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Comment on “Probabilistic Integration:
A Role in Statistical Computation?”
Fred J. Hickernell and R. Jagadeeswaran

Abstract. Probabilistic integration provides a criterion for stopping a simu-
lation when a specified error tolerance is satisfied with high confidence. We
comment on some of the modeling assumptions and implementation issues
involved in designing an automatic Bayesian cubature.
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1. WHEN TO STOP?

In highlighting the possibilities of probabilistic in-
tegration, the authors of Briol et al. (2018), henceforth
abbreviated as PI, have suggested a useful stopping cri-
terion for cubature. Numerical analysis provides an up-
per bound on the cubature error expressed as a product
of the roughness of the integrand and the quality of our
sampling scheme. For example, PI (5) quotes the error
bound

(1.1)
∣∣�̂[f ] − �[f ]∣∣ ≤ ‖f ‖H

∥∥μ(π̂) − μ(π)
∥∥
H,

where:

• the integrand, f , lies in a Hilbert space, H,
• �[f ] denotes the desired integral of f defined in

terms of the probability measure π , and
• �̂[f ] denotes a cubature defined in terms of the dis-

crete measure π̂ .

The discrepancy between π and π̂ is defined as
‖μ(π̂) − μ(π)‖H. As the sample size, n, increases, a
well-chosen sequence of discrete measures causes the
discrepancy to tend to zero.

But, even if ‖μ(π̂) − μ(π)‖H can be computed ef-
ficiently, one typically does not have a good estimate
or bound on ‖f ‖H. Therefore, it is impractical to use
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(1.1) to determine an n satisfying the error criterion

(1.2)
∣∣�̂[f ] − �[f ]∣∣ ≤ ε,

where ε is the user-specified absolute error toler-
ance.

We believe that the practitioner would like an auto-
matic cubature, that is, an algorithm with a stopping
criterion that guarantees (1.2) (with high probability).
Probabilistic integration, and in particular Bayesian cu-
bature, as espoused in PI, fulfills that wish.

Bayesian cubature, as explained in PI, assumes
that the integrand, f , may be modeled by a Gaus-
sian stochastic process, g ∼ GP(0, c), conditioned
on g having the same values as f at the cubature
nodes or states, {xi}ni=1. Thus, �̂[g] = �̂[f ]. Fur-
thermore, Bayesian cubature is designed to satisfy
�̂[g] = En[�[g]]. Here, c is the covariance function
(or kernel) for g. The definition of g allows us to
construct credible intervals for the cubature error via
Proposition 1 in PI, namely,

P
[∣∣�̂[f ] − �[g]∣∣ ≤ 2.58

√
Vn

[
�[g]]] = 99%,(1.3)

Vn

[
�[g]]

(1.4)
= ��

[
c(·, ·)] − �

[
c(·,X)

]
C−1�

[
c(X, ·)].

If the observed integrand, f , lies in the 99% middle of
the sample space for g, and not in the 1% extreme, then
increasing n until 2.58

√
Vn[�[g]] is no greater than ε

ensures that (1.2) holds with 99% probability.
There are some practical obstacles to implementing

this elegant recipe.

• How does one choose the covariance function c?
While one may always choose the sample space
large enough to include f , our use of the credible
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interval as a stopping criterion assumes that f is not
in the tails of the distribution GP(0, c). We discuss
this question in the next section.

• The computational cost of computing Vn[�[g]] in-
volves matrix inversion, which requires O(n3) op-
erations in general. This typically takes much more
time than the O(n) operations required to compute
the cubature, �̂[f ], unless obtaining an integrand
value is quite time-consuming. We discuss how to
circumvent this problem by matching covariance
functions and cubature nodes in Section 3.

There are commonalities and differences in the deter-
ministic and Bayesian approaches to numerical inte-
gration. We discuss some of these in Section 4.

2. WHICH GAUSSIAN PROCESS?

As mentioned above, using a credible interval as a
stopping criterion requires a careful choice of the co-
variance function, c. The width of the credible interval
in (1.3) depends on Vn[�[g]] given by (1.4). At first
glance, nothing in (1.4) depends on the integrand data,
f = (f (xi ))

n
i=1, although our intuition tells us that it

should. The credible interval for the integral of 47f

should be 47 times as wide as the credible interval for
the integral of f .

When constructing the confidence interval for the
mean of a scalar random variable, Y , from indepen-
dent and identically distributed (IID) data, one must es-
timate the variance of Y by the sample variance. Analo-
gously, when constructing the credible interval in (1.3)
for the integral (mean) of a function, one must estimate
the vertical scale factor inherent in the covariance func-
tion c.

We have recently explored Bayesian cubature as the
basis for automatically selecting n to satisfy the error
criterion (1.2) in Jagadeeswaran and Hickernell (2018),
henceforth abbreviated as JH. As in Proposition 2 of PI,
JH chooses the covariance function to take the form
c(x,x′) = λc0(x,x′; θ), where λ is the vertical scale
factor, and the parameter θ determines the smoothness
and other properties of the covariance function. An ex-
ample of c0 is the following (JH (36)):

c0
(
x,x′; θ) =

d∏
l=1

[
1 − (−1)rγB2r

(|xl − x′
l |
)]

,

(2.1)
∀x,x′ ∈ [0,1]d, θ = (r, γ ), r ∈ N, γ > 0,

where B2r is the Bernoulli polynomial of degree 2r .
The smoothness of the covariance function increases
with r . Covariance functions of this form appear
in Hickernell (1996), Dick, Kuo and Sloan (2013).

Bernoulli polynomials are described in Chapter 24 of
Olver et al. (2018).

To increase the possibility that our integrand f lies
in the middle of the sample space, we also allow the
Gaussian process g to have an arbitrary mean, m, so
g ∼ GP(m,λc0). One may imagine the situation where
f represents an option payoff. Then, f is nonnegative
and its mean is nonnegative. Assuming an improper
prior on (m,λ), the posterior marginal for �[g] is a
Student t-distribution with n − 1 degrees of freedom
and with mean and variance both depending on the in-
tegrand data, f (JH (15–16)):

�̂[f ] = En

[
�[g]]

=
(

(1 − 1T C−1
0 �[c0(X, ·)]1T

1T C−1
0 1

+ �
[
c0(·,X)

])
C−1

0 f ,

(2.2a)

Vn

[
�[g]]

= 1

n − 1
f T

(
C−1

0 − C−1
0 11T C−1

0

1T C−1
0 1

)
f

×
(

(1 − �[c0(·,X)]C−1
0 1)2

1T C−1
0 1

+ ��
[
c0(·, ·)]

− �
[
c0(·,X)

]
C−1

0 �
[
c0(X, ·)]),

(2.2b)

P
[∣∣�̂[f ] − �[g]∣∣ ≤ tn−1,0.995

√
Vn

[
�[g]]]

= 99%.

(2.2c)

Here, 1 is a vector of ones, and tn−1,0.995 denotes the
99.5% quantile of the Student t-distribution with n −
1 degrees of freedom. For large n, tn−1,0.995 ≈ 2.58.
The expressions in (2.2) are similar to the conclusion of
PI, Proposition 2. The differences are due to the mean
of the Gaussian process being left unspecified in JH,
which reduces the degrees of freedom by one, and adds
additional terms to the expressions for En[�[g]] and
Vn[�[g]].

Hidden in the definition of c0 is the parameter θ . One
may place a discrete prior on θ , but this strikes us as
rather arbitrary. Thus, in JH we advocate estimating θ
by empirical Bayes, namely,

θEB = argmin
θ

{
log

(
f T

[
C−1

0 − C−1
0 11T C−1

0

1T C−1
0 1

]
f

)
(2.3)

+ 1

n
log

(
det(C0)

)}
.
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JH also presents empirical Bayes as an alternative to
assuming the improper prior on (m,λ), as discussed in
PI Section 4.1.3. Under empirical Bayes, the posterior
marginal for �[g] has the same mean as for the full
Bayes approach, but a somewhat smaller variance.

JH also discusses the alternative of generalized
cross-validation for estimating the correct covariance
function from the integrand data, as alluded to in Sec-
tion 4.1.2 of PI. The formulas for the Bayesian cuba-
ture and the credible interval width are significantly
different than those for full Bayes.

3. SPEEDING UP THE COMPUTATION

Computing the estimate of θ in (2.3) and then the
credible interval according to (2.2) involve matrix fac-
torization and computing a matrix determinant, which
requires as many as O(n3) operations. On the other
hand, the computational cost of obtaining the integrand
data, f , is O($(f )n), where $(f ) is the computational
cost of a single integrand value.

If $(f ) is extraordinarily large compared to the ex-
pected sample size n, then the cost of obtaining inte-
grand data dominates, and the O(n3) cost of matrix
operations is unimportant. However, if $(f ) is close
to O(1), then the cost of matrix operations may make
Bayesian cubature prohibitively costly.

JH presents a scenario where the cost of matrix op-
erations may be reduced to O(n logn) via fast trans-
forms. The key is choosing covariance functions and
cubature nodes that match. Let the matrix C0 be de-
composed in terms of its eigenvectors, which comprise
the columns of V , and its eigenvalues, which comprise
the diagonal elements of the diagonal matrix �:

C0 = (C1, . . . ,Cn) = 1

n
V �V H , V H = nV −1,

V = (v1, . . . ,vn)
T = (V 1, . . . ,V n).

Four assumptions are made regarding the covariance
function, c0, and the cubature nodes, {x}ni=1 (JH (25,
27)):

V may be identified analytically,(3.1a)

v1 = V 1 = 1,(3.1b)

b̃ := V Hb requires only O
(
n log(n)

)
(3.1c)

operations ∀b,

�
[
c0(·,x)

] = 1 ∀x.(3.1d)

Here, V Hb is called the fast transform of b because it
takes fewer than the typical O(n2) operations required
for matrix-vector multiplication.

An example of matching covariance functions and
cubature nodes is

• Shift-invariant covariance functions, c0, which
satisfy

c0
(
x,x′) = c̊o

(
x − x′ mod 1

) ∀x,x′ ∈ [0,1)d,

for some c̊0 with period 1 in each coordinate direction,
and

• Shifted rank-1 integration lattice node sets,
{xi}ni=1, which satisfy

x,x′,x′′ ∈ {xi}ni=1

=⇒ x + x′ − x′′ mod 1 ∈ {xi}ni=1.

The covariance function in (2.1) is an example of a
shift-invariant covariance function (Hickernell (1998)).
Figure 1 (left) depicts a rank-1 integration node set
Sloan and Joe (1994), Dick, Kuo and Sloan (2013). The
reason that this family of covariance functions matches
this family of cubature nodes and satisfies assumptions
(3.1) is that the matrix C0 is circulant and V may be
written in terms of complex exponentials.

Under assumptions (3.1) one may express (2.2) and
(2.3) in terms of the fast transforms of the integrand
data and the first column of the matrix C0 (JH Sec-
tions 3.2, 3.3):

f̃ := V Hf ,

� = diag(�) = C̃1 := V HC1,
(3.2a)

�̂[f ] = En

[
�[g]] = 1

n

n∑
i=1

f (xi )

= f̃1

n
the sample average,

(3.2b)

Vn

[
�[g]] = 1

n(n − 1)

(
�1

n
− 1

) n∑
i=2

|f̃i |2
�i

,(3.2c)

θEB = argmin
θ

[
log

(
n∑

i=2

|ỹi |2
�i

)

+ 1

n

n∑
i=1

log(�i)

]
.

(3.2d)

Apart from the computations in (3.2a), which re-
quire O(n logn) operations, all other calculations in
(3.2) require only O(n) operations. The expression for
Vn[�[g]] excludes i = 1 in the sum because we allow
g to have an arbitrary constant mean.
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FIG. 1. An example of shifted integration lattice nodes in two dimensions (left). The performance of Bayesian cubature for an option pricing
example (right).

Section 5 of JH presents several numerical experi-
ments for Bayesian cubature with shift-invariant co-
variance functions and lattice nodes sets. We repro-
duce one such experiment in Figure 1 (right). The inte-
grand is the payoff of an arithmetic mean Asian option.
The covariance function is the one given by (2.1) with
r = 1. A low degree of smoothness is chosen in view
of the discontinuities in the partial derivatives of the
integrand. The value of γ is determined by empirical
Bayes as in (3.2d). The sample size, n, is increased in a
sequence of powers of 2 until the stopping criterion im-
plied by (2.2c), whose terms are computed quickly via
(3.2), is satisfied. Four different values of the tolerance
were tried, ε = 0.1,0.01,0.001, and 0.0001. The aim is
for the cubature error, |�[f ] − �̂[f ]|, to be no greater
than, but not too much less than, the prescribed toler-
ance nearly all the time. In this experiment, the error
tolerance is always met. As expected, the computation
time increases as the tolerance decreases.

In this example, and others provided in Section 5 of
JH, the cost of evaluating the integrand is modest, and
so the cost of obtaining the needed integrand data, f ,
is on the same order as the matrix-vector operations
required to compute the credible interval. JH also pro-
vides examples of the empirical Bayes and generalized
cross-validation approaches to determining the param-
eters inherent in the covariance function and to using
credible intervals as stopping criteria for Bayesian cu-
bature. All of these approaches are successful, which
suggests that they should be explored over a larger
range of examples.

4. BAYESIAN VERSUS DETERMINISTIC ANALYSIS

We return to the situation where the Gaussian pro-
cess, g, has zero mean. Section 3.2 in PI sets the co-
variance function, c, identical to the reproducing ker-
nel, k, of the Hilbert space containing the integrand, f ,

for “aesthetic” reasons. While this makes the applica-
tion of several results from numerical analysis of deter-
ministic cubature more readily transferable to Bayesian
cubature, we think that such a correspondence muddies
the waters.

Suppose that {φi}∞i=1 is an orthonormal basis for the
Hilbert space H with reproducing kernel k. Then

(4.1) k
(
x,x′) =

∞∑
i=1

φi(x)φi

(
x′).

Moreover, the norm of any f = ∑n
i=1 aiφi ∈ H is

‖f ‖H = ‖a‖2. If g = ∑∞
i=1 Aiφi , with Ai

IID∼ N (0,1),
then g ∈ GP(0, c), where c is identical to k as defined
in (4.1). While this may seem well and good, note that

E
(‖g‖2

H
) = E

(‖A‖2
2
) = ∥∥(1,1, . . .)

∥∥2
2 = ∞.

So setting c identical to k means that we are mod-
eling an integrand with finite norm by a Gaussian
process with an infinite expected squared norm. This
seems counter-intuitive. Nevertheless, there are tanta-
lizing mathematical similarities between the Bayesian
and deterministic approaches to cubature.

When the optimal cubature weights are used, the de-
terministic error bound in (1.1) may be expressed as

�̂[f ] = �[f̂ ] = �
[
k(·,X)

]
K−1f ,(4.2a) ∣∣�̂[f ] − �[f ]∣∣2

≤ ‖f − f̂ ‖2
H

{
��

[
k(·, ·)](4.2b)

− �
[
k(·,X)

]
K−1�

[
k(X, ·)]},

where f̂ is the minimum Hilbert space norm inter-
polant of the integrand, f . The reason that ‖f ‖H in
(1.1) can be replaced by ‖f − f̂ ‖H is that the cuba-
ture in (4.2a) integrates f̂ exactly. Moreover, f − f̂ is
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orthogonal to f̂ under the Hilbert space inner product.
Also note that

(4.3) ‖f̂ ‖2
H = f T K−1f .

Compare the error bound in (4.2) to Proposition 2 of
PI, which implies that

�̂[f ] = E
[
�[g]] = �

[
c0(·,X)

]
C−1

0 f ,(4.4a)

V
[
�[g]]
= f T C−1

0 f

n

{
��

[
c0(·, ·)](4.4b)

− �
[
c0(·,X)

]
C−1

0 �
[
c0(X, ·)]},

P
[∣∣�̂[f ] − �[f ]∣∣2 ≤ t2

0.995,nV
[
�[g]]] = 99%.(4.4c)

The formulas for the cubature �̂[f ] in both the deter-
ministic and Bayesian senses are identical if k is iden-
tical to c0. They are also independent of the vertical
scale factor multiplying inherent in the definition of k

or c0, that is, the reproducing kernels k and 47k yield
the same cubature rule. Likewise, the bound on the
squared error in (4.2b) and the variance of the integral
of the Gaussian process in (4.4c) both contain the com-
mon factor ��[k(·, ·)] − �[k(·,X)]K−1�[k(X, ·)] if
k is identical to c0.

Matching the deterministic error bound in (4.2) to
the Bayesian credible interval in (4.4) when k is iden-
tical to c0 becomes possible if one applies (4.3) and
asserts that

‖f − f̂ ‖2
H ≤ t2

0.995,n‖f̂ ‖2
H

n

= t2
0.995,nf

T K−1f

n
.(4.5)

Although this inequality is violated for some f ∈H, it
holds for those f ∈ H that are well modeled by their
minimum norm interpolants, f̂ . Thus, one can mimic
Bayesian cubature via a deterministic cubature which
assumes that the integrand satisfies inequality (4.5).

5. FURTHER MATTERS

A couple of matters deserve further investigation.
How large a family of covariance functions must be
considered for effective Bayesian cubature? A larger
family increases the probability that the integrand in
question lies in the middle of the space of Gaussian
processes used to determine the stopping criterion. On
the other hand, a larger family may require a more te-
dious choice of the underlying parameters θ .

The Bayesian approach to numerical integration as-
sumes a Gaussian process. Do goodness-of-fit statistics
confirm or discredit this assumption? How does the va-
lidity of this assumption affect the reliability of the pro-
posed Bayesian automatic cubature? The alternative of
Student t-processes has been suggested by Shah, Wil-
son and Ghahramani (2014).

Finally, probabilistic numerics—including Bayesian
cubature—deserves further participation from statis-
ticians, numerical analysts, and software developers
alike. Statisticians and numerical analysts should be-
come more conversant in each other’s language and
culture. Computational problems are better understood
when one can look from multiple perspectives. More-
over, the algorithms that arise from probabilistic nu-
merics should find their way into commonly used soft-
ware libraries. Such libraries should be built using soft-
ware engineering principles that are familiar to soft-
ware developers, but perhaps not obvious to statisti-
cians. Our Guaranteed Automatic Integration Library
(GAIL) Choi et al. (2013–2017) is an example of such
a library.
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