codes. The three videos have been published
and are free to download, and all the codes have been tested under MATLAB
2016b.
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