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Limit Theory in Monotone Function
Estimation
Cécile Durot and Hendrik P. Lopuhaä

Abstract. We give an overview of the different concepts and methods that
are commonly used when studying the asymptotic properties of isotonic es-
timators. After introducing the inverse process, we illustrate its use in estab-
lishing weak convergence of the estimators at a fixed point and also weak
convergence of global distances, such as the Lp-distance and supremum dis-
tance. Furthermore, we discuss the developments on smooth isotonic estima-
tion.
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1. INTRODUCTION

Estimating a mortality intensity is of particular inter-
est in actuarial science and in medicine. While the mor-
tality intensity is an increasing function early in life, it
decreases with older people. In reliability studies, in-
terest is on estimating the failure rate of systems. Typ-
ically, the failure rate first decreases during a debug-
ging period and then increases after an ageing period.
In other cases, we are interested in estimating the dis-
tribution function (which is monotone) of a life-time
of a human being after a medicinal treatment, based on
censored observations: we only observe if the patient
is still alive at the (random) observation time. In doses-
response experiments, which has applications, for ex-
ample, in biology or epidemiology, it is often observed
that the response tends to increase (or decrease) as the
dose increases. In such situations, we are faced with
the problem of estimating a monotone function. The
typical useful statistical models for the applications de-
scribed above are regression, current status and right-
censored models. In terms of interpretability and accu-
racy, if the underlying function is monotone, it is useful
to construct an estimator that satisfies the monotonic-
ity constraint. This can be achieved by estimating the
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function in an appropriate parametric model, but para-
metric models lack flexibility, since the functions are
then restricted to a particular functional form. Hence,
it is of interest to build monotone nonparametric esti-
mators.

Early research on nonparametric inference under
shape constraints dates back to the 1950s and first fo-
cused on estimation of functions under the constraint
of monotonicity or unimodality, with the aim of defin-
ing nonparametric estimators satisfying the shape con-
straint. In the sequel, we will focus on nonincreasing
functions; the case of nondecreasing functions is most
of the time similar (but involves greatest convex mi-
norants instead of least concave majorants below), and
the case of unimodal functions with known mode eas-
ily reduces to the monotone case. We will focus on esti-
mators obtained as slopes of the least concave majorant
(LCM) of an appropriate stochastic process. A number
of statistical settings where such estimators arise natu-
rally are given in Section 2.1. We will focus on settings
where the underlying function is continuous and obser-
vations are independent. We will describe the asymp-
totic properties of the estimators in such a setting and
give, as far as possible, a sketch of proof which could
be far from being rigorous, with the hope to provide
some intuition on the considered results. We will also
give references for the complete proofs. We would like
to point out that the rigorous proofs are typically in-
volved since the estimators are nonlinear and nonstan-
dard (with a non-Gaussian limit distribution).
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2. MAIN CONCEPTS AND DEFINITIONS

2.1 Estimation Under the Monotonicity Constraint

The popular example of estimation under the con-
straint of monotonicity is estimating a nonincreas-
ing density function on [0,∞), which was considered
in [37]. See also [51]. Based on a sample X1, . . . ,Xn of
i.i.d. observations from the unknown density, the max-
imum likelihood estimator (MLE), that maximizes

f �→
n∑

i=1

logf (Xi)

over the set of all nonincreasing densities f : [0,

∞) → [0,∞), is the left-hand slope of the LCM of the
empirical distribution function, where the LCM of a
function h : [0,∞) →R is the lowest concave function
on [0,∞) that lies above h. Hence, the MLE is a step
function that can have steps only at the order statistics;
it is now called the Grenander estimator. The MLE of
a nonincreasing failure rate based on an i.i.d. sample, is
also connected to the LCM of a stochastic process, and
can alternatively be described with min-max formulas;
see [37, 77].

The regression setting can be described in the Gaus-
sian one-dimensional case as follows; see [14]. As-
sume that for all k = 1, . . . ,m, with some m ∈ N, a
sample of nk random variables with common mean
μ0(tk) is observed, where tk ∈R is fixed and μ0 :R→
R is nonincreasing. If all observations are independent
Gaussian with common variance, then the MLE of μ0
exists and can be characterized in terms of min-max
formulas. Denoting by ȳk the average of observations
with mean μ0(tk), it coincides with the least squares
estimator (LSE) that minimizes

μ �→
m∑

k=1

nk

(
ȳk − μ(tk)

)2

over all nonincreasing functions μ : R → R. More
pleasant characterizations arise from the theory of iso-
tonic regression [11], Theorem 1.1: with t(1) < · · · <

t(m) the ordered design points, the values of the LSE at
t(1), . . . , t(m) are the left-hand slopes of the LCM of the
cumulative sumdiagram (CSD) consisting of the points

P0 = (0,0) and
(1)

Pk = (
Gn(t(k)),�n(t(k))

)
, k = 1, . . . ,m,

where {Gn(t), t ∈ R} and {�n(t), t ∈ R} are random
processes in the horizontal and vertical direction, re-
spectively, defined by

Gn(t) =
∫

1{x≤t} dPn(x, y) and

�n(t) =
∫

1{x≤t}y dPn(x, y)

with Pn the empirical measure (hence Gn is the em-
pirical distribution function of the design points). Any
monotone interpolation of these slopes gives a LSE.
Analogous to the Grenander estimator, which is a left-
continuous step function, the left-continuous step in-
terpolation is usually considered. Note that λ̂n can
also be seen as the left-hand slope of the LCM of the
CSD t �→ (Gn(t),�n(t)) constructed with piecewise-
constant processes Gn and �n that interpolate the
points in (1).

In the 1990s there was a sharp rise in interest in es-
timation under monotonicity constraints. The current
status problem studied in [52] aims at estimating the
distribution function F0 of a random variable X ≥ 0
(a “life time”) based on observations of i.i.d. copies
of the pair (�,T ), where T ≥ 0 is a continuous vari-
able interpreted as the observation time independent
of X and � = 1{X≤T }. The MLE of F0 maximizes
the log-likelihood over the set of all distribution func-
tions F , which are nondecreasing by definition. Again,
the MLE can be characterized thanks to min-max for-
mulas; it can be obtained as slopes of the greatest con-
vex minorant (GCM, the highest convex graph that lies
below the points in the diagram) of the CSD in (1),
where now, t(k) is the kth order statistic of T1, . . . , Tn,

Gn(t(k)) = k/n and

�n(t(k)) = n−1
n∑

j=1

�j1{Tj≤t(k)};

see [52], Proposition 1.2. The second case of inter-
val censoring (see [52]) is related to double censor-
ing: we still aim to estimate the distribution function
of X ≥ 0, but now one only observe i.i.d. copies of
(U,T ,1{X≤T },1{X∈(T ,U ]}), where 0 ≤ U ≤ T are inde-
pendent observation times independent of X. The char-
acterization of the MLE is more involved in that case
and can be given in terms of the slope of the convex
minorant of a self-induced cumulative sumdiagram.

The setting of interval censoring generalizes to
so-called panel count data where several events are
recorded across the time for each subject in the study.
Then, the parameter of interest is the nondecreasing
mean function of the corresponding counting process.
Two nonparametric estimators are proposed in [93]:
one of them is a pseudo-likelihood estimator that ig-
nores the dependency of the events within a subject
and is defined through slopes of the GCM of an ap-
propriate CSD; the other one, which shows a better
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performance, takes the dependency into account and
can be computed using an iterative convex minorant
algorithm.

The problem of estimating the density or the fail-
ure rate of a random variable X ≥ 0 under monotonic-
ity constraints, has been considered in the context of
right-censored observations. This means that obser-
vations are i.i.d. copies of the pair (�,min(X,T )),
where T ≥ 0 is a censoring time independent of X and
� = 1{X≤T }. In this setting, [57] provides a character-
ization of the MLE for the density of X as the LCM
of a self-induced stochastic process. Similar to the
Grenander estimator, defined as the slope of the LCM
of the empirical estimator of the distribution func-
tion F0 corresponding to a nonincreasing density f0,
it seems natural in the case of right-censoring to start
with the Kaplan–Meier estimator for F0 and define a
Grenander-type estimator as the slope of the LCM of
the Kaplan–Meier estimator. The MLE differs from
the Grenander-type estimator, but no significant dif-
ferences can be seen on simulations; see [57]. In the
same setting, [56] study nonparametric estimators of
the density f0 and of the failure rate f0/(1 − F0), both
under the constraint that it is nonincreasing on [0,∞),
as well as that it is nondecreasing. They consider both
the MLE of the monotone function of interest and the
Grenander-type estimator defined as the slope of the
LCM (or GCM in the nondecreasing case) of either the
Kaplan–Meier estimator of the distribution function, or
the Nelson–Aalen estimator of the cumulative failure
rate. The two approaches are shown to be asymptoti-
cally equivalent in [56] (at a fixed point, at n1/3 scal-
ing), which supports the empirical findings in [57].

A great advantage of the above estimators is that, in
addition to that they satisfy the required monotonicity
constraint, they do not require the choice of a tuning
parameter. In the sequel, we will focus on the MLE and
Grenander-type estimators λ̂n of a monotone function
λ0 on I = [0,1] or I = [0,∞), of which the values are
given by the slopes of the LCM (or GCM) of either a
cumulative sumdiagram built from the observations, or
a naive estimator for the primitive �0 corresponding to
λ0, respectively. For ease of exposition, we give a more
formal definition for the nonincreasing case on [0,1],
although monotone functions on [0,∞), say, are also
of considerable interest.

DEFINITION 2.1. Let λ0 : [0,1] → R be the non-
increasing function of interest and let �n be either a
piecewise constant or a piecewise linear process on

[0,1] such that �n(0) = 0, that estimates the cumu-
lative function �0(t) = ∫ t

0 λ0(x)dx based on n obser-
vations. The estimator λ̂n defined as the left-hand slope
of the LCM of �n, with λ̂n(0) = limt↓0 λ̂n(t), is called
a Grenander-type estimator.

As λ0 is the slope of the concave function �0, it is
natural to define Grenander-type estimators as slopes
of a concave estimator (the LCM of �n) of �0, if such
an estimator is available. If observations are available
only at design points, one has to consider instead iso-
tonic estimators as defined below.

DEFINITION 2.2. Let λ0 : [0,1] → R be the non-
increasing function of interest and let Gn be a step
distribution function on [0,1]. Let �n be a piecewise
constant process on [0,1] with the same jump points
t(1) < · · · < t(m) as Gn, such that �n(0) = 0. The es-
timator λ̂n defined as the left-hand slope of the LCM
of t �→ (Gn(t),�n(t)), with λ̂n(0) = limt↓0 λ̂n(t), is
called an isotonic estimator.

REMARK 2.1. In the definition, Gn is typically the
empirical distribution function of design points and �n

is an estimator of the cumulative function �0(t) =∫ t
0 λ0(x)dG(x) based on n observations, where G is

the limit of Gn. The connection between Grenander-
type and isotonic estimators is as follows. Let �n be the
piecewise linear process on [0,1] satisfying �n(0) = 0
and �n(xk) = �n(t(k)) for all k = 1, . . . ,m, where
xk = Gn(t(k)). Then, the isotonic estimator in Defini-
tion 2.2 is the left-continuous step function such that
λ̂n(t(k)) = γ̂n(xk) for all k, where γ̂n is the Grenander-
type estimator of γ0 := λ0 ◦ G−1 defined as left-hand
slope of the LCM of �n. Also, γ̂n = λ̂n ◦ G−1

n . Here,
G−1

n and G−1 are the quantile functions corresponding
to Gn and G.

The Grenander estimator for a monotone density is
included in Grenander-type estimators with �n = Fn

the empirical distribution function. Grenander-type es-
timators are considered in [56] for a nonincreasing den-
sity or failure rate under right censoring, with �n equal
to the Kaplan–Meier or Nelson–Aalen estimator, re-
spectively. The LSE in the regression setting, the MLE
for interval censoring case 1, the pseudo-MLE in [93],
all boil down to isotonic estimators.

Recently, similar methods have been proposed in
models that incorporate covariables: estimation of a
monotone baseline hazard in the Cox model [75], a dis-
tribution function in current status regression [80, 43],
a monotone ridge function in the single index model
[6]. Despite similarities with isotonic estimators, they
involve additional technicalities and will not be further
considered in the present paper.
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FIG. 1. Switching relation for Ûn(a) and λ̂n(t).

2.2 The Inverse Process

The inverse process, first introduced in [38] for the
Grenander estimator, is a very useful tool in deriv-
ing their limit behavior. We first give the definition
for Grenander-type estimators and then extend to iso-
tonic estimators. The Grenander-type estimator λ̂n of
Definition 2.1 is nonincreasing and left continuous, so
for each a ∈ R its pseudo-inverse Ûn(a) is the largest
t ∈ [0,1] that satisfies λ̂n(t) ≥ a, with the convention
that the supremum of an empty set is zero. The result-
ing switching relation, is that

(2) λ̂n(t) ≥ a ⇐⇒ Ûn(a) ≥ t

for all a ∈ R and t > 0. For any a ∈ R and t > 0, if one
drops a line with slope a from above onto the process
�n from Definition 2.1, then λ̂n(t) ≥ a if and only if
the line first hits �n at a point u ≥ t , that is, if and only
if �n(z)−az is maximal at z = u; see Figure 1. Hence,

(3) Ûn(a) = argmax
z∈[0,1]

{
�n(z) − az

}
,

where the argmax is the largest location where the
maximum is achieved. In the sequel, we assume that
the maximum is achieved for all a, which is the case for
instance if �n is nonincreasing and right-continuous,
or if �n is piecewise linear. The inverse process Ûn

is much more tractable than λ̂n. The advantage is that
limit behavior of the process z �→ �n(z) − az is more
or less standard and the argmax is a continuous map-
ping, which enables one to establish the limit behavior
of Ûn(a). By means of (2) this will then yield the limit
behavior of λ̂n(t).

Now, let λ̂n be an isotonic estimator as in Defini-
tion 2.2. Then,

λ̂n(t) ≥ a

⇔ (∃s ≥ t) (∀w ≥ t) : �n(w) − �n(s)

Gn(w) − Gn(s)
≥ a

⇔ (∃s ≥ t) (∀w ≥ t) : �n(w) − aGn(w)

≥ �n(s) − aGn(s)

⇔ argmax
z∈[0,1]

{
�n(z) − aGn(z)

} ≥ t

for all a ≥ 0 and t > 0. Hence, in this case the pseudo
inverse for λ̂n is given by

(4) Ûn(a) = argmax
z∈[0,1]

{
�n(z) − aGn(z)

}
and as before, it satisfies the switching relation in (2).
Note that the pseudo inverse (3) is a special case of (4),
with Gn(z) = z. Note also that in the notation of Re-
mark 2.1, we have Ûn = G−1

n ◦ γ̂ −1
n where for all

a ∈R,

(5) γ̂ −1
n (a) = argmax

z∈[0,1]
{
�n(z) − az

}
.

This illustrates the connection between inverses of iso-
tonic estimators and inverses of Grenander-type esti-
mators.

2.3 The Chernoff Distribution and the Argmax
Process of a Brownian Motion with Parabolic
Drift

This section is concerned with the so-called Cher-
noff distribution and the argmax process of Brownian
motion with parabolic drift, as they both emerge from
asymptotic theory (as the sample size goes to infinity)
of isotonic estimators.

For a ∈ R, let V (a) be the location of the maxi-
mum of {W(t) − (t − a)2, t ∈ R}, where W is stan-
dard two-sided Brownian motion on R starting at zero.
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FIG. 2. The construction of V (a).

See Figure 2. It follows from [62], Lemma 2.6, that
V (a) is uniquely defined with probability one. See also
[40, 41] for an extensive study of V . Since, for any
a ∈ R, the process {W(t + a) − W(a), t ∈ R} is dis-
tributed like W , and the argmax is invariant by addition
of a constant, it follows that {ζ(a), a ∈ R} is a station-
ary process, where

(6) ζ(a) := V (a) − a = argmax
t∈R

{
W(t + a) − t2}

.

The distribution of ζ(0) = V (0), known as the Cher-
noff distribution, first appeared in [20]. It has a den-
sity that is connected to a solution of the heat equa-
tion. It is expressed in [41] in terms of Airy functions,
which proves useful to get accurate numerical approx-
imations. See also [53].

The density fC of V (0) has a symmetrical bell-shape
curve with thin tails,

fC(x) ∼ 2λ|x| exp
(−2|x|3/3 − κ|x|)

(7)
as |x| → ∞,

for constants λ, κ > 0 (see [41], Corollary 3.4). This
yields (see [55], Lemma 2.1)

1 − FC(x) ∼ λ

x
exp

(−2x3/3 − κx
)

as x → ∞
for the corresponding distribution function FC . Fur-
thermore, according to [23], Theorem 4,

P
(∣∣V (0)

∣∣ ≥ x
) ≤ 2 exp

(−x3/2
)

for all x > 0. Note that V (a) can also be seen as the
location of the maximum of {W(z)− z2 + 2az, z ∈R},
which corresponds to dropping a line with slope −2a

onto the process W(z) − z2, for z ∈ R. Hence, if we
define D(t) as the slope at z = t of the LCM of

{W(z) − z2, z ∈ R}, then by using a switching relation
similar to the one in (2), it follows that V (a) ≤ t if and
only if D(t) ≤ −2a. See Figure 3. Therefore, by sta-
tionarity of {V (a) − a, a ∈ R}, we find that

P
(
V (a) ≤ t

)
= P

(
V (a) − a ≤ t − a

)
= P

(
V (2a − t) − (2a − t) ≤ t − a

)
= P

(
V (2a − t) ≤ a

) = P
(
D(a) ≤ 2t − 4a

)
= P

(
D(a)/2 + 2a ≤ t

)
.

It follows that V (a) has the same distribution as
D(a)/2 + 2a. In particular 2V (0) has the same dis-
tribution as D(0), being the slope at z = 0 of the LCM
of {W(z) − z2, z ∈ R}. This was first pointed out by
Prakasa Rao [83].

3. POINTWISE CONVERGENCE

A common feature of Grenander-type and isotonic
estimators from Definitions 2.1 and 2.2 is that if λ0 has
a continuous strictly negative derivative in the neigh-
borhood of some t0 ∈ (0,1), then

(8) C0n
1/3(̂

λn(t0) − λ0(t0)
) →d 2V (0),

where V (0) has the Chernoff distribution (see Sec-
tion 2.3) and C0 is a constant that depends on λ0 and on
the other unknown parameters (the precise form of C0
depends on the setting considered). We compute below
the rate of convergence and give two different sketches
of the arguments of (8): one based on the “direct ap-
proach” that Prakasa Rao [83, 84] first used in this con-
text, and the other one based on the “inverse approach”
suggested later on in [40]. The “direct approach” is
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FIG. 3. Switching relation for V (a) and D(t).

based on first considering least concave majorants of
the process �n in Definition 2.1 along a sequence of
decreasing “truncated” intervals around t0 and then, to-
gether with weak convergence of a suitably scaled ver-
sion of �n, arguing that asymptotically the truncated
intervals may replace R. The “inverse approach” first
makes a detour via the inverse Ûn by means of the
switch relation (2), establishes the limit behavior of
Ûn via weak convergence of a suitably scaled version
of �n and an argmax continuous mapping theorem,
and transfers the limit behavior of Ûn to λ̂n again us-
ing (2). Whereas the inverse approach became popular
after its introduction in [40], the pioneering direct ap-
proach seems more suitable for extensions of pointwise
limit behavior to dependent data. On the other hand, the
inverse approach seems necessary to deal with global
measures of deviation; see Section 4 below.

After having discussed (8), we briefly discuss below
the behavior of λ̂n in a flat region, at a point of discon-
tinuity, and at the boundary of the support of λ0.

3.1 Local Rate of Convergence

The underlying mechanism for the n1/3-rate is nicely
explained in [62] for argmax type estimators and can
be understood from the monotone (inverse) density
case, as follows. Suppose one wants to estimate a
nonincreasing density f0 at the point t0, such that
a0 = f0(t0) > 0 and f ′

0(t0) < 0. Recall that, with Fn

the empirical distribution function of a sample of size
n from f0, Ûn(a0) maximizes Hn(t) = Fn(t) − a0t ,
which is close to H(t) = F0(t) − a0t , where F0(t) =∫ t

0 f0(x)dx. Now, on the one hand, since t0 maximizes
H(t), we have

H(t) − H(t0) ≈ −1

2

∣∣f ′
0(t0)

∣∣(t − t0)
2,

and on the other hand Hn(t)−Hn(t0)−(H(t)−H(t0))

is approximately N(0, σ 2
t ) distributed, where

σ 2
t = n−1(

F0(t) − F0(t0)
)(

1 − (
F0(t) − F0(t0)

))
≈ n−1f0(t0)|t − t0|.

Hence, Hn(t) − Hn(t0) is the sum of a negative deter-
ministic trend of the order (t − t0)

2 and a centered ran-
dom term of the order Op(n−1/2|t − t0|1/2), as t → t0.
Because Ûn(a) maximizes Hn(t) − Hn(t0), we must
have that at t = Ûn(a), the trend is in absolute value of
the same order as the random term, whence Ûn(a) − t0
is of order n−1/3. This gives the intuition for the rate of
convergence of Ûn, and it turns out that the same rate
applies for the direct estimator f̂n.

More thorough arguments show that the rate is n1/3

also in terms of centered absolute moments: under ap-
propriate assumptions, for p ≥ 1, there exists Kp > 0,
such that for all n, t ∈ [n−1/3,1 − n−1/3], and a ∈ R,

E
[∣∣̂λn(t) − λ0(t)

∣∣p] ≤ Kpn−p/3 and
(9)

E
[∣∣Ûn(a) − g0(a)

∣∣p] ≤ Kpn−p/3,

where λ̂n is a Grenander-type or isotonic estimator, Ûn

and g0 are the pseudo-inverses of λ̂n and λ0, respec-
tively. The first result of that type is [25], Theorem 1,
for the direct estimator and p ∈ [1,2) in a general set-
ting of Grenander-type estimators (the setting covers
the MLE of a monotone density, the LSE of a mono-
tone regression function on a uniform fixed design, and
also the estimator introduced in [56]). The first inequal-
ity in (9) is extended to the current status model in [48]
(see (11.32) and (11.33)) for the direct MLE, whereas
the second inequality follows from [48], Theorem 11.3,
for the inverse process, for all p ≥ 1. The results in (9)
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have been extended for p = 2 in [73] to isotonic esti-
mators of a baseline hazard in the Cox model, and for
all p ≥ 1, in [8], Theorems 4.1 and 4.5, to the settings
of regression on a random design with subgaussian er-
rors, and estimation of a density or monotone failure
rate under right censoring.

It follows from the Fubini theorem that for any inte-
grable random variable Z,

E|Z| =
∫ ∞

0
P

(|Z| ≥ t
)

dt,

so inequalities as in (9) typically follow from suit-
able bounds on the tail probabilities P(n1/3|Ûn(a) −
g0(a)| ≥ x) for the inverse process. Bounds for λ̂n are
then obtained by combining these bounds with (2). For
example, [25], Lemma 2, provides a polynomial bound
of the order x−3, whereas in other settings there exist
constants K1,K2, such that

(10) P
(
n1/3∣∣Ûn(a) − g0(a)

∣∣ ≥ x
) ≤ K1 exp

(−K2x
3)

for all x > 0; see, for example, [44], Theorem 2.1
or [8], Lemma 8.2, for particular Grenander-type esti-
mators, and [48], Theorem 11.3 or [8], Lemma 8.1, and
for other isotonic estimators. The proof of (10) typi-
cally relies on martingale theory and Doob’s inequality.
For a Grenander-type inverse Ûn, such an inequality
can be obtained based on Remark 2.1 by first proving
a similar inequality for the corresponding Grenander-
type inverse γ̂ −1

n such that Ûn = G−1
n ◦ γ̂ −1

n , and com-
bining with a sharp control of the difference between
G−1

n and G−1; see [26, 8].

3.2 Local Asymptotic Distribution: The Direct
Approach

Below, we give the main steps of the proof of (8)
taken from the pioneering paper [83] in the density
case. We consider the Grenander estimator f̂n based
on an i.i.d. sample of size n from a nonincreasing den-
sity f0 on [0,∞): f̂n is the left-slope of the LCM of
Fn, the empirical distribution function. Let t0 > 0 be
some fixed point, such that f0 has a continuous strictly
negative derivative in the neighborhood of t0 [and thus
f0(t0) > 0]. The first step is to localize. By means
of [83], Lemma 4.1, f̂n(t0) is equal to the left-slope
at t0, say f ∗

n,c(t0), of the LCM of the restriction of Fn

to the interval with center t0 and width 2cn−1/3, with
arbitrarily large probability by the choice of c. The in-
tuition is that because Fn is close to the distribution
function F0, which is strictly concave at t0, the LCM
of Fn at t0 is not influenced by the values away from

t0. The width 2cn−1/3 is chosen to match the rate of
convergence.

Next, f ∗
n,c(t0) − f0(t0) is the slope at δ = 0 of the

LCM of the process{
Fn(t0 + δ) − Fn(t0) − δf0(t0),

δ ∈ [−2cn−1/3,2cn−1/3]}
.

With arbitrary D,rn > 0, it follows that (Drn)
−1 ·

(f ∗
n,c(t0) − f0(t0)) is the slope at δ = 0 of the LCM of

the process Xn on [−dn, dn], where dn = 2cn−1/3/rn
and

Xn(δ) = r−2
n D−1(

Fn(t0 + δrn) − Fn(t0)
)

− (Drn)
−1δf0(t0).

With D = −f ′(t0)/2 and r3
n = f (t0)D

−2/n, the pro-
cess Xn converges on [−dc, dc] to X, where dc =
c(2|f ′

0(t0)|2/f0(t0))
1/3 and X(δ) = W(δ) − δ2. Let-

ting c → ∞ (so that dc → ∞), it can then be de-
rived that (Drn)

−1(f̂n(t0) − f0(t0)) has the same
asymptotic distribution (as n → ∞ and c → ∞) as
(Drn)

−1(f ∗
n,c(t0) − f0(t0)), which is the slope at δ = 0

of the LCM of X on R. The latter is precisely the dis-
tribution of 2V (0); see Section 2.3, yielding (8) with
C0 = (|f ′

0(t0)|f0(t0)/2)−1/3.
The original reasoning in [83] uses that, if a se-

quence of concave functions xn on an interval [−q, q]
uniformly converges to a function x, which is dif-
ferentiable at zero (this is the interpretation that we
give to the words “has a unique slope” in [83], Sec-
tion 6), then the left-hand slope at zero of xn con-
verges to x′(0). Uniqueness of the limiting slope is not
given in the paper, whereas the result does not hold
without this condition. A counter-example is given by
xn(t) = |t + 1/n|, for n ≥ 1 and x(t) = |t |. Hence,
there is a small gap in the original proof.

In [84, 95], (8) is proved with a different value of
C0 for the MLE of a monotone failure rate, and the
LSE of a monotone regression function. The condition
f0(t0) > 0 in the density case is replaced in the re-
gression case by the condition that the variance of the
observations at the design point t0 is strictly positive.
Hence in both models, the condition relies on some
variability of the observations. The results in [95] have
been extended in [69].

A direct approach similar to the one in [83] is used
in [3], who consider Grenander-type estimators ob-
tained as the greatest convex minorants (and deriva-
tives thereof) of partial sum and empirical processes for
independent, weakly dependent and long range depen-
dent data. For other extensions of the direct approach
to dependent data, see [4, 21, 5].



554 C. DUROT AND H. P. LOPUHAÄ

3.3 Local Asymptotic Distribution: The Inverse
Approach

The earliest reference that uses the inverse ap-
proach seems to be [40], where the convergence in (8),
was reproved using the inverse process; see Sec-
tion 2.2. Thereafter, similar approaches were used in
[52, 56, 93, 75] for establishing pointwise convergence
of various Grenander-type estimators. We describe the
approach again for the Grenander estimator f̂n for a
nonincreasing density f0 on [0,∞). It consists in first
computing the limit distribution of the inverse pro-
cess at an appropriate point, and then going back to
f̂n thanks to (2). To be more precise, for all C0 > 0,
x ∈ R and t0 > 0 we have

P
(
C0n

1/3(
f̂n(t0) − f0(t0)

)
< x

)
(11)

= P
(
Ûn(a0 + δn) < t0

)
,

where a0 = f0(t0) and δn = xn−1/3/C0. Now, for arbi-
trary A > 0, n1/3A−1(Ûn(a0 + δn) − t0) is the location
of the maximum of{

Fn

(
t0 + An−1/3t

) − (a0 + δn)
(
t0 + An−1/3t

)
,

t ≥ −t0n
1/3A−1}

and because the location of the maximum is invariant
by addition of constants or multiplication by a posi-
tive scalar, it is also the location of the maximum of
{Zn(t), t ≥ −t0n

1/3A−1}, where

Zn(t) = n2/3(a0A)−1/2(
Fn

(
t0 + An−1/3t

)
− Fn(t0) − An−1/3(a0 + δn)t

)
.

But it follows from the embedding in [63] that uni-
formly in t ∈ R,

Fn(t) = F0(t) + n−1/2Bn

(
F0(t)

)
(12)

+ Op

(
n−1 logn

)
,

where F0 is the distribution function corresponding to
f0 and Bn is a standard Brownian bridge constructed
on the same probability space as Fn. Combining this
with a Taylor expansion, one obtains that with A3/2 =
2a

1/2
0 |f ′

0(t0)|−1 and C0 = (|f ′
0(t0)|f0(t0)/2)−1/3, Zn

converges in distribution to Z on R, where

Z(t) = W(t) − (
t2 + xt

)
.

Hence, n1/3A−1(Ûn(a0 + δn) − t0) converges in distri-
bution to the location of the maximum of {Z(t), t ∈ R},
which is also the location of the maximum V (−x/2)

of {W(t)− (t + x/2)2, t ∈R}. From (11), we conclude
that as n → ∞,

P
(
C0n

1/3(
f̂n(t0) − f0(t0)

)
< x

)
→ P

(
V (−x/2) < 0

)
= P

(
V (0) < x/2

)
,

by stationarity of ζ(a) = V (a)− a taken from (6). The
result (8) follows because V (0) has a density; see, for
example, [39] or the more accessible version in [41].

The convergence of the process Zn can be estab-
lished in different ways. One way is invoke the em-
bedding (12), but a similar convergence can be ob-
tained even in models where no embedding is avail-
able. In fact, as long as we consider Grenander-type
estimators, this approach extends to various settings
where a similar embedding holds with Bn(F0(t)) pos-
sibly replaced by another Gaussian process (which is
typically either a Brownian Bridge as above or a Brow-
nian motion with a given variance function). Another
useful source to obtain convergence of the process Zn

are the results in [62], which apply to processes t �→
n2/3

Png0(·; tn−1/3), where Pn is the empirical mea-
sure corresponding to the observations. This becomes
particularly useful in statistical models where no em-
bedding is available, such as estimation of the baseline
distribution in the Cox model under monotonicity con-
straints; see [75].

Now, for isotonic estimators, with inverse of the
form Ûn = G−1

n ◦ γ̂ −1
n (see Section 2.2) where G−1

n

typically converges at the rate n−1/2 to a quantile func-
tion G−1, and γ̂n is a Grenander-type estimator, one
can compute the limit distribution of γ̂ −1

n as above.
Then use the delta method to derive the limit distri-
bution of G−1 ◦ γ̂ −1

n , which is similar to that of Ûn =
G−1

n ◦ γ̂ −1
n . The limit distribution of λ̂n in (6) follows

from that of Ûn using the switch relation, as above.

3.4 Behavior on Flat Regions, Near Zero or at a
Discontinuity Point

Above, we have shown that at a fixed point t0 in the
interior of the support of the function of interest f0,
such that f ′

0(t0) �= 0, Grenander-type or isotonic esti-
mators typically converge at the rate n1/3 to the Cher-
noff distribution. This no longer holds on flat regions,
at discontinuity points, or at the boundary of the sup-
port.

If f0 is the uniform density on [0,1], then the
Grenander estimator converges at the rate n1/2 to
the slope of the LCM of the Brownian bridge at t0;
see [40], Remark 2.2. More generally, at a fixed point t0
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where the underlying density is constant and nonzero
in some open neighborhood of t0, it converges at the
rate n1/2 to the convolution of a closed-form density
and a normal density; see [38, 15]. It is shown in [69]
that when the derivative vanishes, the rate of conver-
gence and the limiting distribution depend on the order
of the first nonzero derivative.

At the boundary of the support of the function of
interest, or at discontinuity points, isotonic estimators
are typically inconsistent; see [94, 2, 7]. However, the
current status model is an exception. Here, the func-
tion of interest and its isotonic estimator are distri-
bution functions, so at the boundaries the latter con-
verges to the true values 0 and 1. Several modifica-
tions of isotonic estimators have been considered with
the aim of consistently estimating the function of inter-
est at the boundaries; see [88] for a a penalized MLE
of a monotone density, and [66] for a truncated esti-
mator. Grenander-type estimators of a bounded mono-
tone function λ0 on [0,1] are typically stochastically
bounded at the boundaries 0 and 1 (see [25], Lemma 1),
but the rate n1/3 is achieved only on the increasing in-
terval [n−1/3,1−n−1/3]; for tn ∈ (0, n−1/3], the rate of
convergence at tn is typically (ntn)

−1/2 (and a similar
behavior holds on [1−n−1/3,1)), if the derivative λ′

0 is
bounded away from infinity and zero; see [25], Theo-
rem 1. The precise limiting behavior of the Grenander
estimator at a point tn = cn−α for some α ∈ (1/3,1)

(so that again, tn ∈ (0, n−1/3]) is given in [66].

4. GLOBAL CONVERGENCE

We consider the limit behavior of global measures
of deviation of Grenander-type and isotonic estimators
from Definitions 2.1 and 2.2: the Lp-loss (for some
p ≥ 1) and the supremum loss. We discuss rates of con-
vergence and limit distribution of the losses. We point
out that in contrast to the methods for obtaining the
pointwise limit distribution (see Section 3), all meth-
ods known in the literature to prove global convergence
make use of the approach based on the inverse process
and heavily depend on the availability of an embedding
result for the process �n into a Gaussian process, such
as in (12).

4.1 Rate of Convergence of the Lp-Loss

The global rate of convergence can typically be
obtained using entropy arguments if the estimator
is the maximizer of an empirical criterion, which is
the case for instance for the Grenander estimator f̂n

of a nonincreasing bounded density function f0 on

[0,1]. The main tool for that is Theorem 2.7.5 in [91],
which proves that the class of all nonincreasing func-
tions f : [0,1] → [0,1] has ε-bracketing entropy for
the L2(μ)-norm of maximal order 1/ε, where μ de-
notes the Lebesgue measure. Based on this entropy re-
sult, [91], Example 3.4.6, proves that the Hellinger dis-
tance h(f̂n, f0) between f̂n and f0, that is, the L2(μ)-
distance on the square roots of the functions, is of the
order Op(n−1/3). Since f0 is bounded by assumption
and f̂n(0) is stochastically bounded (see Section 3.4),
we also obtain the rate of convergence in the L2-sense:
by monotonicity,

‖f̂n − f0‖2 ≤ (√
f̂n(0) +

√
f0(0)

)
h(f̂n, f0)

= Op

(
n−1/3)

.

The above entropy bound can be used in various set-
tings, where the function of interest is not necessarily
a density function. For instance, it was used in [6] to
compute the n1/3-rate of convergence of the LSE in
the monotone single index model. Alternatively, one
can integrate the inequalities in (9) over t in the inter-
val [n−1/3,1 − n−1/3], together with bounds of the or-
der [n(t ∧ (1 − t))]−p/2 that hold outside this interval;
see [25], Theorem 1, to get

E

[∫ 1

0

∣∣̂λn(t) − λ0(t)
∣∣p dt

]

=
∫ 1

0
E

[∣∣̂λn(t) − λ0(t)
∣∣p]

dt

≤ Kn−p/3,

so the Lp-loss of λ̂n is Op(n−1/3). A similar result
holds for the inverse Ûn.

4.2 Rate of Convergence of the Supremum Loss

Grenander-type estimators λ̂n are typically inconsis-
tent at the boundaries of their interval of support [0,1];
see Section 3.4. Therefore, the supremum of |̂λn − λ0|
over [0,1] is typically dominated by the behavior at
the boundaries and the range of the supremum has to
be restricted to a subinterval in order to obtain perti-
nent results. In [60], Lemma 2.1, the rate of the supre-
mum loss is established in a semi-parametric model for
censored observations where the MLE is a Grenander-
type estimator. In [29], Theorem 2.1, the rate of con-
vergence for the supremum of |̂λn − λ0| is shown to
be of the order (n/ logn)−1/3, on subintervals that can
grow towards [0,1], as long as one stays away suffi-
ciently far from the boundaries. The result is proved
for Grenander-type estimators in a general setup that
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includes Grenander’s estimator of a monotone density,
the LSE for a monotone regression function on a uni-
form fix design, as well as the estimator for a mono-
tone failure rate under random censoring, where λ0 is
assumed to have a first derivative that is bounded both
away from zero and from infinity. In the course of the
proof of their Lemma 5.9, [52], page 120, obtained
the same rate for the supremum loss of the MLE for
the distribution function of interest in the current sta-
tus model. In this particular model, the supremum can
be taken over the whole interval of interest since the
MLE for the distribution function is consistent at the
boundaries, due to known values 0 and 1.

Below is a brief sketch of proof for the rate, extracted
from [29]. It follows from the triangle inequality that
for two consecutive jump points τi−1, τi of λ̂n,

sup
u∈(τi−1,τi ]

∣∣̂λn(u) − λ0(u)
∣∣

≤ ∣∣̂λn(τi) − λ0(τi)
∣∣ + K|τi−1 − τi |,

(13)

where K = ‖λ′
0‖∞, using that λ̂n(u) = λ̂n(τi) for

all u ∈ (τi−1, τi]. Now, using monotonicity and divid-
ing [λ0(1), λ0(0)] into a union of disjoint intervals of
length of order n−1/3, one can derive from (10) that

sup
a∈[λ0(1),λ0(0)]

∣∣Ûn(a) − g0(a)
∣∣

(14)
= Op(n/ logn)−1/3.

The height of a jump of the piecewise constant pro-
cess Ûn is precisely the width of a step of λ̂n, so
for a continuous g0, (14) implies that maxi |τi−1 −
τi | = Op(n/ logn)−1/3. Moreover, with γi := λ̂n(τi),
we have τi = Ûn(γi) and γi = λ0 ◦ g0(γi), provided
that γi belongs to the range of λ0, which can be proved
to happen with high probability if τi is far enough from
the boundaries of [0,1]. So (13) combined with the
Taylor expansion yields that uniformly,

sup
u∈(τi−1,τi ]

∣∣̂λn(u) − λ0(u)
∣∣ ≤ K

∣∣g0(γi) − Ûn(γi)
∣∣

+ Op

(
logn

n

)1/3
.

Taking the maximum over appropriate indexes i, and
using again (14), proves that for αn,βn of order
n−1/3(logn)−2/3, the supremum of |̂λn − λ0| over
(αn,1 − βn] is of order Op(n/ logn)−1/3; see [29],
Theorem 2.1. Note that the switch relation is not used
here to make the connection between λ̂n and the in-
verse Ûn. Instead, the connection between the jump
points and steps of the two estimators is used.

4.3 Limit Distribution of the Lp-Loss

One motivation for studying the limit distribution of
the Lp-loss comes from goodness-of-fit tests. Assume
that we wish to test H0 : λ = λ0 for a given mono-
tone λ0, against the nonparametric alternative that λ

is monotone, but different from λ0. When the properly
normalized Lp-distance between a monotone estimate
λ̂n and λ0 can be shown to have a limiting distribution
under H0, one can build a test of level α that rejects
H0 if this normalization exceeds the (1 − α)-quantile
of the limiting distribution; see [33]. In this section we
will describe that with proper standardization, the Lp-
loss converges in distribution under H0 to a standard
Gaussian law.

Assume that λ0 has a first derivative that is bounded
away from zero and from infinity on [0,1]. We show
below that the normalized Lp-loss of isotonic estima-
tors

(15) Jn := np/3
∫ 1

0

∣∣̂λn(t) − λ0(t)
∣∣p dt

typically converges, after appropriate scaling, at n1/6-
rate to a centered Gaussian distribution. The earliest
reference [40] of this type of result concerns the L1-
loss of the Grenander estimator of a monotone density
on [0,1]. A complete proof of the result announced
in [40] is provided in [44]. Other papers in this di-
rection are concerned with monotone regression [23],
and the Lp-loss for monotone density [65], and the
Lp-loss [25] in a general setup. This setup considers
Grenander-type estimators as in Definition 2.1, and as-
sumes that an embedding holds for �n in the sense that
there exists either a Brownian motion or a Brownian
bridge Bn, such that �n can be approximated by a suit-
able Gaussian process:

(16) �n(t) ≈ �0(t) + n−1/2Bn ◦ L(t),

where the possibly unknown L : [0,1] → R is smooth
increasing such that L(0) = 0. The setup covers several
standard settings of isotonic estimation, such as mono-
tone density, monotone regression on a fix uniform de-
sign, and monotone failure rate. The link between the
Brownian motion and the Brownian bridge cases can
be made using the representation

(17) Bn(t) = Wn(t) − ξnt, t ∈ [0,1],
where Wn is a standard Brownian motion, ξn ≡ 0 if
Bn is a Brownian motion, and ξn is a standard Gaus-
sian variable independent of Bn, if Bn is a Brownian
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bridge. In this setup, it is proved that under appropriate
assumptions,

(18) n1/6(Jn − mp)
D−→N

(
0, σ 2

p

)
,

as n → ∞, where Jn is defined in (15), mp =
E|ζ(0)|p ∫ 1

0 |4λ′
0(t)L

′(t)|p/3 dt , and

σ 2
p = 8kp

∫ 1

0

∣∣4λ′
0(t)L

′(t)
∣∣2(p−1)/3

L′(t)dt,

kp =
∫ ∞

0
cov

(∣∣ζ(0)
∣∣p,

∣∣ζ(a)
∣∣p)

da

(19)

with ζ defined in (6). Note that in the monotone density
model, L′ = λ0, so that in the case p = 1, the limiting
variance is 8k1, which does not depend on λ0.

We begin with heuristics in the simplest case where
L is the identity function and λ̂n is a Grenander-type
estimator. Let g0 = λ−1

0 . The first step is to use the
switch relation to go from λ̂n to the inverse Ûn:

(20) Jn ≈ np/3
∫ λ0(0)

λ0(1)

∣∣Ûn(a) − g0(a)
∣∣p∣∣g′

0(a)
∣∣1−p da.

For all a, n1/3(Ûn(a) − g0(a)) is stochastically
bounded (see Section 3.3) and equals

argmax
g0(a)+n−1/3u∈[0,1]

{
�n

(
g0(a) + n−1/3u

)

− a
(
g0(a) + n−1/3u

)}
,

due to (3). The location of the maximum does not
change by a vertical shift of the whole function. Like-
wise, we may also multiply the process by n2/3, so
n1/3(Ûn(a) − g0(a)) is the location of the maximum
of

Zn(u) = n2/3(
�n

(
g0(a) + n−1/3u

) − �n

(
g0(a)

))
− an1/3u,

for −n1/3g0(a) ≤ u ≤ n1/3(1 − g0(a)). To control
the range of u, we do a localization step and re-
strict ourselves to |u| ≤ logn. This is possible pro-
vided that g0(a) is far enough from the boundaries,
because the location of the maximum of the process
Zn(u), for |u| ≤ logn, can only be different from
n1/3(Ûn(a)−g0(a)) if the latter is greater than logn in
absolute value. Due to the bounds on the tail probabil-
ities for n1/3(Ûn(a) − g0(a)), such as the one in (10),
this only happens with very small probability.

If (16) holds with L the identity function, then by
means of Taylor’s expansion and representation (17),
using that a = �′

0(g0(a)) we get

Zn(u) ≈ n1/6{
Wn

(
g0(a) + n−1/3u

) − Wn

(
g0(a)

)}
+ 1

2
λ′

0
(
g0(a)

)
u2

for |u| ≤ logn, and therefore, n1/3|λ′
0(g0(a))/2|2/3 ·

(Ûn(a) − g0(a)) can be approximated by

ζn

(
g0(a)

)
(21)

:= argmax
|u|≤|λ′

0(g0(a))/2|2/3 logn

{
Wg0(a)(u) − u2}

,

where for every t ∈ [0,1], Wt is the Brownian motion
defined by

Wt(u)

= n1/6∣∣λ′
0(t)/2

∣∣1/3{
Wn

(
t + n−1/3∣∣λ′

0(t)/2
∣∣−2/3

u
)

− Wn(t)
}
.

Hence,

Jn ≈ 22p/3
∫ λ0(0)

λ0(1)

∣∣ζn

(
g0(a)

)∣∣p∣∣g′
0(a)

∣∣1−p/3 da

(22)

=
∫ 1

0
h(t)

∣∣ζn(t)
∣∣p dt,

where h = (4|λ′
0|)p/3. Now, note that ζn(t) depends

only on the increments of Wn on an interval with cen-
ter t and width of order n−1/3 logn. The increments
of the Brownian motion Wn are independent, so for
all t > s + n−1/3(logn)β , with some β > 1, the pro-
cesses {ζn(u), u ≤ s} and {ζn(u), u ≥ t} are indepen-
dent. Hence,

var
(∫ 1

0
h(x)

∣∣ζn(x)
∣∣p dx

)

= 2
∫ 1

0

∫ s+n−1/3(logn)β

s
h(t)h(s) cov

(∣∣ζn(t)
∣∣p,

∣∣ζn(s)
∣∣p)

dt ds,

using Fubini’s theorem. Moreover, for every s ∈ [0,1]
and a ∈ R, let ζs(a) be the location of the maximum
of {Ws(u + a) − u2, u ∈ R}. Then, the processes ζs all
have the same distribution as ζ in (6) and

(23) ζn

(
s + n−1/3t

) ≈ ζs

(∣∣λ′
0(s)/2

∣∣2/3
t
)
.

Therefore, by change of variable, the above variance is
approximately equal to

2n−1/3
∫ 1

0

∫ (logn)β

0
h2(s) cov

(∣∣ζs(0)
∣∣p,

∣∣ζs

(∣∣λ′
0(s)/2

∣∣2/3
t
)∣∣p)

dt ds,

provided that h is smooth. When multiplied by n1/3,
this converges to σ 2

p in (19), taking L equal to the iden-
tity. This explains the rate of convergence in (18).
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Convergence to a Gaussian distribution can then be
proved using the method of big-blocks-small-blocks
that we describe now. Partition [0,1] into intervals of
alternating “big” and “small” size, say Bi and Si , so
that thanks to (22),

Jn ≈ ∑
i

∫
Bi

h(t)
∣∣ζn(t)

∣∣p dt + ∑
i

∫
Si

h(t)
∣∣ζn(t)

∣∣p dt.

The size of the small blocks should be chosen large
enough such that the integrals over the big blocks Bi

become independent, but small enough in comparison
with the size of the big blocks so that the summation
over the small blocks Si is negligible. One possibility
(see [25]) is to take big blocks of length n−1/3(logn)5

and small blocks of length n−1/3(logn)2. When the
contribution of the small blocks is negligible, then
n1/6(Jn − E[Jn]) is asymptotically equivalent to the
contribution of the big blocks, which is a sum of in-
dependent centered variables. Under appropriate as-
sumptions, this converges to a centered Gaussian
law with variance σ 2

p , by the Lindeberg–Feller cen-
tral limit theorem. Now, due to (23), ζn(t) ≈ ζt (0),
which is distributed like ζ in (6), so (at least heuris-
tically) E|ζn(t)|p ≈ E|ζ(0)|p and from (22), E[Jn] ≈
E|ζ(0)|p ∫ 1

0 h(t)dt = mp , whence (18).
We point out some of the difficulties to make

the above heuristics rigorous. If λ̂n is stochastically
bounded, but not consistent at the boundaries, then the
contribution of np/3 ∫ n−1

0 |̂λn(t) − λ0(t)|p dt is of or-
der np/3−1, which is negligible with respect to n−1/6 if
p < 5/2. The same comment holds for the right bound-
ary. In such a case, one has to consider p ∈ [1,5/2).
Another difficulty is that we need a much more refined
result than the approximation by (21) to ensure (22):
we need to connect the rate of convergence of pro-
cesses to the rate of convergence of their location of
maximum. This can be done thanks to [23], Proposi-
tion 1.

We now consider the more difficult case of isotonic
estimators. As a typical example, we consider the LSE
of a decreasing regression function λ0 on [0,1] de-
scribed in Section 2.1, where (18) holds with a different
form for mp and σ 2

p ; see [26], Theorem 3. To deal with
the inverse Grenander-type estimator γ̂ −1

n from (5),
which is connected to Ûn through Ûn = G−1

n ◦ γ̂ −1
n

(see Section 2.2), we would like to approximate �n by
a Gaussian process, similar to (16). However, we are
not aware of such an embedding for �n. Instead, we
have

(24) �n(t) ≈
∫ t

0
λ0 ◦ G−1

n (u)du + 1√
n
Wn

(
Ln(t)

)

conditionally on the design points, where Ln(t) =∫ t
0 σ 2 ◦ G−1

n (u)du, σ 2(X) is the conditional variance
of an observation given the design point X, and G−1

n

is the empirical quantile function of the design points.
The function Ln is close to the smooth function t �→∫ t

0 σ 2 ◦ G−1(u)du, where G−1 is the common quan-
tile function of the design points, but even so, it is not
smooth. Likewise, the centering t �→ ∫ t

0 λ0 ◦G−1
n (u)du

of the Gaussian process in (24) is close to the smooth
function t �→ ∫ t

0 λ0 ◦ G−1(u)du but is not smooth ei-
ther, so Taylor’s expansions cannot be performed as
before. Nevertheless, at the price of additional techni-
calities, the big-blocks-small-blocks method described
above shows that the Lp-loss of γ̂ −1

n in (5) is asymp-
totically Gaussian. Going from this Lp-loss to that of
Ûn = G−1

n ◦ γ̂ −1
n then requires a sharp control of the

difference G−1
n − G−1.

Recently, a CLT for the Hellinger-loss of a Gre-
nander-type estimator λ̂n was established in [70] in the
same general setup as in [25] using that the squared
Hellinger distance between λ̂n and the function of in-
terest λ0 is approximately equal to a weighted L2-loss:

∫ 1

0

(
λ̂n(t) − λ0(t)√
λ̂n(t) + √

λ0(t)

)2
dt

(25)

≈
∫ 1

0

(̂
λn(t) − λ0(t)

)2(
4λ0(t)

)−1 dt.

It was proven along the lines of the arguments given
above, that

n1/6{
n1/3h(̂λn, λ0) − m̃2

} D−→N
(
0, σ̃ 2)

,

as n → ∞, where h denotes the Hellinger distance,

m̃2
2 = E

[∣∣ζ(0)
∣∣2] ∫ 1

0

|λ′
0(t)L

′(t)|2/3

41/3λ0(t)
dt,

σ̃ 2 = 21/3k2

4m̃2
2

∫ 1

0

|λ′
0(t)L

′(t)|2/3L′(t)
λ0(t)2 dt,

where L and k2 are taken from (16) and (19). Note that
in statistical models where L′ = λ0, such as the mono-
tone density model (see [25], Theorem 6), the limiting
variance σ̃ 2 = k2/(2E[|ζ(0)|2]) does not depend on λ0.
Hence, as conjectured in [92], the limiting variance of
the Hellinger loss for the Grenander estimator does not
depend on the underlying density. This coincides with
that of the limiting variance in the central limit theorem
for the L1-error for the Grenander estimator.
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4.4 Limit Distribution of the Supremum Loss

While pointwise confidence intervals for a monotone
function are available using the limiting distribution of
the isotonic estimator at the fixed point, nonparamet-
ric confidence bands have remained a formidable chal-
lenge. Although the limiting distribution of the Lp-loss
may have applications in goodness-of-fit testing, it can-
not be used straightforwardly to construct uniform con-
fidence bands for a monotone function λ0. For this pur-
pose, the limit distribution of the supremum loss seems
more appropriate. It is the purpose of this section to de-
scribe how this limit distribution can be obtained in the
same general framework as considered in [25].

Again, assume that λ0 has a first derivative that is
bounded away from zero and from infinity on [0,1].
By [29], Theorem 2.2, a suitably standardized supre-
mum of |̂λn − λ0| converges to a Gumbel law, where
λ̂n is a Grenander-type estimator as in Definition 2.1 in
a general setup where (16) holds with Bn a Brownian
motion or a Brownian bridge and L a strictly increasing
function. The supremum is restricted to subintervals of
[0,1], so that the inconsistency at the boundaries does
not dominate the supremum; see Section 4.2. For all
sequences (αn)n and (βn)n satisfying αn,βn → 0, and
1 − v +βn, u+αn � n−1/3(logn)−2/3, for some fixed
0 ≤ u < v ≤ 1, we have

P

(
logn

{(
n

logn

)1/3
sup

t∈(u+αn,v−βn]
|̂λn(t) − λ0(t)|
|2λ′

0(t)L
′(t)|1/3

− μn

}
≤ x

)
→ e−e−x

,

for all x ∈ R, as n → ∞, under appropriate assump-
tions, where

μn = 1 − κ

21/3(logn)2/3

+ 1

logn

[
log logn

3
(26)

+ log
(

2λ

∫ v

u

|λ′
0(t)|2/3

L′(t)1/3 dt

)]
,

with λ, κ taken from (7). The largest possible interval,
with u = 0, v = 1, stays away from the boundaries at
distance larger than n−1/3(logn)−2/3.

We outline the proof in the simplest case, where Bn

in (16) is a Brownian motion and L(t) = t . Again, the
approach consists of first obtaining an analogous result
for the supremum between the inverses Ûn and g0 :=

λ−1
0 :

Sn := n1/3 sup
a∈[λ0(v−βn),λ0(u+αn)]

∣∣∣∣λ′
0(g0(a))

2

∣∣∣∣2/3

(27)
· ∣∣Ûn(a) − g0(a)

∣∣.
Here, the normalisation is such that variables in the
supremum can be approximated by variables ζn(g0(a))

as in (21). Similar to Section 4.3, we partition [λ0(v −
βn), λ0(u + αn)] into blocks of alternating big and
small size, where here the big blocks have length
2n−1/3(logn)2, whereas the small blocks have length
of order n−1/3(logn). It can be shown that the con-
tribution of the small blocks is negligible in the sense
that the above supremum over [λ0(v−βn), λ0(u+αn)]
is asymptotically equivalent to the supremum over the
union of the big blocks. Moreover, the suprema over
the various big blocks are asymptotically independent.

Now, consider a particular big block Bi and de-
note its center by b. Similar to (21), with Vn(a) =
n1/3(Ûn(a) − g0(a)), for all a ∈ Bi we have

(28) Vn(a) ≈ argmax
|u|≤logn

{
Wa(u) − Dn(a,u)

}
,

where Dn(a,u) ≈ |λ′
0(g0(a))|u2/2, and Wa is the

Brownian motion defined by

Wa(u) = n1/6{
Wn

(
g0(a) + n−1/3u

) − Wn

(
g0(a)

)}
.

Because |a − b| ≤ n−1/3(logn)2, for a ∈ Bi , the drift
Dn(a,u) in (28) can be approximated by the same drift
u �→ −|λ′

0(g0(b))|u2/2. The idea now, is to sandwich
Vn(a) between two similar quantities, for which we can
show that they have the same limit behavior. To this
end, we use a trick due to [66], Lemma 2.1, to show
that

(29) V −
n (a, b) � Vn(a) � V +

n (a, b)

for all a ∈ Bi , where V −
n (a, b) and V +

n (a, b) are de-
fined similarly to the right-hand side of (28), but
with Dn(a,u) replaced by (|λ′

0(g0(b))|/2 + 2εn)u
2

and (|λ′
0(g0(b))|/2 − 2εn)u

2, respectively, where εn =
1/ logn. The purpose of this is that when we will vary
a over Bi and fix b to be the midpoint of this interval,
we will obtain variables V +

n (a, b) each defined with
the same drift

u �→ −
( |λ′

0(g0(b))|
2

− 2εn

)
u2,

and a Brownian motion Wa only depending on a. Sim-
ilarly for V −

n (a, b). Now, by definition of Wa and since
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the argmax is invariant by addition of constants,

V +
n (a, b) = argmax

|u|≤logn

{
Wb

(
u + n1/3(

g0(a) − g0(b)
))

−
( |λ′

0(g0(b))|
2

− 2εn

)
u2

}
,

where only the Brownian motion Wb is involved.
Then, similar to (21) and (23), the process a �→
|λ′

0(g0(b))/2|2/3V +
n (a, b) on Bi can be approximated

by ζi
+ on an interval �ni , with length (logn)2 ·

|λ′
0(g0(b))/2|−1/3, where ζi

+ is distributed as ζ in (6).
In [55], Theorem 1.1, an extremal limit theorem has
been obtained for suprema of the process ζ over in-
creasing intervals. From this result, one can derive
that for all δn → ∞, τn → 0, and un → ∞, such that
un/δn → 0, log(τn)/δ

3
n → 0, and δnfC(un)/τn → 1,

where fC denotes the density of ζ(0), one has

−(2τn)
−1 logP

(
sup

c∈[0,δn]
∣∣ζi

+(c)
∣∣ ≤ un

)
− 1 → 0.

Since the processes a �→ V +
n (a, b) over different

blocks Bi are asymptotically independent, this can be
used to show that for all sequences (un)n, such that
un → ∞ in such a way that n1/3fC(un) → τ > 0,

P

(
sup

i

sup
a∈Bi

∣∣∣∣λ′
0(g0(b))

2

∣∣∣∣2/3∣∣V +
n (a, b)

∣∣ ≤ un

)

≈ ∏
i

P

(
sup

c∈�ni

∣∣ζi
+(c)

∣∣ ≤ un

)

→ exp
{
−2τ

∫ v

u

∣∣λ′
0(t)/2

∣∣2/3 dt

}
,

as n → ∞. The same result holds with V −
n instead of

V +
n , so thanks to (29), it also holds with Vn, that is, for

Sn defined in (27),

P{Sn ≤ un} → exp
{
−2τ

∫ v

u

∣∣λ′
0(t)/2

∣∣2/3 dt

}
.

Now, fix x ∈ R and choose τ , such that 2τ
∫ v
u |λ′

0(t)/

2|2/3 dt = e−x . Then, using that n1/3fC(un) → τ ,
together with the expansion of fC(u) in (7), we
choose un = x/an + bn + o(logn)−2/3, with an =
21/3(logn)2/3 and bn = 2−1/3(logn)1/3μn, where μn

is defined in (26). It then follows that, for all x ∈ R,

P

{
logn

{(
2

logn

)1/3
Sn − μn

}
≤ x

}
(30)

→ exp
{−e−x}

.

By using the connection between the jump points and
steps of λ̂n and Ûn (see Section 4.2), the scaled supre-
mum distance between the inverses Ûn and g0 can be

related to a scaled supremum between the functions λ̂n

and λ0 themselves,

Sn = sup
t∈[u+αn,v−βn]

n1/3 |̂λn(t) − λ0(t)|
|4λ′

0(t)|1/3 + op(logn)2/3

(see [29], Lemma 5.2). As a consequence, the result
in (30) can be transferred to the one for the scaled
supremum between λ̂n and λ0.

5. SMOOTH ISOTONIC ESTIMATION

The isotonic estimators of Definitions 2.1 and 2.2 are
step functions that exhibit a non normal limit distribu-
tion at rate n1/3. On the other hand, if one is willing
to assume more regularity on the monotone function of
interest, smooth estimators are sometimes preferred to
piecewise constant ones, because they can be used to
achieve a faster rate of convergence to a Gaussian dis-
tributional law and to estimate derivatives. Typically,
these estimators are constructed by combining an iso-
tonization step with a smoothing step. Below we dis-
cuss estimators constructed by first obtaining a smooth
estimate and then isotonize, and estimators for which
the order of the two steps are interchanged. Alterna-
tive methods, such as shape-constrained splines (see
[89, 78]) will not be discussed in the paper.

5.1 Smoothing Followed by Isotonization

Smooth isotonic estimators of a monotone function
λ0 that are constructed by smoothing followed by an
isotonization step have been considered in [19, 96,
36, 85], for the regression setting, in [35, 90] for es-
timating a monotone density, and in [71], for estima-
tion of the baseline hazard in the Cox model. Com-
parisons between isotonized smooth estimators and
smoothed isotonic estimators were made in [76] for
the regression setting, and in [50] for the current sta-
tus model. Isotonization of kernel smoothed piece-
wise constant estimators for both the regression setting
and for estimating an increasing density, is considered
by [3] in a general framework that includes indepen-
dent, weakly dependent, and long range dependent ob-
servations.

One approach for first smoothing and then iso-
tonize, are maximum smoothed likelihood estimators
(MSLE), obtained by smoothing the loglikelihood and
then maximizing the smoothed likelihood over all
monotone functions; see [35, 50, 71]. For example, in
the current status problem (see also Section 2.1), the
loglikehood

�(F ) =
∫ (

δ logF(t)+ (1−δ) log
(
1−F(t)

))
dPn(δ, t)
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is smoothed by replacing the empirical measure Pn by
P̂n(δ, t) = δ dĜn,1(t) + (1 − δ)dĜn,0(t), where Ĝn,0
and Ĝn,1 are kernel smoothed versions of

Gn,0(t) = 1

n

n∑
j=1

1{Tj≤t,�j=0} and

Gn,1(t) = 1

n

n∑
j=1

1{Tj≤t,�j=1},

which yields the smoothed loglikelihood

�s(F ) =
∫

log
(
1 − F(t)

)
dĜn,0(t)

+
∫

logF(t)dĜn,1(t).

Another approach are Grenander-type estimators con-
structed by taking slopes of the LCM (or GCM) of a
smooth estimator �s

n for the primitive �0 correspond-
ing to the nonincreasing (or nondecreasing) function
λ0 of interest.

Both approaches lead to continuous isotonic estima-
tors that typically can be characterized as slopes of the
LCM (or GCM), either of a continuous random pro-
cess �s

n or of a CSD t �→ (Xn(t),Yn(t)), constructed
with continuous random processes Xn and Yn. An ex-
ample is given by the MSLE F̂ MS

n for the distribution
function F0 in the current status problem, with Xn =
Ĝn,0 + Ĝn,1 and Yn = Ĝn,1 (see [50], Theorem 3.1),
and also for the MSLE of a nondecreasing baseline
hazard λ0 in the Cox model (see Lemma 3.1 in [71]).
These authors also investigated a Grenander-type esti-
mator, defined as the slope of the GCM of

(31) �s
n(t) =

∫
kb(t − u)�n(u)du,

where kb(s) = b−1k(s/b) is a scaled kernel function
with bandwidth b (depending on n) and �n is the Bres-
low estimator for the cumulative baseline hazard �0.
This is similar to the estimator for a nonincreasing den-
sity in [90], defined as the slope of the GCM of a kernel
smoothed empirical distribution function.

To establish the limit behavior of the isotonized
smooth estimators that emerge from both approaches,
the key idea is that these estimators are the solution
of a continuous isotonic regression problem considered
in [45]. For example, the Grenander-type estimator for
a nondecreasing baseline hazard λ0 in the Cox model
minimizes

λ �→
∫ (

λs
n(t) − λ(t)

)2 dt,

over all nondecreasing functions λ, where λs
n(t) =

d�s
n(t)/dt ; see Lemma 1 in [45]. This suggests λs

n as
a naive smooth estimator for λ0. In the current status
problem, Theorem 1 in [45] shows that the MSLE for
F0 is also the minimizer of

F �→
∫ (

ĝn,1(t)

ĝn(t)
− F(t)

)2
ĝn(t)dt,

over all distribution functions, where ĝn(t) = dĜn,0(t)/

dt + dĜn,1(t)/dt and ĝn,1(t) = dĜn,1(t)/dt (see also
[45], Example 2). This suggests F̂ naive

n = ĝn,1/ĝn as a
naive smooth estimator. A similar situation occurs for
the MSLE of an nondecreasing baseline hazard in the
Cox model; see (15) in [71].

Typically, the naive smooth estimators are not neces-
sarily monotone, but they are much simpler to analyze
and they can be shown to be asymptotically equivalent
to the corresponding smooth isotonic estimator. Let us
illustrate things for the MSLE F̂ MS

n in the current status
problem. The first step is to show for intervals [m,M]
in the interior of the support of F0, that (under suitable
conditions)

(32) P
(
F̂ naive

n (t) = F̂ MS
n (t) for all t ∈ [m,M]) → 1;

see [50], Corollary 3.4, and [71] for general isotonized
smooth estimators. Hence, the pointwise limit behav-
ior of F̂ MS

n at a point t0 in the interior of the support
is equivalent to that of the corresponding naive smooth
estimator, whose limit behavior is often relatively stan-
dard.

5.2 Isotonization Followed by Smoothing: Using
Kiefer–Wolfowitz

Another approach to obtain smooth monotone esti-
mators, is to take an isotonic estimator λ̂n for the prob-
lem at hand and then smooth it:

(33) λ̂s
n(t) =

∫
kb(t − u)̂λn(u)du.

See [79] for a kernel smoothed LSE in the regression
context, [50] for the smoothed MLE in the current sta-
tus model, [46, 72] for estimating a monotone fail-
ure rate, [28] to bootstrap from a smooth decreasing
density estimate, and [73] for the smoothed MLE and
smoothed Grenander-type estimator in the Cox model.
It can be seen from the argument on page 956 in [28]
that when the kernel function is genuine probability
density, smoothing after isotonization preserves mono-
tonicity.

Asymptotic normality for the kernel smoothed LS
regression estimator was first established by [79], for
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the triangular kernel. In [90], it is shown that the iso-
tonized kernel density estimator has the same limit nor-
mal distribution at the usual rate nm/(2m+1) as the or-
dinary kernel density estimator, when the density is m

times continuously differentiable. Similar results were
obtained by [50, 72] for the smoothed MLE and for a
smoothed Grenander-type estimator, respectively.

In the notation of Definition 2.1, with �̂n the LCM of
�n, smoothed Grenander-type estimators for a mono-
tone function λ0, can be written as

(34) λ̂s
n(t) =

∫
kb(t − u)d�̂n(u).

To obtain the asymptotic behavior of (34) at a point t0,
one can decompose

λ̂s
n(t0) =

∫
kb(t0 − u)λ0(u)du

+
∫

kb(t0 − u)d(�n − �0)(u)

+
∫

kb(t0 − u)d(�̂n − �n)(u).

(35)

The first term on the right-hand side determines the
asymptotic bias, that is, when b = cn1/5, for some
c > 0, then

n2/5
{∫

kb(t0 − u)λ0(u)du − λ0(t0)

}
(36)

→ 1

2
c2λ′′

0(t0)

∫
y2k(y)dy.

The last term in (35) is bounded from above in absolute
value by

1

b

∫ ∣∣�̂n(t0 − by) − �n(t0 − by)
∣∣∣∣k′(y)

∣∣ dy

≤ 1

b
sup

s

∣∣�̂n(s) − �n(s)
∣∣ ∫ ∣∣k′(y)

∣∣ dy.

The supremum on the right-hand side is of the or-
der n−2/3(logn)2/3; see Kiefer–Wolfowitz [61] for the
density model, [82] for the regression model, and [30]
for the more general setup in [25]. This implies that
the second term in (35) determines the limiting distri-
bution.

We illustrate things for estimating a monotone fail-
ure rate λ0 at a point t0 in the interior of the support of
λ0, as in [46]. Here, �n = − log(1 − Fn) is the empiri-
cal cumulative failure rate and the second term in (35)
is equal to

b−1
∫

k(y)d(�n − �0)(t0 − by)

= n−2/5c−1/2
∫

k′(y)dW̃n(y),

where W̃n(y) = √
n/b(�n(t0 −by)−�n(t0)−�0(t0 −

by)+�0(t0)), which can be shown to converge weakly
to the process y �→ λ0(t0)f0(t0)

−1/2W(y), where W is
standard two-sided Brownian motion and f0 and λ0 are
the underlying density and failure rate, respectively. It
follows that n2/5(̂λs

n(t0)−λ0(t0)) converges to a Gaus-
sian law of which expectation and variance are

μ = 1

2
c2λ′′

0(t0)

∫
y2k(y)dy and

σ 2 = λ0(t0)
2

cf0(t0)

∫
k(y)2 dy.

A similar argument was used to determine the limit
behavior of the smoothed Grenander-type estimator
of a monotone failure rate under random censoring
in [72], who applied a Kiefer–Wolfowitz type of result
from [30].

5.3 Isotonization Followed by Smoothing: Using
L2-Bounds

The previous approach heavily depends on a Kiefer–
Wolfowitz type of result, which is not always available.
Recently, [42] (see also [48], Chapter 11) developed
a different method for finding the limit distribution of
smoothed isotonic estimators, which is mainly based
on uniform L2-bounds for the distance between the
nonsmoothed isotonic estimator and the true function,
in the case of i.i.d. observations. Starting from (33), we
have

λ̂s
n(t) =

∫
kb(t − u)λ0(u)du

+
∫

kb(t − u)
(̂
λn(u) − λ0(u)

)
du.

The first term on the right-hand side determines the
asymptotic bias; see (36). To handle the second term
on the right-hand side, the first step is to approximate
it as follows:

n2/5
∫

kb(t − u)
(̂
λn(u) − λ0(u)

)
du

(37)
≈ −n2/5

∫
θn,t (x)dP(x),

where P is the common distribution of the i.i.d. ob-
servations. The idea is to take for θn,t a suitable func-
tion, whose piecewise constant version integrates to
zero with respect to the empirical measure Pn, that is,∫

θn,t (x)dPn(x) = 0, where θn,t is taken constant be-
tween successive points of jump of the isotonic esti-
mator λ̂n in (33). Hence, the right-hand term in (37) is
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equal to

n2/5
∫

θn,t (x)d(Pn − P)(x)

(38)
+ n2/5

∫ (
θn,t (x) − θn,t (x)

)
dP(x).

The key step is to bound the second integral by means
of bounds on the L2-distance between the isotonic es-
timator λ̂n and λ0. The last step is to replace θn,t by a
deterministic function ηn,t and determine the limit be-
havior of

(39) n2/5
∫

ηn,t (x)d(Pn − P)(x).

To find a suitable function θn,t is not trivial. In [42]
and [48], Chapter 11, some guidelines are given for
the interval censoring problem, deconvolution, and es-
timation of a monotone failure rate, where the choice
of the function θn,t is related to solutions of integral
equations that emerge from the theory of smooth func-
tionals; see [42], Lemma 2.1 and Lemma 5.1, or [48],
Lemma 11.9 and Lemma 11.17.

Sometimes θn,t can be deduced from the structure of
the statistical model at hand. For example, [73] con-
siders smooth isotonic estimators of a nondecreasing
baseline hazard in the Cox model, where no Kiefer–
Wolfowitz type of result is available. Let us illustrate
things for the simple (special) case of no covariates,
which coincides with estimation of a nondecreasing
failure rate λ0 under random censoring. In this model,
the cumulative failure rate �0 satisfies

(40) d�0(u) = δ

1 − H(u)
dP(δ, u).

Here P denotes the distribution of the pair (�,

min(X,T )) in the notation of Section 2.1 and H is
the distribution function of min(X,T ). This means

∫
kb(t − u)d�0(u) =

∫
kb(t − u)

δ

1 − H(u)
dP(δ, u).

Hence, a natural candidate for θn,t can be constructed
by combining δ and an,t (u) := kb(t − u)/(1 − H(u)).
In fact, the function

(41) θn,t (δ, u) = δan,t (u) −
∫

1{v≤u}an,t (v)d�̂n(v)

yields the desired approximation (37), by application
of Fubini’s theorem:∫

θn,t (δ, u)dP(δ, u)

=
∫

kb(t − u)d�0(u)

−
∫ (

1 − H(v)
)
an,t (v)d�̂n(v)

= −
∫

kb(t − u)d(�̂n − �0)(u).

Similar constructions were used in [73] for the
smoothed MLE and the smoothed Grenander estimator
for a monotone baseline hazard in the Cox model. For
the smoothed MLE for a monotone failure rate under
random censoring, [48], Section 11.6, use a different
an,t , which is the solution of an integral equation.

To illustrate, how to bound the second integral
in (38) in the same setting by means of the L2-distance
between the isotonic estimator λ̂n and the true mono-
tone function, let us continue with the example above
about estimation of a nondecreasing failure rate λ0 un-
der random censoring. Let 0 < τ1 < · · · < τm denote
the points of jump of λ̂n. For u ∈ (τi, τi+1], let

An(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τi if λ0(t) > λ̂n(τi+1),

for all t ∈ (τi, τi+1];
s if λ0(s) = λ̂n(s),

for some s ∈ (τi, τi+1];
τi+1 if λ0(t) < λ̂n(τi+1),

for all t ∈ (τi, τi+1].
With an,t (u) = an,t (An(u)), define θn,t in the same
manner as θn,t in (41), with an,t replaced by an,t . If the
kernel k is supported on [−1,1], then (40) yields that
the second integral in (38), with x = (δ, u), is equal to∫ (

an,t (u) − an,t (u)
)(

1 − H(u)
)

d�0(u)

−
∫ (

1 − H(v)
)(

an,t (v) − an,t (v)
)

d�̂n(v)

=
∫ t+b

t−b

(
1 − H(v)

)(
an,t (v) − an,t (v)

)
· (

λ0(v) − λ̂n(v)
)

dv.

By Cauchy–Schwarz, this is bounded from above in
absolute value by

∥∥(an,t − an,t )1[t−b,t+b]
∥∥
L2

∥∥(λ0 − λ̂n)1[t−b,t+b]
∥∥
L2

.
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Now, if u ∈ (τi, τi+1] and An(u) > τi , then λ̂n(u) =
λ̂n(An(u)), which implies

∣∣u − An(u)
∣∣ ≤ 1

inf |λ′
0|

∣∣λ0(u) − λ0
(
An(u)

)∣∣
≤ 2

inf |λ′
0|

∣∣λ0(u) − λ̂n(u)
∣∣.

It can be seen that a similar inequality holds if An(u) =
τi . It follows that∥∥(an,t − an,t )1[t−b,t+b]

∥∥2
L2

≤ C1b
−4

∫ t+b

t−b

(
An(u) − u

)2 du

≤ C2b
−4

∫ t+b

t−b

(̂
λn(u) − λ0(u)

)2 du.

It follows from (9) with p = 2 that the expectation
of the right-hand side is of the order O(b−3n−2/3),
and that of ‖(λ0 − λ̂n)1[t−b,t+b]‖2

L2
is of the or-

der O(bn−2/3). This means that the second term in
(38), where x = (δ, u), is of order n2/5Op(b−1n−2/3),
which tends to zero, if the bandwidth has the usual
rate b ∼ n−1/5.

Finally, we have to choose a suitable deterministic
function ηn,t such that

n2/5
∫ (

θn,t (δ, u) − ηn,t (δ, u)
)
d(Pn − P)(δ, u)

(42)
= oP (1).

We define ηn,t in the samme manner as θn,t in (41),
with �̂n replaced by �0. Establishing (42) involves the
use of entropy results for classes of bounded functions.
For the current status problem, the monotone function
of interest is clearly bounded as being a distribution
function; see [50], Lemma A.7. This is not the case
when estimating a monotone baseline hazard in the
Cox model, or a monotone failure rate under random
censoring. To prove (42), one has to deal with

1

b

∣∣∣∣k
(

t − An(u)

b

)
− k

(
t − u

b

)∣∣∣∣
≤ C1b

−2∣∣An(u) − u
∣∣

≤ C2b
−2∣∣λ0(u) − λ̂n(u)

∣∣.
To have the left-hand side bounded, requires a bound
on E[supu(λ0(u) − λ̂n(u))2], which is more demand-
ing than (9). When a strong embedding such as (16)
is available, then one can obtain a bound of the order
O((n/ logn)−2/3), which still suffices to compensate

b−2. This is the case for estimation of a monotone fail-
ure rate under random censoring, but no longer in the
more general setup of estimating a monotone baseline
hazard in the Cox model. However, [73], Lemma 5.6,
manage to obtain a bound of the order O(n−4/9),
which suffices for their purposes.

We conclude, that for b = cn1/5, n2/5(̂λs
n(t0) −

λ0(t0)) is asymptotically equivalent to the sum of the
asymptotic bias in (36) and the term in (39). Asymp-
totic normality of the term in (39) can then be estab-
lished using standard arguments.

6. MISCELLANEA

This section includes some other topics where limit
theory of isotonic estimators plays a role but that can-
not be detailed here, due to space constraints.

Minimax risk bounds for the least squares estimator
of a monotone regression function have been obtained
in [97]. Recently, similar results have been obtained
by [17], for isotonic and other shape constrained re-
gression problems, in [18] for matrix isotonic estima-
tion, in [13] for aggregation of affine estimators, and
in [54] for isotonic regression in general dimensions.
These results also provide oracle inequalities and de-
scribe the adaptation properties as well as behavior of
the least squares estimator in higher dimensions.

Although [25] allows for some form of dependence,
in the present paper we have mainly considered setups
of independent data. Results about the pointwise lim-
iting distribution for isotonic estimators in the regres-
sion setting with short and long range dependent er-
rors can be found in [21, 97], whereas [5] considers
the construction of confidence intervals in a similar set-
ting. Estimation of a monotone spectral density is con-
sidered in [4], for short memory linear processes and
long memory Gaussian processes. Results on the point-
wise limiting distribution of isotonic estimators can be
found in [3], who considers a general framework which
includes weakly dependent and long range dependent
data.

With a completely different asymptotic behavior, the
discrete case as been considered in [59]: in that case,
the rate of convergence is the square-root of the sam-
ple size, and the local limit distribution of the estimator
is again nonnormal. It is obtained by concatenation of
normal vectors (where the underlying p.m.f. is strictly
monotone) and isotonic regression of normal vectors
(where the underlying p.m.f. is flat). Another interest-
ing extension is the limiting behavior of the Grenander
estimator under misspecification [58].
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Following the pioneering paper [61] by Kiefer and
Wolfowitz, the limit theory for the difference between a
naive estimator for a concave cumulative function and
its least concave majorant has been considered in [34,
82, 67, 68, 30, 74]. As seen above, this could be used
to build smooth monotone estimators. Other Kiefer–
Wolfowitz type of results can be found in [87] for den-
sities that are in a subclass of bounded variation func-
tions or a Hölder ball.

Another application is connected to the problem of
testing monotonicity of a function of interest [1, 24,
27, 47, 12]. Other tests can be built based on the limit-
ing global behavior of isotonic estimators, to test good-
ness of fit [32, 31], or equality of several monotone
functions [28], whereas some other tests are more con-
nected to the local limit behavior of isotonic estimators,
such as likelihood ratio tests [9, 10, 81]. Another appli-
cation of local limiting distribution of isotonic estima-
tor is construction of confidence intervals for monotone
functions [49].

To conclude the section, we would like to point out
that the standard bootstrap typically does not work for
Grenander-type estimators; for example, see [64, 86].
However, [64, 16, 22, 28] discuss various smoothed
bootstrap methods that are consistent.
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density. Sankhyā Ser. A 31 23–36. MR0267677

[84] PRAKASA RAO, B. L. S. (1970). Estimation for distribu-
tions with monotone failure rate. Ann. Math. Stat. 41 507–
519. MR0260133

[85] RAMSAY, J. O. (1998). Estimating smooth monotone func-
tions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 365–375.
MR1616049

[86] SEN, B., BANERJEE, M. and WOODROOFE, M. (2010).
Inconsistency of bootstrap: The Grenander estimator. Ann.
Statist. 38 1953–1977. MR2676880

[87] SÖHL, J. (2015). Uniform central limit theorems for
the Grenander estimator. Electron. J. Stat. 9 1404–1423.
MR3360732

[88] SUN, J. and WOODROOFE, M. (1996). Adaptive smoothing
for a penalized NPMLE of a non-increasing density. J. Statist.
Plann. Inference 52 143–159. MR1392133

[89] TANTIYASWASDIKUL, C. and WOODROOFE, M. B.
(1994). Isotonic smoothing splines under sequential designs.
J. Statist. Plann. Inference 38 75–87. MR1256849

[90] VAN DER VAART, A. W. and VAN DER LAAN, M. J. (2003).
Smooth estimation of a monotone density. Statistics 37 189–
203. MR1986176

[91] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak
Convergence and Empirical Processes: With Applications to
Statistics. Springer, New York. MR1385671

[92] WELLNER, J. A. (2015). Musings about shape constrained
estimation and inference: Some problems. Presentation at
workshop Shape Constrained Inference: Open Problems and
New Directions, Lorentz Centre, Leiden, The Netherlands.

[93] WELLNER, J. A. and ZHANG, Y. (2000). Two estimators of
the mean of a counting process with panel count data. Ann.
Statist. 28 779–814. MR1792787

[94] WOODROOFE, M. and SUN, J. (1993). A penalized maxi-
mum likelihood estimate of f (0+) when f is nonincreasing.
Statist. Sinica 3 501–515. MR1243398

[95] WRIGHT, F. T. (1981). The asymptotic behavior of monotone
regression estimates. Ann. Statist. 9 443–448. MR0606630

[96] WRIGHT, F. T. (1982). Monotone regression estimates for
grouped observations. Ann. Statist. 10 278–286. MR0642739

[97] ZHAO, O. and WOODROOFE, M. (2012). Estimating a mono-
tone trend. Statist. Sinica 22 359–378. MR2933180

http://www.ams.org/mathscinet-getitem?mr=2283391
http://www.ams.org/mathscinet-getitem?mr=2274141
http://www.ams.org/mathscinet-getitem?mr=2391249
http://www.ams.org/mathscinet-getitem?mr=0642740
http://arxiv.org/abs/arXiv:1612.06647
http://www.ams.org/mathscinet-getitem?mr=3679108
http://www.ams.org/mathscinet-getitem?mr=3605364
http://www.ams.org/mathscinet-getitem?mr=3802192
http://www.ams.org/mathscinet-getitem?mr=3091700
http://www.ams.org/mathscinet-getitem?mr=1105841
http://www.ams.org/mathscinet-getitem?mr=0170436
http://www.ams.org/mathscinet-getitem?mr=2516802
http://www.ams.org/mathscinet-getitem?mr=0947574
http://www.ams.org/mathscinet-getitem?mr=1735473
http://www.ams.org/mathscinet-getitem?mr=3410303
http://www.ams.org/mathscinet-getitem?mr=2279643
http://www.ams.org/mathscinet-getitem?mr=0267677
http://www.ams.org/mathscinet-getitem?mr=0260133
http://www.ams.org/mathscinet-getitem?mr=1616049
http://www.ams.org/mathscinet-getitem?mr=2676880
http://www.ams.org/mathscinet-getitem?mr=3360732
http://www.ams.org/mathscinet-getitem?mr=1392133
http://www.ams.org/mathscinet-getitem?mr=1256849
http://www.ams.org/mathscinet-getitem?mr=1986176
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1792787
http://www.ams.org/mathscinet-getitem?mr=1243398
http://www.ams.org/mathscinet-getitem?mr=0606630
http://www.ams.org/mathscinet-getitem?mr=0642739
http://www.ams.org/mathscinet-getitem?mr=2933180

	Introduction
	Main Concepts and Deﬁnitions
	Estimation Under the Monotonicity Constraint
	The Inverse Process
	The Chernoff Distribution and the Argmax Process of a Brownian Motion with Parabolic Drift

	Pointwise Convergence
	Local Rate of Convergence
	Local Asymptotic Distribution: The Direct Approach
	Local Asymptotic Distribution: The Inverse Approach
	Behavior on Flat Regions, Near Zero or at a Discontinuity Point

	Global Convergence
	Rate of Convergence of the Lp-Loss
	Rate of Convergence of the Supremum Loss
	Limit Distribution of the Lp-Loss
	Limit Distribution of the Supremum Loss

	Smooth Isotonic Estimation
	Smoothing Followed by Isotonization
	Isotonization Followed by Smoothing: Using Kiefer-Wolfowitz
	Isotonization Followed by Smoothing: Using L2-Bounds

	Miscellanea
	Acknowledgements
	References

