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Abstract. In my discussion, I would like to comment on our early reactions
to Hawkes’ enlightening paper on the self-exciting model; further, I would
like to comment on developments of the extended models with some appli-
cations.
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1. INTRODUCTION

This review paper by Mr. Reinhart has provided me
with an opportunity to explicitly explore the 30 years of
developments attained in the field. On the other hand, I
am aware that the Hawkes-type process is also becom-
ing more frequently cited in the fields of financial trans-
actions and insurance. Anyhow, I am pleased to learn
that some models and methods developed for analyzing
earthquake data in statistical seismology are also useful
in other scientific fields. I personally believe that the
most appreciable contribution for a statistician would
be one that expands a range of applications of statis-
tics in the fields of science and technology. In fact, se-
rious application issues in a particular field could be
sources of new models and methods in statistical sci-
ence.

In my discussion, I would like to comment on our
early reactions to Hawkes’ enlightening paper on the
self-exciting model; further, I would like to comment
on developments of the extended models with some ap-
plications.
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2. LIKELIHOOD-BASED INFERENCE
AND FORECASTING

In 1976, at the Institute of Statistical Mathematics
(ISM) in Tokyo, David Vere-Jones provided us with a
series of special lectures on point processes. The time-
series research group in the ISM that was led by Hi-
rotugu Akaike then discovered a new fertile ground of
developing likelihood-based estimation of the condi-
tional intensity function that predicted the short-term
occurrence rate of events. Therefore, we devoted con-
siderable attention to the Hawkes’ self-exciting model
because its conditional intensity function takes a linear
regressive form of the past occurrence times of events;
namely, in a discretized time axis, the corresponding
conditional probabilities of binary series of events take
a linear regression to the configuration of 0–1 series of
the occurrence of past events.

In the estimation of point process models and
goodness-of-fit comparisons between different mod-
els, Hawkes and his student (Hawkes and Adamopou-
los, 1973, Adamopoulos, 1976) calculated the spec-
tral likelihood (Whittle, 1951), which is also applica-
ble to the trigger model of Vere-Jones (1970) that is a
special case of the Neyman–Scotts’ model. However,
such estimates based on the second-order moment are
not sufficiently accurate or efficient for point-process
data, compared with the maximizing log-likelihood
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estimates of regular point processes as discussed by
Rubin (1972). Accordingly, we were interested in the
maximum-likelihood method to obtain the Akaike in-
formation criterion (AIC; see the library edition edited
by Parzen, Tanabe and Kitagawa, 1998) to select and
estimate the response functions of the Hawkes-type
models using the Laguerre polynomials (Ozaki, 1979,
Vere-Jones and Ozaki, 1982, Ogata and Akaike, 1982).
These were computed by an efficient quasi-Newton
optimization method such as the Davidon–Fletcher–
Powell method (e.g., Fletcher and Powell, 1963/1964).

3. MODELING FOR THE CAUSALITY ANALYSIS

One of the missing but an important aspect, in Mr.
Reinhart’s review paper, would be the modeling of
point processes for causality analysis from a stochastic
process including another point process. In Akaike’s
research group (see the library edition of Akaike’s pa-
pers edited by Parzen, Tanabe and Kitagawa, 1998), the
causality analysis of multi-variate time series is an im-
portant subject in system identification, prediction and
optimal control using multivariate autoregressive mod-
els. Thus, we have extended the self-exciting and mu-
tually exciting point process models in various ways;
namely, in the case of temporal point processes, they
take the following general form:

(1) λ(t |Ht,Ft ) = μ(t |Ft) + ∑

ti<t

g(t − ti |Mi),

where Ht is history of occurrence times of the target
point process, Ft is the history of outer information in-
puts and Mi represents a mark associated with the ith
event.

Such models include trends, cyclic or seasonal, com-
ponents in the presence of clustering effects and causal
relationships of a target point process from another
stochastic process (Ogata and Akaike, 1982, Ogata,
Akaike and Katsura, 1982, Ogata and Katsura, 1986,
Ogata, 1999 and references therein). Indeed, the mod-
els for the causality have become increasingly required
in many scientific fields. For example, in seismology,
some earthquake causality can be understood due to
conveyed stress changes from a nearby fault rupture.
We may use the cross-correlation statistic between two
stationary point process data sets {ti} and {uj }, which
is quantified by the cross Palm intensity, realized by
the superposition of point configurations {ti − uj } for
all i and j (Cox and Lewis, 1966). However, in the
analysis using cross-correlation, it is difficult to iden-
tify the causality relationship in the presence of clus-
tering events. Conventional de-clustering of the data

sets may avoid this difficulty, but the results depend on
the adopted de-clustering method. Furthermore, a sig-
nificant cross-correlation does not discriminate among
the following four cases: (i) {ti} causes {uj }; (ii) {uj }
causes {ti}; (iii) {uj } and {ti} cause each other and
(iv) some hidden process causes the both {uj } and {ti}.
Therefore, to discriminate among (i)–(iv) in the pres-
ence of clustering events, we have used a mixture of a
self-exciting process and a doubly stochastic process

λ(t |Ht,Ft ) = μ + PJ (t)

+ ∑

ti<t

gL(t − ti) + ∑

uj<t

hM(t − uj )ξj ,

where PJ (t) includes a trend and a cyclic function,
where gL and hM is a Laguerre polynomial of order
L and M , respectively.

Now, so far, warning-type large earthquake predic-
tion techniques have been proposed based on vari-
ous seismicity anomalies, whereas the effectiveness
of these techniques is controversial (see Jordan et al.,
2011, and references therein). Therefore, objective
evaluation methods for the predictions are required for
such techniques. Namely, we should provide statisti-
cal significance of a causality, and also assessment of
probability gains against a standard reference seismic-
ity model in a target area (e.g., Nishizawa, Lei and
Nagao, 1994, Zhuang et al., 2005, 2014, Han et al.,
2016). In this respect, the causality model can be used
to investigate the statistical relation between geophysi-
cal anomalies, as suspected precursor signals, and large
earthquakes. In future, to explore and evaluate the in-
tensity distribution of the location and time of large
earthquakes by monitoring the precursory signals, it
will be quite ambitious to develop successful space-
time extensions of the models (1), for example, using
the space-time geodetic records of the Global Naviga-
tion Satellite Systems.

Ogata (1988) explored various extensions (1) of the
Hawkes self-exciting models for an earthquake time
series associated with earthquake magnitudes; and ex-
amined the possible response functions g(·) in equa-
tion (1) looking for the standard seismicity model
based on statistical empirical laws of aftershock se-
quences studied and established in statistical seismol-
ogy (see Utsu, Ogata and Matsu’ura, 1995). In par-
ticular, for statistically establishing the epidemic-type
aftershock sequence (ETAS) model as the standard
model for seismic activity, I adopted the AIC for model
selections, and examined various residual analyses for
point processes.
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Incidentally, Ross (2016), referred to in Section 3.3
in Reinhart review paper, claimed that the log-
likelihood of the ETAS model required an O(n2) op-
eration, but Ogata, Matsu’ura and Katsura (1993) pro-
vided an accurate and fast approximation of the O(n)

operation by making use of a recursive structure (Ogata
and Akaike, 1982) and double exponential integration
approximation for numerical integration.

Further extension to a particular nonstationary ETAS
model and applications by Kumazawa and Ogata
(2014) and Kumazawa et al. (2016) successfully pro-
vided accurate quantitative geophysical relationship
between changing swarm-type activity and stress
change or fault-weakening caused by the migration
or intrusion of fluid (e.g., Ogata and Katsura, 1986,
Hainzl and Ogata, 2005).

4. SPACE-TIME ETAS MODELS AND
BAYESIAN METHOD

The characteristic parameters of the space-time
ETAS models (Ogata, 1998) have been extended to be
the one with location-dependent coefficients, and thus
describe the spatial heterogeneity of seismic activity
(Ogata et al., 2003). This model is named the hier-
archical space-time ETAS (HIST-ETAS) model. The
HIST-ETAS model and other variants of the space-
time ETAS models (see Ogata, 1998, 2011 and the re-
spective papers in the same special issue; Ogata et al.,
2013) forecast earthquakes in time, space and magni-
tude in the entire Japanese region, and the Testing Cen-
ters of Collaboratory for the Study of Earthquake Pre-
dictability (CSEP; http://www.cseptesting.org/) have
been testing their performance for more than 10 years.

Technically, to adapt to the heterogeneous seismic-
ity patterns, the models include a few times more co-
efficients than the data size. For a stable optimal esti-
mation of the models, the variability of the coefficients
needs to be constrained by assigning penalties against
rough changes and, therefore, use the penalized log-
likelihood function (Good and Gaskins, 1971). The co-
efficients that maximize the penalized log-likelihood
are then sought. This procedure is equivalent to at-
taining the maximum a posteriori (MAP) distribution
as a tomographic inversion, but we need to adjust the
optimal prior function for the strength of smoothness
constraints in terms of the penalty functions using
an empirical Bayesian method and Akaike Bayesian
Information Criterion (ABIC; Akaike, 1980, Parzen,
Tanabe and Kitagawa, 1998). I use a Laplace approxi-
mation of the posterior function at each repeating step

to attain the MAP, and then to calculate the ABIC to
be minimized by a set of the respective weights of the
penalties for the constraints. However, so far, Markov
chain Monte Carlo (MCMC) methods including the
Metropolis method have not yet proved useful in im-
plementing the same procedure. The details of our pro-
cedure can be found in the studies of Ogata et al. (2003)
and Ogata (2004, 2011).

5. SIMULATION AND INFERENCES OF
POINT PROCESSES

The thinning method of Lewis and Shedler (1979) is
useful for the simulation of nonstationary Poisson pro-
cesses regardless of the spatial dimension. Some statis-
ticians regarded this method as essentially the same as
the traditional acceptance–rejection simulation method
of sample generation from a general probability den-
sity, but an advantage of the thinning method is that
the total number of the events is automatically obtained
without integration of the intensity function.

Using the conditional intensity function, Ozaki
(1979) simulated a Hawkes process by numerically
solving the hazard equations in equation (7) in the
Reinhart review paper. However, the thinning tech-
nique can be extended to general regular point pro-
cesses characterized by any conditional intensity and
this can be further extended to multi-variate (multi-
channel) and marked point processes with general
states, including the Hawkes’ mutually exciting pro-
cess; which can be proved by using martingale theory:
refer to Ogata (1981) and Daley and Vere-Jones (2003),
Section 7.5.

Incidentally, I am skeptical about the review of Wang
et al. (2013) that claimed that there is bias and error
in the estimate of the MLE in the inference and sim-
ulations of the ETAS models with a smaller sample
size. Although the consistency and asymptotic normal-
ity hold by the assumptions of stationarity and ergodic-
ity of the data, we have to aware that the response func-
tion g(·) of the ETAS model is inverse power decaying
in time. Therefore, the accurate simulation data need a
long enough burn-in time for stationarity. In addition,
a long enough precursory time span is required before
the target period for the unbiased estimation. Hence,
I always take care of the latter issue when fitting the
ETAS models to focal seismic activity (see, e.g., Ogata,
2013).

Finally, I would like to add my recent reviews in sta-
tistical seismology (Ogata, 2013 and 2017) written for
statisticians and geophysicists, respectively.

http://www.cseptesting.org/
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