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Abstract. We investigate the following non-linear stochastic wave equation model:{
∂2
t u − �u = u2 + Ḃ, t ∈ [0, T ], x ∈R

2,

u(0, ·) = φ0, ∂t u(0, ·) = φ1,

where φ0, φ1 are deterministic initial conditions in an appropriate Sobolev space and Ḃ stands for a space–time fractional noise.
In this two-dimensional situation, we develop a strategy based on a third-order expansion of the equation, which, combined with a
Wick-renormalization procedure, allows us to extend the results of Deya (2019) to a rougher noise.

We also point out the limits of this specific strategy when considering a highly rough noise.

Résumé. Nous nous intéressons au modèle d’équation des ondes stochastique non-linéaire suivant:{
∂2
t u − �u = u2 + Ḃ, t ∈ [0, T ], x ∈R

2,

u(0, ·) = φ0, ∂t u(0, ·) = φ1,

où φ0, φ1 sont des conditions initiales déterministes dans un espace de Sobolev approprié et Ḃ représente un bruit fractionnaire espace-
temps. Dans cette situation bi-dimensionnelle, notre stratégie est basée sur un développement de l’équation à l’ordre trois, qui, combiné
à une procédure de renormalisation de type Wick, nous permet d’étendre les résultats de Deya (2019) à des bruits plus rugueux.

Nous mettons également en avant les limites de cette stratégie particulière en présence de processus très irréguliers.
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1. Introduction and main results

Consider the following non-linear stochastic wave model:{
∂2
t u − �u = u2 + Ḃ, t ∈ [0, T ], x ∈R

d,

u(0, ·) = φ0, ∂tu(0, ·) = φ1,
(1)

where φ0, φ1 are (deterministic) initial conditions in an appropriate Sobolev space and Ḃ stands for a (rough) stochastic
noise. In many situations (that include the space–time white noise case for d ≥ 2), we know that the solution of the
associated “homogeneous” equation, i.e. the solution of{

∂2
t � − �� = Ḃ, t ∈ [0, T ], x ∈R

d ,

�(0, ·) = 0, ∂t�(0, ·) = 0

can only be defined as a distribution (in space), which immediately gives us an idea of how difficult the interpretation and
the treatment of the additional product term u2 in (1). In the white-noise situation and when considering the equation on
a torus, these difficulties have been recently overcome by Gubinelli, Koch and Oh, first for d = 2 [3] and then for d = 3
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[4]. Their strategy involves a deterministic expansion of the equation, together with the stochastic construction of some
suitable “iterated integrals” (above the white noise), at the core of the model dynamics.

In the continuity of our previous study [1], we here propose to offer more flexibility as far as the noise model is
concerned, by extending the analysis to a space–time fractional noise. To be more specific, we will focus in this paper on
the two-dimension case (i.e., d = 2 in (1)) and consider a noise Ḃ := ∂t ∂x1∂x2B defined as the space–time derivative (in
the sense of distributions) of a fractional Brownian sheet B:

Definition 1.1. Let (�,F,P) be a complete filtered probability space. For H = (H0,H1,H2) ∈ (0,1)3, we call a space–
time fractional Brownian motion (or a fractional Brownian sheet) of Hurst index H any centered Gaussian process B :
� × ([0, T ] ×R

2) → R whose covariance function is given by

E
[
Bs(x1, x2)Bt (y1, y2)

] = RH0(s, t)RH1(x1, y1)RH2(x2, y2),

where

RHi
(x, y) � 1

2

(|x|2Hi + |y|2Hi − |x − y|2Hi
)
.

At this point, we must recall that the first step of this analysis has been carried out in [1], where, thanks to a second-
order expansion of the equation, we have been able to cover the case

H0 + H1 + H2 >
5

4
. (2)

Our aim here is to go one step further and treat the situation where

1 < H0 + H1 + H2 ≤ 5

4
, (3)

a condition which will turn out to be optimal (at least when using our “Wick” expansion strategy, see Proposition 1.4
and Remark 1.10 below). Beyond the extension result itself, the study will give us the opportunity to settle a third-
order procedure, which somehow generalizes the so-called Da Prato-Debussche trick and involves the construction of
sophisticated third-order stochastic objects. As far as we know, such a third-order expansion, inspired by the recent
developments in the parabolic setting (see e.g. [7, Section 1.1]), is new in the stochastic wave literature. In fact, while we
were revising the present paper, a similar third-order-expansion strategy has been developed by Gubinelli, Koch and Oh
in [4] for the three-dimensional and white-noise-driven version of (1). Their study additionally appeals to sophisticated
considerations related to paraproducts, which will not be needed in the subsequent (two-dimensional) analysis.

In order to illustrate our strategy, and also to understand the whole difficulty raised by the transition from condition (2)
to condition (3), let us start with a few heuristic considerations on the quadratic fractional model (1).

1.1. Heuristic considerations

For the sake of clarity, the following shortcut notations will be used throughout the paper: for all T > 0, α ∈ R and
p,q ≥ 1, we set

L
q
T W

α,p � Lq
([0, T ];Wα,p

(
R

2)), L
q
T W

α,p

loc � Lq
([0, T ];Wα,p

loc

(
R

2)), (4)

where Wα,p(R2) stands for the classical Sobolev space and

Wα,p

loc

(
R

2) �
{
u ∈ S ′(

R
2) : for every smooth compactly-supported function ρ : R2 →R, ρu ∈ Wα,p

(
R

2)}.
The related (space–time) norms will be denoted by N [.;Lq

T Wα,p].
Besides, we will denote by ∗x , resp. ∗t,x , any convolution with respect to the space variable x ∈ R

2, resp. the space–
time variable (t, x) ∈ R

3. Finally, we will use the convention Fx(ϕ)(ξ) �
∫
R2 dxe−ı〈ξ,x〉ϕ(x) for the Fourier transform

of any (suitable) function ϕ : R2 →R.
At a formal level, the mild form of equation (1) (with d = 2) is given by

u = ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x u2 + , (5)
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where G stands for the wave kernel in R
2, characterized by its Fourier transform

Fx(Gt )(ξ) = sin(t |ξ |)
|ξ | , t ≥ 0, ξ ∈R

2,

and the symbol refers to the associated “homogeneous” solution, that is the solution of{
∂2
t − � = Ḃ, t ∈ [0, T ], x ∈R

2,

(0, ·) = 0, ∂t (0, ·) = 0.
(6)

Of course, due to the roughness of the noise Ḃ , the interpretation of the latter equation is not exactly a standard issue: in
fact, for a proper definition of , we will rely in the sequel on a specific approximation procedure (see the convergence
statement for the first component in Proposition 1.3). As a result of this procedure, will (almost surely) appear as a
stochastic process with values in the space L∞

T W−α,p

loc , for all p ≥ 2 and α > 3
2 − (H0 + H1 + H2). With condition (3) in

mind, let us assume from now on that α > 0.
Going back to (5), a first natural idea toward a possible fixed-point argument (often referred to as the Da Prato-

Debussche trick) is to consider the dynamics satisfied by the difference process v � u − . To this end, we can rewrite the
equation as

v = ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x v2 + 2G ∗t,x (v · ) + G ∗t,x ( )2, (7)

and then try to identify some possible stable space for v. Observe however that we must here face with a new interpretation
issue. Indeed, as is expected to take values in some negative-order Sobolev space, it is not clear to know a priori how
we must interpret the product ( )2 in (7). This problem has been treated in [3] for the white-noise situation H0 = H1 =
H2 = 1

2 , and then in [1] under the more general condition H0 + H1 + H2 > 5
4 . In both of these references, it is shown that

( )2 can only be understood in some Wick sense, that is through a renormalization procedure and the use of stochastic
estimates, and the construction gives birth to a process with values in L∞

T W−2α,p

loc (a.s.). A first new result of the present
study will consist in extending this property under condition (3) (see the convergence result for the second component in
Proposition 1.3). Let us henceforth denote by

∈ L∞
T W−2α,p

loc (8)

the resulting Wick interpretation of the product ( )2, and consider the related equation

v = ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x v2 + 2G ∗t,x (v · ) + G ∗t,x . (9)

At this point, recall that, even if the property is less convenient to handle than its parabolic counterpart, convolution with
the wave kernel G still yields some regularizing effect, as summed up through the so-called Strichartz inequalities (see

e.g. [1, Propositions 3.2 and 3.3]). According to these results and using the symbol for the convolution G ∗t,x , we
can (at least morally) expect to have

∈ L∞
T W1−2α,2

loc .

Actually, just as with and , the use of stochastic arguments will allow us to improve this regularity property and derive
(see the third component in Proposition 1.3) that

∈ L∞
T W1−2α,p

loc for all p ≥ 2. (10)

Going back to equation (9), we can then expect the solution v to inherit the regularity of , so that, if we refer to standard
distribution-theory results (such as those in the subsequent Proposition 2.2), the product v · involved in the equation is
likely to make sense as long as (1 − 2α) + (−α) > 0, that is as long as α ∈ (0, 1

3 ). These heuristic arguments somehow
account for the success of the “second-order” expansion used in [1,3] (in both references, it is assumed that α ∈ (0, 1

4 )).
In order to go one step further and handle the situation where α ∈ ( 1

3 , 1
2 ) (which encompasses condition (3)), let us

iterate the above principles and consider the new process w � v − . Equation (9) now turns into

w = ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x (w + )2 + 2G ∗t,x

(
(w + )

)
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= ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x w2 + G ∗t,x ( )2 + 2G ∗t,x (w · )

+ 2G ∗t,x (w · ) + 2G ∗t,x , (11)

where the “third-order” process is defined as

� · .

Again, the interpretation of the latter product is not clear when α ∈ ( 1
3 , 1

2 ) (since (1 − 2α) + (−α) < 0), but, just as with
, we can hope for a “stochastic construction” of this product, leading (a.s.) to a well-defined element

∈ L∞
T W−α,p

loc . (12)

The construction of this process above the fractional noise will be one of the main technical results of our study (it

corresponds to the convergence property of the fourth component in Proposition 1.3 below). Once endowed with , and
along the same pattern as above, we can (morally) expect to have

w ∈ L∞
T W1−α,2

loc ,

so that the product w · in (11) can make sense for any α ∈ ( 1
3 , 1

2 ) (due to (1 − α) + (−α) > 0), leading finally to
the possibility of a well-posed equation in our setting. The details of this deterministic procedure will be the topic of
Section 2.2 below.

To end with these heuristic considerations, we need to specify that, since the controls in (8)–(10)–(12) are only local,
we can only aim at a local solution in this study, in time as well as in space (say on the fixed space domain {|x| ≤ 1}).
For a clear expression of this restriction, let us thus introduce, for the rest of the paper, a smooth function ρ : R2 → R

with support included in {|x| ≤ 2} such that ρ(x) = 1 for |x| ≤ 1, and note that we will rather consider the following
“localized” version of (11):

w = ∂t (Gt ∗x φ0) + Gt ∗x φ1

+ G ∗t,x

(
ρ2w2) + G ∗t,x

(
ρ2( )2) + 2G ∗t,x

(
(ρw) · (ρ )

)
+ 2G ∗t,x

(
(ρw) · (ρ )

) + 2G ∗t,x

(
ρ2 )

.

Remark 1.2. The use of the above symbols , , and is directly inspired by the recent literature on parabolic
SPDEs (see e.g. [6, Section 4] or [7, Section 1]). In fact, as the reader may have guessed it, the construction of these
symbols (morally) obeys the following simple rules: (i) the circle symbol refers to the noise Ḃ; (ii) each line corresponds
to a convolution with the wave kernel G; (iii) two (sub-)symbols attached to a same black knot are just multiplied between
each other (that is, the associated processes are multiplied between each other). Note however that the latter “code” is
only heuristic: in particular, it does not take the possible renormalization procedures into account (as the one involved in
the “Wick” definition of ).

1.2. Stochastic constructions

As evoked earlier, a proper definition of the stochastic components

( , , , )

at the center of the above analysis will be obtained through an approximation procedure. Namely, starting from some
smooth approximation Ḃn of the fractional noise, we first observe that, for each fixed n ≥ 1, the homogeneous equation{

∂2
t

n − �
n = Ḃn, t ∈ [0, T ], x ∈ R

2,
n
(0, ·) = 0, ∂t

n
(0, ·) = 0

(13)

falls within the class of standard hyperbolic systems, for which a unique (global) solution n is known to exist. Then we

define the (smooth) approximated path �n � (
n
, n,

n
,

n
) along the explicit formulas

n(t, y) �
( n

(t, y)
)2 −E

[( n
(t, y)

)2]
,

n
� G ∗t,x

n,
n

�
n

n
, (14)

and study the (almost sure) convergence of these processes in suitable spaces.



On a non-linear 2D fractional wave equation 481

In order to implement this standard procedure, we will consider here the approximation derived from the so-called
harmonizable representation of the space–time fractional Brownian motion, that is the formula (valid for every H =
(H0,H1,H2) ∈ (0,1)3)

Bt(x1, x2) = cH

∫
ξ∈R

∫
η∈R2

Ŵ (dξ, dη)
eıtξ − 1

|ξ |H0+ 1
2

eıx1η1 − 1

|η1|H1+ 1
2

eıx2η2 − 1

|η2|H2+ 1
2

,

where cH > 0 is a suitable constant and Ŵ stands for the Fourier transform of a space–time white noise in R
3, defined on

some complete filtered probability space (�,F,P). The approximation (Bn)n≥0 of B is now defined as B0 ≡ 0 and, for
n ≥ 1,

Bn
t (x1, x2) � cH

∫
|ξ |≤2n

∫
|η|≤2n

Ŵ (dξ, dη)
eıtξ − 1

|ξ |H0+ 1
2

eıx1η1 − 1

|η1|H1+ 1
2

eıx2η2 − 1

|η2|H2+ 1
2

. (15)

It is readily checked that for all fixed H = (H0,H1,H2) ∈ (0,1)3 and n ≥ 1, the process Bn indeed corresponds (almost
surely) to a smooth function with respect to all its parameters, and we can thus consider the process �n associated with
its derivative Ḃn (along (13)–(14)).

With this notation in mind, our main stochastic result can be stated as follows:

Proposition 1.3. Let (H0,H1,H2) ∈ (0,1)3 be such that

0 < H1 <
3

4
, 0 < H2 <

3

4
, 1 < H0 + H1 + H2 ≤ 5

4
. (16)

Then, for all smooth compactly-supported function ρ : R2 →R, all T > 0, p ≥ 2 and

α >
3

2
− (H0 + H1 + H2), (17)

the sequence (�n
ρ)n≥1 � (ρ

n
,ρ2 n, ρ

n
,ρ2

n
)n≥1 defined by (13)–(14) almost surely converges to a limit in the

space Eα,p
T , where

Eα,p
T � L∞

T W−α,p × L∞
T W−2α,p × L∞

T W1−2α,p × L∞
T W−α,p. (18)

We denote this limit by �ρ = (ρ ,ρ2 , ρ ,ρ2 ).

The condition H0 + H1 + H2 > 1 that appears in (16) turns out to be optimal in the framework of our strategy, as
shown by the following divergence property:

Proposition 1.4. Let (H0,H1,H2) ∈ (0,1)3 be such that

H0 + H1 + H2 ≤ 1, (19)

and let ρ : R2 → R be a non-zero, smooth and compactly-supported function. Then, for all α > 0 and t > 0, one has
E[‖ρ2 n(t, ·)‖2

W−2α,2(R2)
] → ∞ as n → ∞.

1.3. Main results

Let us recall that, for the rest of the paper, we have fixed a smooth function ρ : R2 → R with support included in
D � {|x| ≤ 2} and satisfying ρ(x) = 1 for |x| ≤ 1. Based on the considerations of Section 1.1 and relying on the result of
Proposition 1.3, the following definition of a (local-in-space) solution for (1) naturally arises:

Definition 1.5. Fix (H0,H1,H2) ∈ (0,1)3 such that condition (16) is satisfied, and for every T > 0, let

�ρ = (
ρ ,ρ2 , ρ ,ρ2 ) ∈

⋂
α> 3

2 −(H0+H1+H2)

⋂
p≥2

Lp
(
�;Eα,p

T

)
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be the process defined through Proposition 1.3. A stochastic process (u(t, x))t∈[0,T ],x∈R2 is said to be a Wick solution (on
[0, T ]) of the equation{

∂2
t u − �u = ρ2u2 + Ḃ, x ∈ R

2,

u(0, ·) = φ0, ∂tu(0, ·) = φ1,
(20)

if, almost surely, the auxiliary process w � u − − is a mild solution (on [0, T ]) of the equation

w = ∂t (Gt ∗x φ0) + Gt ∗x φ1

+ G ∗t,x

(
ρ2w2) + G ∗t,x

(
(ρ )2) + 2G ∗t,x

(
(ρw) · (ρ )

) + 2G ∗t,x

(
(ρw) · (ρ )

)
+ 2G ∗t,x

(
ρ2 )

. (21)

Our main results regarding equation (20) finally read as follows:

Theorem 1.6. Let (φ0, φ1) ∈W 1
2 ,2(R2) ×W− 1

2 ,2(R2) and let (H0,H1,H2) ∈ (0,1)3 be such that

0 < H1 <
3

4
, 0 < H2 <

3

4
, 1 < H0 + H1 + H2 ≤ 5

4
.

Then, almost surely, there exists a time T0 > 0 such that equation (20) admits a unique Wick solution u in the set{
u ∈ S ′(

R
2) : u = + + w, with w ∈ L∞

T0
W 1

2 ,2}. (22)

Using the continuity properties of equation (21) with respect to � (see estimate (30) below), we are also able to offer
the following sequential approach to the problem:

Theorem 1.7. Under the assumptions of Theorem 1.6, consider the sequence (un)n≥0 of (classical) solutions to the
renormalized equation{

∂2
t un − �un = ρ2(un)2 − σn + (1 − ρ2)(

n
)2 + Ḃn, x ∈R

2,

un(0, ·) = φ0, ∂tu
n(0, ·) = φ1,

(23)

where σn
t (x) � E[( n

t (x))2]. Then σn
t (x) is independent of x, one has

σn
t

n→∞∼ c1
H t22n( 3

2 −(H0+H1+H2)) (24)

for some constant c1
H , and, almost surely, there exists a time T0 > 0 such that the sequence (un) converges in the space

L∞([0, T0];W−α,2({|x| ≤ 1})) to the solution u exhibited in Theorem 1.6, for every α > 3
2 − (H0 + H1 + H2).

Theorems 1.6 and 1.7 thus correspond to the third-order extensions of Theorems 1.6 and 1.7 in [1] (which only covered
the situation where H0 + H1 + H2 > 5

4 ), and they allow us to handle the fractional problem up to the critical threshold
H0 + H1 + H2 = 1 (where “criticality” is here understood in the sense of Proposition 1.4, see Remark 1.10 below). To
some extent, these statements can be compared with the results of [4, Theorem 1.1 and Theorem 1.12] for the three-
dimensional white-noise-driven model.

Remark 1.8. On the unit ball {|x| ≤ 1}, that is on the space-domain we actually focus, equation (23) reduces to the
Wick-renormalized model ∂2

t un − �un = [(un)2 − σn] + Ḃn, as expected. In fact, a global-in-space solution (i.e. the
consideration of ρ ≡ 1 on R

2 in the above results) could perhaps be obtained through the involvement of weighted spaces
in the subsequent analysis, both in the convergence results of Proposition 1.3 and in the study of the deterministic equation.
Nevertheless, we expect this extension to be the source of technical stability issues (see for instance the developments
in [5] for the parabolic setting) and therefore we postpone these investigations to a (possible) future publication. On the
other hand, studying the equation on the 2D-torus (with appropriate boundary conditions) should certainly give rise to
very similar estimates and results. This would however require the introduction of a fractional Brownian noise on the
torus, a model that we find slightly more “exotic” than ours.
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Remark 1.9. At the level of the approximated equation (23), another possibility would be to consider, just as in [1,
Theorem 1.7], the approximation given by

∂2
t un − �un = ρ2((un

)2 − σn
) + Ḃn. (25)

However, expanding equation (25) along the pattern of Section 1.1 readily leads us to the consideration of the alternative
path

�̃
n
ρ �

(
ρ

n
,ρ2 n, ρ

[
G ∗t,x

(
ρ2 n

)]
,
(
ρ
[
G ∗t,x

(
ρ2 n

)])(
ρ

n))
,

which we have found less elegant (and slightly more difficult to handle) than the path

�n
ρ = (

ρ
n
,ρ2 n, ρ

n
,ρ2 n)

at the core of the above analysis (see Section 2.3 for more details on the transition from (23) to (21)).

Remark 1.10. The claimed optimality proved through Proposition 1.4 is of course relative to our specific procedure,
which strongly relies on the Wick-renormalized product of , and we do not pretend that any other approach to the
equation would fail likewise. In fact, we think that our strategy induces two major restrictions in this context.

First, it only allows us to consider the central elements , , , as functions of time (with values in some Sobolev
spaces). But these stochastic elements could be more generally interpreted as space–time distributions in a weak sense,
that is when integrated against smooth test-functions ϕ(t, x), and maybe the divergence problem for n could be over-
come along this interpretation. However, it is not exactly clear to us how to combine the latter (weak) interpretation with
the Strichartz-type controls at the core of the subsequent analysis.

Secondly, Proposition 1.4 is only based on the consideration of the approximated noise (15) and the Wick-
renormalization method. Perhaps some more sophisticated approximation of the noise and/or some more sophisticated
renormalization procedure would yield a positive result in the rougher situation H0 + H1 + H2 ≤ 1.

The rest of the paper is organized along a natural two-part splitting. In Section 2, we will handle the deterministic as-

pects of the problem, that is the well-posedness of equation (21) once endowed with a path �ρ = (ρ ,ρ2 , ρ ,ρ2 ) ∈
Eα,p

T . The proofs of Theorem 1.6 and Theorem 1.7 will almost immediately follow (Section 2.3). Section 3 will then be
devoted to the technical stochastic estimates behind the convergence statement of Proposition 1.3 and the explosion phe-
nomenon of Proposition 1.4.

Throughout the paper, we will denote by A � B any estimate of the form A ≤ cB , where c > 0 is a constant that does
not depend on the parameters under consideration.

2. Auxiliary (deterministic) equation

Let us first recall that for all parameters α > 0, p ≥ 1, T > 0, the functional space Eα,p
T has been introduced in (18). Also,

for the whole study, we have fixed a smooth cut-off functions ρ with support in {|x| ≤ 2} (such that ρ(x) = 1 for |x| ≤ 1),
and for this reason let us set D � {|x| ≤ 2} for the rest of the section.

At some point of the analysis, we will need to use the fact that the noise components we are implicitly interested in,

that is the distributions (ρ ), (ρ2 ), (ρ ), (ρ2 ) given by Proposition 1.3, are supported by the compact domain D.
Therefore, in the sequel, we will consider the subset

Eα,p
T ,D �

{
� = (

�1,�2,�3,�4) ∈ Eα,p
T : supp

(
� i) ⊂ D for i = 1, . . . ,4

}
.

Now, for a fixed element � = (�1,�2,�3,�4) ∈ Eα,p
T ,D (with suitable α,p) and φ0, φ1 in appropriate Sobolev spaces,

our objective here is to settle a (local in time) fixed-point argument for the mild equation

w = ∂t (Gt ∗x φ0) + Gt ∗x φ1

+ G ∗t,x

(
ρ2w2) + G ∗t,x

((
�3)2) + 2G ∗t,x

(
(ρw) · �3) + 2G ∗t,x

(
(ρw) · �1) + 2G ∗t,x �4. (26)
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2.1. Basic preliminary results

As we mentionned it in the Introduction, convolving with the wave kernel is known to entail specific regularization effects,
that are generally summed up through the so-called Strichartz inequalities (see [2]). It turns out that the following (much)
weaker result will be sufficient for our purpose here:

Proposition 2.1. (i) For all 0 ≤ T ≤ 1 and w ∈ L1
T W− 1

2 ,2, it holds that

N
[
G ∗t,x w;L∞

T W 1
2 ,2] �N

[
w;L2

T W− 1
2 ,2]. (27)

(ii) For all 0 ≤ T ≤ 1 and (φ0, φ1) ∈ W 1
2 ,2(R2) ×W− 1

2 ,2(R2), it holds that

N
[
∂t (Gt ∗x φ0);L∞

T W 1
2 ,2] � ‖φ0‖W 1

2 ,2
(R2)

and N
[
Gt ∗x φ1;L∞

T W 1
2 ,2] � ‖φ1‖W− 1

2 ,2
(R2)

. (28)

Proof. Both (27) and (28) rely on elementary estimates only.
(i) Observe first that

Fx

([G ∗t,x w](t, ·))(ξ) =
∫ t

0
ds(FxGt−s)(ξ)(Fxws)(ξ),

so that, for every t ∈ [0, T ],∫
R2

dξ
{
1 + |ξ |2} 1

2
∣∣Fx

([G ∗t,x w](t, ·))(ξ)
∣∣2 ≤

∫ t

0
ds

∫
R2

dξ
{
1 + |ξ |2} 1

2
sin2((t − s)|ξ |)

|ξ |2
∣∣(Fxws)(ξ)

∣∣2

�
∫ t

0
ds

∫
R2

dξ
{
1 + |ξ |2}− 1

2
∣∣(Fxws)(ξ)

∣∣2
,

hence the conclusion.
(ii) The bound for N [Gt ∗x φ1;L∞

T W 1
2 ,2] follows from similar arguments as above. Then, along the same idea, observe

that

Fx

(
∂t (G. ∗x φ0)(t, ·)

)
(ξ) = ∂t (FxG)t (ξ)(Fxφ0)(ξ) = cos

(
t |ξ |)(Fxφ0)(ξ),

and so, for every t ∈ [0, T ],∫
R2

dξ
{
1 + |ξ |2} 1

2
∣∣Fx

(
∂t (G. ∗x φ0)(t, ·)

)
(ξ)

∣∣2 ≤
∫
R2

dξ
{
1 + |ξ |2} 1

2
∣∣(Fxφ0)(ξ)

∣∣2
. �

Then, in order to control the product operations involved in (26), we will appeal to the following standard properties,
the proof of which can for instance be found in [8, Chapter 4]:

Proposition 2.2. (i) For all α,β > 0 and 0 < p,p1,p2 ≤ ∞ such that

1

p
≤ 1

p1
+ 1

p2
, 0 < α < β <

2

p2
, min

(
2

p
+ α,2

)
>

(
2

p1
+ α

)
+

(
2

p2
− β

)
,

one has

‖f · g‖W−α,p(R2) � ‖f ‖W−α,p1 (R2)‖g‖Wβ,p2 (R2).

(ii) For all β > 1
2 , 0 < α < β and p > 2, one has

‖f · g‖W−α,p(R2) � ‖f ‖W−α,p(R2)‖g‖Wβ,2(R2).

(iii) For all α > 0 and 1 ≤ p,p1,p2 ≤ ∞ such that

1

p1
+ 1

p2
= 1

p
and 0 < α < min

(
2

p1
,

2

p2

)
,
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one has

‖f · g‖Wα,p(R2) � ‖f ‖Wα,p1 (R2)‖g‖Wα,p2 (R2).

2.2. Solving the deterministic equation

We are now in a position to exhibit suitable bounds for (26).

Proposition 2.3. Fix α ∈ ( 1
4 , 1

2 ) and for all T > 0, φ = (φ0, φ1) ∈W 1
2 ,2(R2)×W− 1

2 ,2(R2) and � = (�1,�2,�3,�4) ∈
Eα,4

T ,D , consider the map �T,φ,� : L∞
T W 1

2 ,2 → L∞
T W 1

2 ,2 given by

�T,φ,�(w) � ∂t (Gt ∗x φ0) + Gt ∗x φ1

+ G ∗t,x

(
ρ2w2) + G ∗t,x

((
�3)2) + 2G ∗t,x

(
(ρw) · �3) + 2G ∗t,x

(
(ρw) · �1) + 2G ∗t,x �4.

Then, for all T > 0, φ = (φ0, φ1) ∈ W 1
2 ,2(R2) × W− 1

2 ,2(R2), �1,�2 ∈ Eα,4
T ,D and w,w1,w2 ∈ L∞

T W 1
2 ,2, the following

bounds hold true:

N
[
�T,φ,�1(w);L∞

T W 1
2 ,2] � ‖φ0‖W 1

2 ,2 + ‖φ1‖W− 1
2 ,2

+ T 1/2{N [
w;L∞

T W 1
2 ,2]2 + ‖�1‖2 + ‖�1‖N

[
w;L∞

T W 1
2 ,2] + ‖�1‖

}
, (29)

and

N
[
�T,φ,�1(w1) − �T,φ,�2(w2);L∞

T W 1
2 ,2]

� T 1/2[N [
w1 − w2;L∞

T W 1
2 ,2]{N [

w1;L∞
T W 1

2 ,2] +N
[
w2;L∞

T W 1
2 ,2]}+‖�1 − �2‖

{‖�1‖ + ‖�2‖
}

+ ‖�1 − �2‖N
[
w1;L∞

T W 1
2 ,2] + ‖�2‖N

[
w1 − w2;L∞

T W 1
2 ,2] + ‖�1 − �2‖

]
, (30)

where the proportional constants only depend on α, and the norm ‖ · ‖ is naturally defined as

‖�‖ = ‖�‖Eα,4
T

� N
[
�1;L∞

T W−α,4] +N
[
�2;L∞

T W−2α,4] +N
[
�3;L∞

T W1−2α,4] +N
[
�4;L∞

T W−α,4].
Proof. As expected, the two bounds (29) and (30) will follow from the combination of the estimates in Proposition 2.1
and Proposition 2.2. The elementary Sobolev embedding

Ws0,p0(D) ⊂Ws1,p1(D) if s0 − 2

p0
≥ s1 − 2

p1
(31)

will also be requested. For the sake of clarity, let us set Ws,p
D � Ws,p(D) and L

p
D � W0,p(D).

Initial conditions: the bound for N [∂t (Gt ∗x φ0) + Gt ∗x φ1;L∞
T W 1

2 ,2] immediately follows from Proposition 2.1,
item (ii).

Bound on G ∗t,x (ρ2w2): Using successively (27) and (31), we deduce that

N
[
G ∗t,x

(
ρ2w2);L∞

T W 1
2 ,2]

� N
[
ρ2w2;L2

T W
− 1

2 ,2
D

]
� N

[
ρ2w2;L2

T L
4
3
D

]
� N

[
w;L4

T L
8
3
D

]2 � T 1/2N
[
w;L∞

T L
8
3
D

]2
,

and we get the expected bound through the embedding W
1
2 ,2
D ⊂ L

8
3
D .

Bound on G ∗t,x ((�3
1)

2): Just as above, we have

N
[
G ∗t,x

((
�3

1

)2);L∞
T W 1

2 ,2] � T 1/2N
[
�3

1;L∞
T L

8
3
D

]2
,

and the desired bound is here obtained through the embedding W1−2α,4
D ⊂ L

8
3
D .
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Bound on G ∗t,x ((ρw) · �3
1): Let 1 < r̃1 < 2 be defined by the relation

1

r̃1
= 5

4
− α.

Using successively (27) and (31), we get that

N
[
G ∗t,x ((ρw) · �3

1;L∞
T W 1

2 ,2] � N
[
(ρw) · �3

1;L2
T W

− 1
2 ,2

D

]
� T 1/2N

[
(ρw) · �3

1;L∞
T W1−2α,r̃1

D

]
.

Then introduce the additional parameter 2 ≤ p1 ≤ 4 defined by

1

p1
= 1

r̃1
− 1

2
= 3

4
− α.

By Proposition 2.2 (item (iii)), we know that for each fixed t ≥ 0,∥∥(ρw)t · (�3
1

)
t

∥∥
W1−2α,r̃1 (R2)

�
∥∥(ρw)t

∥∥
W1−2α,2(R2)

∥∥(
�3

1

)
t

∥∥
W1−2α,p1 (R2)

� ‖wt‖
W

1
2 ,2

D

∥∥(
�3

1

)
t

∥∥
W1−2α,4

D
,

which immediately yields

N
[
G ∗t,x

(
(ρw) · �3

1

);L∞
T W 1

2 ,2]
� T 1/2N

[
w;L∞

T W 1
2 ,2]N [

�3
1;L∞

T W1−2α,4] � T 1/2N
[
w;L∞

T W 1
2 ,2]‖�1‖.

Bound on G ∗t,x ((ρw) · �1
1): Let 1 < r̃2 < 2 be defined by the relation

1

r̃2
= 3

4
− α

2
.

Using successively (27) and (31), we get that

N
[
G ∗t,x

(
(ρw) · �1

1

);L∞
T W 1

2 ,2] �N
[
(ρw) · �1

1;L2
T W

− 1
2 ,2

D

]
� T 1/2N

[
(ρw) · �1

1;L∞
T W−α,r̃2

D

]
.

Then, using Proposition 2.2 (item (i) and (ii)), we can assert that for each fixed t ≥ 0,∥∥(ρw)t · (�1
1

)
t

∥∥
W−α,r̃2

D

�
∥∥(ρw)t

∥∥
W

1
2 ,2

D

∥∥(
�1

1

)
t

∥∥
W−α,4

D
� ‖wt‖

W
1
2 ,2

D

∥∥(
�1

1

)
t

∥∥
W−α,4

and accordingly

N
[
G ∗t,x

(
(ρw) · �1

1

);L∞
T W 1

2 ,2] � T 1/2N
[
w;L∞

T W 1
2 ,2]‖�1‖.

Bound on G ∗t,x �4
1: By (27),

N
[
G ∗t,x �4

1;L∞
T W 1

2 ,2] � N
[
�4

1;L2
T W

− 1
2 ,2

D

]
� T 1/2N

[
�4

1;L∞
T W−α,4

D

]
� T 1/2‖�1‖,

which concludes the proof of (29).
We can then show (30) along similar arguments. �

2.3. Proof of the main results

Proof of Theorem 1.6. The combination of (29) and (30) easily allows us to assert that for T0 > 0 small enough and for

all � ∈ Eα,4
T0,D

(with α ∈ ( 1
4 , 1

2 )), the map �T0,φ,� is a contraction on some stable subset of L∞
T0
W

1
2 ,2
D , which yields a unique

solution w for equation (26). Then it suffices of course to apply this result (in an almost sure way) to the stochastic process
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�ρ = (ρ ,ρ2 , ρ ,ρ2 ) ∈ Eα,4
T0,D

given by Proposition 1.3, where α is picked such that 1
4 ≤ 3

2 − (H0 + H1 + H2) <

α < 1
2 , and set u � + + w. �

Proof of Theorem 1.7. For fixed n ≥ 1, let un be the solution of (23) and set wn � un − n − n
, where n and

n

are defined in (14). Following the lines of Section 1.1, we can explicitly verify that wn is the solution of (26) associated

with the process (�n
ρ)n≥1 � (ρ

n
,ρ2 n, ρ

n
,ρ2

n
). Observe indeed that the following simplification occurs: setting

vn � un − n, we have

vn = ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x

[
ρ2(vn + n)2 − σn + (

1 − ρ2)( n)2]
= ∂t (Gt ∗x φ0) + Gt ∗x φ1 + G ∗t,x

[
ρ2(vn

)2 + 2
(
ρvn

) · (ρ n)] + G ∗t,x
n,

and from there it is readily checked that wn(= vn −G∗t,x
n) satisfies the expected equation (26). Then, based on (29)–

(30), and keeping the result of Proposition 1.3 in mind, the almost sure convergence of wn in L∞
T0
W 1

2 ,2 (for some T0 > 0)
can be shown with the very same arguments as those of the proof of [1, Theorem 1.7]. The (almost sure) convergence of
ρun in L∞

T0
W−α,2 immediately follows, which entails the desired (almost sure) convergence of un in L∞

T0
(W−α,2({|x| ≤

1})).
For the asymptotic estimate of σn, let us slightly anticipate the notations of Section 3: in particular, using the forth-

coming formula (35), we get that

σn
t (x) = E

[( n
t (x)

)2] = c

∫
|ξ |≤2n

dξ

|ξ |2H0−1

∫
|η|≤2n

dη1 dη2

|η1|2H1−1|η2|2H2−1

∣∣γt

(
ξ, |η|)∣∣2

= c

∫ 2n

0

dr

r2(H1+H2)−3

∫
|ξ |≤2n

dξ

|ξ |2H0−1

∣∣γt (ξ, r)
∣∣2

.

Assertion (24) is now a straightforward consequence of [1, Proposition 2.4]. �

3. Stochastic constructions

Let us now turn to the main technical part of our analysis, namely the proofs of Propositions 1.3 and 1.4, which includes

in particular the construction of the central path �ρ = (ρ ,ρ2 , ρ ,ρ2 ) above the fractional noise. To this end, our
arguments will occasionally appeal to some of the technical results of [1]. However, recall that, in comparison with the
setting of [1], we are dealing with a rougher situation here and third-order processes must also come into the picture, so
that new (sophisticated) estimates shall be required.

Let us start with the introduction of a few convenient notations (related to the wave kernel and the fractional noise)
that we will extensively use in the sequel. First, we set, for all H = (H0,H1,H2) ∈ (0,1)3, ξ ∈R, η ∈R

2 and r, t ≥ 0,

γt (ξ, r) � eıξ t

∫ t

0
dse−ıξs sin(sr)

r
, γs,t (ξ, r) � γt (ξ, r) − γs(ξ, r), (32)

KH (η) � |η1|1−2H1 |η2|1−2H2

1 + |η|1+2H0
. (33)

For all τ ∈ { , , , }, 1 ≤ n ≤ m and 0 ≤ s, t ≤ 1, let us also set τ
n,m
t � τm

t − τn
t , and then, for f ∈ {τn, τm, τn,m},

fs,t � ft − fs .
With this notation in mind, the following “covariance” identity clearly holds true: for all a = (a1, a2), resp. b =

(b1, b2), with ai ∈ {n,m, {n,m}}, resp. bi ∈ {s, t, {s, t}}, and all y, ỹ ∈ R
2,

E
[ a1

b1
(y)

a2
b2

(ỹ)
] = cH

∫
R2

dηeı〈η,y〉e−ı〈η,ỹ〉LH,a
b (η), (34)

where

L
H,a
b (η) � 1

|η1|2H1−1|η2|2H2−1

∫
(ξ,η)∈Da1∩Da2

dξ
γb1(ξ, |η|)γb2(ξ, |η|)

|ξ |2H0−1
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with

Dn �
{|ξ | ≤ 2n, |η| ≤ 2n

}
, Dm �

{|ξ | ≤ 2m, |η| ≤ 2m
}

and Dn,m � Dm\Dn.

In the same way, it holds that

E
[ a1

b1
(y)

a2
b2

(ỹ)
] = cH

∫
R2

dηeı〈η,y〉eı〈η,ỹ〉L̃H,a
b (η) (35)

with

L̃
H,a
b (η) � 1

|η1|2H1−1|η2|2H2−1

∫
(ξ,η)∈Da1 ∩Da2

dξ
γb1(ξ, |η|)γb2(ξ, |η|)

|ξ |2H0−1
.

Our estimates toward Proposition 1.3 and Proposition 1.4 will heavily rely on the following bounds for L
H,a
b :

Lemma 3.1. For all H = (H0,H1,H2) ∈ (0,1)3, ε ∈ (0,min(H0,
1
4 )), 0 ≤ n ≤ m, 0 ≤ s, t, u ≤ 1 and η ∈ R

2, it holds
that

max
(∣∣LH,(m,m)

t,t (η)
∣∣, ∣∣L̃H,(m,m)

t,t (η)
∣∣) � KHε,0(η) (36)

and

max
(∣∣LH,((n,m),m)

(s,t),t (η)
∣∣, ∣∣L̃H,((n,m),m)

(s,t),t (η)
∣∣) � 2−nε|t − s|ε{KHε,0(η) + KHε,1(η) + KHε,2(η)

}
, (37)

where Hε,0 � (H0 − ε,H1,H2), Hε,1 � (H0,H1 − ε,H2), Hε,2 � (H0,H1,H2 − ε), and the proportional constants do
no depend on (n,m), (s, t) and η.

Proof. Thanks to [1, Corollary 2.2], we can assert that, under the assumptions of the lemma, and for all r ≥ 0, one has∫
R

dξ
|γs,t (ξ, r)||γu(ξ, r)|

|ξ |2H0−1
� |t − s|ε

1 + r1+2(H0−ε)
, (38)

where the proportional constant only depends on H0 and ε. Both estimates (36) and (37) immediately follow. �

3.1. Proof of Proposition 1.3

The proof consists in showing that for all τ ∈ { , , , }, p ≥ 2, 0 ≤ s < t ≤ T and 1 ≤ n ≤ m, one has∫
R2

dxE
[∣∣F−1

x

({
1 + | · |2} |τ |

2 Fx

(
ρ · τn,m

s,t

))
(x)

∣∣2]p ≤ c2−2nεp|t − s|2εp, (39)

for some ε > 0, some constant c > 0 that does not depend on n, m, s, t , and where the “order” |τ | of τ is naturally defined

as | | � −α, | | � −2α, | | � 1 − 2α and | | � −α.
Indeed, once endowed with (39), we can first use the hypercontractivity property of Gaussian chaoses to assert that

E
[
N

[
ρ · τn,m

s,t ;W |τ |,2p
]2p] ≤ c2−2nεp|t − s|2εp.

Then, thanks to the Garsia–Rodemich–Rumsey inequality, we get that, for 0 < ε0 < ε and for p large enough,

E
[
N

[
ρ · τn,m;Cε0

([0, T ];W |τ |,2p
)]2p] ≤ c2−2nεp,

which ensures the convergence of (ρ ·τn) in the space L2p(�;Cε0([0, T ];W |τ |,2p)). The desired almost sure convergence
finally follows from an application of Borel–Cantelli lemma.

Before we turn to the proof of (39), let us state an elementary technical property that somehow sums up the role of the
cut-off function ρ in the subsequent computations:
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Lemma 3.2. Fix σ ∈R and let R : R2 →R be defined as

R(x) �
∫∫

(R2)2

dλdλ̃

{1 + |λ|2}σ {1 + |λ̃|2}σ eı〈x,λ−λ̃〉
∫∫

(R2)2
dξ dξ̃ ρ̂(λ − ξ)ρ̂(−λ̃ + ξ̃ )Q(ξ, ξ̃ ),

for some integrable function Q : (R2)2 →R. Then, for every p ≥ 1, it holds that∣∣∣∣∫
R2

dxR(x)p
∣∣∣∣ �

(∫∫
(R2)2

dλdλ̃

{1 + |λ|2}σ {1 + |λ̃|2}σ
∣∣Q(λ, λ̃)

∣∣)p

,

where the proportional constant depends on ρ, p and σ .

Proof. One has∫
R2

dxR(x)p

=
∫
R2

dx

p∏
j=1

∫∫
(R2)2

dλj dλ̃j

{1 + |λj |2}σ {1 + |λ̃j |2}σ
eı〈x,λj −λ̃j 〉

×
∫∫

(R2)2
dξj dξ̃j ρ̂(λj − ξj )ρ̂(−λ̃j + ξ̃j )Q(ξj , ξ̃j )

=
p−1∏
j=1

∫∫
(R2)2

dλj dλ̃j

{1 + |λj |2}σ {1 + |λ̃j |2}σ
∫∫

(R2)2
dξj dξ̃j ρ̂(λj − ξj )ρ̂(−λ̃j + ξ̃j )Q(ξj , ξ̃j )

×
∫
R2

dλp

{1 + |λp|2}σ {1 + |λp + �
p−1
k=1 (λk − λ̃k)|2}σ

×
∫∫

(R2)2
dξp dξ̃pρ̂(λp − ξp)ρ̂

(−λp − �
p−1
k=1 (λk − λ̃k) + ξ̃p

)
Q(ξp, ξ̃p),

and so∣∣∣∣∫
R2

dxR(x)p
∣∣∣∣

≤
p−1∏
j=1

∫∫
(R2)2

dξj dξ̃j

∣∣Q(ξj , ξ̃j )
∣∣ ∫∫

(R2)2

dλj dλ̃j

{1 + |ξj + λj |2}σ {1 + |ξ̃j − λ̃j |2}σ
∣∣ρ̂(λj )

∣∣∣∣ρ̂(λ̃j )
∣∣

×
∫∫

(R2)2
dξp dξ̃p

∣∣Q(ξp, ξ̃p)
∣∣

×
∫
R2

dλp

{1 + |ξp + λp|2}σ {1 + |ξ̃p − λp − �
p−1
k=1 (λk − λ̃k)|2}σ

∣∣ρ̂(λp)
∣∣∣∣ρ̂(

λp + �
p−1
k=1 (λk − λ̃k)

)∣∣.
The conclusion now comes from the fact that for all λ, ξ ∈ R

2 and κ > 0, one has∣∣ρ̂(λ)
{
1 + |ξ + λ|2}−σ ∣∣ ≤ cσ,ρ,κ

{
1 + |λ|2}−κ{

1 + |ξ |2}−σ
.

Indeed, as ρ is smooth and compactly-supported, one has, if σ ≥ 0,∣∣ρ̂(λ)
{
1 + |ξ + λ|2}−σ ∣∣

= ∣∣ρ̂(λ)
{
1 + |ξ + λ|2}−σ ∣∣1{|λ|> 1

2 |ξ |} + ∣∣ρ̂(λ)
{
1 + |ξ + λ|2}−σ ∣∣1{|λ|< 1

2 |ξ |}

≤ cσ

[∣∣ρ̂(λ)
∣∣1{|λ|> 1

2 |ξ |} + ∣∣ρ̂(λ)
∣∣{1 + |ξ |2}−σ 1{|λ|< 1

2 |ξ |}
]
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≤ cσ,ρ,κ

[{
1 + |λ|2}−κ{

1 + |λ|2}−σ 1{|λ|> 1
2 |ξ |} + {

1 + |λ|2}−κ{
1 + |ξ |2}−σ 1{|λ|< 1

2 |ξ |}
]

≤ cσ,ρ,κ

{
1 + |λ|2}−κ{

1 + |ξ |2}−σ
,

and we can exhibit similar bounds for σ < 0. �

3.1.1. Convergence of the first component
It actually corresponds to the result of [1, Proposition 1.2]. Let us only recall that the convergence is here a straightforward
consequence of the elementary property∫

R2

dη

{1 + |η|2}α KH (η) < ∞, (40)

valid for all H = (H0,H1,H2) ∈ (0,1)3 and α > 3
2 − (H0 + H1 + H2).

3.1.2. Convergence of the second component
In this situation, let us first expand the expectation in the left-hand side of (39) (with τ = ) as∫∫

(R2)2

dλdλ̃

{1 + |λ|2}α{1 + |λ̃|2}α eı〈x,λ−λ̃〉
E

[(
Fx(ρ) ∗Fx

( n,m
s,t

))
(λ)

(
Fx(ρ) ∗Fx

( n,m
s,t

))
(λ̃)

]
=

∫∫
(R2)2

dλdλ̃

{1 + |λ|2}α{1 + |λ̃|2}α eı〈x,λ−λ̃〉
∫∫

(R2)2
dξ dξ̃ ρ̂(λ − ξ)ρ̂(−λ̃ + ξ̃ )

×
∫∫

(R2)2
dy dỹe−ı〈ξ,y〉eı〈ξ̃ ,ỹ〉

E
[ n,m

s,t (y)
n,m
s,t (ỹ)

]
. (41)

Thanks to Lemma 3.2, we are thus left with the estimation of the quantity

Q �
∫∫

(R2)2

dλdλ̃

{1 + |λ|2}α{1 + |λ̃|2}α
∣∣∣∣∫∫

(R2)2
dy dỹe−ı〈λ,y〉eı〈λ̃,ỹ〉

E
[ n,m

s,t (y)
n,m
s,t (ỹ)

]∣∣∣∣.
Using Wick formula, it is easy to check that for every j = 1, . . . , p, the quantity

E
[ n,m

s,t (y)
n,m
s,t (ỹ)

]
can be expanded as a sum of the form∑

(a,b)∈A
ca,bE

[ a1
b1

(y)
a2
b2

(ỹ)
]
E

[ a3
b3

(y)
a4
b4

(ỹ)
]

(42)

for some index set A such that ai ∈ {n,m, {n,m}}, bi ∈ {s, t, {s, t}}, and one has both {a1, . . . , a4} ∩ {{n,m}} �= ∅ and
{b1, . . . , b4} ∩ {{s, t}} �= ∅ (in other words, each of the summands contains at least one increment with respect to (n,m)

and one increment with respect to (s, t)).
By formula (34), each of the above summands can be written as

E
[ a1

b1
(y)

a2
b2

(ỹ)
]
E

[ a3
b3

(y)
a4
b4

(ỹ)
]

=
∫∫

(R2)2
dη dη̃eı〈η,y〉e−ı〈η,ỹ〉eı〈η̃,y〉e−ı〈η̃,ỹ〉LH,(a1,a2)

b1,b2
(η)L

H,(a3,a4)
b3,b4

(η̃),

and so∣∣∣∣∫∫
(R2)2

dy dỹe−ı〈λ,y〉eı〈λ̃,ỹ〉
E

[ n,m
s,t (y)

n,m
s,t (ỹ)

]∣∣∣∣
≤

∑
(a,b)∈A

ca,b

∫∫
(R2)2

dη dη̃
∣∣LH,(a1,a2)

b1,b2
(η)

∣∣∣∣LH,(a3,a4)
b3,b4

(η̃)
∣∣δ{λ=η+η̃}δ{λ̃=η+η̃}. (43)
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Combining this bound with the bounds of Lemma 3.1, we can assert that for any ε > 0 small enough,

Q � 2−2nε|t − s|2ε

×
∫∫

(R2)2

dη dη̃

{1 + |η + η̃|2}2α

{
KHε,0(η) + KHε,1(η) + KHε,2(η)

}
× {

KHε,0(η̃) + KHε,1(η̃) + KHε,2(η̃)
}
. (44)

The conclusion is then an immediate consequence of the following technical result:

Lemma 3.3. For all H = (H0,H1,H2), H̃ = (H̃0, H̃1, H̃2) ∈ (0,1)3 satisfying

0 < H1, H̃1 <
3

4
, 0 < H2, H̃2 <

3

4
, 1 < H0 + H1 + H2 ≤ 5

4
, 1 < H̃0 + H̃1 + H̃2 ≤ 5

4
, (45)

and any

α ∈
(

max

(
3

2
− (H0 + H1 + H2),

3

2
− (H̃0 + H̃1 + H̃2)

)
,

1

2

)
, (46)

it holds that∫∫
(R2)2

dη dη̃

{1 + |η − η̃|2}2α
KH (η)KH̃ (η̃) < ∞.

Proof.
Step 0: Simplification of the problem. Let us show that the problem actually reduces to the consideration of the four

following integrals:

J1 �
∫
R2

dη

∫
R2

dη̃
1

{1 + |η|2}α
1

{1 + |η̃|2}α KH (η)KH̃ (η̃),

J2 �
∫ ∞

0
dη1

∫ ∞

0
dη̃1

∫ ∞

0
dη2

∫ 2η2

η2

dη̃2
1

{1 + η2
1 + (η2 − η̃2)2}α

1

{1 + η̃2
1 + (η2 − η̃2)2}α KH (η)KH̃ (η̃),

J3 �
∫ ∞

0
dη1

∫ 2η1

η1

dη̃1

∫ ∞

0
dη2

∫ 2η2

η2

dη̃2
1

{1 + |η − η̃|2}2α
KH (η)KH̃ (η̃)

and

J4 �
∫ ∞

0
dη1

∫ 2η1

η1

dη̃1

∫ ∞

0
dη̃2

∫ 2η̃2

η̃2

dη2
1

{1 + |η − η̃|2}2α
KH (η)KH̃ (η̃).

First, observe that for obvious symmetric and sign reasons, we can focus on the integration over the two domains
D1 � {η1 < 0 < η̃1, (η2, η̃2) ∈R

2} and D2 � {0 < η1 < η̃1, (η2, η̃2) ∈R
2}.

As far as D1 is concerned, let us decompose the domain as D1 = D1
1 ∪ D2

1, with D1
1 � {η1 < 0 < η̃1, η2η̃2 < 0}

and D2
1 � {η1 < 0 < η̃1, η2η̃2 ≥ 0}. For (η, η̃) ∈ D1

1, one has |ηi − η̃i |2 ≥ max(|ηi |2, |η̃i |2) for i ∈ {1,2}, and so the
integral over D1

1 is bounded by J1. For (η, η̃) ∈ D2
1, one has again |η1 − η̃1|2 ≥ max(|η1|2, |η̃1|2), as well as one of the

following four situations: |η2| ≥ 2|η̃2|, |η̃2| ≥ 2|η2|, |η2| ≤ |η̃2| ≤ 2|η2| or |η̃2| ≤ |η2| ≤ 2|η̃2|. In the first two cases, one
has |η2 − η̃2|2 ≥ 1

4 max(|η2|2, |η̃2|2) and so we can again go back to the integral J1, while the integration in the third and
fourth cases clearly reduces to the consideration of J2.

Along the same ideas, decompose D2 into D2 = D1
2 ∪ D2

2, with D1
2 � {0 < η1 < η̃1 < 2η1, (η2, η̃2) ∈ R

2} and D2
2 �

{0 < 2η1 < η̃1, (η2, η̃2) ∈ R
2}. For (η, η̃) ∈ D1

2, one has either: (i) η2η̃2 > 0 and 0 < |η2| < |η̃2| < 2|η2|, which leads
us to the consideration of J3; (ii) η2η̃2 > 0 and 0 < |η̃2| < |η2| < 2|η̃2|, which leads us to the consideration of J4;
(iii) η2η̃2 > 0 and (0 < 2|η̃2| < |η2| or 0 < 2|η2| < |η̃2|), so that |η2 − η̃2|2 ≥ 1

4 max(|η2|2, |η̃2|2), which, by inverting the
roles of (η1, η̃1) and (η2, η̃2), brings us back to J2; (iv) η2η̃2 < 0, so that |η2 − η̃2|2 ≥ max(|η2|2, |η̃2|2), and we are again
brought back to J2. Finally, if (η, η̃) ∈ D2

2, then |η1 − η̃1|2 ≥ 1
4 max(|η1|2, |η̃1|2) and we can use the same splitting as

above for (η2, η̃2) in order to reduce the problem to the consideration of either J1 or J2.
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Step 1: Estimation of J1. The quantity under consideration here can of course be written as

J1 =
(∫

R2

dη

{1 + |η|2}α KH (η)

)(∫
R2

dη̃

{1 + |η̃|2}α KH̃ (η̃)

)
, (47)

and we can thus conclude with the first-order statement (40).
Step 2: Estimation of J2. One has here

J2 =
∫ ∞

0
dη1

∫ ∞

0
dη̃1

∫ ∞

0
dη2η2

∫ 1

0
dr

1

{1 + η2
1 + η2

2r
2}α

1

{1 + η̃2
1 + η2

2r
2}α

× |η1|1−2H1 |η̃1|1−2H̃1

|η2|2(H2+H̃2)−2(1 + r)2H̃2−1

1

{1 + |η|1+2H0}
1

{1 + (η̃2
1 + η2

2(1 + r)2)H̃0+ 1
2 }

�
∫ ∞

0
dη1

∫ ∞

0
dη̃1

∫ ∞

0
dη2

|η1|1−2H1 |η̃1|1−2H̃1

|η2|2(H2+H̃2)−3

1

{1 + |η|1+2H0}{1 + (η̃2
1 + η2

2)
H̃0+ 1

2 }

×
∫ 1

0
dr

1

{1 + η2
1 + η2

2r
2}α

1

{1 + η̃2
1 + η2

2r
2}α

�
∫ ∞

0

dη2

|η2|2(H2+H̃2)−3

[∫ ∞

0

dη1

|η1|2H1−1{1 + (η2
1 + η2

2)
H0+ 1

2 }

(∫ 1

0

dr

{1 + η2
1 + η2

2r
2}2α

) 1
2
]

×
[∫ ∞

0

dη̃1

|η̃1|2H̃1−1{1 + (η̃2
1 + η2

2)
H̃0+ 1

2 }

(∫ 1

0

dr

{1 + η̃2
1 + η2

2r
2}2α

) 1
2
]

�
∫ ∞

0

dη2

|η2|2(H2+H̃2)−3

(∫ ∞

0

dη1

|η1|4H1−2{1 + (η2
1 + η2

2)
2H0+1}

) 1
2

×
(∫ ∞

0

dη̃1

|η̃1|4H̃1−2{1 + (η̃2
1 + η2

2)
2H̃0+1}

) 1
2
(∫ ∞

0
dλ

∫ 1

0

dr

{1 + λ2 + η2
2r

2}2α

)

�
∫ ∞

0

dη2

|η2|2(H2+H̃2)−2

(∫ ∞

0

dη1

|η1|4H1−2{1 + (η2
1 + η2

2)
2H0+1}

) 1
2

×
(∫ ∞

0

dη̃1

|η̃1|4H̃1−2{1 + (η̃2
1 + η2

2)
2H̃0+1}

) 1
2
(∫ ∞

0
dλ

∫ η2

0

dr

{1 + λ2 + r2}2α

)

�
(∫ ∞

0

dη2

|η2|4H2−2

∫ ∞

0

dη1

|η1|4H1−2{1 + |η|4H0+2}
(∫ ∞

0
dλ

∫ η2

0

dr

{1 + λ2 + r2}2α

)) 1
2

×
(∫ ∞

0

dη̃2

|η̃2|4H̃2−2

∫ ∞

0

dη̃1

|η̃1|4H̃1−2{1 + |η̃|4H̃0+2}
(∫ ∞

0
dλ

∫ η̃2

0

dr

{1 + λ2 + r2}2α

)) 1
2

. (48)

At this point, let us pick ε > 0 such that 2α − 1
2 − ε > 0 (noting that α > 1

4 by (45)) and write∫ ∞

0
dλ

∫ η2

0

dr

{1 + λ2 + r2}2α
≤

∫ ∞

0

dλ

{1 + λ2} 1
2 +ε

∫ η2

0

dr

{1 + r2}2α− 1
2 −ε

� 1 + |η2|2−4α+2ε,

so that∫ ∞

0

dη2

|η2|4H2−2

∫ ∞

0

dη1

|η1|4H1−2{1 + |η|4H0+2}
(∫ ∞

0
dλ

∫ η2

0

dr

{1 + λ2 + r2}2α

)
�

∫ ∞

0

dη1

|η1|4H1−2{1 + |η1|4H0+2}
∫ 1

0

dη2

|η2|4H2−2
+

∫ ∞

0
dη1

∫ ∞

1
dη2

1

|η1|4H1−2|η2|4H2+4α−4−2ε|η|4H0+2
.
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Using conditions (45)–(46), it is easy to check that the latter integrals are finite for any ε > 0 small enough. Note in
particular that, since H0 +H1 +H2 > 1 and 0 < H2 < 3

4 , one has H0 +H1 > 1
4 , which guarantees the convergence of the

first integral.
It is then clear that these arguments also apply to the second term in (48), which achieves to prove that J2 is finite.
Step 3: Estimation of J3. Let us write

J3 =
∫ ∞

0
dη1

∫ ∞

0
dη2η1η2

∫ 1

0
dr1

∫ 1

0
dr2

1

{1 + η2
1r

2
1 + η2

2r
2
2 }2α

× (1 + r1)
1−2H̃1(1 + r2)

1−2H̃2

|η1|2(H1+H̃1)−2|η2|2(H2+H̃2)−2

1

1 + |η|2H0+1

1

1 + (η2
1(1 + r1)2 + η2

2(1 + r2)2)H̃0+ 1
2

�
∫ ∞

0

∫ ∞

0

dη1 dη2

|η1|2(H1+H̃1)−2|η2|2(H2+H̃2)−2{1 + |η|2(H0+H̃0)+2}
∫ η1

0
dr1

∫ η2

0
dr2

1

{1 + r2
1 + r2

2 }2α

�
∫

0<η1,η2<1

dη1 dη2

|η1|2(H1+H̃1)−3|η2|2(H2+H̃2)−3

+
∫

0<η1,η2<∞
η1∨η2>1

dη1 dη2

|η1|2(H1+H̃1)−2|η2|2(H2+H̃2)−2{1 + |η|2(H0+H̃0)+2}
∫∫

[0,η1∨η2]2

dr1 dr2

{1 + r2
1 + r2

2 }2α
.

The first integral is clearly finite. Then, since α ∈ ( 1
4 , 1

2 ),∫∫
[0,η1∨η2]2

dr1 dr2

{1 + r2
1 + r2

2 }2α
�

∫ 2(η1∨η2)

0
dρ

ρ

{1 + ρ2}2α
� 1 + (η1 ∨ η2)

2−4α,

and so, using the fact that Hi, H̃i ∈ (0, 3
4 ) for i ∈ {1,2}, we get∫

0<η1,η2<∞
η1∨η2>1

dη1 dη2

|η1|2(H1+H̃1)−2|η2|2(H2+H̃2)−2{1 + |η|2(H0+H̃0)+2}
∫∫

[0,η1∨η2]2

dr1 dr2

{1 + r2
1 + r2

2 }2α

�
∫ ∞

1

dr

r2(H0+H1+H2)+2(H̃0+H̃1+H̃2)+4α−5
.

Thanks to (46), we can assert that the latter integral is finite, and accordingly J3 is finite too.
Step 4: Estimation of J4. We have of course

J4 =
∫ ∞

0
dη1

∫ 2η1

η1

dη̃1

∫ ∞

0
dη2

∫ η2

η2
2

dη̃2
1

{1 + |η − η̃|2}2α
KH (η)KH (η̃),

and from there it is easy to mimic the arguments that we have used for J3. �

3.1.3. Convergence of the third component
Noting that

Fx

( n,m

s,t

)
(ξ) =Fx

((
G ∗t,x

n,m
)
s,t

)
(ξ) =

∫ t

0
duFx(Gu)(ξ)Fx

( n,m
s−u,t−u

)
(ξ),

we get

E
[∣∣F−1

x

({
1 + | · |2} 1

2 (1−2α)Fx

(
ρ · n,m

s,t

))
(x)

∣∣2]
=

∫∫
(R2)2

dλdλ̃

{1 + |λ|2} 1
2 (2α−1){1 + |λ̃|2} 1

2 (2α−1)
eı〈x,λ−λ̃〉

∫∫
(R2)2

dξ dξ̃ ρ̂(λ − ξ)ρ̂(−λ̃ + ξ̃ )

×
∫∫

[0,t]2
dudũFx(Gu)(ξ)Fx(Gũ)(ξ̃ )

∫∫
(R2)2

dy dỹe−ı〈ξ,y〉eı〈ξ̃ ,ỹ〉
E

[ n,m
s−u,t−u(y)

n,m
s−ũ,t−ũ

(ỹ)
]
,
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and so, thanks to Lemma 3.2, we only need to estimate the quantity

Q �
∫∫

(R2)2

dλdλ̃

{1 + |λ|2} 1
2 (2α−1){1 + |λ̃|2} 1

2 (2α−1)

×
∫∫

[0,t]2
dudũ

∣∣Fx(Gu)(λ)
∣∣∣∣Fx(Gũ)(λ̃)

∣∣∣∣∣∣∫∫
(R2)2

dy dỹe−ı〈λ,y〉eı〈λ̃,ỹ〉
E

[ n,m
s−u,t−u(y)

n,m
s−ũ,t−ũ

(ỹ)
]∣∣∣∣.

To this end, we can first use the bound (43), together with the estimates of Lemma 3.1, to deduce that, for any ε > 0
small enough,

Q � 2−2nε|t − s|2ε

∫∫
(R2)2

dη dη̃

{1 + |η + η̃|2}2α−1

∫∫
[0,t]2

dudũ
∣∣Fx(Gu)(η + η̃)

∣∣∣∣Fx(Gũ)(η + η̃)
∣∣

× {
KHε,0(η) + KHε,1(η) + KHε,2(η)

}{
KHε,0(η̃) + KHε,1(η̃) + KHε,2(η̃)

}
.

Using the elementary estimate

sup
u∈[0,1]

∣∣Fx(Gu)(η + η̃)
∣∣ �

{
1 + |η + η̃|2}− 1

2 , (49)

we have thus, for any ε > 0 small enough,

Q � 2−2nε|t − s|2ε

×
∫∫

(R2)2

dη dη̃

{1 + |η + η̃|2}2α

{
KHε,0(η) + KHε,1(η) + KHε,2(η)

}{
KHε,0(η̃) + KHε,1(η̃) + KHε,2(η̃)

}
.

Observe that we are here in the very same position as in (44), and so, using the same technical Lemma 3.3, we get the

desired estimate (39) for τ = .

3.1.4. Convergence of the fourth component

First, observe that Fx(
n,m

s,t ) can be readily expanded as

Fx

( n,m

s,t

) = Fx

((
G ∗t,x

n,m
)
s,t

) ∗Fx

( m
t

) +Fx

((
G ∗t,x

n
)
s,t

) ∗Fx

( n,m
t

)
+Fx

((
G ∗t,x

n,m
)
s

) ∗Fx

( m
s,t

) +Fx

((
G ∗t,x

n
)
s

) ∗Fx

( n,m
s,t

)
.

As it should be clear to the reader, the subsequent arguments could be applied to any of these four terms, and thus we will
only focus on the estimate related to

E
[∣∣F−1

x

({
1 + | · |2}− α

2
(
Fx(ρ) ∗ (

Fx

((
G ∗ n,m

)
s,t

) ∗Fx

( m
t

))))
(x)

∣∣2]
=

∫∫
(R2)2

dλdλ̃

{1 + |λ|2} α
2 {1 + |λ̃|2} α

2
eı〈x,λ−λ̃〉

∫∫
(R2)2

dξ dξ̃ ρ̂(λ − ξ)ρ̂(−λ̃ + ξ̃ )

×
∫∫

(R2)2
dβ dβ̃

∫∫
[0,t]2

dudũFx(Gu)(β)Fx(Gũ)(β̃)

×
∫∫

(R2)2
dy dỹ

∫∫
(R2)2

dzdz̃e−ı〈β,y〉eı〈β̃,ỹ〉e−ı〈ξ−β,z〉eı〈ξ̃−β̃,z̃〉

×E
[ n,m

s−u,t−u(y)
m
t (z)

n,m
s−ũ,t−ũ

(ỹ)
m
t (z̃)

]
, (50)

which, by Lemma 3.2, reduces to bounding the quantity

Q �
∫∫

(R2)2

dλdλ̃

{1 + |λ|2} α
2 {1 + |λ̃|2} α

2
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×
∣∣∣∣∫∫

(R2)2
dβ dβ̃

∫∫
[0,t]2

dudũFx(Gu)(β)Fx(Gũ)(β̃)

∫∫
(R2)2

dy dỹ

×
∫∫

(R2)2
dzdz̃e−ı〈β,y〉eı〈β̃,ỹ〉e−ı〈λ−β,z〉eı〈λ̃−β̃,z̃〉

E
[ n,m

s−u,t−u(y)
m
t (z)

n,m
s−ũ,t−ũ

(ỹ)
m
t (z̃)

]∣∣∣∣.
Using Wick formula, we can expand (along the same idea as in Section 3.1.2) the expectation

E
[ n,m

s−u,t−u(y)
m
t (z)

n,m
s−ũ,t−ũ

(ỹ)
m
t (z̃)

]
as a sum of terms of the form

c1
a;bE

[ a1
b1

(y)
a2
b2

(ỹ)
]
E

[ a3
b3

(y)
a4
b4

(ỹ)
]
E

[ m
t (z)

m
t (z̃)

]
, (51)

c2
a;bE

[ a1
b1

(y)
a2
b2

(ỹ)
]
E

[ a3
b3

(y)
m
t (z)

]
E

[ a4
b4

(ỹ)
m
t (z̃)

]
(52)

or

c3
a;bE

[ a1
b1

(y)
a2
b2

(ỹ)
]
E

[ a3
b3

(y)
m
t (z̃)

]
E

[ a4
b4

(ỹ)
m
t (z)

]
, (53)

where ai ∈ {n,m, {n,m}}, b1, b3 ∈ {s − u, t − u, {s − u, t − u}}, b2, b4 ∈ {s − ũ, t − ũ, {s − ũ, t − ũ}}, and one has both
{a1, . . . , a4}∩{{n,m}} �= ∅ and {b1, . . . , b4}∩ ({{s −u, t −u}, {s − ũ, t − ũ}}) �=∅. An example of a pair (a;b) satisfying
these conditions is given by

(a;b) = (({n,m},m,m,m
); ({s − u, t − u}, t − ũ, t − u, t − ũ

))
. (54)

In the sequel, and for the sake of clarity, we will only focus on the estimates associated with this particular pair (a;b),
but it should (again) be clear to the reader that any other pair (a;b) satisfying the above conditions could be treated with
similar arguments.

Injecting successively (51), (52) and (53) into (50) (with (a;b) fixed as in (54)) gives rise to the consideration of three
specific integrals, that we denote by J1, J2 and J3, respectively.

Estimation of J1. Using the covariance formula (34), we get on the one hand∫∫
(R2)2

dy dỹe−ı〈β,y〉eı〈β̃,ỹ〉
E

[ n,m
s−u,t−u(y)

m
t−ũ(ỹ)

]
E

[ m
t−u(y)

m
t−ũ(ỹ)

]
= c

∫∫
(R2)2

dη dη̃L
H,((n,m),m)

(s−u,t−u),t−ũ
(η)L

H,(m,m)

t−u,t−ũ
(η̃)

(∫
R2

dye−ı〈y,β−(η+η̃)〉
)(∫

R2
dỹeı〈ỹ,β̃−(η+η̃)〉

)
= c

∫∫
(R2)2

dη dη̃L
H,((n,m),m)

(s−u,t−u),t−ũ
(η)L

H,(m,m)

t−u,t−ũ
(η̃)δ{β=β̃=η+η̃}, (55)

and on the other hand∫∫
(R2)2

dzdz̃e−ı〈λ−β,z〉eı〈λ̃−β̃,z̃〉
E

[ m
t (z)

m
t (z̃)

] = c

∫
R2

d ˜̃ηL
H,(m,m)
t,t ( ˜̃η)δ{λ−β=λ̃−β̃= ˜̃η},

so that

J1 �
∫∫

[0,t]2
dudũ

∫∫∫
(R2)3

dη dη̃ d ˜̃η
{1 + |η + η̃ + ˜̃η|2}α

∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η)

∣∣∣∣LH,(m,m)

t−u,t−ũ
(η̃)

∣∣∣∣LH,(m,m)
t,t ( ˜̃η)

∣∣
× ∣∣Fx(Gu)(η + η̃)

∣∣∣∣Fx(Gũ)(η + η̃)
∣∣ (56)

�
∫∫

[0,t]2
dudũ

∫∫
(R2)2

dηd ˜̃η{
1 + |η + ˜̃η|2}−α∣∣Fx(Gu)(η)

∣∣∣∣Fx(Gũ)(η)
∣∣

× ∣∣LH,(m,m)
t,t ( ˜̃η)

∣∣(∫
R2

dη̃
∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η − η̃)

∣∣∣∣LH,(m,m)

t−u,t−ũ
(η̃)

∣∣). (57)
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At this point, we can apply Lemma 3.1 to assert that for any ε > 0 small enough,

∣∣LH,(m,m)
t,t ( ˜̃η)

∣∣(∫
R2

dη̃
∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η − η̃)

∣∣∣∣LH,(m,m)

t−u,t−ũ
(η̃)

∣∣)

� 2−nε|t − s|εKHε,0( ˜̃η)

2∑
i=0

(∫
R2

dη̃KHε,i (η − η̃)KHε,0(η̃)

)
.

Thanks to the forthcoming Lemma 3.4, we know that for every i ∈ {0,1,2} and for any ε > 0 small enough,

sup
η∈R2

∫
R2

dη̃KHε,i (η − η̃)KHε,0(η̃) ≤
(∫

R2
dη̃

∣∣KHε,i (η̃)
∣∣2

) 1
2
(∫

dη̃
∣∣KHε,0(η̃)

∣∣2
) 1

2

< ∞.

Going back to (57) and using also (49), we have thus obtained that

J1 � 2−nε|t − s|ε
∫
R2

d ˜̃ηKHε,0( ˜̃η)

∫
R2

dη
{
1 + |η + ˜̃η|2}−α{

1 + |η|2}−1
. (58)

Applying the subsequent technical Lemma 3.5 finally yields

J1 � 2−nε|t − s|ε
∫
R2

d ˜̃η
{1 + | ˜̃η|2}α−ε

KHε,0( ˜̃η),

and the conclusion now comes from the first-order assertion (40).
Estimation of J2. Using the same arguments as in (55) (with the help of both (34) and (35)), we get∫∫

(R2)2
dy dỹ

∫∫
(R2)2

dzdz̃e−ı〈β,y〉eı〈β̃,ỹ〉e−ı〈λ−β,z〉eı〈λ̃−β̃,z̃〉

×E
[ n,m

s−u,t−u(y)
m
t−ũ(ỹ)

]
E

[ m
t−u(y)

m
t (z)

]
E

[ m
t−ũ(ỹ)

m
t (z̃)

]
= c

∫∫∫
(R2)3

dη dη̃ d ˜̃ηL
H,((n,m),m)

(s−u,t−u),t−ũ
(η)L̃

H,(m,m)
t−u,t (η̃)L̃

H,(m,m)

t−ũ,t
( ˜̃η)δ{β=η+η̃}δ{β̃=η+ ˜̃η}δ{λ=η+2η̃}δ{λ̃=η+2 ˜̃η},

and so

J2 �
∫∫

[0,t]2
dudũ

∫∫∫
(R2)3

dη dη̃ d ˜̃η∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η)

∣∣∣∣L̃H,(m,m)
t−u,t (η̃)

∣∣∣∣L̃H,(m,m)

t−ũ,t
( ˜̃η)

∣∣
× {

1 + |η + 2η̃|2}− α
2
{
1 + |η + 2 ˜̃η|2}− α

2
∣∣Fx(Gu)(η + η̃)

∣∣∣∣Fx(Gũ)(η + ˜̃η)
∣∣

�
∫∫

[0,t]2
dudũ

∫
R2

dη
∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η)

∣∣(∫
R2

dη̃
∣∣L̃H,(m,m)

t−u,t (η̃)
∣∣{1 + |η + 2η̃|2}− α

2
∣∣Fx(Gu)(η + η̃)

∣∣)
×

(∫
R2

d ˜̃η∣∣L̃H,(m,m)

t−ũ,t
( ˜̃η)

∣∣{1 + |η + 2 ˜̃η|2}− α
2
∣∣Fx(Gũ)(η + ˜̃η)

∣∣). (59)

Combining (36) with the result of Lemma 3.4 and estimate (49), we can assert that for any ε > 0 small enough,

sup
u∈[0,t]

∣∣∣∣∫
R2

dη̃
∣∣L̃H,(m,m)

t−u,t (η̃)
∣∣{1 + |η + 2η̃|2}− α

2
∣∣Fx(Gu)(η + η̃)

∣∣∣∣∣∣
�

(∫
R2

dη̃
∣∣KHε,0(η̃)

∣∣2
)1/2(∫

R2
dη̃

{
1 + |η + 2η̃|2}−α{

1 + |η + η̃|2}−1
)1/2

�
(∫

R2
dη̃

{
1 + |η + η̃|2}−α{

1 + |η̃|2}−1
)1/2

,
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and similarly

sup
ũ∈[0,t]

∣∣∣∣∫
R2

d ˜̃η∣∣L̃H,(m,m)

t−ũ,t
( ˜̃η)

∣∣{1 + |η + 2 ˜̃η|2}− α
2
∣∣Fx(Gt−ũ)(η + ˜̃η)

∣∣∣∣∣∣
�

(∫
R2

d ˜̃η{
1 + |η + ˜̃η|2}−α{

1 + | ˜̃η|2}−1
)1/2

,

which, going back to (59), yields

J2 �
∫∫

[0,t]2
dudũ

∫
R2

dη
∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η)

∣∣ ∫
R2

dη̃
{
1 + |η + η̃|2}−α{

1 + |η̃|2}−1

� 2−nε|t − s|ε
2∑

i=0

∫
R2

dηKHε,i (η)

∫
R2

dη̃
{
1 + |η + η̃|2}−α{

1 + |η̃|2}−1
.

We can then conclude with the same arguments as in (58).
Estimation of J3. As above,∫∫

(R2)4
dy dỹdz dz̃e−ı〈β,y〉eı〈β̃,ỹ〉e−ı〈λ−β,z〉eı〈λ̃−β̃,z̃〉

E
[ n,m

s−u,t−u(y)
m
t−ũ(ỹ)

]
E

[ m
t−u(y)

m
t (z̃)

]
E

[ m
t−ũ(ỹ)

m
t (z)

]
= c

∫∫∫
(R2)3

dη dη̃ d ˜̃ηL
H,((n,m),m)

(s−u,t−u),t−ũ
(η)L

H,(m,m)
t−u,t (η̃)L

H,(m,m)

t−ũ,t
( ˜̃η)δ{β=η+η̃}δ{β̃=η+ ˜̃η}δ{λ=λ̃=η+η̃+ ˜̃η},

and thus, for any ε > 0 small enough,

J3 �
∫∫

[0,t]2
dudũ

∫∫∫
(R2)3

dη dη̃ d ˜̃η
{1 + |η + η̃ + ˜̃η|2}α

∣∣LH,((n,m),m)

(s−u,t−u),t−ũ
(η)

∣∣∣∣LH,(m,m)
t−u,t (η̃)

∣∣∣∣LH,(m,m)

t−ũ,t
( ˜̃η)

∣∣
× ∣∣Fx(Gu)(η + η̃)

∣∣∣∣Fx(Gũ)(η + ˜̃η)
∣∣

� 2−nε|t − s|ε
2∑

i=0

∫∫∫
(R2)3

dη dη̃ d ˜̃ηKHε,i (η)KHε,0(η̃)KHε,0( ˜̃η)

× {
1 + |η + η̃ + ˜̃η|2}−α{

1 + |η + η̃|2}− 1
2
{
1 + |η + ˜̃η|2}− 1

2 .

Now split the integration domain into D1 � {(η, η̃, ˜̃η) : {1 + |η + η̃|2}− 1
2 ≤ {1 + |η + ˜̃η|2}− 1

2 } and D2 � {(η, η̃, ˜̃η) :
{1 + |η + ˜̃η|2}− 1

2 ≤ {1 + |η + η̃|2}− 1
2 }, and write (trivially)∫∫∫

D1

dη dη̃ d ˜̃ηKHε,i (η)KHε,0(η̃)KHε,0( ˜̃η)
{
1 + |η + η̃ + ˜̃η|2}−α{

1 + |η + η̃|2}− 1
2
{
1 + |η + ˜̃η|2}− 1

2

≤
∫∫∫

(R2)3
dη dη̃ d ˜̃ηKHε,i (η)KHε,0(η̃)KHε,0( ˜̃η)

{
1 + |η + η̃ + ˜̃η|2}−α{

1 + |η + ˜̃η|2}−1
,

which essentially brings us back to the integral involved in (56). We can thus rely on the same arguments as with J1 to
handle the integral over D1. Finally, it is readily checked that these arguments can also be used for the integral over D2,
which concludes the proof.

It only remains us to prove the two technical lemmas at the core of the above reasoning.

Lemma 3.4. For all (H0,H1,H2) ∈ (0,1)3 such that

0 < H1 <
3

4
, 0 < H2 <

3

4
and H0 + H1 + H2 > 1, (60)

it holds that∫
R2

dη
∣∣KH (η)

∣∣2
< ∞.
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Proof. One has, since 4H1 − 2 < 1 and 4H2 − 2 < 1,∫
R2

dη
∣∣KH (η)

∣∣2 �
∫∫

R2

dη1 dη2

|η1|4H1−2|η2|4H2−2{1 + |η|2+4H0} �
∫ ∞

0

dρ

ρ4(H1+H2)−5{1 + ρ2+4H0} ,

and we can easily check (using (60)) that the latter integral is indeed finite. �

Lemma 3.5. For all 0 < ε < α < 1
2 , it holds that∫

R2
dη̃

{
1 + |η + η̃|2}−α{

1 + |η̃|2}−1 �
{
1 + |η|2}−(α−ε)

.

Proof. Let us first write∫
R2

dη̃
{
1 + |η + η̃|2}−α{

1 + |η̃|2}−1 �
∫
R2

dη̃
{
1 + ∣∣|η| − |η̃|∣∣2}−α{

1 + |η̃|2}−1

�
∫ ∞

0

dττ

1 + τ 2

{
1 + ∣∣|η| − τ

∣∣2}−α
.

Now split the integration domain into D1 � [ |η|
2 ,

3|η|
2 ] and D2 � {0 ≤ τ ≤ |η|

2 orτ ≥ 3|η|
2 }. On the one hand,∫

D1

dττ

1 + τ 2

{
1 + ∣∣|η| − τ

∣∣2}−α = |η|2
∫ 3

2

1
2

drr

{1 + |η|2(1 − r)2}α{1 + |η|2r2}

�
∫ 1

2

− 1
2

dr

{1 + |η|2r2}α � max

(
1,

1

|η|2α

∫ 1

0

dr

r2α

)
� 1

1 + |η|2α
.

On the other hand, for every τ ∈D2, one has ||η| − τ | ≥ 1
3 max(τ, |η|), and accordingly∫

D2

dττ

1 + τ 2

{
1 + ∣∣|η| − τ

∣∣2}−α �
{
1 + |η|2}−(α−ε)

∫ ∞

0

dττ

{1 + τ 2}1+ε
�

{
1 + |η|2}−(α−ε)

. �

3.2. Proof of Proposition 1.4

In the sequel, we use the notation A � B whenever there exists a constant c > 0 such that A ≥ cB . Besides, without loss
of generality, we can here assume that α > 1

2 . For the sake of clarity, let us also introduce the additional notation

�
H0,n
t (τ ) �

∫ 2n

−2n

dξ
|γt (ξ, τ )|2
|ξ |2H0−1

. (61)

Using (34) and then Wick formula just as in Section 3.1.2, we get that

E
[∥∥ρ · n(t, ·)∥∥2

W−2α,2

]
= c

∫
|η|≤2n

dη

∫
|η̃|≤2n

dη̃
�

H0,n
t (|η|)

|η1|2H1−1|η2|2H2−1

�
H0,n
t (|η̃|)

|η̃1|2H1−1|η̃2|2H2−1

∫
R2

dξ

{1 + |ξ |2}2α

∣∣ρ̂(
ξ − (η − η̃)

)∣∣2
.

Then observe that∫
R2

dξ

{1 + |ξ |2}2α

∣∣ρ̂(
ξ − (η − η̃)

)∣∣2

=
∫
R2

dξ

{1 + |ξ + (η − η̃)|2}2α

∣∣ρ̂(ξ)
∣∣2 � 1

{1 + |η − η̃|2}2α

∫
R2

dξ

{1 + |ξ |2}2α

∣∣ρ̂(ξ)
∣∣2

,

and so

E
[∥∥ρ · n(t, ·)∥∥2

W−2α,2

]
�

∫ 2n−1

0
dη1

∫ η1

1
2 η1

dη̃1

∫ 2n−1

0
dη2

∫ η2

1
2 η2

dη̃2
1

{1 + |η − η̃|2}2α

�
H0,n
t (|η|)

|η1|2H1−1|η2|2H2−1

�
H0,n
t (|η̃|)

|η̃1|2H1−1|η̃2|2H2−1
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�
∫ 2n−1

0

∫ 2n−1

0

dη1 dη2

|η1|4H1−3|η2|4H2−3

∫ 1
2

0

∫ 1
2

0

dr1 dr2

{1 + η2
1r

2
1 + η2

2r
2
2 }2α

× �
H0,n
t

(|η|)�H0,n
t

(√
η2

1(1 − r1)2 + η2
2(1 − r2)2

)
�

∫
0<η1<η2<2n−1

dη1 dη2

|η1|4H1−2|η2|4H2−2

∫ 1
2 η1

0

∫ 1
2 η1

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

× �
H0,n
t

(|η|)�H0,n
t

(√
η2

1

(
1 − r1

η1

)2

+ η2
2

(
1 − r2

η2

)2)

�
∫ π

4

π
8

dθ

∫ 2n−1

2

dτ

τ 4H ′
1+4H ′

2−5

∫ 1
2 τ sin θ

0

∫ 1
2 τ sin θ

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

× �
H0,n
t (τ )�

H0,n
t

(√
τ 2 sin2 θ

(
1 − r1

τ sin θ

)2

+ τ 2 cos2 θ

(
1 − r2

τ cos θ

)2)
,

where, for technical reasons (in subsequent arguments), we have picked H ′
1 ≥ H1 and H ′

2 ≥ H2 such that 3
4 < H0 +H ′

1 +
H ′

2 ≤ 1. At this point, observe that for all θ ∈ (π
8 , π

4 ), τ ∈ (2,2n−1) and r1, r2 ∈ (0, 1
2τ sin θ), we have

τ ≥ τr,θ �

√
τ 2 sin2 θ

(
1 − r1

τ sin θ

)2

+ τ 2 cos2 θ

(
1 − r2

τ cos θ

)2

≥ 1

2
τ ≥ 1.

We are therefore in a position to apply the (forthcoming) lower bound (63), which entails, with the notation of Lemma 3.6,

E
[∥∥ρ · n(t, ·)∥∥2

W−2α,2

]
�

∫ π
4

π
8

dθ

∫ 2n−1

2

dτ

τ 4H ′
1+4H ′

2−5

×
∫ 1

2 τ sin θ

0

∫ 1
2 τ sin θ

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

[
ct

τ 1+2H0
+ Q

H0
t (τ )

][
ct

τ 1+2H0
+ Q

H0
t (τr,θ )

]

� t2
(∫ sin π

8

0

∫ sin π
8

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

)(∫ 2n−1

2

dτ

τ 4(H0+H ′
1+H ′

2)−3

)
+ Rn

t , (62)

where we have set

Rn
t �

∫ π
4

π
8

dθ

∫ 2n−1

2

dτ

τ 4H ′
1+4H ′

2−5

×
∫ 1

2 τ sin θ

0

∫ 1
2 τ sin θ

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

[
ct

τ 1+2H0
QH0(τr,θ ) + ct

τ 1+2H0
QH0(τ ) + QH0(τ )QH0(τr,θ )

]
.

Let us now show that |Rn
t | is uniformly bounded with respect to n. In fact, thanks to (64), we can assert that for any ε > 0,

sup
t∈[0,1]

∣∣∣∣ c

τ 1+2H0
Q

H0
t (τr,θ ) + c

τ 1+2H0
Q

H0
t (τ ) + Q

H0
t (τ )Q

H0
t (τr,θ )

∣∣∣∣ � 1

τ 3+4H0−ε
.

Therefore,

sup
t∈[0,1]

∣∣Rn
t

∣∣ �
(∫ ∞

0

∫ ∞

0

dr1 dr2

{1 + r2
1 + r2

2 }2α

)(∫ ∞

2

dτ

τ 4(H0+H ′
1+H ′

2)−2−ε

)
�

(∫ ∞

0
dr

r

{1 + r2}2α

)(∫ ∞

2

dτ

τ 4(H0+H ′
1+H ′

2)−2−ε

)
,

and, provided ε > 0 is picked small enough, these two integrals are obviously finite, due to α > 1
2 and H0 +H ′

1 +H ′
2 > 3

4 .
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Going back to (62), we get the conclusion since, as H0 + H ′
1 + H ′

2 ≤ 1,

∫ 2n−1

2

dτ

τ 4(H0+H ′
1+H ′

2)−3

n→∞−→ ∞.

Lemma 3.6. There exists a constant c > 0 such that for all H0 ∈ (0,1), ε > 0, n ≥ 1, t ∈ [0,1] and τ ∈ (1,2n),

�
H0,n
t (τ ) ≥ ct

τ 1+2H0
+ Q

H0
t (τ ) ≥ 0, (63)

with QH0 satisfying

sup
t∈[0,1]

∣∣QH0
t (τ )

∣∣ ≤ cε,H0

τ 2+2H0−ε
. (64)

Proof. We will lean on similar estimates as those of the proof of [1, Proposition 2.4]. Let us first recall the explicit
expression (see the latter reference) |γt (ξ, τ )|2 = c{�t(ξ, τ ) + �t(−ξ, τ )}, with c > 0 and

�t(ξ, τ ) � 1 − cos(t (ξ − τ))

τ 2(ξ − τ)2
+ cos(tτ ){cos(tξ) − cos(tτ )}

τ 2(ξ − τ)(ξ + τ)
.

Thus, one has, for any τ ∈ (1,2n),

�
H0,n
t (τ ) ≥

∫ τ

−τ

dξ
|γt (ξ, τ )|2
|ξ |2H0−1

= 2c

∫ τ

−τ

dξ
�t (ξ, τ )

|ξ |2H0−1
≥ 0.

Decompose �t(ξ, τ )1{−τ<ξ<τ } into �t(ξ, τ )1{−τ<ξ<τ } = �1
t (ξ, τ ) + �2

t (ξ, τ ), with

�1
t (ξ, τ ) � 1 − cos(t (ξ − τ))

τ 2(ξ − τ)2
1{ξ≥ τ

2 }

and

�2
t (ξ, τ ) � 1 − cos(t (ξ − τ))

τ 2(ξ − τ)2
1{−τ≤ξ≤ τ

2 } + cos(tτ ){cos(tξ) − cos(tτ )}
τ 2(ξ − τ)(ξ + τ)

1{−τ<ξ<τ }.

On the one hand, it is easy to check that for all τ > 1, ξ ∈ (−1,1) and ε > 0,

∣∣�2
t (τ ξ, τ )

∣∣ � 1

τ 4−ε

[
1 + 1

|1 − |ξ ||1−ε

]
,

and so∣∣∣∣∫ τ

−τ

dξ
�2

t (ξ, τ )

|ξ |2H0−1

∣∣∣∣ = 1

τ 2H0−2

∣∣∣∣∫ 1

−1
dξ

�2
t (τ ξ, τ )

|ξ |2H0−1

∣∣∣∣ � 1

τ 2H0+2−ε
.

On the other hand,∫ τ

−τ

dξ
�1

t (ξ, τ )

|ξ |2H0−1
= 1

τ 2H0+2

∫ 1

1
2

dξ

|ξ |2H0−1

1 − cos(tτ (1 − ξ))

(1 − ξ)2

= t

τ 2H0+1

∫ tτ
2

0

dξ

|1 − ξ
tτ

|2H0−1

1 − cos ξ

ξ2

= t

τ 2H0+1

∫ ∞

0
dξ

1 − cos ξ

ξ2
+ t

τ 2H0+1

[∫ tτ
2

0

dξ

|1 − ξ
tτ

|2H0−1

1 − cos ξ

ξ2
−

∫ ∞

0
dξ

1 − cos ξ

ξ2

]
.

The conclusion now follows immediately from the result of [1, Lemma 2.5]. �
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