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A Framework for Estimation and Inference
in Generalized Additive Models with
Shape and Order Restrictions
Mary C. Meyer

Abstract. Methodology for the partial linear generalized additive model is
presented, where components for continuous predictors may be modeled with
shape-constrained regression splines, and components for ordinal predictors
may have partial orderings. The estimated mean function is obtained through
a projection (or iteratively reweighted projections) onto a polyhedral convex
cone; this is key for formally derived inference procedures. Pointwise confi-
dence bands and hypothesis tests for the individual components, as well as a
model selection method, are proposed. These methods are available in the R
package cgam.
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1. BACKGROUND

Estimation and inference under shape and order con-
straints dates back to Hildreth (1954), who formulated
maximum likelihood estimators for convex functions.
Contributions to estimation and inference involving
complete and partial orderings were made by Brunk
(1955), Ayer et al. (1955), van Eeden (1956) and oth-
ers. These early estimators were not smooth; the iso-
tonic regression estimator is piecewise constant, and
the convex regression estimator is piecewise linear. Iso-
tonic smoothing spline estimators were proposed by
Tantiyaswasdikul and Woodroofe (1994), and various
ideas for shape-constrained kernel regression estima-
tors were given by Mammen (1991), Hall and Huang
(2001) and Du, Parmeter and Racine (2013).

Regression splines are attractive from an inferen-
tial perspective because the shape-constrained estima-
tor can be expressed as a mixture of linear estima-
tors. Monotone regression spline estimators were in-
troduced by Ramsay (1988), who defined the I -splines,
shown in Figure 1 in the left-hand plot. These quadratic
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spline basis functions have the property that for each
knot (marked by the dotted vertical lines), exactly one
basis function has nonzero slope. Hence, nonnegative
coefficients comprise necessary and sufficient condi-
tions for linear combinations of these basis functions
to be nondecreasing. Any nondecreasing quadratic
spline function can be expressed as a linear combina-
tion of the I -spline basis functions with nonnegative
coefficients, plus an unconstrained intercept. Meyer
(2008) defined the C-splines, shown in the middle
panel of Figure 1. These cubic spline basis functions
are constructed so that at each knot, exactly one has
nonzero second derivative. Any convex cubic spline
function can be expressed as a linear combination of
the C-spline basis functions with nonnegative coeffi-
cients, plus an unconstrained linear function. Functions
with combinations of monotonicity and convexity as-
sumptions can be modeled with the C-splines as well.
Meyer, Kim and Wang (2018) derived convergence
rates for the constrained splines, under mild conditions,
if the number of knots increases on the order of n1/7

for the quadratic splines and on the order of n1/9 for
the cubic splines.

The third plot in Figure 1 shows increasing and con-
cave least-squares fits to a scatterplot of height ver-
sus diameter of white spruce trees, available as the
whitespruce data set in the R package
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FIG. 1. Basis functions for constrained splines, and example fits to a data set of 36 observations of height and diameter of white spruce
trees to demonstrate robustness to knot choices.

ConSpline. Constrained scatterplot smoothers are
more robust to tuning parameters, compared to uncon-
strained smoothers, because of the shape restriction,
increasing the number of knots does not necessarily
lead to severe overfitting. The constraints prevent the
wiggling typically associated with overfitting; hence,
the increasing and concave fits to the white spruce data
using 4–8 knots are almost identical.

With constrained regression splines, the least-
squares estimator is found by projection onto a poly-
hedral convex cone, and for the generalized regression,
through iteratively reweighted cone projections. A set
C in R

n is a cone if for any η ∈ C, positive multiples of
η are also in C. The cone is polyhedral if it is finitely
generated, that is, there is a finite set of vectors in the
cone so that any vector in the cone can be expressed
as a linear combination of these vectors, with linearly
constrained coefficients.

The projection onto a polyhedral cone lands on a
face of the cone, and coincides with the projection onto
a linear space defined by this face. The projection of
another realization of the response might land on a dif-
ferent face, so coincides with a projection onto another
linear space. Thus the constrained estimator is a mix-
ture of ordinary linear estimators, and inference meth-
ods use this important property. Meyer (2008) provided
a test of constant versus increasing regression function,
where the alternative is estimated with I -splines, and a
test for linear versus convex regression function, where
the alternative is estimated with C-splines. These have,
under the normal errors assumption, a likelihood ratio
test where the null distribution is that of a mixture of
beta random variables. The partial linear constrained
spline least-squares model was developed by Meyer
(2018a), who derived inference methods for the linear
term that also take advantage of the polyhedral cone
formulation.

The additive isotonic model without smoothing was
considered by Bacchetti (1989), with application by
Morton-Jones et al. (2000) and additional work by
Mammen and Yu (2007), Cheng (2009), Cheng, Zhao
and Li (2012), Fang and Meinshausen (2012), Meyer
(2013), Yu (2014), and Chen and Samworth (2016).
The generalized additive model with smooth mono-
tone components was fit with boosting techniques by
Tutz and Leitenstorfer (2007), with Bayesian ideas by
Meyer, Hackstadt and Hoeting (2011), and with penal-
ized splines by Pya and Wood (2015). Villalobos and
Wahba (1987) considered inequality-constrained thin-
plate smoothing splines.

In this paper, we extend these ideas and give a frame-
work for estimation and inference for the generalized
additive partial linear model, where the components
for continuous predictors are modeled with splines,
and the components for ordinal predictors are mod-
eled with partial orderings. The focus is on inference
methods for the components. We consider general-
ized regression models for independent observations
Y1, . . . , Yn, where the probability distribution can be
expressed as

p(yi;ηi, τ ) = exp
[{

yiηi − b(ηi)
}
τ − c(yi, τ )

]
,

i = 1, . . . , n.

The family of distributions determine the functions b

and c, and the parameter τ is related to the disper-
sion. For example, if Yi is a binary response, we can
define b(ηi) = log(1 + eηi ) to get the logistic model
with μi = E(Yi) = eηi /(1 + eηi ). For the normal-errors
model, ηi is the expected value of Yi , b(ηi) = η2

i /2,
τ = 1/σ 2, where σ 2 is the model variance. In any case,
μi ≡ E(Yi) = b′(ηi).

The vector η = (η1, . . . , ηn)
� is determined by the

predictor values. We consider predictor functions of the
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form

(1.1)
ηi = f1(t1i ) + · · · + fL(tLi) + g1(z1i )

+ · · · + gR(zRi) + x�
i β,

where the predictors t� are treated as continuous and f�

are functions to be estimated with shape-constrained
splines, for � = 1, . . . ,L. The zr predictors are ordi-
nal and a partial ordering will be imposed on the com-
ponents gr , r = 1, . . . ,R. The parametrically modeled
predictors are included in the vector x.

In the next section, the f� and gr components of the
model will be formulated in terms of convex cones.
The component cones and linear spaces are then com-
bined to form a single convex cone. For the least-
squares model, the estimate η̂ is simply the projec-
tion onto the single cone, and the component estimates
are readily determined. For the generalized regression
models, η̂ is estimated through iteratively reweighted
cone projections. Hypothesis tests concerning the in-
dividual components are given in Section 3. Pointwise
confidence intervals for η and the model components
are given in Section 4 and shown through simulations
to have good coverage and small lengths compared to
other methods. A model selection method, where the
shapes do not have to be specified a priori, is given
in Section 5, and some discussion is provided in Sec-
tion 6.

2. BUILDING THE MODEL CONE

2.1 Methodology

We consider three types of model components: con-
strained regression splines to model the effect of a con-
tinuous predictor, components for ordinal predictors
with partial or complete orderings and components for
parametrically modeled covariates such as nominal or
linear predictors. The estimate of each model compo-
nent is found in a polyhedral convex cone or a lin-
ear space. We combine the individual cones and linear
spaces into a large cone so that the maximum likeli-
hood estimator η̂ is found by projections onto a single
cone, after which we sort out the individual component
estimates.

To estimate f� with constrained regression splines,
we define knots ξ�,1 < · · · < ξ�,K�

where the t�,i val-
ues fall in [ξ�,1, ξ�,K�

], i = 1, . . . , n. If f� is assumed
to be “increasing” or “decreasing,” we define a set of
K� quadratic I -spline basis functions with the prop-
erty that at each knot, exactly one basis function has
nonzero slope. We estimate f� as a linear combination

of the basis functions plus an intercept; necessary and
sufficient conditions for monotonicity are that the coef-
ficients are nonnegative. If the constraint is “convex” or
“concave” we define a set of K� cubic C-spline basis
functions with the property that at each knot, exactly
one basis function has nonzero second derivative. We
model f as a linear combination of these basis func-
tions with positive coefficients, plus an unconstrained
multiple of t� as well as an intercept; these are neces-
sary and sufficient conditions for convexity. If the con-
straints involve both monotonicity and convexity, such
as “increasing and convex,” we use the K� cubic C-
spline basis functions and include t� as a basis func-
tion with a constrained coefficient. For a more detailed
treatment of constrained regression splines, see Meyer
(2008).

For each � = 1, . . . ,L, let the spline basis functions
be δ�,1(t), . . . , δ�,m�

(t), where m� = K� for monotone
or convex splines and m� = K� +1 for combinations of
monotonicity and convexity. Let �� be an n × m� ma-
trix with ��,j i = δ�,j (ti). The cone over which the sum
of squared residuals is to be minimized, or the likeli-
hood to be maximized, is

C(1)
� = {

η ∈ R
n : η = ��α + X0,�α0, for α ≥ 0

}
,

where for constraints involving monotonicity, X0,� =
1 = (1, . . . ,1)�, and for convex or concave constraints,
X0,� = [1|t�]. (The intercepts when L > 1 will be com-
bined later.)

For ordinal predictors, we assume that a partial or-
dering is known. For each r = 1, . . . ,R, define ηr ∈R

n

such that ηr,i = gr(zr,i); Meyer (2013) showed that the
set of possible components for the ordinal predictor can
be described as

C(2)
r = {

η ∈ R
n : Arη ≥ 0 and Brη = 0

}
,

where the inequality constraints using Ar impose the
partial ordering, and the equality constraints using Br

ensure that ηr,i = ηr,j whenever zr,i = zr,j . Let Vr be

the largest linear space contained in C(2)
r .

For a “toy” example, suppose a treatment variable
has three levels, one of which is a placebo, and there
are three subjects assigned to each group, so that n = 9.
Suppose subjects 1,2,3 are in the placebo group, sub-
jects 4,5,6 are given Treatment 1, and subjects 7,8,9
are given Treatment 2. The researchers want to assume
that the two treatments have at least as great an ef-
fect as the placebo, without imposing an order on the
two treatments (this is called a tree ordering). Here, the
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constraint matrix Ar has two rows:

Ar =
(−1 0 0 1 0 0 0 0 0
−1 0 0 0 0 0 1 0 0

)
,

and Br ensures that the effect of this predictor is the
same within each of the three groups:

Br =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The linear space Vr contained in the cone is the one-
dimensional space of the constant vectors.

Define Dr so that its columns are a basis for the
linear space that is orthogonal both to Vr , and to the
space spanned by the rows of Br . Proposition 2.2 of
Meyer (2013) determined that if Ar is full row rank,
then defining �r = Dr (ArA�

r )−1 we have

C(2)
r = {

η ∈ R
n : η = v + �rγ ; for γ ≥ 0,v ∈ Vr

}
.

For the above tree ordering example, �r is a multiple
of the matrix(−1 −1 −1 −1 −1 −1 2 2 2
−1 −1 −1 2 2 2 −1 −1 −1

)�
,

and the effect of the categorical variable is a constant
plus positive multiples of the columns of �r .

Next, we combine the component cones and linear
spaces into a single cone. For the parametrically mod-
eled covariates, let the n × p matrix X have rows xi ,
i = 1 . . . , n. The component cones may contain same
linear spaces, so let the columns matrix Xc represent a
basis for the Minkowski sum of all these L + R linear
spaces. For example, the column space of Xc contains
the constant vectors and any t� where f� is modeled
as convex or concave. We estimate η to be in the large
cone

(2.1)

C = {
η ∈ R

n : η = �1α1 + · · · + �LαL

+ �1γ 1 + · · · + �Rγ R + Xcβc + Xβ,

where α� ≥ 0, � = 1, . . . ,L,

and γ r ≥ 0, r = 1, . . . ,R
}
.

Create an overall n × m “design” matrix for the con-
strained components

(2.2) � = [
�1| · · · |�L|�1| · · · |�R

]
as well as an m × 1 constrained coefficient vector
ζ� = [α�

1 , . . . ,α�
L,γ �

1 , . . . ,γ �
R ]. We assume that the

columns of �, X and Xc form a linearly indepen-
dent set; otherwise, the component effects are not
identifiable. Linear dependence in the columns results
from highly or completely correlated predictors and/or
poorly spaced knots. For example, if the knot spacing
for t� is such that there are no observed t�,i between
two knots, this may lead to linear dependence. This
may be corrected by changing the knot spacing.

The cone (2.1) can be written as

(2.3)
C = {

η ∈ R
n : η = �ζ + Xcβc + Xβ

where ζ ≥ 0
}
,

and the projection of y onto C minimizes ‖y−η‖2 over
η ∈ C. This projection lands on a face of the cone. Sub-
sets J ⊆ {1, . . . ,m} index the faces, defined as

FJ = {
η ∈ R

n : η = �J ζ + Xcβc + Xβ where ζ ≥ 0
}
,

and the columns of �J are the columns of � that are
indexed by J . If the projection η̂ of y onto the cone C
lands on face FJ , then η̂ coincides with the projection
of y onto the linear space LJ that is spanned by the
columns of �J , Xc, and X (see Proposition 4 of Meyer,
1999).

2.2 Computation

The function coneB in the package coneprojwill
determine the set J , through a sequence of “guesses”
and ordinary least-squares projections. Then ζ̂ , β̂c and
β̂ are determined as in ordinary least-squares regres-
sion with “design matrix” [�J |Xc|X]. The estimates
of the individual components are constructed from the
elements of these estimated coefficient vectors.

Suppose we instead want to find η̂ ∈ C to mini-
mize (y − η)�W(y − η) for a positive definite n × n

matrix W; that is, we have a weighted regression
model. This is equivalent to minimizing ‖W1/2y −
W1/2�ζ − W1/2Xcβc − W1/2Xβ‖2, with the con-
straint ζ ≥ 0. The above cone projection procedure can
be followed with W1/2y in place of y, W1/2� in place
of �, W1/2Xc in place of Xc, and W1/2X in place
of X.

For the generalized regression model, recall that η

is the predictor function rather than the expected re-
sponse. We use a local scoring method to develop an
iteratively reweighted cone projection. This is analo-
gous to the iteratively reweighted least-squares fit to
the GLM (McCullagh and Nelder, 1989, Section 2.5),
but with a cone instead of a linear space. Let ψ(η) =
−∑n

i=1 logp(yi;ηi, τ ), and denote the gradient func-
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FIG. 2. First three plots: estimated components of the log-odds of diabetes in Pima Indian women, for age, BMI and number of pregnancies.
Final plot: surface representing estimated probabilities of diabetes in age and BMI, when skin fold is fixed at 20 and the number pregnancies
is 6 or fewer.

tion as ∇ψ(η) and the Hessian matrix as H(η). To min-
imize ψ over the cone C:

1. Initialize η(0) ∈ C.
2. At the kth iteration, evaluate ∇ψ(η(k)) and

H(η(k)), and compute

ξ (k) = η(k) + H
(
η(k))−1∇ψ

(
η(k))

as well as W(k) = −H(η(k)). Project ξ (k) onto C using
weights W(k) to get η(k+1).

3. Check for convergence. If the required distance is
“small,” the iteration ends; otherwise increment k and
go to (2).

In Step 3, we compare the distance between μ(k) and
μ(k+1), rather than the distance between and η(k) and
η(k+1), because for models such as binomial and Pois-
son, the latter can be unbounded. For example, if the
binomial responses corresponding to the last knot in-
terval are all successes, then the maximum likelihood
spline estimate for the log-odds might be infinite at the
endpoint. However, the estimate for the mean tends
to one. For the iteratively reweighted algorithm, the
cone projection routine is modified so that the first
guess for J at iteration k is the J from iteration k − 1;
this makes the routine almost as fast as for the uncon-
strained fit.

To demonstrate the method, we consider the data set
pima in the R package MASS with the following de-
scription: “A population of women who were at least
21 years old, of Pima Indian heritage and living near
Phoenix, Arizona, was tested for diabetes according
to World Health Organization criteria. The data were
collected by the US National Institute of Diabetes and
Digestive and Kidney Diseases.” The response vari-
able is whether or not the subject has diabetes, and
three predictors are treated as continuous: skin-fold
measurement, body mass index and age. We also have

the number of pregnancies, which is treated as ordi-
nal. We assume that we know a priori that the prob-
ability of diabetes is increasing in each of the predic-
tors.

Three of the estimated log odds components are
shown in Figure 2. For the spline fits, the default knot
choice in cgam is used, which for n = 530 is nine
equally spaced knots. The estimated components de-
viate substantially from linearity; in particular, for age
and BMI, the log-odds increase rapidly at the begin-
ning of the range before leveling off. The skin-fold
variable does not seem to have much effect on the re-
sponse, given the effects of the other predictors. Of
course, we would like to determine the statistical sig-
nificance of each of the components, and determine
confidence bounds for the probability estimates. These
inference methods are addressed in the next two sec-
tions.

3. HYPOTHESIS TESTING FOR MODEL
COMPONENTS

3.1 Tests Concerning the Parametrically Modeled
Components

For inference about the parameters β , we start with
the least-squares model. Suppose y = η + ε, where the
components of η are as in (1.1) and ε is a mean-zero
random vector with covariance matrix σ 2I. Suppose
that the projection of y onto the cone C falls on the
face FJ . Meyer (2018b) showed that, if PJ represents
the projection matrix for the space LJ spanned by the
columns of �J and Xc, then

(3.1) β̂ = (
X�(I − PJ )X

)−1X�(I − PJ )y.

The same paper also gave conditions for root-n con-
vergence of β̂ , where Theorem 4 states that under mild
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assumptions,
√

n(β̂ − β) = √
n
[
X�(I − PJ )X

]−1X�(I − PJ )ε

+ op(1).

Approximate t and F statistics are constructed from
the estimated covariance matrix

ĉov(β̂) = σ̂ 2[X�(I − PJ )X
]−1

,

where σ̂ 2 is the model variance estimate given by
Meyer and Woodroofe (2000):

(3.2) σ̂ 2 =
∑n

i=1(yi − μ̂i)
2

n − d
,

where d = min(1.5D,m) and D is the dimension of
LJ for the observed J .

Huang (2002) and Cheng (2009) derived inference
results for the linear parameters in the partial linear ad-
ditive model without smoothing.

For weighted least-squares regression with positive-
definite weight matrix W, we transform into the un-
weighted case by substituting W1/2y for y, W1/2� for
�, and W1/2X for X. For the generalized regression
model, the converged value of ξ is used in place of
the response y in the weighted least-squares regression
with the converged value of the weight vector.

Next, we use simulations to compare these hypoth-
esis tests for the linear terms in the binomial model,
coded in the R package cgam (Liao and Meyer, 2018),
with those of scam (Pya and Wood, 2015) and the rou-
tine gam in the mcgv package. We use a continuous
predictor t with values equally spaced in [0,1], and
a nominal covariate x with three levels. The model is

ηi = f (ti) + β0 + β1I {xi = 1} + β2I {xi = 2}, for i =
1, . . . , n. We imagine that we know a priori that f

is smooth and increasing, so we model f with con-
strained I -splines. The null hypothesis is that there
is no effect of the covariate x on the response (i.e.,
H0 : β1 = β2 = 0 versus H1: at least one of β1 or β2

is not zero), and an approximate F test for submod-
els is used. To construct this test statistic, we use the
final values ξ and W from the iteratively reweighted
least-squares procedure, and use the weighted sums of
squared residuals from the the null (SSE0) and alterna-
tive fits (SSE1). Because we do not assume the model
variance σ 2 is known, the test statistic is

F = (SSE0 − SSE1)/2

SSE1/(n − df 1)
,

where df 1 is the dimension of LJ for the alternative
hypothesis cone projection. Under H0, this has approx-
imately an F(2, n − df 1) distribution.

For the simulated data sets, the values of x are re-
lated to the values of t , so that x = 1 is more likely
for larger values of t , and x = 2 is more likely for
smaller values of t . Specifically, we generate inde-
pendent uniform random numbers u1, . . . , un, and if
ui ∈ (0,0.05 + 0.85t4

i ) we set xi = 1, if ui ∈ [0.4 +
0.55t

1/4
i ,1], we set xi = 2; otherwise xi = 3. For the

simulations, the true log odds is either linear: f (x) =
4x − 2, or f (t) = −1 + 60(t − 1/2)4+ + β1I {x = 1},
where (·)+ = max(0, ·).

An example data set with the nonlinear log-odds,
β1 = −1 and n = 200 is shown in Figure 3, along with
fits from the three methods. The constrained fits are

FIG. 3. An example data set generated from a binomial model with log-odds function ηi = −1 + 60(ti − 1/2)4+ − I {xi = 1}. Estimated
probability functions are for three levels of the categorical predictor x. The cgam and scam fits are constrained to be increasing.
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TABLE 1
Proportions of 10,000 data sets for which H0 : β = 0 is rejected, with test size α = 0.05. The response is binomial with log-odds function

ηi = f (ti ) + β1I {xi = 1} + β2I {xi = 2}

β1 n η(t) = 4x − 2 η(t) = −1 + 60(ti − 1/2)4+
gam scam scam cgam gam scam scam cgam
(def.) (def.) (sp = 0) (def.) (def.) (def.) (sp = 0) (def.)

0 200 0.042 0.050 0.041 0.051 0.050 0.146 0.044 0.053
0 400 0.050 0.050 0.048 0.053 0.050 0.089 0.053 0.052
0 800 0.052 0.050 0.047 0.049 0.047 0.083 0.052 0.050

−1 200 0.499 0.513 0.464 0.491 0.304 0.394 0.381 0.423
−1 400 0.813 0.837 0.800 0.808 0.651 0.746 0.730 0.743
−1 800 0.986 0.991 0.981 0.983 0.951 0.969 0.970 0.969

similar; the difference in the hypothesis test results is
due to the testing method rather than the fit. We gener-
ated 10,000 data sets for each of the two functions, four
sample sizes and two values of β1, to compare test size
and power, which are shown in Table 1. For the scam
test, we use both the default tuning parameters, and the
tuning parameters that “match” those of cgam. That is,
we set the penalty parameter to zero, and use the same
number of knots as the cgam default. We find that for
the linear log-odds, scam with the default choices out-
performs the other methods. However, for the nonlin-
ear log-odds, the test size for scam is inflated if the
default tuning parameters are used, especially for the
smaller sample sizes, while the power for our method
is consistently greater than that for gam. For the match-
ing tuning parameters, the cgam and scam results are
similar.

3.2 Testing H0 : η ∈ V Versus H1 : η ∈ C\V
Next, we turn to hypothesis tests concerning the con-

strained components. Let V be the linear space spanned
by the columns of Xc and X; this is the largest linear
space contained in the cone C. The traditional test of
H0 : η ∈ V versus H1 : η ∈ C\V , for the normal-errors
model, was first presented by Bartholomew (1959), in
terms of the one-way ANOVA model, where the null
hypothesis corresponds to constant means, versus the
completely ordered alternative. A more general treat-
ment of these one-sided tests was given by Raubertas,
Lee and Nordheim (1986). Here, the null hypothesis
is that none of constrained predictors is related to the
response; that is, α1 = · · · = αL = γ 1 = · · · = γ R = 0,
and the alternative is that at least one of the constrained
predictors has a nonzero coefficient. Sen and Meyer

(2017) formulated a “double-cone” test against a lin-
ear model, where the alternative shape does not need
to be specified.

We use the following notation. A random variable T

has a mixture of chi-squared distributions with mix-
ing parameters p ≥ 0,

∑d2
j=d1

pj = 1, written T ∼
χ̄2

d1:d2
(p), if for c > 0,

P(T ≤ c) =
d2∑

j=d1

P
(
χ2

j ≤ c
)
pj ,

where χ2
j is a chi-squared random variable with j de-

grees of freedom. Proofs of the following result are
available in Raubertas, Lee and Nordheim (1986),
Robertson, Wright and Dykstra (1988) and Meyer
(2003).

LEMMA 3.1. Let C be a polyhedral cone where the
largest linear space contained in the cone has dimen-
sion d1, and the smallest linear space containing the
cone has dimension d2. If ε ∼N(0, σ 2I), then

1

σ 2

∥∥�(ε|C)
∥∥2 ∼ χ̄2

d1:d2
(p),

where p = (pd1, . . . , pd2) and pd is the probability that
the projection of ε onto C falls on a face where the
dimension of the corresponding linear space is d .

The intuition behind this lemma is as follows: The
projection of ε onto the cone lands on a face FJ , and
coincides with the projection of ε onto LJ . We know
that ‖�(ε|LJ )‖2/σ 2 ∼ χ2(dim(LJ )); because another
realization of the response might have a projection that
lands on a different face, we have a mixture of chi-
squared random variables.
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First, we consider a linear space V0 ⊆ V , and the test
of H0 : η ∈ V0 versus Ha : η ∈ C\V0. We start by defin-
ing a matrix X0 whose columns form a basis for V0,
a projection matrix P0 for the linear space V0, and a
matrix X1 whose columns form a basis for V ∩ V⊥

0 ,
where V⊥

0 denotes the linear space orthogonal to V0.
Then define E = (I − P0)� and the cone can be writ-
ten as

C = {
η ∈ R

n : η = Eα + X0β0 + X1β1, for α ≥ 0
}
.

The projection of y onto C (the alternative hypothesis
fit) can be written as

η̂1 = EJ α̂ + X0β̂0 + X1β̂1,

while the null hypothesis fit is η̂0 = X0β̂0 (the β̂0 is
the same for the null and alternative fits due to orthog-
onality).

Let SSR0 = ‖y − η̂0‖2 be the sum of squared resid-
uals under the null hypothesis fit, and let SSR1 = ‖y −
η̂1‖2 be the sum of squared residuals under the alterna-
tive fit. By orthogonality,

SSR0 − SSR1 = ‖EJ α̂ + X1β̂1‖2,

and EJ α̂ + X1β̂1 is the projection of y onto the
cone

C1 = {
η ∈ R

n : η = Eα + X1β1, for α ≥ 0
}
.

Such an orthogonality argument is well understood in
the linear model setting; it applies to cones as well.
For, if a cone is contained in a linear space orthogo-
nal to a second linear space, than each face of the cone
is orthogonal to the second linear space. If two cones
are contained in orthogonal subspaces, then each face
of one cone is orthogonal to every face of the other
cone.

Under H0 : η ∈ V0, the expected value of y is in a
space orthogonal to C1, so we can apply Lemma 3.1
if the normal errors assumption holds. The likelihood
ratio test statistic distribution is that of a mixture of
chi-squared random variables:

T = 1

σ 2 (SSR0 − SSR1) ∼ χ̄2
d1:d2

(p),

where d1 is the dimension of the largest linear space
contained in C1, and d2 is the dimension of the small-
est linear space containing C1. The mixing distribution
is determined through simulations where the response
vector is generated as a normal random vector with
mean zero and identity covariance matrix.

If σ 2 is unknown, we use a test statistic with a
mixture-of-betas null distribution. Define

B = T

T + SSR1/σ 2 = SSR0 − SSR1

SSR0

then for c ∈ (0,1),

P(B ≤ c) =
d2∑

d=d1

B
(
d/2, (n − d1 − d)/2

)
pd,

where B(a, b) is a beta random variable with parame-
ters a and b. The mixing parameter p is the same as for
the known-variance case.

For the normal errors model, this test is exact, at
least to the precision of the estimated mixing param-
eters. For the generalized model, the null hypothesis
fit is obtained, and as in the test for linear effects, the
final values of ξ and W in the iterative reweighting al-
gorithm are treated as response vector and weights, re-
spectively. The mixing parameters are obtained using
the alternative hypothesis cone that is transformed by
the weights. The test is not exact for the generalized
model, but the following simulations demonstrate its
good qualities.

To compare this test with the methods in gam and
scam, we use the same simulation set-up as in the pre-
vious example, but we test H0 : f ≡ 0 versus H1 : f

is increasing. Specifically, the log-odds in the bino-
mial model is assumed to be of the form η(ti, xi) =
f (ti) + β1I {xi = 1} + β2I {xi = 2}, but this time we
fix β1 = 2 and β2 = −1. We use f (t) ≡ 0 to find the
test size, and f (t) = 30(t − 1/2)4+ is used to compare
the powers of the tests. To find the mixing parameters
in cgam, 1000 replications are used. These results are
presented in Table 2. The default tuning parameters in
scam give conservative test sizes and lower power than
the other methods, but the test sizes for the “matching”
tuning parameters are inflated. The power for the cgam
method, compared to the test in gam, is substantially
higher, mostly due to comparing a one-sided test with
a two-sided test.

3.3 Tests Concerning Individual Constrained
Components

Next, we consider the case where there are several
constrained components and we want to test the signif-
icance of a single component of the model. In this case,
our null hypothesis is not described by a linear space;
instead we have a test against a subcone. Suppose the
null hypothesis is H0 : α1 = 0 versus H1 : α1 ≥ 0. De-
fine

�0 = [
�2| · · · |�L|�1| · · · |�R

]
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TABLE 2
Proportions of 10,000 data sets for which H0 : f (t) = 0 is rejected, versus H1 : f (t) is increasing, with test size α = 0.05. The response is

binomial with log-odds function η(ti , xi ) = f (ti ) + β1I {xi = 1} + β2I {xi = 2}, i = 1, . . . , n

n f (t) ≡ 0 f (t) = 30(t − 1/2)4+
gam scam scam cgam gam scam scam cgam
(def.) (def.) (sp = 0) (def.) (def.) (def.) (sp = 0) (def.)

100 0.040 0.037 0.142 0.042 0.090 0.084 0.074 0.194
200 0.048 0.033 0.129 0.043 0.166 0.156 0.157 0.334
400 0.053 0.035 0.125 0.048 0.328 0.321 0.365 0.590
800 0.053 0.029 0.123 0.048 0.660 0.644 0.760 0.879

and

ζ 0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2
...

αL

γ 1
...

γ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so that we can write η = �1α1 + �0ζ 0 + Xcβc +
Xβ . Let Pv be the projection matrix for V , the space
spanned by the columns of Xc and X. Let �̃1 = (I −
Pv)�1 and �̃0 = (I − Pv)�0, so η can be written in
the form �̃1α1 + �̃0ζ 0 + Xcβc + Xβ , with α1 ≥ 0 and
α0 ≥ 0.

Let P0 be the projection matrix for the space spanned
by the columns of �̃0. Then

�̃1α1 + �̃ζ 0 = (I − P0)�̃1α1 + P0�̃1α1 + �̃0ζ 0

= (I − P0)�̃1α1

+ �̃0
[(

�̃
�
0 �̃0

)−1
�̃

�
0 �̃1α1 + ζ 0

]
=: E1α1 + �̃0a,

and η = E1α1 +�̃0a+Xcβc +Xβ . To estimate the co-
efficients βc and β , we project y onto the linear space
V . To estimate a and α1, we minimize ‖y − (E1α1 +
�̃0a)‖2 subject to[

I M
0 I

](
a
α1

)
≥ 0,

where M = −(�̃
�
0 �̃0)

−1�̃
�
0 �̃1. By orthogonality, the

estimate of η is the sum of the two projections.
Because the space spanned by the columns of E1 is

orthogonal to the space spanned by the columns of �̃0
and also orthogonal to V , we have∥∥y − (E1α̂1 + �̃0â + Xcβ̂c + Xβ̂)

∥∥2

= ∥∥y − (�̃0â + Xcβ̂c + Xβ̂)
∥∥2 + ‖E1α̂1‖2.

Again by orthogonality, the last term in the above equa-
tion is the squared length of the projection of y onto
the cone defined by the columns of E1. Therefore, by
Lemma 3.1, if H0 is true so that E(y) is orthogonal to
the column space of E1, we have

T1 = 1

σ 2 ‖E1α̂1‖2 ∼ χ̄2
0:m1

(p),

where m1 is the number of columns of E1. The mixing
coefficients in p can be approximated through simula-
tions to the desired precision, similar to the method for
previous test.

If σ 2 is known, the test with statistic T1 is exact un-
der the normal errors assumption, with larger values
supporting the alternative hypothesis. In the more usual
case of unknown model variance, we can construct a
mixture of betas test statistic. Let η̂1 = E1α̂1 + �̃0â +
Xcβ̂c + Xβ̂ , and consider

T2 = 1

σ 2 ‖y − η̂1‖2

= 1

σ 2

∥∥(I − PJ )y
∥∥2

= 1

σ 2

∥∥(I − PJ )(η + ε)
∥∥2

,

where PJ is the projection matrix for the face of C on
which the projection of y lands. Then, if η̄ = PJ η,

T2 = 1

σ 2

∥∥(I − PJ )ε
∥∥2

+ 1

σ 2

[‖η − η̄‖2 + 2ε�(η − η̄)
]

= 1

σ 2

∥∥(I − PJ )ε
∥∥2 + op(n),

by the approximation error rate for the spline functions.
The term ‖(I−PJ )ε‖2/σ 2 has a χ̄2

(n−m1−m−dv):(n−dv)

distribution, where dv is the dimension of V . However,
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the exact mixing distribution cannot be found through
simulations. Instead, we approximate the distribution
of this term with a chi-squared random variable with
degrees of freedom n − dobs, where dobs is the ob-
served dimension of the face of C on which the pro-
jection of y lands. If n is large compared to the di-
mension of the cone, this approximation is reasonable.
The statistics T1 and T2 are independent by orthogo-
nality of the spaces into which they project (the two
cones are contained in orthogonal subspaces), so T =
T1/(T1 +T2) has approximately a mixture-of-betas dis-
tribution. Specifically, for c ∈ (0,1),

P(T ≤ c) ≈
m1∑
d=0

P
(
B
(
d/2, (n − dobs)/2

)≤ c
)
pd.

To compare this test with the tests in gam and scam,
we generated 10,000 data sets from the model yi =
f1(t1i ) + f2(t2i ) + εi , for i = 1, . . . , n, where f1(t) =
40(t1 − 1/2)4+, and (·)+ = max(·,0). The εi are inde-
pendent standard normal, but we do not assume the
model variance is known. We considered the test of
H0 : f2 is constant versus H1 : f2 is increasing, using
increasing regression splines to estimate both terms.
The t1i values were generated as uniform on the unit in-
terval, and the t2i values were the t1i values plus a nor-
mal random variable with standard deviation 1/4, then
scaled to be in the unit interval. The average correlation
between the predictors is about 0.76. Simulation results
are in Table 3, for three sample sizes and two underly-
ing functions. The test sizes for gam are slightly over
the target 0.05, but getting closer to the target as n in-
creases. The scam test sizes with the default tuning pa-
rameters are getting substantially smaller than the tar-
get, and with the “matching” tuning parameters the test
size is inflated. The cgam test has appropriate size and
the best power; its main advantage over gam being that
it is a one-sided test.

For the subcone test in the generalized linear model,
we first fit the null hypothesis model, and retain the fi-
nal ξ as a response vector and W as the weights, from
the iteratively reweighted cone projection algorithm.
We perform the test with the transformed response and
the transformed cones. For the diabetes data used in the
Section 2 example, we can test for the statistical signif-
icance of the skin-fold predictor. As expected, we get
a large p-value (0.71) and conclude that this predic-
tor is not important for predicting diabetes, when BMI,
age and number of pregnancies are controlled for. We
proceed to test each of the three remaining predictors,
while controlling for the effects of the other two. We
get small p-values for BMI and age (3 × 10−7 and
2 × 10−6, resp.) but for the number of pregnancies,
p = 0.10.

4. CONFIDENCE AND PREDICTION INTERVALS

Buja, Hastie and Tibshirani (1989) provide an
overview of linear scatterplot smoothers, where the
least-squares estimator can be expressed as η̂ = Sy for
an n × n matrix S that does not depend on y. For re-
gression splines, S is a projection matrix for a linear
subspace spanned by the spline basis functions, but for
kernel, smoothing spline and penalized spline meth-
ods, S is not idempotent. The true η is not assumed to
be in the space of possible estimators, so there is a bias
component of the fit as well as a variance component.
Reducing the amount of smoothing by increasing the
number of knots or decreasing the bandwidth, smooth-
ing parameter, or penalty parameter, will decrease the
bias because the estimator can get closer to the true
function, but this is at the expense of increasing the
variance. The optimal convergence rate Stone (1980) is
attained by balancing the bias and variance. Similarly,
Huang (2001) characterized the bias as approximation
error and the variance as estimation error, and noted
that increasing the dimension of the estimation space

TABLE 3
Proportions of 10,000 data sets for which H0 : f2 = 0 is rejected, with test size α = 0.05. The predictors t1 and t2 are positively correlated,

and f1(t1) = 40(t1 − 1/2)4+

n f2(t2) ≡ 0 f2(t2) = √
t2

gam scam scam cgam gam scam scam cgam
(def.) (def.) (sp = 0) (def.) (def.) (def.) (sp = 0) (def.)

100 0.065 0.058 0.182 0.051 0.192 0.186 0.199 0.309
200 0.058 0.034 0.158 0.049 0.271 0.203 0.245 0.449
400 0.056 0.018 0.133 0.050 0.431 0.295 0.469 0.640
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decreases approximation error but increases estimation
error, and showed that setting the two error rates equal
gave optimal rates of convergence.

The estimated covariance matrix for the fit, v̂ar(η̂) =
σ̂ 2SS� can be used (with a suitable estimator σ̂ 2 for
the model variance σ 2) to construct the confidence in-
tervals as

η̂i ± zα/2
[
v̂ar(η̂)

]1/2
ii ,

but because this does not take into account the bias, the
coverage probability will be low unless the estimator is
undersmoothed. Zhou, Shen and Wolfe (1998) showed
that for regression splines, the knots must increase at
a faster-than-optimal rate to achieve asymptotically the
desired confidence level.

The necessity for undersmoothing the fit to get good
coverage is seen in other methods of nonparametric
function estimation. The scatterplot in Figure 4 was
simulated from the dashed curve with independent
standard normal errors. The upper left plot shows the
fit and pointwise confidence intervals using the popu-
lar gam function in the R package mgcv (Wood, 2018)
with the default parameters, and the coverage prob-
abilities estimated from 10,000 such fits are the top
right. The default parameters do not provide good cov-
erage where the curve is steep. In the second row, a fit
to the same scatterplot is shown with options k=40,
sp=0.01 which provide more flexibility so that the
approximation error or bias is minimal. The coverage
probabilities are good, but there is spurious wiggling
in the fit and the confidence bands are wider. In the
final two rows are examples of constrained fits and
confidence interval simulations results for the method
proposed here. In the case where there are a priori
shape assumptions about the regression function f ,
constrained regression splines obviate the problem of
bias-variance trade-off. Many knots can be used with
monotone or convex regression splines, because the
constraints do not allow the spurious wiggling. Both
good coverage and smaller-length intervals can be at-
tained, because with more knots the bias is dominated
by the variance. The default number of knots in cgam
for n = 100 is K = 7; for n = 200, we use K = 8, and
for n = 400, K = 9.

The projection η̂ lands on a face FJ of the cone C.
If PJ denotes the projection matrix for the linear space
LJ , then

η̂ =∑
J

PJ yI {y ∈ CJ },

where CJ ⊂ R
n is the set of y whose projection onto

C lands on FJ . To construct the pointwise confidence
intervals at the design points, we propose

(4.1) v̂ar(η̂) = σ̂ 2
∑
J

PJ p̂J ,

where p̂J is the estimated probability that y is in CJ ,
and σ̂ 2 is defined in (3.2). The p̂J values are obtained
by simulating many normal random vectors with mean
η̂ and covariance matrix σ̂ 2I, and recording the result-
ing sets J .

For estimating the variance of f̂1(t1)+· · ·+ f̂L(tL)+
ĝ1(z1) + · · · + ĝR(zR) + x�β̂ at arbitrary values of
the predictors, we construct w to be a predictor vec-
tor as follows. Let wc be a vector of length dc,
where dc is the number of columns of Xc, and the
first element is one, and the other elements are t�,
for � such that f� is concave or convex. Let b� =
(b�,1(x�), . . . , b�,m�

(x�))
�, where b�,j is the j th spline

basis function defined for the predictor x�. Let dr

contain the row of �r appropriate for the value zr ,
and let b = [b�

1 , . . . ,b�
L,d�

1 , . . . ,d�
R ]�. Finally, w =

(b�,w�
c ,x�)�. Then f̂1(t1)+ · · ·+ f̂L(tL)+ ĝ1(z1)+

· · · + ĝR(zR) + x�β̂ = w�[α̂|β̂c|β̂], where α̂, β̂c and
β̂ are the coefficients for the projection of y onto the
cone defined in (2.3).

Then v̂ar(η̂(t1, . . . , tL, z1, . . . , zR,x)) = σ̂ 2w�Ĉw,
where Ĉ = ∑

J C(J )p̂J and C(J ) is an M × M ma-
trix, where M = m + dc + p and CJ is constructed
as follows. For J ∈ {1, . . . ,m}, define �J to have the
columns of � (defined in (2.2)) that are indexed by the
elements of J . Define XJ = [�J |Xc|X], and let mJ be
the number of elements in J . For k, � ∈ {1, . . . ,m},

C(J )
k,� =

⎧⎪⎪⎨
⎪⎪⎩
(
X�

J XJ

)−1
jk,j�

if jkth element of J is k

and j�th element of J is �,

0 if k /∈ J or � /∈ J.

For k ∈ {1, . . . ,m} and � ∈ {dc + p + 1, . . . ,M},

C(J )
k,� =

⎧⎨
⎩
(
X�

J XJ

)−1
jk,�+mj−m if jkth element of J is k,

0 if k /∈ J.

For k, � ∈ {dc + p + 1, . . . ,M},
C(J )

k,� = (
X�

J XJ

)−1
k+mj−m,�+mj−m.

The proposed confidence interval for η(t1, . . . , tL,

z1, . . . , zR,x) is f̂1(t1) + · · · + f̂L(tL) + ĝ1(z1) +
· · ·+ ĝL(zR)+ z�β̂ ± zα/2[σ̂ 2wĈw�]1/2. This expres-
sion is consistent with (4.1); if D = [�|X0|Z], then
v̂ar(η̂) = σ̂ 2DĈD�.
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FIG. 4. Example scatterplot smoothers with pointwise confidence bands; the first two rows use the gam function in the R package mgcv.
The bottom two rows display the proposed constrained spline method. The data shown in the plots on the left were generated from the true
regression function shown as the dashed curve with i.i.d. normal errors. The plots on the right show coverage probabilities (upper dots, left
scale) and interval lengths (lower dots, right scale).
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FIG. 5. Coverage probabilities (top curves, left scale) and average interval lengths (bottom curves, right scale) from 2000 simulated data
sets.

For the generalized regression model, we use the ter-
minal ξ and W in the iteratively reweighted projection,
and transform both ξ and the cone C using the weights.
We determine the confidence bands as above, within
the transformed model, and transform back to η and μ.

To compare our method to that of scam, we ran sim-
ulations with the binomial model with a single contin-
uous predictor. We use two sample sizes and the under-
lying true mean function

μ(t) = 0.3 + 0.5 exp(10t − 5)

1 + exp(10t − 5)
,

and again we use two sets of tuning parameters for
the scam method. In Figure 5, the coverage probabil-
ities and average interval lengths of the methods are
compared. Although scam with the default tuning pa-
rameters produces the smallest intervals, the coverage
is poor and does not improve with the larger sample
size. The method with sp=0 and the same number of
knots as the default in cgam produces similar results
to cgam.

Finally, we apply the method to the diabetes data set
used for examples in the last two sections. Using BMI
and age, the two predictors found to be significantly
related to the probability of diabetes, we obtain 95%
pointwise confidence bands for the probabilities for all
values of BMI, and three values of age; these are shown
in Figure 6.

5. SHAPE AND MODEL SELECTION

For a model with many predictors, some of them
correlated, the shapes might not be known a priori. In
fact, the scientific question may concern the shapes.
Is the probability of a cure decreasing in age, while
controlling for the effects of other predictors? Does
the strength of a filament increase with conductivity,
given the thickness? A model selection method may be
considered where predictors are chosen along with the
shapes of the relationships. The cone information cri-
terion (CIC) given by Meyer (2013) was derived as an

FIG. 6. Estimated probability of diabetes in Pima Indian women, at three ages and all levels of BMI (solid curves). The 95% pointwise
confidence bands for the probabilities are shown as dashed curves.
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estimate of the predicted squared error, and is given by

CIC = ψ(η) + log
(

2(E0(D))

n − 1.5E0(D)
+ 1

)
,

where ψ is the negative log-likelihood function and
E0(D) is the expected null degrees of freedom of the
model. The second term of the CIC penalizes the com-
plexity of the model, and hence it would be inappropri-
ate to use observed degrees of freedom. The dimension
of the observed face tends to be larger when the predic-
tors are more strongly related to the response, and in
the case where none of the constrained predictors are
important, the observed face could simply be the lin-
ear space contained in the cone. Using observed face
would result in larger penalties for better models. To
determine the expected null degrees of freedom, simu-
lations are necessary for each model in the list of pos-
sible models, where the response is generated from the
appropriate model with no predictor effects. The ob-
served degrees of freedom for each simulated response
will be between d1, the largest linear space contained
in the cone, and d2, the smallest linear space that con-
tains the cone. The average of these observed degrees
of freedom is averaged over many responses to get
E0(D).

Several model or variable selection methods have
been proposed involving isotonic or ordering restric-
tions, where the relationships are assumed to be mono-
tone and variables can be chosen or not. Anraku (1999)
proposed an information criterion specific to the order-
restricted models, and Zhao and Peng (2002) used this
for an isotonic dose-response problem, to determine
at which levels the probability of a success increases.
Peddada et al. (2003) proposed a method for selecting
and clustering genes in gene expression data, based on
traditional order-restricted models. Rueda (2013) pro-
posed a variable selection method with unsmoothed
isotonic regression, based on the observed degrees
of freedom of the fit. A method similar to that pro-
posed here, where shape is chosen from several dif-
ferent options, is found in Moisen et al. (2016) and is
currently used for monitoring forest disturbances via
Landsat signals. In that application, different forest dis-
turbances produce different shapes in the Landsat time
series.

To demonstrate the proposed CIC method, we look
at the data set trade.union in the R package
SemiPar. The response variable is the logarithm of
the wages, for n = 532 workers in 1985. Three pre-
dictors are modeled with splines: age, years of experi-
ence and years of education. Each of the three spline
functions can take any of the nine following shapes:

flat, increasing, decreasing, convex, concave or any of
the four combinations of monotonicity and convex-
ity. There are seven nominal predictors: sex, occupa-
tion, whether or not the worker is in a union, whether
the worker is married, whether the worker is in the
south, race of worker and sector (manufacturing, con-
struction, other). With the constrained splines, we can
choose the shape: if each of the three “continuous”
variables can be either flat, increasing, decreasing, con-
vex, concave or one of the four combinations of mono-
tonicity and convexity, we have 93 ×27 = 93,312 mod-
els. For each model, the calculation of E0(D) involves
simulations from the null model, so the fitting of all
models takes about two days. For this and larger data
sets, we can use a genetic algorithm to search for the
best model.

We define phenotypes as strings having a one-to-one
map with the possible models. Each element of the
string describes one of the variables, where the shapes
are coded with numbers such as “1 = increasing,” “2 =
decreasing,” etc., coding each of the eight shapes, and
reserving the code “0” to mean “not in the model.” For
the nominal predictors, 1 means “in the model” and
0 means “not in the model.” For example, the string
(5,1,4,1,1,0,0,1,0,0) represents a model where η

is increasing and convex in x1, increasing in x2 and
concave in x3. The remaining digits represent the nom-
inal covariates.

To begin the genetic algorithm, we make an initial
population of a few hundred phenotypes. For each phe-
notype, we can compute its fitness, that is, the nega-
tive CIC value for this model with the observed data.
Then we let the population evolve. In each generation,
there are the following steps. For the mutation step, we
randomly choose a small number of phenotypes in the
population, and for each, we randomly choose a gene
and randomly change it to one of the allowed values.
For the reproduction step, we randomly choose two
members of the population. We randomly choose half
the genes of one and combine these with the remain-
ing genes of the other, to get an offspring. One of the
old members of the population is replaced with the off-
spring. For the reproduction step, the more fit members
of the population must be more likely to reproduce. To
do this, tournament methods are common: choose two
pairs and have each pair “fight” where the more fit are
more likely to win; then the winners get to reproduce.
Another way is to randomly assign genders to the phe-
notypes: all females but only the most fit males will
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FIG. 7. Best model fits for the trade.union data set.

reproduce. By mimicking “real” evolution, the genetic
algorithm converges to the best model.

There is no proof that a genetic algorithm always
produces the optimal phenotype. The standard method
for checking validity of the answer is to use another
starting population and run the algorithm again. If a
different answer is obtained, a larger starting popula-
tion is needed. For the trade.union data, the ge-
netic algorithm reliably gives the correct answer (min-
imizing the CIC over all models) with a population of
400 phenotypes and 10% mutation. The ShapeSe-
lect function in the R package cgam allows the user
to choose population size and mutation rate, as well as
the set of shapes for each variable.

The genetic algorithm finds the best model for the
trade union data in about half an hour. It chooses two of
the continuous predictors, so that the fit to wages is in-
creasing in years of education, increasing and concave
in years of experience and flat in age. Three nominal
variables chosen are sex, occupation and union mem-
bership. The fits for this model are shown in Figure 7,
where the surface is shown with the effects of each of
the three nominal predictors. It would be difficult to de-
termine a priori some parametric regression shapes that
would be appropriate, so nonparametric methods are
valuable in this situation. However, fits that are only
“smooth” are difficult to interpret. The set of possi-
ble shapes provides a rich field and minimal assump-
tions; it is appropriate if there is confidence that the
true components of the relationship do not “wiggle.”
The results are interpretable in the context of the prob-
lem and provide information about the nature of the
relationships.

6. DISCUSSION

Interest is growing for estimation and inference pro-
cedures where a minimum of assumptions is required.
Linear models are convenient and inference meth-
ods are well known, but serious problems with model
misspecification arise from making strong, invalid as-
sumptions. Consider the data in Figure 8, where yi =
f (xi)+εi and f (x) = 5e10x−5/(1+e10x−5) with i.i.d.
standard normal εi . A categorical covariate was also
simulated, strongly related to x as shown in the plot.
The scatterplot might suggest a linear relationship with
different intercepts for the levels of the covariate. The
results of the linear model, however, erroneously sug-
gest that the covariate is a significant predictor, and
ordinary residual analysis might not detect departures
from the model. If we assume only that the relationship
between y and x is smooth and increasing, the fit on the
right in Figure 8 is obtained, with a large p-value for
the covariate effect. In addition, the fitted function is
quite close to the true mean. Especially when there are
many predictors that are related to each other, paramet-
ric relationships are difficult to determine. Strong para-
metric assumptions that may be unjustified will lead
to making the wrong conclusions, and the probabil-
ity of making the wrong conclusion actually increases
with the sample size. Nonparametric function estima-
tion methods make only vague assumptions about the
components, such as “smooth” and “increasing.” Min-
imizing the assumptions will minimize the model mis-
specification errors. Using shape constraints as well as
smoothing, either as a priori assumptions or through
shape and variable selection, leads to flexible fits that
are interpretable in the context of the problem.

If unsmoothed shape-constrained estimators are used
for continuous predictors, the dimension of the small-
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FIG. 8. Data simulated from a sigmoidal regression function, with linear and spline fits. The value of the categorical covariate is indicated
by the plot character.

est linear space containing the cone can be as large as
n, the sample size. Dimension reduction through re-
gression splines is an important advantage as well as
having a more satisfactory estimator when the smooth-
ness assumption is valid. Modeling continuous pre-
dictors with regression splines allows a much smaller
model dimension, which in turn allows for the infer-
ence methods such as the subcone test. The choice
of knots, crucial for unconstrained splines, is rendered
less important by the robustness of the constrained fits
to knot choices. We can choose a “generous” number
of knots for each component, because constraints disal-

low the “wiggling” usually associated with over-fitting
in scatterplot smoothers.

For the scam methods, Pya and Wood (2015) imple-
mented a Bayesian approach to obtain approximately
normal distributions for the spline basis coefficients,
attributed to Wahba (1983) and Silverman (1985). The
methods coded in cgam use the cone formulation with
formally derived inference methods, specifically for es-
timation with constraints.

APPENDIX: R CODE FOR THE SIMULATIONS

TABLE 1
cgam

nloop=10000
n=800
x=0:(n-1)/(n-1)
eta0=-1+60*(x-1/2)^4;eta0[x<1/2]=-1
pr1=0.05+0.85*x^4
pr2=0.4+0.55*x^(1/4)
pval=1:nloop
for(iloop in 1:nloop){

z=1:n*0+3
u=runif(n)
z[u<pr1]=1;z[u>pr2]=2
eta=eta0

# eta[z==1]=eta[z==1]-1 (uncomment for power)
mu=exp(eta)/(1+exp(eta))
y=1:n*0
y[runif(n)<mu]=1
ans=cgam(y~s.incr(x)+factor(z),family="binomial")
pval[iloop]=anova(ans)$coefficients1[3]

}
sum(pval<=0.05)/iloop
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TABLE 1
scam

nloop=10000
n=100
x=0:(n-1)/(n-1)
eta0=-1+60*(x-1/2)^4;eta0[x<1/2]=-1
pr1=0.05+0.85*x^4
pr2=0.4+0.55*x^(1/4)
pval=1:nloop
for(iloop in 1:nloop){

z=1:n*0+3
u=runif(n)
z[u<pr1]=1;z[u>pr2]=2
eta=eta0

# eta[z==1]=eta[z==1]-1
mu=exp(eta)/(1+exp(eta))
y=1:n*0
y[runif(n)<mu]=1

# ans=scam(y~s(x,bs=’mpi’,k=10)+factor(z),family="binomial",sp=0) #(match)
ans=scam(y~s(x,bs=’mpi’)+factor(z),family="binomial") ## (default)
pval[iloop]=anova(ans)$pTerms.pv

}
sum(pval<=0.05)/iloop

TABLE 2
cgam

nloop=10000
n=800
x=0:(n-1)/(n-1)
eta0=30*(x-1/2)^4;eta0[x<1/2]=0
#eta0=1:n*0
pr1=0.05+0.85*x^4
pr2=0.4+0.55*x^(1/4)
pval=1:nloop
for(iloop in 1:nloop){

z=1:n*0+3
u=runif(n)
z[u<pr1]=1
z[u>pr2]=2
eta=eta0
eta[z==1]=eta[z==1]+2
eta[z==2]=eta[z==2]-1
mu=exp(eta)/(1+exp(eta))
y=1:n*0
y[runif(n)<mu]=1
ans=cgam(y~s.incr(x)+factor(z),family="binomial",nsim=0)
pval[iloop]=anova(ans)$coefficients2[3]

}
hist(as.numeric(pval))
sum(pval<0.05)/nloop
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TABLE 2
scam

nloop=10000
n=800
x=0:(n-1)/(n-1)
#eta0=30*(x-1/2)^4;eta0[x<1/2]=0
eta0=1:n*0
pr1=0.05+0.85*x^4
pr2=0.4+0.55*x^(1/4)
pval=1:nloop
for(iloop in 1:nloop){

z=1:n*0+3
u=runif(n)
z[u<pr1]=1
z[u>pr2]=2
eta=eta0
eta[z==1]=eta[z==1]+2
eta[z==2]=eta[z==2]-1
mu=exp(eta)/(1+exp(eta))
y=1:n*0
y[runif(n)<mu]=1
ans=scam(y~s(x,bs=’mpi’,k=10)+factor(z),family="binomial",sp=0) ## match

# ans=scam(y~s(x,bs=’mpi’)+factor(z),family="binomial") ## default
pval[iloop]=summary(ans)$s.pv

}
sum(pval[1:nloop]<0.05,na.rm=TRUE)/(nloop-sum(is.na(pval)))

TABLE 3
cgam

nloop=10000
n=100
x1=0:(n-1)/(n-1)
x2=x1+rnorm(n)/2
x2=(x2-min(x2))/(max(x2)-min(x2))
pval=1:nloop
eta1=40*(x1-1/2)^4;eta1[x1<1/2]=0
#eta2=1:n*0 ## null
eta2=sqrt(x2) ## alternative
for(iloop in 1:nloop){

y=eta1+eta2+rnorm(n)
ans=cgam(y~s.incr(x1)+s.incr(x2),nsim=0)
pval[iloop]=anova(ans)$coefficients2[2,3]

}
TABLE 3
scam

nloop=10000
n=100
x1=0:(n-1)/(n-1)
x2=x1+rnorm(n)/2
x2=(x2-min(x2))/(max(x2)-min(x2))
pval=1:nloop
eta1=40*(x1-1/2)^4;eta1[x1<1/2]=0
eta2=1:n*0 ## null
#eta2=sqrt(x2) ## alternative
for(iloop in 1:nloop){

y=eta1+eta2+rnorm(n)
# ans=cgam(y~s.incr(x1)+s.incr(x2),nsim=0)

ans=scam(y~s(x1,bs=’mpi’,k=8)+s(x2,bs=’mpi’,k=8),sp=c(0,0))
pval[iloop]=summary(ans)$s.pv[2]

}
sum(pval<0.05)/nloop
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