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Probabilistic Integration: A Role in
Statistical Computation?1

François-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne and
Dino Sejdinovic

Abstract. A research frontier has emerged in scientific computation,
wherein discretisation error is regarded as a source of epistemic uncertainty
that can be modelled. This raises several statistical challenges, including the
design of statistical methods that enable the coherent propagation of proba-
bilities through a (possibly deterministic) computational work-flow, in order
to assess the impact of discretisation error on the computer output. This paper
examines the case for probabilistic numerical methods in routine statistical
computation. Our focus is on numerical integration, where a probabilistic
integrator is equipped with a full distribution over its output that reflects
the fact that the integrand has been discretised. Our main technical contri-
bution is to establish, for the first time, rates of posterior contraction for one
such method. Several substantial applications are provided for illustration
and critical evaluation, including examples from statistical modelling, com-
puter graphics and a computer model for an oil reservoir.
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1. INTRODUCTION

This paper presents a statistical perspective on the
theoretical and methodological issues pertinent to
probabilistic numerical methods. Our aim is to stim-
ulate what we feel is an important discussion about
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these methods for use in contemporary and emerging
scientific and statistical applications.

1.1 Background

Numerical methods, for tasks such as approximating
the solution of a linear system, integration, global op-
timisation and discretisation schemes to approximate
the solution of differential equations, are core build-
ing blocks in modern scientific and statistical com-
putation. These are typically considered as computa-
tional black-boxes that return a point estimate for a
deterministic quantity of interest whose numerical er-
ror is then neglected. Numerical methods are thus one
part of statistical analysis for which uncertainty is not
routinely accounted (although analysis of errors and
bounds on these are often available and highly devel-
oped). In many situations, numerical error will be neg-
ligible and no further action is required. However, if
numerical errors are propagated through a computa-
tional pipeline and allowed to accumulate, then failure
to properly account for such errors could potentially
have drastic consequences on subsequent statistical in-
ferences (Mosbach and Turner, 2009, Oates, Cockayne
and Aykroyd, 2017).
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The study of numerical algorithms from a statisti-
cal point of view, where uncertainty is formally due
to discretisation, is known as probabilistic numerics.
The philosophical foundations of probabilistic numer-
ics were, to the best of our knowledge, first clearly ex-
posed in the work of Larkin (1972), Kadane (1985),
Diaconis (1988) and O’Hagan (1992). Theoretical
support comes from the field of information-based
complexity (Traub, Wasilkowski and Woźniakowski,
1988), where continuous mathematical operations are
approximated by discrete and finite operations to
achieve a prescribed accuracy level. Proponents claim
that this approach provides three important benefits:
First, it provides a principled approach to quantify and
propagate numerical uncertainty through computation,
allowing for the possibility of errors with complex sta-
tistical structure. Second, it enables the user to uncover
key contributors to numerical error, using established
statistical techniques such as analysis of variance, in
order to better target computational resources. Third,
this dual perspective on numerical analysis as an infer-
ence task enables new insights, as well as the potential
to critique and refine existing numerical methods. On
this final point, recent interest has led to several new
and effective numerical algorithms in many areas, in-
cluding differential equations, linear algebra and opti-
misation. For an extensive bibliography, the reader is
referred to the recent expositions of Hennig, Osborne
and Girolami (2015) and Briol et al. (2016a).

1.2 Contributions

Our aim is to stimulate a discussion on the suit-
ability of probabilistic numerical methods in statisti-
cal computation. A decision was made to focus on nu-
merical integration due to its central role in computa-
tional statistics, including frequentist approaches such
as bootstrap estimators (Efron and Tibshirani, 1993)
and Bayesian approaches, such as computing marginal
distributions (Robert and Casella, 1999). In particular,
we focus on numerical integrals where the cost of eval-
uating the integrand forms a computational bottleneck,
and for which numerical error is hence more likely to
be non-negligible. To this end, let π be a distribution
on a state space X . The task is to compute (or, rather,
to estimate) integrals of the form

�[f ] :=
∫

f dπ,

where the integrand f : X → R is a function of in-
terest. Our motivation comes from settings where f

does not possess a convenient closed form so that, un-
til the function is actually evaluated at an input x, there

is epistemic uncertainty over the actual value attained
by f at x. The use of a probabilistic model for this
epistemic uncertainty has been advocated as far back
as Larkin (1972).

The probabilistic integration method that we focus
on is known as Bayesian quadrature or Bayesian cuba-
ture (BC). The method operates by evaluating the inte-
grand at a set of states {xi}ni=1 ⊂ X , so-called discreti-
sation, and returns a distribution over R that expresses
belief about the actual value of �[f ]. The computa-
tional cost associated with BC is in general O(n3). As
the name suggests, this distribution will be based on a
prior that captures certain properties of the integrand f ,
and that is updated, via Bayes’ rule, on the basis of
evaluations of f . The maximum a posteriori (MAP)
value acts as a point estimate of the integral, while the
rest of the distribution captures uncertainty due to the
fact that we can only evaluate the integrand at a finite
number of inputs. The role of epistemic uncertainty in
error assessment should be contrasted to more classical
approaches based on unbiased estimation, such as used
in a Monte Carlo (MC) method.

A theoretical investigation of the posterior2 in BC
is, to the best of our knowledge, non-existent. Our first
contribution is therefore to investigate the claim that
the BC posterior provides a coherent and honest as-
sessment of the uncertainty due to discretisation of the
integrand. This claim is shown to be substantiated as a
consequence of existing results on deterministic inter-
polation and integration methods in reproducing kernel
Hilbert spaces, if the prior is well specified. In partic-
ular, rates of posterior contraction to a point mass cen-
tred on the true value �[f ] are established. However,
to check that a prior is well specified for a given inte-
gration problem can be non-trivial.

Our second contribution is to explore the potential
for the use of probabilistic integrators in the contem-
porary statistical context. In doing so, we have devel-
oped strategies for (i) model evidence evaluation via
thermodynamic integration, where a large number of
candidate models are to be compared, (ii) inverse prob-
lems arising in partial differential equation models for
oil reservoirs, (iii) logistic regression models involving
high-dimensional latent random effects, and (iv) spher-
ical integration, as used in the rendering of virtual ob-
jects in prescribed visual environments. In each case,
the relative advantages and disadvantages of the prob-
abilistic approach to integration are presented for criti-
cal assessment.

2In contrast to the MAP estimator, which has been well studied.
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1.3 Outline

The paper is structured as follows. Section 2 pro-
vides background on BC and outlines an analytic
framework in which the method can be studied. Sec-
tion 3 describes our novel theoretical results. Section 4
is devoted to a discussion of practical issues, includ-
ing the important issue of prior elicitation. Section 5
presents several novel applications of probabilistic in-
tegration for critical assessment. Section 6 concludes
with an appraisal of the suitability of probabilistic nu-
merical methods in the applied statistical context.

2. BACKGROUND

First, we provide the reader with the relevant back-
ground. Section 2.1 provides a formal description of
BC. Sections 2.2 and 2.3 explain how the analysis of
BC is dual to minimax analysis in nonparametric re-
gression, and Section 2.4 relates these ideas to estab-
lished sampling methods.

Set-Up: Let (X ,B) be a measurable space, where X
will either be a subset of Rd or a more general man-
ifold (e.g. the sphere S

d ), in each case equipped with
the Borel σ -algebra B = B(X ). Let π be a probabil-
ity measure on (X ,B). Our integrand is assumed to
be an integrable function f : X → R whose integral,
�[f ] = ∫

f dπ , is the object of interest.
Notation: For functional arguments write 〈f,g〉2 =∫
fg dπ , ‖f ‖2 = 〈f,f 〉1/2

2 and for vector arguments
denote ‖u‖2 = (u2

1 + · · · + u2
d)1/2. For vector-valued

functions v : X → R
m we write �[v] for the m ×

1 vector whose ith element is �[vi]. The notation
[u]+ = max{0, u} will be used. The relation al � bl is
taken to mean that there exist 0 < C1,C2 < ∞ such
that C1al ≤ bl ≤ C2al .

A cubature rule describes any functional �̂ of the
form

(1) �̂[f ] =
n∑

i=1

wif (xi ),

for some states {xi}ni=1 ⊂ X and weights {wi}ni=1 ⊂
R. The term quadrature rule is sometimes preferred
when the domain of integration is one-dimensional
(i.e., d = 1). The notation �̂[f ] is motivated by the
fact that this expression can be re-written as the inte-
gral of f with respect to an empirical measure π̂ =∑n

i=1 wiδxi
, where δxi

is a Dirac measure (i.e., for all
A ∈ B, δxi

(A) = 1 if xi ∈ A, δxi
(A) = 0 if xi /∈ A).

The weights wi can be negative and need not satisfy∑n
i=1 wi = 1.

2.1 Bayesian Cubature

Probabilistic integration begins by defining a prob-
ability space (�,F,P) and an associated stochastic
process g : X × � → R, such that for each ω ∈ �,
g(·,ω) belongs to a linear topological space L. For BC,
Larkin (1972) considered a Gaussian process (GP); this
is a stochastic process such that the random variables
ω �→ Lg(·,ω) are Gaussian for all L ∈ L∗, where L∗
is the topological dual of L (Bogachev, 1998). In this
paper, to avoid technical obfuscation, it is assumed
that L contains only continuous functions. Let Eω de-
note expectation taken over ω ∼ P. A GP can be char-
acterised by its mean function m(x) = Eω[g(x,ω)],
and its covariance function c(x,x′) = Eω[(g(x,ω) −
m(x))(g(x′,ω) − m(x ′))] and we write g ∼ N (m, c).
In this paper, we assume without loss of generality that
m ≡ 0. Note that other priors could also be used (e.g.,
a Student-t process affords heavier tails for values as-
sumed by the integrand).

The next step is to consider the stochastic process
gn : X × � → R, conditioned on the data f (xi ) for
1 ≤ i ≤ n. The fact that L contains only continu-
ous functions ensures that gn(xi ,ω) is well defined.3

Moreover, the restriction to a P-null set is also well
defined.4 Then, for BC, gn can be shown to be a GP,
denoted N (mn, cn) (see Chapter 2 of Rasmussen and
Williams, 2006).

The final step is to produce a distribution on R by
considering the pushforward of gn through the integra-
tion operator. A sketch of the procedure is presented in
Figure 1 and the relevant formulae are now provided.
This paper aims to understand if and when this distribu-
tional output (bottom row) converges to a Dirac centred
on �[f ], the true value of the integral.

Write f ∈ Rn for the vector of fi = f (xi ) values,
X = {xi}ni=1 and c(x,X) = c(X,x)� for the 1×n vec-
tor whose ith entry is c(x,xi) and C for the matrix
with entries Ci,j = c(xi ,xj ).

PROPOSITION 1. The induced distribution of
�[gn] is Gaussian with mean and variance

E
[
�[gn]] = �

[
c(·,X)

]
C−1f ,(2)

V
[
�[gn]] = ��

[
c(·, ·)]

(3)
− �

[
c(·,X)

]
C−1�

[
c(X, ·)].

3This would not have been the case if instead L= L2(π).
4Since the canonical space of continuous processes is a Pol-

ish space and all Polish spaces are Borel spaces and thus admit
regular conditional laws (cf. Theorem A1.2 and Theorem 6.3 of
Kallenberg, 2002).
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FIG. 1. Sketch of Bayesian cubature. The top row shows the approximation of the integrand f (red) by the posterior mean mn (blue) as
the number n of function evaluations is increased. The dashed lines represent point-wise 95% posterior credible intervals. The bottom row
shows the Gaussian distribution with mean E[�[gn]] and variance V[�[gn]] and the dashed black line gives the true value of the integral
�[f ]. As the number of states n increased, this posterior distribution contracts onto the true value of the integral �[f ].

Here, ��[c(·, ·)] denotes the integral of c with re-
spect to each argument. All proofs in this paper are
reserved for Supplement A (Briol et al., 2019). It can
be seen that the computational cost of obtaining this
full posterior is much higher than that of obtaining a
point estimate for the integral, at O(n3). However, cer-
tain combinations of point sets and covariance func-
tions can reduce this cost by several orders of magni-
tude (see, e.g., Karvonen and Särkkä, 2018).

BC formally associates the stochastic process g with
a prior model for the integrand f . This in turn provides
a probabilistic model for epistemic uncertainty over the
value of the integral �[f ]. Without loss of generality,
we assume m ≡ 0 for the remainder of the paper. Then
Eq. (2) takes the form of a cubature rule

(4) E
[
�[gn]] = �̂BC[f ] :=

n∑
i=1

wBC
i f (xi )

where wBC := C−1�[c(X, ·)]. Furthermore, Eq. (4)
does not depend on function values {fi}ni=1, but only
on the location of the states {xi}ni=1 and the choice of
covariance function c. This is useful as it allows state
locations and weights to be pre-computed and reused.
However, it also means that the variance is endoge-
nous, being driven by the choice of prior. A valid quan-
tification of uncertainty thus relies on a well-specified
prior; we consider this issue further in Section 4.1.

The BC mean (Eq. (4)) coincides with classical cu-
bature rules for specific choices of covariance func-
tion c. For example, in one dimension a Brownian
covariance function c(x, x′) = min(x, x′) leads to a

posterior mean mn that is a piecewise linear inter-
polant of f between the states {xi}ni=1, that is, the
trapezium rule (Suldin, 1959). Similarly, Särkka et al.
(2016) constructed a covariance function c for which
Gauss–Hermite cubature is recovered, and Karvonen
and Särkkä (2017) showed how other polynomial-
based quadrature or cubature rules can be recovered.
Clearly the point estimator in Eq. (4) is a natural ob-
ject; it has also received attention in both the kernel
quadrature literature (Sommariva and Vianello, 2006)
and empirical interpolation literature (Kristoffersen,
2013). Recent work with a computational focus in-
cludes Kennedy (1998), Minka (2000), Rasmussen and
Ghahramani (2002), Huszar and Duvenaud (2012),
Gunter et al. (2014), Briol et al. (2015), Karvonen and
Särkkä (2018), Oettershagen (2017). The present pa-
per focuses on the full posterior, as opposed to just the
point estimator that these papers studied. In particular,
we seek to address when the posterior contracts onto a
Dirac centred on the true integral �[f ] in the large n

limit.

2.2 Cubature Rules in Hilbert Spaces

Next, we review how analysis of the approximation
properties of the cubature rule �̂BC[f ] can be car-
ried out in terms of reproducing kernel Hilbert spaces
(RKHS; Berlinet and Thomas-Agnan, 2004).

Consider a Hilbert space H with inner product 〈·, ·〉H
and associated norm ‖ · ‖H. H is said to be an RKHS
if there exists a symmetric, positive definite function
k : X ×X →R, called a kernel, that satisfies two prop-
erties: (i) k(·,x) ∈ H for all x ∈ X and; (ii) f (x) =
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〈f, k(·,x)〉H for all x ∈ X and f ∈ H (the reproduc-
ing property). It can be shown that every kernel defines
a RKHS and every RKHS admits a unique reproduc-
ing kernel (Berlinet and Thomas-Agnan, 2004, Sec-
tion 1.3). In this paper, all kernels k are assumed to sat-
isfy R := ∫

k(x,x)dπ(x) < ∞. In particular this guar-
antees

∫
f 2 dπ < ∞ for all f ∈ H. Define the kernel

mean μ(π) : X → R as μ(π)(x) := �[k(·,x)]. This
exists in H as a consequence of R < ∞ (Smola et al.,
2007). The name is justified by the fact5 that ∀f ∈ H:

�[f ] =
∫

f dπ

=
∫ 〈

f, k(·,x)
〉
H dπ(x)

=
〈
f,

∫
k(·,x)dπ(x)

〉
H

= 〈
f,μ(π)

〉
H.

The reproducing property permits an elegant theoreti-
cal analysis, with many quantities of interest tractable
in H. In the language of kernel means, cubature rules
of the form in Eq. (1) can be written as �̂[f ] =
〈f,μ(π̂)〉H where μ(π̂) is the approximation to the
kernel mean given by μ(π̂)(x) = �̂[k(·,x)]. For fixed
f ∈ H, the integration error associated with �̂ can then
be expressed as

�̂[f ] − �[f ] = 〈
f,μ(π̂)

〉
H − 〈

f,μ(π)
〉
H

= 〈
f,μ(π̂) − μ(π)

〉
H.

A tight upper bound for the error is obtained by
Cauchy–Schwarz:

(5)
∣∣�̂[f ] − �[f ]∣∣ ≤ ‖f ‖H

∥∥μ(π̂) − μ(π)
∥∥
H.

The expression above6 decouples the magnitude (in H)
of the integrand f from the kernel mean approxima-
tion error. The following sections discuss how cuba-
ture rules can be tailored to target the second term in
this upper bound.

2.3 Optimality of Cubature Weights

Denote the dual space of H as H∗ and denote its
corresponding norm ‖ · ‖H∗ . The performance of a cu-
bature rule can be quantified by its worst-case error

5The integral and inner product commute due to the existence
of μ(π) as a Bochner integral (Steinwart and Christmann, 2008,
p. 510).

6Sometimes called the Koksma–Hlawka inequality (Hickernell,
1998).

(WCE) in the RKHS:

‖�̂ − �‖H∗ = sup
‖f ‖H≤1

∣∣�̂[f ] − �[f ]∣∣.
The WCE is characterised as the error in estimating the
kernel mean:

FACT 1. ‖�̂ − �‖H∗ = ‖μ(π̂) − μ(π)‖H.

Minimisation of the WCE is natural and corresponds
to solving a least-squares problem in the feature space
induced by the kernel: Let w ∈ R

n denote the vector
of weights {wi}ni=1, z ∈ R

n be a vector such that zi =
μ(π)(xi ), and K ∈ R

n×n be the matrix with entries
Ki,j = k(xi ,xj ). Then we obtain the following:

FACT 2. ‖�̂ − �‖2
H∗ = w�Kw − 2w�z +

�[μ(π)].
Several optimality properties for integration in

RKHS were collated in Section 4.2 of Novak and Woź-
niakowski (2008). Relevant to this work is that an opti-
mal estimate �̂ can, without loss of generality, take the
form of a cubature rule (i.e., of the form �̂ in Eq. (1)).
To be more precise, any non-linear and/or adaptive es-
timator can be matched7 in terms of asymptotic WCE
by a cubature rule as we have defined.

To relate these ideas to BC, consider the challenge
of deriving an optimal cubature rule, conditional on
fixed states {xi}ni=1, that minimises the WCE (in the
RKHS Hk) over weights w ∈ R

n. From Fact 2, the so-
lution to this convex problem is w = K−1z. This shows
that if the reproducing kernel k is equal to the covari-
ance function c of the GP, then the MAP from BC
is identical to the optimal cubature rule in the RKHS
(Kadane and Wasilkowski, 1985). Furthermore, with
k = c, the expression for the WCE in Fact 2 shows that
V[�[gn]] = ‖�̂BC − �‖2

H∗ ≤ ‖�̂ − �‖2
H∗ where �̂

is any other cubature rule �̂ based on the same states
{xi}ni=1. Regarding optimality, the problem is thus re-
duced to selection of states {xi}ni=1.

2.4 Selection of States

In earlier work, O’Hagan (1991) considered states
{xi}ni=1 that are employed in Gaussian quadrature
methods. Rasmussen and Ghahramani (2002) gener-
ated states using Monte Carlo (MC), calling the ap-
proach Bayesian Monte Carlo (BMC). Recent work
by Gunter et al. (2014), Briol et al. (2015) selected
states using experimental design to target the variance
V[�[gn]]. These approaches are now briefly recalled.

7Of course, adaptive cubature may provide superior performance
for a single fixed function f , and the minimax result is not true in
general outside the RKHS framework.
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2.4.1 Monte Carlo methods. A MC method is a cu-
bature rule based on uniform weights wMC

i := 1/n and
random states {xi}ni=1. The simplest of those methods
consists of sampling states {xMC

i }ni=1 independently
from π . For un-normalised densities, Markov chain
Monte Carlo (MCMC) methods proceed similarly but
induce a dependence structure among the {xMCMC

i }ni=1.
We denote these (random) estimators by �̂MC (when
xi = xMC

i ) and �̂MCMC (when xi = xMCMC
i ). Uni-

formly weighted estimators are well suited to many
challenging integration problems since they provide a
dimension-independent convergence rate for the WCE
of OP (n−1/2). They are widely applicable and straight-
forward to analyse; for instance the central limit
theorem (CLT) gives that

√
n(�̂MC[f ] − �[f ]) →

N (0, τ−1
f ) where τ−1

f = �[f 2] − �[f ]2 and the con-
vergence is in distribution. However, the CLT may not
be well suited as a measure of epistemic uncertainty
(i.e., as an explicit model for numerical error) since (i)
it is only valid asymptotically, and (ii) τf is unknown,
depending on the integral �[f ] being estimated.

Quasi Monte Carlo (QMC) methods exploit knowl-
edge of the RKHS H to spread the states in an efficient,
deterministic way over the domain X (Hickernell,
1998). QMC also approximates integrals using a cuba-
ture rule �̂QMC[f ] that has uniform weights w

QMC
i :=

1/n. The (in some cases) optimal convergence rates,
as well as sound statistical properties, of QMC have
recently led to interest within statistics (e.g. Gerber
and Chopin, 2015, Buchholz and Chopin, 2017). A re-
lated method with non-uniform weights was explored
in Stein (1995a, 1995b).

2.4.2 Experimental design methods. An Optimal
Bayesian Cubature (OBC) rule selects states {xi}ni=1
to globally minimise the variance V[�[gn]]. OBC
corresponds to classical cubature rules (e.g., Gauss–
Hermite) for specific choices of kernels (Karvonen and
Särkkä, 2018). However, OBC cannot in general be
implemented; the problem of optimising states is in
general NP-hard (Schölkopf and Smola, 2002, Sec-
tion 10.2.3).

A more pragmatic approach to select states is to use
experimental design methods, such as the greedy al-
gorithm that sequentially minimises V[�[gn]]. This
method, called sequential Bayesian Cubature (SBC)
or sequential Bayesian quadrature, is straightforward
to implement, for example, using general-purpose nu-
merical optimisation, and is a probabilistic integra-
tion method that is often used (Osborne et al., 2012,
Gunter et al., 2014). More sophisticated optimisation

algorithms have also been used: For example, in the
empirical interpolation literature, Eftang and Stamm
(2012) proposed adaptive procedures to iteratively di-
vide the domain of integration into sub-domains. In the
BC literature, Briol et al. (2015) used conditional gra-
dient algorithms for this task. A similar approach was
recently considered in Oettershagen (2017).

At present, experimental design schemes do not pos-
sess the computational efficiency that we have come
to expect from MCMC and QMC. Moreover, they
do not scale well to high-dimensional settings due to
the need to repeatedly solve high-dimensional optimi-
sation problems and have few established theoretical
guarantees. For these reasons, we will focus next on
MC, MCMC and QMC.

3. METHODS

This section presents novel theoretical results on
probabilistic integration methods in which the states
{xi}ni=1 are generated with MCMC and QMC. Sec-
tion 3.1 provides formal definitions, while Section 3.2
establishes theoretical results.

3.1 Probabilistic Integration

The sampling methods of MC, MCMC and, to
a lesser extent, QMC are widely used in statistical
computation. Here we pursue the idea of using MC,
MCMC and QMC to generate states for BC, with
the aim to exploit BC to account for the possible
impact of numerical integration error on inferences
made in statistical applications. In MCMC, it is pos-
sible that two states xi = xj are identical. To pre-
vent the kernel matrix K from becoming singular,
duplicate states should be discarded.8 Then we de-
fine �̂BMC[f ] := ∑n

i=1 wBC
i f (xMC

i ), �̂BMCMC[f ] :=∑n
i=1 wBC

i f (xMCMC
i ) and �̂BQMC[f ] := ∑n

i=1 wBC
i ×

f (x
QMC
i ). This two-step procedure requires no mod-

ification to existing MC, MCMC or QMC sampling
methods. Each estimator is associated with a full pos-
terior distribution, described in Section 2.1.

A moment is taken to emphasise that the apparently
simple act of re-weighting samples can have a dramatic
improvement on convergence rates for integration of a
sufficiently smooth integrand. This will be highlighted
in the reminder of this section.

8This is justified since the information contained in function eval-
uations fi = fj is not lost. This does not introduce additional bias
into BC methods, in contrast to MC methods.
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To date we are not aware of any previous use of
BMCMC, presumably due to analytic intractability of
the kernel mean when π is un-normalised. BQMC
has been described by Hickernell, Lemieux and Owen
(2005), Marques et al. (2013), Särkka et al. (2016). To
the best of our knowledge, there has been no theoretical
analysis of the posterior distributions associated with
either method. The goal of the next section is to estab-
lish these fundamental results.

3.2 Theoretical Properties

In this section, we present novel theoretical results
for BMC, BMCMC and BQMC. The setting we con-
sider assumes that the true integrand f belongs to a
RKHS H and that the GP prior is based on a covari-
ance function c which is identical to the kernel k of H.
This setting is aesthetically motivated and implies that
the GP is not supported on H, but rather on a Hilbert
scale of H. However, a GP can be constructed on H via
c(x,x′) = ∫

k(x,y)k(y,x′)dπ(y) and our theoretical
arguments hold with minor modification (see Lemma
2.2 of Cialenco, Fasshauer and Ye, 2012).

3.2.1 Bayesian (Markov chain) Monte Carlo. As a
baseline, we begin by noting a general result for MC
estimation. This requires a slight strengthening of the
assumption on the kernel: kmax := supx∈X k(x,x) <

∞. This implies that all f ∈ H are bounded on X . For
MC estimators, Lemma 33 of Song (2008) show that,
when kmax < ∞, the WCE converges in probability at
the classical rate ‖�̂MC − �‖H∗ = OP (n−1/2).

Turning now to BMCMC (and BMC as a special
case), we consider the compact manifold X = [0,1]d .
Below the distribution π will be assumed to ad-
mit a density with respect to Lebesgue measure, de-
noted by π(·). Define the Sobolev space Hα to con-
sist of all measurable functions such that ‖f ‖2

H,α :=∑
i1+···+id≤α ‖∂i1

x1 . . . ∂
id
xd f ‖2

2 < ∞. Here α is the order
of Hα and (Hα,‖ · ‖H,α) is a RKHS. Derivative count-
ing can hence be a principled approach for practitioners
to choose a suitable RKHS. All results below apply to
RKHS H that are norm-equivalent9 to Hα , permitting
flexibility in the choice of kernel. Specific examples of
kernels are provided in Section 4.2.

Our analysis below is based on the scattered data ap-
proximation literature (Wendland, 2005), which rely
on the point set having a good coverage of domain.

9Two norms ‖ · ‖, ‖ · ‖′ on a vector space H are equivalent when
there exists constants 0 < C1,C2 < ∞ such that for all h ∈ H we
have C1‖h‖ ≤ ‖h‖′ ≤ C2‖h‖.

A minor technical assumption, that enables us to sim-
plify the presentation of results below, is that the set
X = {xi}ni=1 may be augmented with a finite, pre-
determined set Y = {yi}mi=1 where m does not increase
with n. Clearly this has no bearing on asymptotics. For
measurable A, we write P[A] = E[1A] where 1A is the
indicator function of the event A.

THEOREM 1 (BMC and BMCMC in Hα). Suppose
π is bounded away from zero on X = [0,1]d . Let H be
norm-equivalent to Hα where α > d/2, α ∈ N. Let the
states X be either:

• sampled independently and identically from π , or
• sampled from a reversible, uniformly ergodic

Markov chain that leaves π invariant.

Then ‖�̂B(MC)MC − �‖H∗ = OP (n−α/d+ε) and more-
over, if f ∈ H and δ > 0,

P
{
�[f ] − δ < �[gn] < �[f ] + δ

}
= 1 − OP

(
exp

(−Cδn
2α
d

−ε)),
where Cδ > 0 depends on δ, f and ε > 0 can be ar-
bitrarily small. In each case the implicit constants de-
pend on f and the randomness is with respect to the
sampling of the set X.

This result shows the posterior distribution is well
behaved; the posterior distribution of �[gn] contracts
to �[f ] meaning, in this paper, that its mass concen-
trates in any open neighbourhood of the true integral
�[f ] as n is increased. This result does not address the
frequentist coverage of the posterior, which is assessed
empirically in Section 5.

Although we do not focus on point estimation, a
brief comment is warranted: A lower bound on the
WCE that can be attained by randomised algorithms
in this setting is OP (n−α/d−1/2) (Novak and Woźni-
akowski, 2010). Thus our result shows that the point
estimate is at most one MC rate away from being op-
timal. Alternatively, if a deterministic grid of points
is used instead, the BC point estimator converges as
O(n−α/d+ε) which is (up to ε > 0) optimal for a de-
terministic method in Hα . See Supplement A (Briol et
al., 2019) for further detail.10

Theorem 1 can be generalised in several direc-
tions. First, we can consider more general domains X .
Specifically, the scattered data approximation bounds

10After completion of this work, similar results on point estima-
tion appeared in Oettershagen (2017), Bauer et al. (2017).
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that are used in our proof apply to any compact do-
main X ⊂ R

d that satisfies an interior cone condition
(Wendland, 2005, p. 28). Technical results in this di-
rection were established in Oates et al. (2016). Second,
we can consider other spaces H. For example, a slight
extension of Theorem 1 shows that certain infinitely
differentiable kernels lead to exponential rates for the
WCE and super-exponential rates for posterior con-
traction. For brevity, details are omitted.

3.2.2 Bayesian quasi Monte Carlo. The previous
section focused on BMC and BMCMC in the Sobolev
space Hα . To avoid repetition, here we consider more
interesting spaces of functions whose mixed partial
derivatives exist, for which even faster convergence
rates can be obtained using BQMC. To formulate
BQMC we must posit an RKHS a priori and consider
collections of states {xQMC

i }ni=1 that constitute a QMC
point set tailored to the RKHS.

Consider X = [0,1]d with π uniform on X . De-
fine the Sobolev space of dominating mixed smooth-
ness Sα to consist of functions for which ‖f ‖2

S,α :=∑
∀j :ij≤α ‖∂i1

x1 . . . ∂
id
xd f ‖2

2 < ∞. Here α is the order of
the space and (Sα,‖ · ‖S,α) is a RKHS. To build in-
tuition, note that Sα is norm-equivalent to the RKHS
generated by a tensor product of Matérn kernels (Sickel
and Ullrich, 2009), or indeed a tensor product of any
other univariate Sobolev space-generating kernel.

For a specific space such as Sα , we seek an ap-
propriate QMC point set. The higher-order digital
(t, α,1, αm × m,d)-net construction is an example of
a QMC point set for Sα ; for details, we refer the reader
to Dick and Pillichshammer (2010) for details.

THEOREM 2 (BQMC in Sα). Let H be norm-
equivalent to Sα , where α ≥ 2, α ∈ N. Suppose states
are chosen according to a higher-order digital (t, α,

1, αm × m,d) net over Zb for some prime b where
n = bm. Then ‖�̂BQMC − �‖H∗ = O(n−α+ε) and , if
f ∈ Sα and δ > 0,

P
{
�[f ] − δ < �[gn] < �[f ] + δ

}
= 1 − O

(
exp

(−Cδn
2α−ε)),

where Cδ > 0 depends on δ, f and ε > 0 can be arbi-
trarily small. The implicit constant depends on f .

This result shows that the posterior is again well be-
haved. Indeed, the rate of contraction is much faster
in Sα compared to Hα . In terms of point estimation,
BQMC satisfies the optimal rate for any determinis-
tic algorithm for integration of functions in Sα (Novak

and Woźniakowski, 2010), and with a smaller rate con-
stant than the corresponding QMC method. These re-
sults should be understood to hold on the sub-sequence
n = bm, as QMC methods do not in general give guar-
antees for all n ∈ N. Note also that there is no random-
ness in this result, since X is a deterministic point set.
It is not clear how far this result can be generalised, in
terms of π and X , compared to the result for BMCMC,
since this would require the use of different QMC point
sets.

3.2.3 Summary. In this section, we established rates
of posterior contraction for BMC, BMCMC and
BQMC in a general Sobolev space context. These re-
sults are essential since they establish the sound prop-
erties of the posterior, which is shown to contract to the
truth as more evaluations are made of the integrand. Of
course, the higher computational cost of up to O(n3)

may restrict the applicability of the method in large-n
regimes. However, we emphasise that the motivation
is to quantify the uncertainty induced from numerical
integration, an important task which often justifies the
higher computational cost.

4. IMPLEMENTATION

So far we have established sound theoretical proper-
ties for BMCMC and BQMC under the assumption that
the prior is well specified. Unfortunately, prior specifi-
cation complicates the situation in practice since, given
a test function f , there are an infinitude of RKHS to
which f belongs and the specific choice of this space
will impact upon the performance of the method. In
particular, the scale of the posterior is driven by the
scale of the prior, so that the uncertainty quantification
being provided is endogenous and, if the prior is not
well specified, this could mitigate the advantages of
the probabilistic numerical framework. This important
point is now discussed.

It is important to highlight a distinction between
B(MC)MC and BQMC; for the former the choice of
states does not depend on the RKHS. For B(MC)MC
this allows for the possibility of off-line specification
of the kernel after evaluations of the integrand have
been obtained, whereas for alternative methods the
kernel must be stated up-front. Our discussion below
therefore centres on prior specification in relation to
B(MC)MC, where several statistical techniques can be
applied.
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4.1 Prior Specification

The above theoretical results do not address the im-
portant issue of whether the scale of the posterior un-
certainty provides an accurate reflection of the actual
numerical error. This is closely related to the well-
studied problem of prior specification in the kriging
literature (Stein, 1999, Xu and Stein, 2017).

Consider a parametric kernel k(x,x′; θl, θs), with a
distinction drawn here between scale parameters θl and
smoothness parameters θs . The former are defined as
parametrising the norm on H, whereas the latter affect
the set H itself. Selection of θl , θs based on data can
only be successful in the absence of acute sensitivity to
these parameters. For scale parameters, a wide body of
evidence demonstrates that this is usually not a concern
(Stein, 1999). However, selection of smoothness pa-
rameters is an active area of theoretical research (e.g.,
Szabó, van der Vaart and van Zanten, 2015). In some
cases, it is possible to elicit a smoothness parameter
from physical or mathematical considerations, such as
a known number of derivatives of the integrand. Our at-
tention below is instead restricted to scale parameters,
where several approaches are discussed in relation to
their suitability for BC.

4.1.1 Marginalisation. A natural approach, from a
Bayesian perspective, is to set a prior p(θl) on pa-
rameters θl and then to marginalise over θl to obtain
a posterior over �[f ]. Recent results for a certain in-
finitely differentiable kernel establish minimax optimal
rates for this approach, including in the practically rele-
vant setting where π is supported on a low-dimensional
sub-mainfold of the ambient space X (Yang and Dun-
son, 2016). However, the act of marginalisation it-
self involves an intractable integral. While the com-
putational cost of evaluating this integral will often
be dwarfed by that of the integral �[f ] of inter-
est, marginalisation nevertheless introduces an addi-
tional undesirable computational challenge that might
require several approximations (e.g., Osborne, 2010).
It is however possible to analytically marginalise cer-
tain types of scale parameters, such as amplitude pa-
rameters.

PROPOSITION 2. Suppose our covariance function
takes the form c(x,y;λ) = λc0(x,y) where c0 : X ×
X → R is itself a reproducing kernel and λ > 0 is
an amplitude parameter. Consider the improper prior
p(λ) ∝ 1

λ
. Then the distribution of �[gn] is a Student-

t distribution with location parameter

�
[
c0(·,X)

]
C−1

0 f ,

scale parameter

f �C−1
0 f

n

{
��

[
c0(·, ·)]−�

[
c0(·,X)

]
C−1

0 �
[
c0(X, ·)]}

and n degrees of freedom. Here [C0]i,j = c0(xi ,xj ),
[c0(·,X)]i = c0(·,xi ), c0(·,X) = c0(X, ·)�.

4.1.2 Cross-validation. Another approach to kernel
choice is cross-validation. However, this can perform
poorly when the number n of data is small, since the
data needs to be further reduced into training and test
sets. The performance estimates are also known to have
large variance in those cases (Chapter 5 of Rasmussen
and Williams, 2006). Since the small n scenario is one
of our primary settings of interest for BC, we felt that
cross-validation was unsuitable for use in applications
below.

4.1.3 Empirical Bayes. An alternative to the above
approaches is empirical Bayes (EB) selection of scale
parameters, choosing θl to maximise the log-marginal
likelihood of the data f (xi ), i = 1, . . . , n (Section 5.4.1
of Rasmussen and Williams, 2006). EB has the advan-
tage of providing an objective function that is easier
to optimise relative to cross-validation. However, we
also note that EB can lead to over-confidence when n

is very small, since the full irregularity of the integrand
has yet to be uncovered (Szabó, van der Vaart and van
Zanten, 2015). In addition, it can be shown that EB
estimates need not converge as n → ∞ when the GP
is supported on infinitely differentiable functions (Xu
and Stein, 2017).

For the remainder, we chose to focus on a combi-
nation of the marginalisation approach for amplitude
parameters and the EB approach for remaining scale
parameters. Empirical results support the use of this
approach, though we do not claim that this strategy is
optimal.

4.2 Tractable and Intractable Kernel Means

BC requires that the kernel mean μ(π)(x) = �[k(·,
x)] is available in closed-form. This is the case for
several kernel-distribution pairs (k,π) and a subset of
these pairs are recorded in Table 1. In the event that
the kernel-distribution pair (k,π) of interest does not
lead to a closed-form kernel mean, it is sometimes pos-
sible to determine another kernel-density pair (k′, π ′)
for which �′[k′(·,x)] is available and such that (i)
π is absolutely continuous with respect to π ′, so that
the Radon–Nikodym derivative dπ/dπ ′ exists, and (ii)
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TABLE 1
A non-exhaustive list of distribution π and kernel k pairs that provide a closed-form expression for both the kernel mean
μ(π)(x) = �[k(·,x)] and the initial error �[μ(π)]. Here TP refers to the tensor product of one-dimensional kernels

X π k Reference

[0,1]d Unif(X ) Wendland TP Oates, Papamarkou and Girolami (2016)
[0,1]d Unif(X ) Matérn Weighted TP Section 5.4
[0,1]d Unif(X ) Exponentiated Quadratic Use of error function
R

d Mixt. of Gaussians Exponentiated Quadratic Kennedy (1998)
S
d Unif(X ) Gegenbauer Section 5.5

Arbitrary Unif(X )/Mixt. of Gauss. Trigonometric Integration by parts
Arbitrary Unif(X ) Splines Wahba (1990)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known ∂ logπ(x) Gradient-based Kernel Oates et al. (2016), Oates, Girolami and Chopin (2017)

f dπ/dπ ′ ∈ H(k′). Then one can construct an impor-
tance sampling estimator

(6) �[f ] =
∫

f dπ =
∫

f
dπ

dπ ′ dπ ′ = �′
[
f

dπ

dπ ′
]

and proceed as above (O’Hagan, 1991).
One side contribution of this research was a novel

and generic approach to accommodate intractability of
the kernel mean in BC. This is described in detail in
Supplement B (Briol et al., 2019) and used in case stud-
ies #1 and #2 presented in Section 5.

5. RESULTS

The aims of the following section are two-fold; (i)
to validate the preceding theoretical analysis and (ii) to
explore the use of probabilistic integrators in a range
of problems arising in contemporary statistical appli-
cations.

5.1 Assessment of Uncertainty Quantification

Our focus below is on the uncertainty quantification
provided by BC and, in particular, the performance of
the hybrid marginalisation/EB approach to kernel pa-
rameters. To be clear, we are not concerned with ac-
curate point estimation at low computational cost. This
is a well-studied problem that reaches far beyond the
methods of this paper. Rather, we are aiming to as-
sess the suitability of the probabilistic description for
integration error that is provided by BC. Our moti-
vation is expensive integrands, but to perform assess-
ment in a controlled environment we considered in-
expensive test functions of varying degrees of irregu-
larity, whose integrals can be accurately approximated.
These included a non-isotropic test function fj (x) =
exp(sin(Cjx1)

2 − ‖x‖2
2) with an “easy” setting C1 = 5

and a “hard” setting C2 = 20. The hard test function
is more variable and will hence be more difficult to
approximate (see Figure 2). One realisation of states
{xi}ni=1, generated independently and uniformly over
X = [−5,5]d (initially d = 1), was used to estimate
the �[fi]. We work in an RKHS characterised by ten-
sor products of Matérn kernels

kα

(
x,x′) = λ

d∏
i=1

21−α

�(α)

(√
2α|xi − x′

i |
σ 2

i

)α

× Kα

(√
2α|xi − x′

i |
σ 2

i

)
,

where Kα is the modified Bessel function of the sec-
ond kind. Closed-form kernel means exist in this case
for α = p + 1/2 whenever p ∈ N. In this set-up,
EB was used to select the length-scale parameters
σ = (σ1, . . . , σd) ∈ (0,∞)d of the kernel, while the
amplitude parameter λ was marginalised as in Prop.
2. The smoothness parameter was fixed at α = 7/2.
Note that all test functions will be in the space Hα for
any α > 0 and there is a degree of arbitrariness in this
choice of prior.

Results are shown in Figure 2. Error-bars are used to
denote the 95% posterior credible regions for the value
of the integral and we also display the values σ̂i of the
length scale σi selected by EB.11 The σ̂i appear to con-
verge rapidly as n → ∞; this is encouraging but we
emphasise that we do not provide theoretical guaran-
tees for EB in this work. On the negative side, over-
confidence is possible at small values of n. Indeed, the
BC posterior is liable to be over-confident under EB,

11The term “credible” is used loosely since the σ̂i are estimated
rather than marginalised.
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FIG. 2. Evaluation of uncertainty quantification provided by BC. Here we used empirical Bayes (EB) for σ with λ marginalised. Left: The
test functions f1 (top), f2 (bottom) in d = 1 dimension. Right: Solutions provided by Monte Carlo (MC; black) and Bayesian MC (BMC;
red), for one typical realisation. 95% credible regions are shown for BMC and the green horizontal line gives the true value of the integral.
The blue curve gives the corresponding lengthscale parameter selected by EB.

since in the absence of evidence to the contrary, EB se-
lects large values for σ that correspond to more regular
functions; this is most evident in the “hard” case.

Next we computed coverage frequencies for 100(1−
γ )% credible regions. For each sample size n, the
process was repeated over many realisations of the
states {xi}ni=1, shown in Figure 3. It may be seen that
(for n large enough) the uncertainty quantification pro-
vided by EB is over-cautious for the easier function
f1, whilst being well calibrated for the more compli-
cated functions such as f2. As expected, we observed
that the coverage was over-confident for small values
of n. Performance was then investigated with λ se-
lected by EB in Figure 1 in Supplement C (Briol et
al., 2019); in general this performed worse than when
λ was marginalised. In addition, in Figure 3 in Sup-
plement C (Briol et al., 2019), we observed that the
coverage is dependent on the prior smoothness α used,
with larger values of α being associated with over-

confidence particularly when the number n of samples
was small.

Finally, to understand whether theoretical results on
asymptotic behaviour are realised in practice, we note
(in the absence of EB) that the variance V[�[gn]] is
independent of the integrand and may be plotted as a
function of n. Results in Supplement C (Briol et al.,
2019) demonstrate that theoretical rates are observed
in practice for d = 1 for BQMC; however, at large val-
ues of d , more data are required to achieve accurate
estimation and increased numerical instability was ob-
served.

The results on test functions provided in this section
illustrate the extent to which uncertainty quantification
in possible using BC. In particular, for our examples,
we observed reasonable frequentist coverage if the
number n of samples was not too small. For the remain-
der we explore possible roles for BMCMC and BQMC
in statistical applications. Four case studies, carefully
chosen to highlight both the strengths and the weak-
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FIG. 3. Evaluation of uncertainty quantification provided by BC. Here we used empirical Bayes for σ with λ marginalised in dimensions
d = 1 (top) and d = 3 (bottom). Coverage frequencies (computed from 500 (top) or 150 (bottom) realisations) were compared against
notional 100(1 − γ )% Bayesian credible regions for varying level γ and number of observations n. The upper-left quadrant represents
conservative credible intervals whilst the lower-right quadrant represents over-confident intervals. Left: “Easy” test function f1. Right:
“Hard” test function f2.

nesses of BC are presented. Brief critiques of each
study are contained below, the full details of which can
be found in Supplement D (Briol et al., 2019).

5.2 Case Study #1: Model Selection Via
Thermodynamic Integration

Consider the problem of selecting a single best
model among a set {M1, . . . ,MM}, based on data y
assumed to arise from a true model in this set. The
Bayesian solution, assuming a uniform prior over mod-
els, is to select the MAP model. We focus on the
case with uniform prior on models p(Mi ) = 1/M ,
and this problem hence reduces to finding the largest
marginal likelihood pi = p(y|Mi ). The pi are usu-

ally intractable integrals over the parameters θ i as-
sociated with model Mi . One widely-used approach
to model selection is to estimate each pi in turn, say
by p̂i , then to take the maximum of the p̂i over i ∈
{1, . . . ,M}. In particular, thermodynamic integration is
one approach to approximation of marginal likelihoods
pi for individual models (Gelman and Meng, 1998,
Friel and Pettitt, 2008).

In many contemporary applications the MAP model
is not well identified, for example in variable selection
where there are very many candidate models. Then, the
MAP becomes sensitive to numerical error in the p̂i ,
since an incorrect model Mi , i �= k can be assigned
an overly large value of p̂i due to numerical error, in
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which case it could be selected in place of the true
MAP model. Below we explore the potential to exploit
probabilistic integration to surmount this problem.

5.2.1 Thermodynamic integration. To simplify no-
tation below, we consider computation of a single pi

and suppress dependence on the index i correspond-
ing to model Mi . Denote the parameter space by
�. For t ∈ [0,1] (an inverse temperature) define the
power posterior πt , a distribution over � with density
πt(θ) ∝ p(y|θ)tp(θ). The thermodynamic identity is
formulated as a double integral:

logp(y) =
∫ 1

0
dt

∫
�

logp(y|θ)dπt(θ).

The thermodynamic integral can be re-expressed as
logp(y) = ∫ 1

0 g(t)dt , g(t) = ∫
� f (θ)dπt(θ), where

f (θ) = logp(y|θ). Standard practice is to discretise
the outer integral and estimate the inner integral us-
ing MCMC: Letting 0 = t1 < · · · < tm = 1 denote a
fixed temperature schedule, we thus have (e.g., using
the trapezium rule)

(7)

logp(y) ≈
m∑

i=2

(ti − ti−1)
ĝi + ĝi−1

2
,

ĝi = 1

n

n∑
j=1

logp(y|θ i,j ),

where {θ i,j }nj=1 are MCMC samples from πti . Several
improvements have been proposed, including the use
of higher-order numerical quadrature for the outer inte-
gral (Friel, Hurn and Wyse, 2014, Hug et al., 2016) and
the use of control variates for the inner integral (Oates,
Girolami and Chopin, 2017, Oates, Papamarkou and
Girolami, 2016). To date, probabilistic integration has
not been explored in this context.

5.2.2 Probabilistic thermodynamic integration. Our
proposal is to apply BC to both the inner and outer in-
tegrals. This is instructive, since nested integrals are
prone to propagation and accumulation of numerical
error. Several features of the method are highlighted.

Transfer learning. In the probabilistic approach, the
two integrands f and g are each assigned prior proba-
bility models. For the inner integral, we assign a prior
f ∼ N (0, kf ). Our data here are the nm × 1 vector f
where f(i−1)n+j = f (θ i,j ). For estimating gi with BC,
we have m times as much data as for the MC estimator
ĝi , in Eq. (7), which makes use of only n function eval-
uations. Here, information transfer across temperatures
is made possible by the explicit model for f underpin-
ning BC.

In the posterior, g = [g(t1), . . . , g(tT )] is a Gaussian
random vector with g|f ∼ N (μ,�) where the mean
and covariance are defined, in the obvious notation, by

μa = �ta

[
kf (·,X)

]
K−1

f f ,

�a,b = �ta�tb

[
kf (·, ·)]]

− �ta

[
kf (·,X)

]
K−1

f �tb

[
kf (X, ·)],

where X = {θ i,j }nj=1 and Kf is an nm × nm kernel
matrix defined by kf .

Inclusion of prior information. For the outer in-
tegral, it is known that discretisation error can be
substantial; Friel, Hurn and Wyse (2014) proposed a
second-order correction to the trapezium rule to mit-
igate this bias, while Hug et al. (2016) pursued the
use of Simpson’s rule. Attacking this problem from
the probabilistic perspective, we do not want to place a
stationary prior on g(t), since it is known from exten-
sive empirical work that g(t) will vary more at smaller
values of t . Indeed the rule-of-thumb ti = (i/m)5 is
commonly used (Calderhead and Girolami, 2009). We
would like to encode this information into our prior.
To do this, we proceed with an importance sampling
step logp(y) = ∫ 1

0 g(t)dt = ∫ 1
0 h(t)π(t)dt . The rule-

of-thumb implies an importance distribution π(t) ∝
1/(ε + 5t4/5) for some small ε > 0, which renders the
function h = g/π approximately stationary (made pre-
cise in Supplement D.1 (Briol et al., 2019)). A station-
ary GP prior h ∼ N (0, kh) on the transformed inte-
grand h provides the encoding of this prior knowledge
that was used.

Propagation of uncertainty. Under this construction,
in the posterior logp(y) is Gaussian with mean and
covariance defined as

E
[
logp(y)

] = �
[
kh(·, T )

]
K−1

h μ

V
[
logp(y)

]
= ��

[
kh(·, ·)]] − �

[
kh(·, T )

]
K−1

h �
[
kh(T , ·)]︸ ︷︷ ︸

(∗)

+ �
[
kh(·, T )

]
K−1

h �K−1
h �

[
kh(T , ·)]︸ ︷︷ ︸

(∗∗)

,

where T = {ti}mi=1 and Kh is an m × m kernel matrix
defined by kh. The term (∗) arises from BC on the outer
integral, while the term (∗∗) arises from propagating
numerical uncertainty from the inner integral through
to the outer integral.



14 F.-X. BRIOL ET AL.

FIG. 4. Probabilistic thermodynamic integration; illustration on variable selection for logistic regression (the true model was M1). Stan-
dard and probabilistic thermodynamic integration were used to approximate marginal likelihoods and, hence, the posterior over models.
Each row represents an independent realisation of MCMC, while the data y were fixed. Left: Standard Monte Carlo, where point estimates
for marginal likelihood were assumed to have no associated numerical error. Right: Probabilistic integration, where a model for numerical
error on each integral was propagated through into the posterior over models. The probabilistic approach produces a “probability distri-
bution over a probability distribution”, where the numerical uncertainty is modelled on top of the usual uncertainty associated with model
selection.

5.2.3 Simulation study. An experiment was con-
ducted to elicit the MAP model from a collection of 56
candidate logistic regression models in a variable se-
lection setting. This could be achieved in many ways;
our aim was not to compare accuracy of point esti-
mates, but rather to explore the probability model that,
unlike in standard methods, is provided by BC. Full
details are in Supplement D.1 (Briol et al., 2019).

Results are shown in Figure 4. Here we compared
approximations to the model posterior obtained using
the standard method versus the probabilistic method,
over two realisations of the MCMC (the data y were
fixed). We make some observations: (i) The probabilis-
tic approach models numerical uncertainty on top of
the usual statistical uncertainty. (ii) The computation
associated with BC required less time, in total, than the
time taken afforded to MCMC. (iii) The same model
was not always selected as the MAP when numerical
error was ignored and depended on the MCMC ran-
dom seed. In contrast, under the probabilistic approach,
either M1 or M2 could feasibly be the MAP under

any of the MCMC realisations, up to numerical un-
certainty. (iv) The top row of Figure 4 shows a large
posterior uncertainty over the marginal likelihood for
M27. This could be used as an indicator that more
computational effort should be expended on this par-
ticular integral. (v) The posterior variance was domi-
nated by uncertainty due to discretisation error in the
outer integral, rather than the inner integral. This sug-
gests that numerical uncertainty could be reduced by
allocating more computational resources to the outer
integral rather than the inner integral.

5.3 Case Study #2: Uncertainty Quantification for
Computer Experiments

Here we consider an industrial scale computer model
for the Teal South oil field, New Orleans (Hajizadeh,
Christie and Demyanov, 2011). Conditional on field
data, posterior inference was facilitated using state-of-
the-art MCMC (Lan et al., 2016). Oil reservoir models
are generally challenging for MCMC: First, simulat-
ing from those models can be time-consuming, mak-
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ing the cost of individual MCMC samples a few min-
utes to several hours. Second, the posterior distribution
will often exhibit strongly non-linear concentration of
measure. Here we computed statistics of interest us-
ing BMCMC, where the uncertainty quantification af-
forded by BC aims to enable valid inferences in the
presence of relatively few MCMC samples. Full details
are provided in Supplement D.2 (Briol et al., 2019).

Quantification of the uncertainty associated with
predictions is a major topic of ongoing research in
this field (Mohamed, Christie and Demyanov, 2010,
Hajizadeh, Christie and Demyanov, 2011, Park et al.,
2013) due to the economic consequences associated
with inaccurate predictions of quantities such as future
oil production rate. A probabilistic model for numeri-
cal error in integrals associated with prediction could
provide a more complete uncertainty assessment.

The particular integrals that we considered are pos-
terior means for each model parameter, and we com-
pared against an empirical benchmark obtained with
brute force MCMC. BMCMC was employed with a
Matérn α = 3/2 kernel whose lengthscale-parameter
was selected using EB. Estimates for posterior means
were obtained using both standard MCMC and BM-
CMC, shown in Figure 5. For this example the poste-
rior distribution provides sensible uncertainty quantifi-
cation for integrals 1, 3, 6–9, but was over-confident for
integrals 2, 4, 5. The point accuracy of the BMCMC es-
timator matched that of the standard MCMC estimator.
The lack of faster convergence for BMCMC appears to
be due to inaccurate estimation of the kernel mean and
we conjecture that alternative exact approaches, such
as Oates, Girolami and Chopin (2017), may provide
improved performance in this context. However, stan-
dard confidence intervals obtained from the CLT for
MCMC with a plug-in estimate for the asymptotic vari-
ance were over-confident for parameters 2-9.

5.4 Case Study #3: High-Dimensional Random
Effects

Our aim here was to explore whether more flexible
representations afforded by weighted combinations of
Hilbert spaces enable probabilistic integration when X
is high-dimensional. The focus was BQMC, but the
methodology could be applied to other probabilistic in-
tegrators.

5.4.1 Weighted spaces. The formulation of high
(and infinite)-dimensional QMC can be achieved with
a construction known as a weighted Hilbert space.

These spaces, defined below, are motivated by the ob-
servation that many integrands encountered in appli-
cations seem to vary more in lower dimensional pro-
jections compared to higher dimensional projections.
Our presentation below follows Section 2.5.4 and 12.2
of Dick and Pillichshammer (2010), but the idea goes
back at least to Wahba (1990), Chapter 10.

As usual with QMC, we work in X = [0,1]d and π

uniform over X . Let I = {1,2, . . . , d}. For each sub-
set u ⊆ I , define a weight γu ∈ (0,∞) and denote
the collection of all weights by γ = {γu}u⊆I . Con-
sider the space Hγ of functions of the form f (x) =∑

u⊆I fu(xu), where fu belongs to an RKHS Hu with
kernel ku and xu denotes the components of x that are
indexed by u ⊆ I . This is not restrictive, since any
function can be written in this form by considering
only u = I . We turn Hγ into a Hilbert space by defin-
ing an inner product 〈f,g〉γ := ∑

u⊆I γ −1
u 〈fu, gu〉u

where γ = {γu : u ⊆ I}. Constructed in this way, Hγ is
an RKHS with kernel kγ (x,x′) = ∑

u⊆I γuku(x,x′).
Intuitively, the weights γu can be taken to be small
whenever the function f does not depend heavily on
the |u|-way interaction of the states xu. Thus, most of
the γu will be small for a function f that is effectively
low-dimensional. A measure of the effective dimension
of the function is given by

∑
u⊆I γu; in an extreme case

d could even be infinite provided that this sum remains
bounded (Dick, Kuo and Sloan, 2013).

The (canonical) weighted Sobolev space of dominat-
ing mixed smoothness Sα,γ is defined by taking each
of the component spaces to be Sα . In finite dimen-
sions d < ∞, BQMC rules based on a higher-order
digital net attain optimal WCE rates O(n−α+ε) for this
RKHS; see Supplement D.3 (Briol et al., 2019) for full
details.

5.4.2 Semi-parametric random effects regression.
For illustration, we considered generalised linear mod-
els, and focus on a Poisson semi-parametric random
effects regression model studied by Kuo et al. (2008),
Example 2. The context is inference for the parameters
β of the following model:

Yj |λj ∼ Po(λj )

log(λj ) = β0 + β1z1,j + β2z2,j + u1φ1(z2,j ) + · · ·
+ udφd(z2,j )

uj ∼ N
(
0, τ−1)

independent.

Here z1,j ∈ {0,1}, z2,j ∈ (0,1) and φj (z) = [z − κj ]+
where κj ∈ (0,1) are pre-determined knots. We took
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FIG. 5. Numerical estimation of parameter posterior means for the Teal South oil field model (centered around the true values). The green
line gives the exact value of the integral. The MCMC (black line) and BMCMC point estimates (red line) provided similar performance.
The MCMC 95% confidence intervals, based on estimated asymptotic variance (black dotted lines), are poorly calibrated whereas with the
BMCMC 95% credible intervals (red dotted lines) provide a more honest uncertainty assessment.

d = 50 equally spaced knots in [minz2,maxz2]. In-
ference for β requires multiple evaluations of the ob-
served data likelihood p(y|β) = ∫

Rd p(y|β,u)p(u)du
and therefore is a candidate for probabilistic integration
methods, in order to model the cumulative uncertainty
of estimating multiple numerical integrals.

In order to transform this integration problem to
the unit cube, we perform the change of variables
xj = �−1(uj ) so that we wish to evaluate p(y|β) =∫
[0,1]d p(y|β,�−1(x))dx. Here, �−1(x) denotes the

standard Gaussian inverse CDF applied to each com-
ponent of x. Probabilistic integration here proceeds un-
der the hypothesis that the integrand f (x) = p(y|β,

�−1(x)) belongs to (or at least can be well approxi-
mated by functions in) Sα,γ for some smoothness pa-
rameter α and some weights γ . Intuitively, the inte-

grand f (x) is such that an increase in the value of xj

at the knot κj can be compensated for by a decrease in
the value of xj+1 at a neighbouring knot κj+1, but not
by changing values of x at more remote knots. There-
fore, we expect f (x) to exhibit strong individual and
pairwise dependence on the xj , but expect higher-order
dependency to be weaker. This motivates the weighted
space assumption. Sinescu, Kuo and Sloan (2012) pro-
vides theoretical analysis for the choice of weights γ .
Here, weights γ of order two were used; γu = 1 for
|u| ≤ dmax, dmax = 2, γu = 0 otherwise, which corre-
sponds to an assumption of low-order interaction terms
(though f can still depend on all d of its arguments).
Full details are provided in Supplement D.3 (Briol et
al., 2019).
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FIG. 6. Application to semi-parametric random effects regres-
sion in d = 50 dimensions, based on n = 2m samples from a high-
er-order digital net. [Error bars show 95% credible regions. To im-
prove visibility results are shown on the log-scale; error bars are
symmetric on the linear scale. A brute-force QMC estimate was
used to approximate the true value of the integral p(y|β) where
β = (0,1,1) was the data-generating value of the parameter.]

Results in Figure 6 showed that the 95% posterior
credible regions more-or-less cover the truth for this
problem, suggesting that the uncertainty estimates are
appropriate. On the negative side, the BQMC method
does not encode non-negativity of the integrand and,
consequently, some posterior mass is placed on nega-
tive values for the integral, which is not meaningful. To
understand the effect of the weighted space construc-
tion here, we compared against the BQMC point esti-
mate with d-way interactions (u ∈ {∅,I}). An interest-
ing observation was that these point estimates closely
followed those produced by QMC.

5.5 Case Study #4: Spherical Integration for
Computer Graphics

Probabilistic integration methods can be defined
on arbitrary manifolds, with formulations on non-
Euclidean spaces suggested as far back as Diaconis
(1988) and recently exploited in the context of com-
puter graphics (Brouillat et al., 2009, Marques et al.,
2015). This forms the setting for our final case study.

5.5.1 Global illumination integrals. Below we anal-
yse BQMC on the d-sphere Sd = {x = (x1, . . . ,

xd+1) ∈ R
d+1 : ‖x‖2 = 1} in order to estimate integrals

of the form �[f ] = ∫
Sd f dπ , where π is the spherical

measure (i.e., uniform over Sd with
∫
Sd dπ = 1).

Probabilistic integration is applied to compute global
illumination integrals used in the rendering of surfaces
(Pharr and Humphreys, 2004), and we therefore focus
on the case where d = 2. Uncertainty quantification is
motivated by inverse global illumination (e.g., Yu et al.,

1999), where the task is to make inferences from noisy
observation of an object via computer-based image
synthesis; a measure of numerical uncertainty could
naturally be propagated in this context. Below, to limit
scope, we restrict attention to uncertainty quantifica-
tion in the forward problem.

The models involved in global illumination are based
on three main factors: a geometric model for the ob-
jects present in the scene, a model for the reflectiv-
ity of the surface of each object and a description of
the light sources provided by an environment map. The
light emitted from the environment will interact with
objects in the scene through reflection. This can be for-
mulated as an illumination integral:

Lo(ωo) = Le(ωo)

+
∫
S2

Li(ωi)ρ(ωi ,ωo)[ωi · n]+ dπ(ωi ).

Here Lo(ωo) is the outgoing radiance, that is, the out-
going light in the direction ωo. Le(ωo) represents the
amount of light emitted by the object itself (which we
will assume to be known) and Li(ωi) is the light hitting
the object from direction ωi . The term ρ(ωi ,ωo) is the
bidirectional reflectance distribution function (BRDF),
which models the fraction of light arriving at the sur-
face point from direction ωi and being reflected to-
wards direction ωo. Here n is a unit vector normal to
the surface of the object. Our investigation is motivated
by strong empirical results for BQMC in this context
obtained by Marques et al. (2015).

To assess the performance of BQMC, we consider
a typical illumination integration problem based on a
California lake environment. The goal here is to com-
pute intensities for each of the three RGB colour chan-
nels corresponding to observing a virtual object from
a fixed direction ωo. We consider the case of an object
directly facing the camera (wo = n). For the BRDF,
we took ρ(ωi ,ωo) = (2π)−1 exp(ωi · ωo − 1). The in-
tegrand f (ωi ) = Li(ωi )ρ(ωi ,ωo)[ωi · ωo]+ was mod-
elled in a Sobolev space of low smoothness. The spe-
cific function space that we consider is the Sobolev
space Hα(Sd) for α = 3/2, formally defined in Sup-
plement D.4 (Briol et al., 2019).

5.5.2 Results. Both BMC and BQMC were tested
on this example. To ensure fair comparison, identi-
cal kernels were taken as the basis for both meth-
ods. BQMC was employed using a spherical t-design
(Bondarenko, Radchenko and Viazovska, 2013). It
can be shown that for BQMC ‖�̂BQMC − �‖H∗ =
O(n−3/4) when this point set is used (see Supplement
D.4 (Briol et al., 2019)).
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FIG. 7. Probabilistic integration over the sphere was employed to estimate the RGB colour intensities for the California lake environment.
[Error bars for BMC (blue) and BQMC (green) represent 95% credible intervals. MC estimates (black) and QMC estimates (red) are shown
for reference.]

Figure 7 shows performance in RGB-space. For this
particular test function, the BQMC point estimate was
almost identical to the QMC estimate at all values of
n. Overall, both BMC and BQMC provided sensible
quantification of uncertainty for the value of the inte-
gral at all values of n that were considered.

6. CONCLUSION

The increasing sophistication of computational mod-
els, of which numerical integration is one component,
demands an improved understanding of how numeri-
cal error accumulates and propagates through compu-
tation. In (now common) settings where integrands are
computationally intensive, or very many numerical in-
tegrals are required, effective methods are required that
make full use of information available about the prob-
lem at hand. This is evidenced by the recent success
of QMC, which leverages the smoothness properties
of integrands. Probabilistic numerics puts the statisti-
cian in centre stage and aims to model the integrand.
This approach was eloquently summarised by Kadane
(1985), who proposed the following vision for the fu-
ture of computation:

“Statistics can be thought of as a set of tools
used in making decisions and inferences in
the face of uncertainty. Algorithms typically
operate in such an environment. Perhaps
then, statisticians might join the teams of
scholars addressing algorithmic issues.”

This paper explored probabilistic integration from
the perspective of the statistician. Our results highlight

both the advantages and disadvantages of such an ap-
proach. On the positive side, the general methodol-
ogy described a unified framework in which existing
MCMC and QMC methods can be associated with a
probability distribution that models discretisation er-
ror. Posterior contraction rates were, for the first time,
established. On the negative side, there remain many
substantial open questions, in terms of philosophical
foundations, theoretical analysis and practical applica-
tion. These are discussed below.

Philosophy: There are several issues concerning
interpretation. First, whose epistemic uncertainty is
being modelled? In Hennig, Osborne and Girolami
(2015) it was argued that the uncertainty being mod-
elled is that of a hypothetical agent “that we get to de-
sign”. That is, the statistician selects priors and loss
functions for the agent so that it best achieves the
statistician’s own goals. These goals typically involve a
combination of relatively black-box behaviour, to per-
form well on a diverse range of problems, and a low
computational overhead. Interpretation of the posterior
is then more subtle than for subjective inference and
many of the points of contention for objective infer-
ence also appear in this framework.

Methodology: There are options as to which part of
the numerical method should be modelled. In this pa-
per, the integrand f was considered to be uncertain
while the distribution π was considered to be known.
However, one could alternatively suppose that both f

and π are unknown, pursued in Oates et al. (2017).
Regardless, the endogenous nature of the uncertainty
quantification means that in practice one is reliant on
effective methods for data-driven estimation of ker-
nel parameters. The interaction of standard methods,
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such as empirical Bayes, with the task of numerical
uncertainty quantification demands further theoretical
research (e.g., Xu and Stein, 2017).

Theory: For probabilistic integration, further theo-
retical work is required. Our results did not address
coverage at finite sample size, nor the interaction of
coverage with methods for kernel parameter estima-
tion. A particularly important question, recently ad-
dressed in Kanagawa, Sriperumbudur and Fukumizu
(2016, 2017), Xi et al. (2018), is the behaviour of
BC when the integrand does not belong to the posited
RKHS.

Prior specification: A broad discussion is required
on what prior information should be included, and
what information should be ignored. Indeed, practical
considerations essentially always demand that some
aspects of prior information are ignored. Competing
computational, statistical and philosophical consider-
ations are all in play and must be balanced.

For example, the RKHS framework that we studied
in this paper has the advantage of providing a flexible
way to encode prior knowledge about the integrand,
allowing to specify properties such as smoothness, pe-
riodicity, non-stationarity and effective low-dimension.
On the other hand, several important properties, includ-
ing boundedness, are less easily encoded. For BC, the
possibility for importance sampling (Eq. (6)) has an el-
ement of arbitrariness that appears to preclude the pur-
suit of a default prior.

Even within the RKHS framework, there is the is-
sue that integrands f will usually belong to an infini-
tude of RKHS. Selecting an appropriate kernel is ar-
guably the central open challenge for QMC research
at present. From a practical perspective, elicitation of
priors over infinite-dimensional spaces in a hard prob-
lem. An adequate choice of prior can be very infor-
mative for the numerical scheme and can significantly
improve the convergence rates of the method. Meth-
ods for choosing the kernel automatically could be use-
ful here (e.g., Duvenaud, 2014), but would need to be
considered against their suitability for providing uncer-
tainty quantification for the integral.

The list above is not meant to be exhaustive, but
highlights the many areas of research that are yet to
be explored.
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(1988). Information-Based Complexity. Computer Science
and Scientific Computing. Academic Press, Boston, MA.
MR0958691

WAHBA, G. (1990). Spline Models for Observational Data. CBMS-
NSF Regional Conference Series in Applied Mathematics 59.
SIAM, Philadelphia, PA. MR1045442

WENDLAND, H. (2005). Scattered Data Approximation. Cam-
bridge Monographs on Applied and Computational Mathemat-
ics 17. Cambridge Univ. Press, Cambridge. MR2131724

XI, X., BRIOL, F.-X. and GIROLAMI, M. (2018). Bayesian
quadrature for multiple related integrals. International
Conference on Machine Learning, PMLR 80:5369–5378,
arXiv:1801.04153.

XU, W. and STEIN, M. L. (2017). Maximum likelihood estima-
tion for a smooth Gaussian random field model. SIAM/ASA J.
Uncertain. Quantificat. 5 138–175. MR3601677

http://www.ams.org/mathscinet-getitem?mr=2508546
http://www.ams.org/mathscinet-getitem?mr=2455266
http://www.ams.org/mathscinet-getitem?mr=2676032
http://www.ams.org/mathscinet-getitem?mr=1144171
http://www.ams.org/mathscinet-getitem?mr=1380285
http://arxiv.org/abs/arXiv:1707.06107
http://www.ams.org/mathscinet-getitem?mr=3641403
http://www.ams.org/mathscinet-getitem?mr=3538693
http://arxiv.org/abs/arXiv:1603.03220
http://www.ams.org/mathscinet-getitem?mr=2514435
http://www.ams.org/mathscinet-getitem?mr=1707311
http://www.ams.org/mathscinet-getitem?mr=2563079
http://www.ams.org/mathscinet-getitem?mr=2210099
http://www.ams.org/mathscinet-getitem?mr=1389861
http://www.ams.org/mathscinet-getitem?mr=1389862
http://www.ams.org/mathscinet-getitem?mr=1697409
http://www.ams.org/mathscinet-getitem?mr=2450103
http://www.ams.org/mathscinet-getitem?mr=3357861
http://www.ams.org/mathscinet-getitem?mr=0958691
http://www.ams.org/mathscinet-getitem?mr=1045442
http://www.ams.org/mathscinet-getitem?mr=2131724
http://arxiv.org/abs/arXiv:1801.04153
http://www.ams.org/mathscinet-getitem?mr=3601677


22 F.-X. BRIOL ET AL.

YANG, Y. and DUNSON, D. B. (2016). Bayesian manifold regres-
sion. Ann. Statist. 44 876–905. MR3476620

YU, Y., DEBEVEC, P., MALIK, J. and HAWKINS, T. (1999). In-
verse global illumination: Recovering reflectance models of real

scenes from photographs. In Proc. Ann. Conf. Comput. Graph.
Int. Tech. 215–224.

http://www.ams.org/mathscinet-getitem?mr=3476620

	Introduction
	Background
	Contributions
	Outline

	Background
	Bayesian Cubature
	Cubature Rules in Hilbert Spaces
	Optimality of Cubature Weights
	Selection of States
	Monte Carlo methods
	Experimental design methods


	Methods
	Probabilistic Integration
	Theoretical Properties
	Bayesian (Markov chain) Monte Carlo
	Bayesian quasi Monte Carlo
	Summary


	Implementation
	Prior Speciﬁcation
	Marginalisation
	Cross-validation
	Empirical Bayes

	Tractable and Intractable Kernel Means

	Results
	Assessment of Uncertainty Quantiﬁcation
	Case Study #1: Model Selection Via Thermodynamic Integration
	Thermodynamic integration
	Probabilistic thermodynamic integration
	Transfer learning
	Inclusion of prior information
	Propagation of uncertainty

	Simulation study

	Case Study #2: Uncertainty Quantiﬁcation for Computer Experiments
	Case Study #3: High-Dimensional Random Effects
	Weighted spaces
	Semi-parametric random effects regression

	Case Study #4: Spherical Integration for Computer Graphics
	Global illumination integrals
	Results


	Conclusion
	Acknowledgments
	Supplementary Material
	References

