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Multiple Imputation: A Review of Practical
and Theoretical Findings
Jared S. Murray

Abstract. Multiple imputation is a straightforward method for handling
missing data in a principled fashion. This paper presents an overview of
multiple imputation, including important theoretical results and their prac-
tical implications for generating and using multiple imputations. A review of
strategies for generating imputations follows, including recent developments
in flexible joint modeling and sequential regression/chained equations/fully
conditional specification approaches. Finally, we compare and contrast dif-
ferent methods for generating imputations on a range of criteria before iden-
tifying promising avenues for future research.
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1. INTRODUCTION

Multiple imputation (MI) (Rubin, 1987) is a simple
but powerful method for dealing with missing data.
MI as originally conceived proceeds in two stages:
A data disseminator creates a small number of com-
pleted datasets by filling in the missing values with
samples from an imputation model. Analysts compute
their estimates in each completed dataset and combine
them using simple rules to get pooled estimates and
standard errors that incorporate the additional variabil-
ity due to the missing data.

MI was originally developed for settings in which
statistical agencies or other data disseminators provide
multiply imputed databases to distinct end-users. There
are a number of benefits to MI in this setting: The dis-
seminator can support approximately valid inference
for a wide range of potential analyses with a small
set of imputations, and the burden of dealing with the
missing data is on the imputer rather than the analyst.
All analyses conducted on the publicly available files
can be based on the same set of imputations, ensuring
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that differences in results are not due to the handling of
missing data.

With the introduction of easy-to-use software to gen-
erate imputations and combine estimates, it has be-
come increasingly common for users to create their
own imputations prior to analysis. The set of methods
available to generate imputations has also grown sub-
stantially, from simple parametric models and resam-
pling methods to iterative classification and regression
tree-based algorithms and flexible Bayesian nonpara-
metric models. There are several textbook treatments
of multiple imputation (e.g., Rubin, 1987, Little and
Rubin, 2002, Van Buuren, 2012, Carpenter and Ken-
ward, 2013) but fewer recent reviews of the variety of
methods available to create multiply imputed files.

This paper provides a review of MI, with a focus on
methods for generating imputations and the theoreti-
cal results and empirical evidence available to guide
the selection and critique of imputation procedures. We
restrict attention to methods for imputing item miss-
ing data (imputing the subset of values that are miss-
ing for an incomplete observation) in settings with in-
dependent observations. Much of the discussion also
applies to other data structures, and to problems other
than item missing data where MI has proven useful (see
Reiter and Raghunathan, 2007 for some examples of
other uses for multiple imputation).

The paper proceeds as follows: Section 2 briefly
reviews the mechanics of multiple imputation for a
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scalar estimand. Section 3 reviews the conditions under
which the usual MI rules give valid inference. Section 4
summarizes the practical implications of the theoretical
results, particularly for choosing a method for generat-
ing imputations. Section 5 reviews methods for imput-
ing a single variable subject to missingness. Section 6
reviews methods for imputing several variables. Sec-
tion 7 discusses some of the considerations for choos-
ing an imputation model. Section 8 concludes with dis-
cussion and directions for future work.

2. MULTIPLE IMPUTATION: HOW DOES IT WORK?

Let Yi = (Yi1, Yi2, . . . Yip) denote a p-dimensional
vector of values corresponding to the ith unit and
Ri = (Ri1,Ri2, . . .Rip) be a vector of indicator vari-
ables representing the response pattern, where Rij = 1
if Yij is observed and is zero otherwise. We will use
lowercase letters to distinguish fixed values from ran-
dom variables, and denote the realized values in a par-
ticular dataset with a tilde (e.g., Ri is a random vector,
ri is a particular value that might be taken by Ri and r̃i
is the observed response pattern for unit i observed in
a particular dataset).

Let R = {Ri : 1 ≤ i ≤ n} with r and r̃ defined
similarly. The observed and missing values from a
dataset of size n with response pattern R are denoted
Yobs(R) = {Yij : rij = 1,1 ≤ j ≤ p,1 ≤ i ≤ n} and
Ymis(R) = {Yij : rij = 0,1 ≤ j ≤ p,1 ≤ i ≤ n}, re-
spectively. Where the explicit dependence on the re-
sponse pattern is a distraction we will drop the func-
tional notation and simply refer to Ymis and Yobs.

We assume throughout that the missing data are
missing at random (MAR) (Rubin, 1987), that is,

(2.1) Pr
(
R = r̃ | Yobs(r̃) = ỹobs, Ymis(r̃) = ymis, φ

)
takes the same value for all ymis and φ, where φ pa-
rameterizes our model of the response mechanism [the
distribution of (R | Y)]. Under MAR, we do not need
to explicitly model the response process to impute
the missing data (Rubin, 1987, Result 2.3). MI may
be used for missing data that are not MAR provided
we explicitly model the response mechanism or make
other identifying assumptions (see Rubin, 2003a for
related discussion and examples of MI for non-MAR
missing data).

2.1 Multiple Imputation for a Scalar Estimand

Let Q be an estimand of interest, which may be a
function of complete data in a finite population or a
model parameter. Let Q̂(Y ) be an estimator of Q with

sampling variance U estimated by Û (Y ); where there
is no ambiguity we refer to these as Q̂ and Û . In order
to fix ideas, we focus on scalar Q. Inference for vector
Q is similar in spirit; see Rubin (1987), Chapter 3, also
Schafer (1997), Chapter 4, Section 3, or the review in
Reiter and Raghunathan (2007), Section 2.1.

Assume Y
(1)
mis, Y

(2)
mis, . . . , Y

(M)
mis are M imputations for

Ymis. Define Q̂(m) = Q̂(Yobs, Y
(m)
mis ), the estimator com-

puted using the mth completed dataset (with Û (m) de-
fined similarly), and

(2.2)

Q̄M =
M∑

m=1

Q̂(m)

M
, ŪM =

M∑
m=1

Û (m)

M
,

BM =
M∑

m=1

(Q̂(m) − Q̄M)2

M − 1
.

These statistics form the basis for inference under MI:
Q̄M averages the estimate computed in each imputed
dataset to obtain an estimate of Q. The variance esti-
mator of Q̄M has an ANOVA style decomposition:

(2.3) TM = ŪM +
(

1 + 1

M

)
BM,

where ŪM is an estimate of the variance of Q̂ if we
had the complete data (“within-imputation” variance),
and BM estimates the excess variance due to the miss-
ing values (“between-imputation” variance). The fac-
tor (1 + 1/M) is a bias adjustment for small M , as ex-
plained in Rubin (1987), Chapter 3.3.

MI was originally derived under Bayesian consider-
ations. The Bayesian derivation of MI begins with the
identities

P(Q | Yobs)

=
∫

P(Q | Ymis, Yobs)P (Ymis | Yobs) dYmis,
(2.4)

E(Q | Yobs)

= E
(
E(Q | Ymis, Yobs) | Yobs

)
,

(2.5)

Var(Q | Yobs)

= E
(
Var(Q | Ymis, Yobs) | Yobs

)
+ Var

(
E(Q | Ymis, Yobs) | Yobs

)
.

(2.6)

When imputations are generated from P(Ymis | Yobs),
the MI statistics are Monte Carlo estimates of the rele-
vant quantities:

Q̄M ≈ E
(
E(Q | Ymis, Yobs) | Yobs

)
= E(Q | Yobs),

(2.7)
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ŪM ≈ E
(
Var(Q | Ymis, Yobs) | Yobs

)
,(2.8)

(1 + 1/M)BM

≈ Var
(
E(Q | Ymis, Yobs) | Yobs

)
,

(2.9)

TM ≈ Var
(
E(Q | Yobs)

)
.(2.10)

Rubin (1987) proposed constructing confidence in-
tervals for Q based on an asymptotic normal approx-
imation to the posterior distribution (2.4): Taking M

to infinity, (Q̄∞ − Q) ∼ N(0, T∞) approximately in
large samples. In large samples with finite M inter-
val estimation for Q proceeds using a reference t-
distribution for Q̄M : (Q̄M − Q) ∼ tνM

(0, TM). Rubin
(1987) computed an approximate value for νM using
a moment matching argument, obtaining νM = (M −
1)(1 + 1/rM)2 where rM = (1 + 1/M)BM/ŪM is a
measure of the relative increase in variance due to non-
response. Barnard and Rubin (1999) proposed an alter-
native degrees of freedom estimate with better behavior
in moderate samples, suggesting it for general use. See
Reiter and Raghunathan (2007) for a review of com-
bining rules for more general estimands.

3. MULTIPLE IMPUTATION: WHEN DOES IT
WORK?

In this section, we give a high-level review of some
of the justifications for using MI and the estimators
given above. Special consideration is given to results
that can inform the selection of an imputation model.

3.1 Bayesian (In)validity Under MI

Since the MI estimators were derived under Bayesian
arguments we might hope that MI yields valid Bayesian
inference. In general, it does not. Suppose the analyst
has specified a Bayesian model as PA(Y,Q) = PA(Y |
Q)PA(Q). The analyst’s inference is based on the pos-
terior distribution

(3.1)
PA(Q | Yobs)

=
∫

PA(Q | Ymis, Yobs)PA(Ymis | Yobs) dYmis.

Now suppose the imputer has generated imputations
according to Y

(m)
mis ∼ PI (Ymis | Yobs). On computing

Q̂(Yobs, Y
(m)
mis ), the analyst has a draw from the hybrid

model

(3.2)
PH(Q | Yobs)

=
∫

PA(Q | Ymis, Yobs)PI (Ymis | Yobs) dYmis.

If PA(Ymis | Yobs) = PI (Ymis | Yobs), then MI delivers
the analyst’s posterior inference in the sense that Q̂(m)

is a draw from (3.1). If the posterior distribution for Q

is approximately normal and M is not too small, the
MI statistics will give a reasonable approximation to
the posterior.

However, in practice the imputer and the analyst will
likely have different models for (Ymis | Yobs). Even if
one analyst should happen to share the same model as
the imputer, the next analyst may have a different set of
beliefs encoded in their model, resulting in PA′(Ymis |
Yobs) �= PA(Ymis | Yobs). In this case, the imputer can-
not deliver valid Bayesian inference to both analysts
with a single set of imputations. Since Bayesian valid-
ity is generally unattainable (and good repeated sam-
pling behavior is desirable in its own right), MI is usu-
ally evaluated based on its frequentist properties. The
remaining subsections explore conditions under which
MI yields valid frequentist inference.

3.2 Frequentist Validity: Conditions on Complete
Data Inference

We will follow Rubin (1996) and assume that the
complete data inference is at least confidence valid,
meaning that a nominal 100(1 − α)% confidence in-
terval has actual coverage at least 100(1 − α)%. (The
stronger condition of randomization validity requires
that the nominal and actual coverage rates agree.) We
also assume that the sampling distribution of Q̂ is nor-
mal, so that valid confidence intervals can be obtained
from Q̂ and Û . In this case, confidence validity re-
quires that

E(Q̂) = Q,(3.3)

E(Û) ≥ Var(Q̂),(3.4)

where the expectation and variance are over repeated
sampling. Randomization validity obtains when
E(Û) = Var(Q̂). We depart slightly from Rubin (1996,
1987) in omitting any conditioning on fixed values in a
finite population.

In practice normality and (3.3)–(3.4) may only hold
asymptotically, or when particular modeling assump-
tions are correct. Whether this is plausible for a partic-
ular analysis will depend on the nature of Q̂. For our
purposes, we will assume that any necessary conditions
for confidence validity with completely observed data
are satisfied, since our primary consideration is the im-
pact of missingness and imputation. Of course, if the
complete data inference is not valid it would be unrea-
sonable to expect MI or any other missing data proce-
dure to remedy the issue.
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3.3 Proper Imputation for Valid Inference

Chapter 4, Section 4.2 in Rubin (1987) outlines con-
ditions under which MI inferences are randomization
or confidence valid when M = ∞. Imputations satis-
fying these conditions for a particular estimand Q and
posited response mechanism are known as proper im-
putations. Proper imputation coupled with valid com-
plete data inference yields valid MI inference (Rubin,
1987, Result 4.1). It is important to remember that im-
putations are only proper with respect to a particular
estimand Q and a posited response mechanism.

We focus on three essential conditions necessary
for an imputation procedure to be proper for an esti-
mand Q. (The other conditions are somewhat technical
and generally not the source of improper imputations
and invalid inference in practice.)

3.3.1 Three essential conditions for proper imputa-
tion. Rubin (1996) distilled the formal definition of
proper imputation given in Rubin (1987), Section 4.2,
into three conditions that generally ensure imputations
are proper. They concern the behavior of the MI statis-
tics under repeated realizations of the response mech-
anism, holding the sample values Y fixed [i.e., under
repeated sampling from P(R | Y)]. The first two con-
ditions require that Q̄∞ and Ū∞ be approximately un-
biased for Q̂ and Û :

E(Q̄∞ | Y) ≈ Q̂(Y ),(3.5)

E(Ū∞ | Y) ≈ Û (Y ),(3.6)

where the expectations are with respect to P(R | Y).
Naturally, (3.5)–(3.6) will hold if P(Ymis | Yobs) is

correctly specified by the imputer. However, imputa-
tions made under misspecified models can still satisfy
(3.5)–(3.6) so long as they broadly capture the features
of the predictive distribution that are relevant for com-
puting Q and U and the proportion of missing data is
not extreme. To see this more clearly, we can write

(3.7)

E(Q̄∞ | Y)

=
∞∑

m=1

E
(
Q̂

(
Yobs(R),Y

(m)
mis (R)

) | Y )
.

With no missing data, the expectations inside the sum
are all Q̂(Y ). With modest amounts of missing data,
the imputed values need to be sufficiently poor to over-
whelm the influence of the observed data in comput-
ing Q. (What constitutes “sufficiently poor” naturally
depends on Q.) Similar logic applies to Ū∞.

The third condition for proper imputation is more
subtle. It requires that the between-imputation variabil-
ity B∞ be approximately unbiased for the variance of
Q̄∞:

(3.8) E(B∞ | Y) ≈ Var(Q̄∞ | Y).

Satisfying this condition generally requires that we ac-
count for uncertainty in the imputation model itself (or
equivalently uncertainty in the parameters indexing a
model class), since the observed data used to estimate
the model, Yobs(R), varies over samples from the re-
sponse mechanism. [Recall that the variance in (3.8) is
with respect to P(R | Y).]

Many seemingly reasonable stochastic imputation
procedures fail to be proper because they do not sat-
isfy (3.8); these include imputing from a model by
plugging in the MLE or drawing imputations from the
empirical distribution of observed cases (Rubin, 1987,
Chapter 4). Accounting for uncertainty in the imputa-
tion model can be achieved (or approximated) in a va-
riety of ways, such as sampling the parameters index-
ing a particular model class from their posterior under
a Bayesian model or through small adjustments to the
bootstrap (as described in Section 5.2). See Section 4.1
for further discussion.

3.4 Congeniality and Confidence Validity

It is well known that the MI estimate T∞ can be in-
consistent for certain choices of Q (Wang and Robins,
1998, Robins and Wang, 2000, Kim, 2002, Nielsen,
2003, Kim et al., 2006). The bias is typically pos-
itive and tends to have limited influence on cover-
age rates for common estimands when the amount
of missingness is not extreme (Rubin, 2003a). Rubin
(1996) reviewed early examples of inconsistency and
gave sufficient conditions for MI inference to be con-
fidence proper [i.e., for T∞ to conservatively estimate
Var(Q̄∞)]; they are similar to the conditions in Sec-
tion 3.3.1, averaged over repeated sampling of Y in ad-
dition to the response mechanism.

Meng (1994) introduced the concept of congeniality
for understanding the inconsistency of the MI variance
estimate. Roughly, an analysis procedure is congenial
to an imputation model PI (Ymis | Yobs) if we can take
the complete data analysis and embed it into a Bayesian
model PA(Y | Q)PA(Q) such that:

1. Its posterior PA(Q | Y) recapitulates the desired
analysis in the sense that

EA(Q | Y) = Q̂(Y ), VarA(Q | Y) = Û (Y ).(3.9)
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2. It matches the imputation model, that is,

(3.10) PA(Ymis | Yobs) = PI (Ymis | Yobs).

Under congeniality, MI delivers samples from PA(Q |
Yobs) (Section 3.1), which we have constructed to yield
confidence valid inference. Unless the analyst is the
imputer, congeniality is less a condition we should try
to satisfy than one we should try to fail gracefully—
uncongeniality is generally “the rule not the exception”
(Xie and Meng, 2017), for the same reasons discussed
in Section 3.1.

Xie and Meng (2017) revisited the behavior of MI
inferences under uncongeniality and provided a host of
new results. At a high level, their findings affirm and
generalize common rules of thumb originating with
Meng (1994): Even if the “true” model is nested within
the imputer’s and the analyst’s models (e.g., if the im-
putation model includes both relevant and irrelevant
covariates in an otherwise correctly specified regres-
sion model for the missing data), standard MI inference
may be invalid. However, if the analyst’s procedure is
self-efficient [meaning essentially that their estimator
cannot be improved by ignoring relevant data (Meng,
1994, Meng and Romero, 2003)], then:

1. When the imputer’s model is more saturated than
the analyst’s, the usual MI inference is confidence valid
and generally robust.

2. When the imputer’s model is less saturated than
the analyst’s, confidence validity is not guaranteed.

It is generally safer to conduct an uncongenial analyses
under (1) than under (2), since conservative inferences
will obtain. Xie and Meng (2017) also provide remark-
ably simple and broadly applicable (if somewhat ex-
acting) alternative variance estimates that are valid un-
der uncongeniality: Use T ∗

M = 2TM for a vector Q, or
sum and square the standard errors for a univariate Q:
T ∗

M = (
√

UM + √
BM)2 + (1/M)BM .

Like most strong theoretical results, Xie and Meng’s
(2017) results depend on a number of assumptions.
One of these assumptions is that the true model
(“God’s model”) is nested within the imputation model
class. In his discussion of the paper, Reiter (2017) notes
that “[I]n my experience, very low coverage rates in MI
confidence intervals arise more often from the imputa-
tion procedure generating bias in [Q̄∞] than from bias
in the MI variance estimator,” often due to rote appli-
cation of default imputation procedures. This has been
in part a shared experience (Murray and Reiter, 2016),
motivating the focus of this review on the specification
of imputation models.

4. PRACTICAL IMPLICATIONS OF THEORETICAL
RESULTS FOR IMPUTATION MODELING

The theoretical results summarized above suggest a
number of practical considerations for generating im-
putations. These are reviewed below; for more detailed
discussion and examples, see Rubin (1987, 1996),
Little (1988), Van Buuren (2012). Throughout this sec-
tion and the rest of the paper, we will continue to refer
to procedures that generate imputations as “imputation
models,” regardless of whether they are completely
specified probability models.

4.1 Imputations Should Reflect Uncertainty About
Missing Values and About the Imputation
Model

The goal in multiple imputation is to account for un-
certainty due to the missing values in subsequent in-
ference. This is a different objective than estimating or
predicting the missing values, which could generally
be achieved via simpler means. The situation in MI is
similar to the more familiar task of constructing valid
predictive intervals with a regression model, where we
need to account for uncertainty in the unobserved re-
sponse as well as uncertainty in the regression fit.

Suppose we have a single variable subject to miss-
ingness, to be imputed using a regression model. If we
were only concerned with reconstructing the missing
values, we would just impute the fitted values. This
would clearly lead to invalid MI inferences. Instead,
MI propagates the intrinsic uncertainty about the miss-
ing values via some stochastic mechanism, for exam-
ple, by adding a randomly generated residual to the re-
gression prediction. However, to achieve at least ap-
proximately proper imputations we also need to ac-
count for uncertainty about the imputation model itself,
that is, uncertainty in the fitted values of the regres-
sion model. Methods that do not appropriately reflect
both sources of uncertainty tend to violate (3.8) and un-
derestimate the between-imputation variance, yielding
standard errors that are too small and anticonservative
inferences (Rubin, 1987, 1996).

Bayesian imputation procedures provide a natural
mechanism to account for model uncertainty. Imputa-
tions are generated from

(4.1)
P(Ymis | Yobs)

=
∫

P(Ymis | θ,Yobs)P (θ | Yobs) dθ,

where θ is a parameter indexing a model for Y (or
a model for Ymis given Yobs). To see how model un-
certainty propagates, observe that imputations can be
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sampled compositionally: For 1 ≤ m ≤ M , first draw
a value θ(m) ∼ P(θ | Yobs) and then sample Y

(m)
mis ∼

P(Ymis | θ(m), Yobs). Model uncertainty is represented
by P(θ | Yobs), and the intrinsic uncertainty about
the missing values is represented by P(Ymis | θ,Yobs).
Approximations to full Bayesian inference have also
proven useful: Rubin and Schenker’s (1986) approxi-
mate Bayesian bootstrap for proper hot deck imputa-
tion is one early example (Section 5.2). Chapter 10 of
Little and Rubin (2002) reviews several others.

Of course, Bayesian modeling is not magic—if θ in-
dexes a class of misspecified models then we should
expect our imputations and inferences to suffer, at
least for estimands that are sensitive to this misspec-
ification. For example, when Ymis contains variables
with significant skew a multivariate normal imputation
model would likely yield approximately valid infer-
ence for marginal means but invalid inference for some
marginal quantiles, since (3.5) can be violated when Q

is an extreme quantile.
From a coverage perspective, model misspecification

becomes increasingly consequential in large samples
where the complete data standard errors are small and
P(θ | Yobs) will tend to concentrate on the parame-
ters of the “best” misspecified model. Even small bi-
ases due to misspecification in the imputation model
can become large relative to the pooled standard er-
rors. Enlarging the imputation model class P(Y | θ)

via non- and semiparametric Bayesian modeling can
guard against misspecification and also mitigate the ar-
tificial certainty implied by fixing a regular parametric
model and only considering uncertainty in its parame-
ters. Section 6.1.1 explores recent promising develop-
ments in this area.

4.2 Imputation Models Should Generally Include
as Many Variables as Possible

There are multiple reasons for entertaining the
largest possible imputation model: The missing at ran-
dom assumption tends to be more tenable as more
completely-observed variables are added to the impu-
tation model. In addition, if variables predictive of the
missing values are left out of the imputation model but
used to compute Q or U , then the imputations will
be improper—the imputed values will be incorrectly
independent of the omitted variables, leading to bias
over repeated imputations [violations of (3.5) or (3.6)]
(Rubin, 1996). In this case, the analysis and imputa-
tion models are uncongenial in the “wrong” way—
the imputer’s model is less-saturated than the analysis

model. In sum, the cost of excluding a relevant vari-
able (invalid inference) is often greater than the cost
of including an irrelevant variable (roughly, additional
variance). This is particularly relevant when the ana-
lyst and imputer are not the same, and the imputations
must support many unspecified analyses. Even when
the imputer and the analyst are the same it would be
useful to generate one set of imputations that can sup-
port the usual process of iterative model building and
refinement, rather than generating a new set of impu-
tations for each analysis model that is considered. See
Collins, Schafer and Kam (2001) and Schafer (2003)
for further discussion of the tradeoffs involved.

These points are particularly relevant for design vari-
ables in complex surveys. Design-based estimators will
typically use stratum and cluster information to com-
pute U . Reiter, Raghunathan and Kinney (2006) show
empirically that failing to account for an informative
sampling design can lead to invalid inference. They
suggest including indicator variables for strata and
cluster membership in the imputation model, or in-
cluding stratum fixed effects and cluster random ef-
fects in imputation models. It may be useful to include
estimated response propensities or final adjusted sur-
vey weights (sampling weights with, e.g., calibration
and post-stratification adjustments) as well, especially
if complete design information is not available to the
imputer (Rubin, 1996).

4.3 Imputation Models Should Be as Flexible as
Possible

Finally, imputation models should try to “track the
data” (Rubin, 1996) by modeling relevant features of
the joint distribution of the missing values. Loosely,
a feature of the joint distribution is relevant if it is a
possible target of inference itself, or more generally
if it yields a more accurate predictive distribution for
the missing data. Interactions, nonlinearities and non-
standard distributional forms are all potentially rele-
vant features.

As Meng (1994) succinctly put it, “Sensible imputa-
tion models should not only use all available informa-
tion to increase predictive power, but should also be as
general and objective as practical in order to accommo-
date a potentially large number of different data anal-
yses.” We would add that where possible, imputation
models should have some capacity to adapt to unantic-
ipated features of the data (such as interactions, non-
linearities and complex distributions), especially when
the imputer has limited time and resources to spend on
iteratively improving the imputation model.
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5. GENERATING IMPUTATIONS FOR A SINGLE
VARIABLE

We begin by cataloging some of the more common
approaches to generating imputations for a single vari-
able subject to missingness, conditional on other fully
observed variables. In the next section, we consider
how these can be extended to generate imputations for
several variables.

5.1 Regression Modeling

Imputation by sampling from univariate regression
models is conceptually straightforward. Generalized
linear models and extensions to deal with complica-
tions such as zero-inflation and truncation are popu-
lar options; these are not reviewed in depth here but
see, for example, Van Buuren and Oudshoorn (1999),
Raghunathan et al. (2001), Su et al. (2011) or Van Bu-
uren (2012) (Chapter 3). These methods are quite com-
mon in practice, but since most readers will be familiar
and they are well-reviewed elsewhere we will not enu-
merate them here.

To generate proper imputations, some method should
be used to account for parameter uncertainty—simple
strategies like sampling from the regression model with
parameters fixed at the observed data MLE are gen-
erally improper. Posterior sampling under a non- or
weakly informative prior tends to be proper when the
model fits well. Prior distributions can also ease prob-
lems like separation in logistic regression and apply
helpful regularization in conditional models with many
variables in the conditioning set (Su et al., 2011).

5.2 Hot Deck/Nearest Neighbor Methods

The hot deck and other nearest-neighbor methods
(Chen and Shao, 2000, Andridge and Little, 2010) be-
gin by defining a distance metric between cases in
terms of the observed covariates. Imputations for a
missing value are borrowed from a nearby completely
observed case (the “donor”). These methods tend to
be simpler to implement than fully specified regres-
sion models and often make fewer assumptions. How-
ever, these methods are far from assumption-free—the
choice of distance metric, the definition of the donor
pool, and how to sample from the donor pool all influ-
ence the quality of imputations.

The hot deck (Andridge and Little, 2010) defines dis-
tance via cross-classifications of fully observed vari-
ables which determine adjustment cells. Missing val-
ues are imputed by sampling with replacement from
the pool of donors within the same cell. This strat-
egy ensures that all imputations are plausible values,

which is an appealing feature relative to regression
imputation. Complications arise when there are many
fully observed variables to incorporate into the cross-
classification or when the sample size is low, leading to
many small or empty adjustment cells.

MI with the hot deck is also known to be improper
for simple estimands like a population mean (Rubin
and Schenker, 1986). The hot deck effectively assumes
that the distribution of missing values within an adjust-
ment cell is exactly the empirical distribution of the ob-
served values within that cell, which leads to B having
downward bias (due to ignoring uncertainty in the im-
plicit imputation model). Rubin and Schenker (1986)
propose a simple modification that makes the hot deck
proper, based on an approximation to the Bayesian
bootstrap (Rubin, 1981). Instead of sampling the nm

missing values from the empirical distribution of the no

observed values within an adjustment cell, the approx-
imate Bayesian bootstrap (ABB) first samples a set
of no values with replacement from the observed data
and then samples nm imputed values with replacement
from this set. This simple adjustment yields proper im-
putations for the population mean of the adjustment
cell (Rubin and Schenker, 1986). (See also Kim, 2002
for a more accurate variance estimate in small sam-
ples.)

Predictive mean matching (PMM) (Little, 1988) in-
stead measures the distance between cases by the dis-
tance between their predicted means for the variable
subject to missingness (traditionally estimated using
a linear regression, although in principle any method
could be used to make the prediction). PMM gener-
alizes the hot deck, which is a special case of PMM
using saturated models with categorical predictors. By
avoiding the discretization and making some assump-
tions about the relationships between the predictors
and the response (such as linearity) PMM can handle
more variables than the hot deck, but may be sensitive
to the predictive model specification.

To define the donor pool, Heitjan and Little (1991)
proposed sampling from a window of k nearby po-
tential donors in PMM in the hope of making the
method approximately proper. The donor’s value may
be imputed, or its residual can be added to the pre-
dicted mean of the missing value to generate an im-
putation. Schenker and Taylor (1996) found these two
approaches to perform similarly in simulations; the for-
mer will always impute a previously realized value,
which may be desirable. See Vink et al. (2014) for an
approach to semi-continuous variables. Morris, White
and Royston (2014) compared newer developments
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FIG. 1. (Left) An example CART tree, with internal nodes labeled by their splitting rules and terminal nodes given labels Ah. (Right) The
corresponding partition of (Y1, Y2).

and current implementations of these techniques, cau-
tioning in particular against the imputation of a single
nearest neighbor (which appears to be common in soft-
ware implementations of PMM) as it is improper.

PMM and the hot deck can be made more adap-
tive using recursive partitioning. Reiter (2005) and
Burgette and Reiter (2010) proposed imputation via
classification and regression trees (CART, Breiman
et al., 1984). A tree is grown using fully observed data
to predict the variable subject to missingness. Then
each incomplete case is assigned to its corresponding
leaf, and an imputation is sampled from donors within
in the same leaf. The imputer can control the size of
the donor pool by growing the tree down to a specified
minimum leaf size. This is a special case of PMM us-
ing CART to generate predictions; we could also think
of it as an adaptive hot deck that leverages the most
predictive variables and balances the size of the ad-
justment cells. Figure 1 shows an example tree grown
on two variables (Y1, Y2) to impute a third (Y3), along
with the corresponding partition which forms the ad-
justment cells.

Reiter (2005) and Burgette and Reiter (2010) drew
ABB samples from within the leaves in an effort to
generate proper imputations. Van Buuren (2012) (Al-
gorithm 3.6) suggested also accounting for uncertainty
in the tree itself by growing it on a different bootstrap
sample for each imputed dataset. Doove, Van Buuren
and Dusseldorp (2014) proposed imputation by grow-
ing a random forest (an ensemble of trees) (Breiman,
2001) of size k by bootstrapping the complete cases
and (optionally) subsampling the variables, as in tra-
ditional applications of random forests. An imputed
value is generated by sampling from the k trees and
then following the procedure to generate a CART im-
putation. Shah et al. (2014) proposed fitting a random

forest, estimating its predictive error variance and gen-
erating imputations as the random forest prediction
plus a normally distributed residual.

Limited results exist comparing these different recur-
sive partitioning methods, and there is similarly limited
guidance as to how they should be tuned. But they can
be fast and effective imputation engines, particularly
for large sets of categorical variables that take a rela-
tively limited set of levels (see, e.g., Akande, Li and
Reiter, 2017).

6. GENERATING IMPUTATIONS FOR MULTIPLE
VARIABLES

There are two basic strategies for imputing multi-
variate missing data: Jointly modeling the variables
subject to missingness, or specifying a collection of
univariate conditional imputation models that condi-
tion on all the other variables [this approach goes under
various names including sequential regression multi-
variate imputation (Raghunathan et al., 2001) and mul-
tiple imputation by chained equations (Van Buuren and
Oudshoorn, 1999), but we will use “fully conditional
specification” (FCS) as in Van Buuren et al., 2006].
Joint models can be further classified into “simultane-
ous” approaches that define a multivariate distribution
f (Y ) directly or “sequential” approaches that build
up a multivariate distribution using a ladder of condi-
tional distributions, where the model for each variable
conditions only on those earlier in the sequence. The
Appendix has pointers to software implementations of
many methods described in this section.

To describe the different approaches, we need some
new notation: Let Yj,obs and Yj,mis denote the set of
observed and missing values for the j th variable. Let
Yimp denote an imputed dataset, and Yj,imp denote a
set of imputations for Yj,mis. We will use the subscript
(−j) to denote the same quantities for all but the j th
variable.
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6.1 Joint Specification: Simultaneous Approaches

Early simultaneous joint modeling approaches were
based on the multivariate normal (MVN) or t distribu-
tion; these are reviewed in Schafer (1997) and Little
and Rubin (2002). For high dimensional continuous
observations, low-rank structure can be imposed on
the covariance matrix (Audigier, Husson and Josse,
2016). Various authors have proposed imputing cate-
gorical data under a misspecified MVN model, either
leaving the continuous imputations for discrete vari-
ables as-is or rounding them based on some thresholds
(Horton, Lipsitz and Parzen, 2003, Bernaards, Belin
and Schafer, 2007). This is naturally more complicated
when the discrete variables are not ordinal, particu-
larly if they take many levels. Additionally, end users
may not trust imputations from a data disseminator if
the imputed data appear invalid. Therefore, it is often
preferable to use models that are appropriate for the
types of variables at hand.

For small numbers of strictly discrete variables, a
simple multinomial model may be feasible. However,
with a large number of discrete variables it is im-
possible to fit saturated multinomial models and fur-
ther restrictions are necessary. Options include log-
linear models (Schafer, 1997), latent class models
(Vermunt et al., 2008, Gebregziabher and DeSantis,
2010, Vidotto, Vermunt and Kaptein, 2015) or mul-
tiple correspondence analysis (Audigier, Husson and
Josse, 2017) [which is closely related to a certain
class of multivariate logit models (Fithian and Josse,
2017)].

Joint models for mixed continuous and categori-
cal data are also available. For the remainder of Sec-
tion 6.1, suppose we have collected the continuous
variables into a vector Y and the discrete variables into
another vector X. The general location model (GLOM)
(Olkin and Tate, 1961, Little and Schluchter, 1985,
Schafer, 1997) assumes that (Y | X = x) ∼ N(μx,�x)

and X ∼ π . [Liu and Rubin, 1998 generalized the
(Y | X) model to the larger class of elliptically sym-
metric distributions.] The number of parameters in this
saturated model grows rapidly with the sample space
of X, so imputers typically impose further constraints.
Examples include common covariance structure (�x ≡
� for all x), removing higher-order effects from the
conditional means by specifying μx = D(x)B for a
matrix of regression coefficients B and design vector
D(x), and imposing log-linear constraints on π to rule
our higher-order interactions in the marginal model
for X.

6.1.1 Mixtures and nonparametric Bayesian mod-
els. Even without additional parameter constraints,
most parametric joint models make restrictive assump-
tions. Mixture models provide a simple and expres-
sive way to enrich a parametric model class. For ex-
ample, latent class models for categorical data are
mixtures of independence models (log-linear mod-
els with only main effects) which have proven use-
ful in multiple imputation (e.g., Vermunt et al., 2008,
Gebregziabher and DeSantis, 2010). Mixtures of mul-
tivariate normal distributions can model complex fea-
tures of joint continuous distributions (Böhning et al.,
2007, Elliott and Stettler, 2007).

Several Bayesian nonparametric models have re-
cently been proposed for multiple imputation. Most of
these are based on infinite mixture models or their trun-
cated approximations (but see Paddock, 2002 for an
early exception based on Polya trees, and also the se-
quential regression approach in Xu, Daniels and Win-
terstein, 2016). Relative to parametric Bayesian ap-
proaches these models are appealing for their ability to
grow in complexity with increasing sample size. Under
some circumstances, this can allow the model to cap-
ture unanticipated structure like interactions and non-
linear relationships or nonstandard distributions, re-
flecting these in the imputed values.

Recall that we have separated the data into vectors
of categorical variables X and continuous variables Y .
For imputing multivariate categorical data, Si and Re-
iter (2013) adopt a truncated version of the Dirichlet
process mixture of product multinomials (DP-MPMN)
proposed by Dunson and Xing (2009). This is a latent
class model with a large number of classes (say kX )
and a particular prior over the class distribution.

Suppose the j th categorical variable takes (possi-
bly unordered) values indexed by 1,2, . . . , dj and let
HX

i ∈ {1, . . . , kX } be a latent mixture component index

for observation i. Let Pr(Xij = xij | HX
i = s) = ψ

(j)
sxij .

The DP-MPMN model assumes that

Pr
(
HX

i = s
) = φX

s ,(6.1)

Pr
(
Xi = xi | HX

i = s,	
) =

p∏
j=1

ψ(j)
sxij

,(6.2)

so that the elements of X are conditionally independent
given the latent class membership. The prior on φ is a
truncated version of the stick-breaking construction for
the Dirichlet process (DP) (Sethuraman, 1994), intro-
duced in Ishwaran and James (2001) to simplify Gibbs
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sampling in DP mixture models:

(6.3)

φX
s = ξs

∏
l<s

(1 − ξl),

{ξs}kXs=1
iid∼ Beta(1, α), ξkX ≡ 1.

The model is completed with prior distributions on
	 and α (see Si and Reiter, 2013, for a complete spec-
ification). Manrique-Vallier and Reiter (2014a, 2014b)
extended this model to assign zero probability to im-
possible values of X, such as cells that are logically
impossible (pregnant men or children collecting retire-
ment benefits) or necessarily empty due to skip pat-
terns. Manrique-Vallier and Reiter (2016) introduced
a variant of this model for edit-imputation that simul-
taneously accounts for missing values and observed
values that are logically impossible but present due to
measurement error. Hu, Reiter and Wang (2017) ex-
tended this model to nested data structures (i.e., hierar-
chical structures like individuals nested within house-
holds) in the presence of structural zeros.

For imputing continuous data, Kim et al. (2014) sug-
gested a truncated DP mixture of multivariate normal
distributions. Let HY

i be the mixture component index
for record i. This model assumes that

Pr
(
HY

i = r
) = φY

r ,(6.4) (
Yi | HY

i = r,−) ∼ N(μr,�r),(6.5)

with a prior on φY
r defined via a stick-breaking pro-

cess similar to (6.3). Kim et al. (2014) modified the
model in (6.5) to constrain the support of Y to a set
A with bounds determined by a set of linear inequali-
ties, so that Pr(Y /∈ A) = 0 under the prior. Kim et al.
(2015) extended this approach to simultaneous edit-
imputation, generating imputed values for observations
outside of A via a measurement error model.

Murray and Reiter (2016) built a hierarchical mix-
ture model for mixed continuous and categorical ob-
servations by combining the models in (6.1)–(6.2)
and (6.4)–(6.5), with two important adjustments. First,
(6.5) is modified to include a regression on X with
component-specific coefficients:

(6.6)
(
Yi | Xi = xi,H

Y
i = r,−) ∼ N

(
D(xi)Br,�r

)
.

By default, the design matrix D(xi) encodes main ef-
fects. Allowing the component means to depend on
X greatly reduces the number of mixture components
necessary to capture X − Y relationships. Second, the
mixture component indices in each model are given a

hierarchical prior introduced by Banerjee, Murray and
Dunson (2013):

Pr
(
HX

i = s,HY
i = r | Zi = z

) = φX
zsφ

Y
zr ,(6.7)

Pr(Zi = z) = λz.(6.8)

Here, λz is assigned a stick-breaking prior. Each pair
φX

z = (φX
z1, . . . , φ

X
zkX )′ and φY

z = (φY
z1, . . . , φ

Y
zkY )′ are

probability vectors also assigned independent trun-
cated stick breaking priors. This is a “mixture of mix-
tures” model; marginalizing over the latent variables
the joint density is

(6.9)

f (Xi, Yi) =
kZ∑
z=1

λz

(
kY∑
r=1

φY
zrN

(
Yi;D(Xi)Br,�r

))

·
(

kX∑
s=1

φX
zs

p∏
j=1

ψ
(j)
sXij

)
.

Each mixture component is itself composed of two
mixture models, one for (Y | X) and one for X. These
lower-level mixtures share some parameters (B,� and
	), enforcing a degree of parsimony.

DeYoreo, Reiter and Hillygus (2016) used a similar
hierarchical mixture model constructed based on dif-
ferent considerations, splitting the variables into sets
based on their type (ordinal or nominal) and high or
low rates of missing values. An expressive model class
is specified for the variables with high rates of miss-
ing values, and a simpler model class is utilized for
variables with low rates of missingness. Ordinal vari-
ables are explicitly modeled as such by thresholding
mixtures similar to (6.6).

Further extensions, combinations and enhancements
of these models are possible. Despite their complexity,
all of these models have been shown to perform well
for MI with real, complicated data and little or no tun-
ing.

6.2 Fully Conditional Specification

FCS avoids explicit joint probability models by spec-
ifying a collection of univariate conditional imputation
models instead (Van Buuren and Oudshoorn, 1999,
Raghunathan et al., 2001). Each univariate model typi-
cally conditions on all the remaining variables. In FCS,
the missing values are imputed by iteratively sampling
from these conditional models:

1. Begin by filling in Ymis with plausible values to
generate an initial completed dataset, stored in Yimp.
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2. For 1 ≤ j ≤ p, use a univariate imputation
method to sample new imputed values for Yj,mis from
a distribution P(Yj,mis | Yj,obs, Y(−j),imp), and store
them in Yj,imp.

3. Iterate the previous step until apparent conver-
gence and return the final value of Yimp.

This process is repeated M times, saving the returned
value as one of the M imputations. Any of the univari-
ate imputation methods in the previous section could
be used. This lends FCS some flexibility relative to the
joint-simultaneous approaches described above.

But this flexibility comes at a cost: Even if each gj

is a completely specified probability model, taken to-
gether they often do not correspond to a proper joint
distribution for Y (Arnold and Press, 1989, Arnold,
Castillo and Sarabia, 2001). A set of full conditional
distributions that do not correspond to any joint distri-
bution is said to be incompatible. Simple adjustments
like adding polynomial terms or interactions to univari-
ate regression models can induce incompatibility (Liu
et al., 2014).

While the algorithm above looks like a standard
Gibbs sampler, if the conditional models are incom-
patible the behavior of the FCS imputation algorithm
is unclear: The imputations from the FCS algorithm
given above may converge to a unique limiting distri-
bution, or fail to converge to any unique limiting dis-
tribution, or converge to different distributions depend-
ing on the initial values and/or order of the updates. Li,
Yu and Rubin (2012) give examples of incompatible
FCS models with fixed parameters whose imputations
either diverge or converge to different stationary distri-
butions depending on the order of their updates. This
phenomenon seems to be rare in real data, and Zhu and
Raghunathan (2015) note that estimating rather than
fixing parameters ameliorates at least some of the prob-
lems in Li, Yu and Rubin’s (2012) examples.

There are some limited convergence results available
when the fully conditional specification comprises uni-
variate Bayesian regression models. Liu et al. (2014)
study an iterative FCS imputation procedure that uses
a set of Bayesian regression models gj (Yij |, Y(−j), θj )

with prior distributions πj (θj ). With a slight abuse of
notation, define

gj (Yj,obs | Y(−j),imp, θj )

=
n∏

i=1

gj (Yij | Yj,imp, θj )
Rij ,

(6.10)

Algorithm 1 Iterative FCS sampler from Liu et al.
(2014)

For 1 ≤ j ≤ p,

1. Sample θj ∼ πj (θj | Yj,obs, Y(−j),imp) ∝
gj (Yj,obs | Y(−j),imp, θj )πj (θj )

2. Sample Yj,imp ∼ gj (Yj,imp | Yj,obs, Y(−j),imp, θj )

gj (Yj,imp | Yj,obs, Y(−j),imp, θj )

=
n∏

i=1

gj (Yij | Y(−j),imp, θj )
1−Rij .

(6.11)

Algorithm 1 gives one iteration of an iterative FCS
sampler under these models.

We can compare this approach to a proper MCMC
algorithm under a joint model. Specifically, we con-
sider a collapsed Gibbs sampler (Liu, 1994) that tar-
gets P(Ymis | Yobs) = ∫

P(Ymis, θ | Yobs) dθ directly, by
jointly sampling (Yj,mis, θ | Yj,obs, Y(−j),imp) at each
step. It is impractical to use directly, but it is helpful
to make comparisons with Algorithm 1.

Let the joint model be given by f (Yi | θ), with
full conditionals fj (Yij | Y(−j), θ) and joint prior
distribution π(θ) [where θ = (θ1, θ2, . . . , θp)]. De-
fine fj (Yj,obs | Y(−j),imp, θ) and fj (Yj,imp | Yj,obs,

Y(−j),imp, θ) as in equations (6.10)–(6.11). Algorithm 2
gives one iteration of the collapsed Gibbs sampler.

Under some regularity conditions, the two algo-
rithms are equivalent in finite samples if we can write
π(θ) = πj (θj )π(−j)(θ1, θ2, . . . , θj−1, θj+1, . . . , θp)

for any j and the set of gj ’s are compatible and cor-
respond to the full conditionals of f (Hughes et al.,
2014). This is sufficient to ensure that the conditional
distributions in both steps of each algorithm agree.

If π(θ) �= πj (θj )π(−j)(θ1, θ2, . . . , θj−1, θj+1, . . . ,

θp) for some j but the conditional models are compat-
ible and correspond to the full conditionals of f , the
two algorithms agree as n → ∞ provided the FCS al-
gorithm has a unique stationary distribution (Liu et al.,
2014). Intuitively, in this case the data in Y (−j) influ-
ence θj indirectly through the other parameters, but

Algorithm 2 Collapsed Gibbs sampler for a joint
model

For 1 ≤ j ≤ p,

1. Sample θ ∼ π(θ | Yj,obs, Y(−j),imp) ∝ fj (Yj,obs |
Y(−j),imp, θ)π(θ)

2. Sample Yj,imp ∼ f (Yj,mis |, Yj,obs, Y(−j),imp, θ)
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the FCS algorithm ignores this information. Asymp-
totically, the priors become irrelevant in regular para-
metric models, but in finite samples inference based on
the FCS imputations may be inefficient in this regime
(Seaman and Hughes, 2016).

Finally, Liu et al. (2014) show that if the FCS al-
gorithm uses an inconsistent set of models but has a
unique stationary distribution then MI estimates com-
puted using imputations from Algorithm 1 are consis-
tent provided that the following conditions hold:

1. The collection of conditional models are incom-
patible, but become compatible with a joint model f

after constraining θ .
2. The model class defined by f contains the true

distribution that generated the data.

These are rather restrictive; verifying a unique station-
ary distribution is challenging, as is checking condi-
tion 1 above. It also seems unlikely that condition 2
will hold exactly for the simple parametric models in
common use. Zhu and Raghunathan (2015) provide
some further convergence results for FCS algorithms
where each observation is missing at most one value,
but without assuming a unique stationary distribution
for the FCS chain.

6.3 Joint Specifications: Sequential Approach

Sequential approaches to imputation modeling fix a
permutation of 1,2, . . . , p and build up a joint distribu-
tion from a series of univariate models. For example, if
the variables are already in the desired order we would

have

(6.12)
f (Y ) = f1(Y1)f2(Y2 | Y1)f3(Y3 | Y2, Y1) · · ·

· fp(Yp | Yp−1, . . . , Y1).

Examples of this approach include (Lipsitz and Ibra-
him, 1996, Ibrahim, Lipsitz and Chen, 1999, Ibrahim
et al., 2005, Lee and Mitra, 2016, Xu, Daniels and Win-
terstein, 2016), among others.

Provided that each fj is a proper univariate proba-
bility model, a sequential specification always defines
a coherent joint model, unlike FCS approaches. How-
ever, different orderings will generally lead to different
joint distributions and potentially different fits. Heuris-
tics have been proposed for selecting the order, for ex-
ample, ordering variables by their types (e.g., Ibrahim,
Lipsitz and Chen, 1999) or percentage of missing val-
ues (e.g., Rubin and Schafer, 1990). The latter is partic-
ularly well motivated when the missing data are mono-
tone (when there is an ordering such that Rij = 0 ⇒
Rij ′ = 0 for j ′ > j ). If the missing data are not exactly
monotone, one can identify a permutation that is nearly
monotone and use FCS or delete observed values to
“monotonize” the missing data pattern, so that proper
sequential techniques can be used for the majority of
missing values (as in Rubin, 2003b and extended in Li
et al., 2014).

Another consideration in joint-sequential modeling
is that variables early in the sequence may have com-
plex distributions because they are marginalized over
many related covariates. For example, Figure 2 shows
the joint distribution of householder earnings and age,

FIG. 2. Joint distribution of householder age and log total earnings, stratified on whether the household includes one of the householder’s
own children, using the population Murray and Reiter (2016) constructed from complete cases in the first wave of the Survey of Income and
Program Participation’s 2008 panel.



154 J. S. MURRAY

conditional on whether the householder has any chil-
dren living in the same household (the data are from
complete cases in wave one of the Survey of Income
and Program Participation’s 2008 panel). The distribu-
tions are quite complicated, and it would be difficult
to capture them well with simple parametric regression
models in any order.

7. CHOOSING AND ASSESSING AN IMPUTATION
STRATEGY

7.1 Comparing FCS and Joint Approaches

FCS and joint approaches have competing strengths.
FCS models are relatively simple to implement and
widely available in software, especially compared to
joint-sequential approaches. Joint-simultaneous mod-
els including the multivariate normal, log-linear mod-
els and the GLOM are also easy to set up and widely
available, but inflexible in practice even relative to sim-
ple FCS procedures (e.g., Van Buuren, 2007, Stuart
et al., 2009, He et al., 2010, Drechsler, 2010, Kropko
et al., 2014).

More sophisticated joint models can be challeng-
ing to implement, although this is changing—many
of the nonparametric Bayesian methods have publicly
available implementations (the Appendix). However,
even with a good implementation the nonparametric
Bayesian models are generally more computationally
expensive than simpler joint models (especially those
based on low-rank methods, for example, Audigier,
Husson and Josse, 2016, 2017) or FCS methods. Joint-
sequential approaches currently take more effort to
set up, but they inherit many of the positive features
of FCS and joint-simultaneous approaches (univariate
models that are readily assessed and modified but also
consistent with joint models).

The convergence properties of FCS in general set-
tings is still mostly an open question. The behavior of
FCS algorithms under non- or quasi-Bayesian imputa-
tion procedures like PMM is entirely an open question.
While the lack of a coherent joint distribution does un-
dermine the theoretical justifications for MI inference
detailed in Rubin (1987), experience with FCS in sim-
ulations and real applications does not seem to suggest
that either lack of convergence or compatibility with a
joint model are necessarily overriding concerns.

In fact, under the current theoretical results ensuring
that the imputations generated by FCS converge to the
imputations under a proper joint model requires using
restrictive (implicit) joint models and there is strong
empirical evidence that these joint models can be too

simple to perform well with realistic data (e.g., Murray
and Reiter, 2016, Akande, Li and Reiter, 2017). There-
fore, at this point it would probably be a mistake to
choose the models in an FCS imputation routine to try
to ensure convergence; it seems much more important
to use flexible, adaptive imputation models wherever
possible, whether using a joint or FCS imputation strat-
egy.

Imputers who do choose to use FCS should use flex-
ible univariate models wherever possible and take care
to assess apparent convergence of the algorithm, for
example, by computing traces of pooled estimates or
other statistics and using standard MCMC diagnostics
(Gelman et al., 2013, Chapter 11). It may also be help-
ful to examine the results of many independent runs of
the algorithm with different initializations and to use
random scans over the p variables to try to identify any
convergence issues and mitigate possible order depen-
dence.

7.2 Practical Considerations Derived from MI
Theory

We can also compare methods on the practical con-
siderations derived from theoretical results as summa-
rized in Section 4.

7.2.1 Accounting for uncertainty. Most of the meth-
ods reviewed above include some mechanism for re-
flecting imputation model uncertainty. Bayesian or ap-
proximately Bayesian methods (including the approx-
imate Bayesian bootstrap) do this naturally, whether
part of a joint modeling or FCS imputation routine.
Their behavior is not well understood in the FCS set-
ting, however. Tree-based methods seem promising for
some applications, but more work is required to find
parameter settings and resampling strategies that make
them reliably proper.

7.2.2 Include as many variables as possible. Joint-
sequential models may be easier to fit than FCS with
many covariates, since all but one univariate model will
include fewer than p predictors. Simultaneous joint
models somewhat lag behind sequential and FCS ap-
proaches here. This is particularly true with mixed data
types and many fully observed covariates—most of
these models are not easily adapted to condition on
additional covariates, so fully observed variables must
be included as additional variables in the joint model.
Modeling fully observed variables instead of condi-
tioning on them can waste “degrees of freedom” and
lead to poorer model fit for the conditional distribution
of the missing data. Carefully constructed models can
help (DeYoreo, Reiter and Hillygus, 2016), but seem to
only go so far.
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7.2.3 Use flexible imputation models. Non- and
semiparametric methods (Bayesian and otherwise,
such as sequential tree-based methods) are flexible in
their ability to capture certain unanticipated features
of the data. Empirically, these methods can outperform
existing default MI procedures in simulations, particu-
larly when the simulations are not built around simple
parametric models themselves. More of these realis-
tic evaluations are needed, as discussed in Sections 7.3
and 8.

However, with flexible imputation models it can be
challenging to manually adjust the imputation model to
incorporate prior information or address model misfit.
Incorporating meaningful prior information into non-
parametric Bayesian imputation models is challenging
but not impossible; see, for example, Schifeling and
Reiter (2016) for a strategy to include prior informa-
tion in DP-MPMN models. While iterative imputation
model refinement and assessment is ideal, it is not al-
ways possible. Empirical evidence suggests that flexi-
ble imputation models are much better as defaults than
simple parametric models or PMM using linear mod-
els.

7.3 Empirical Comparisons Between Methods

Empirical comparisons of several different imputa-
tion models on realistic datasets are relatively rare.
Most papers introducing a new imputation model
evaluate it using synthetic data generated from a
researcher-specified multivariate probability model.
The new imputation model is typically compared to
a small number of competitors. These simulation stud-
ies can be informative, for example, both Burgette and
Reiter (2010) and Doove, Van Buuren and Dussel-
dorp (2014) found evidence that imputations for con-
tinuous values generated via recursive partitioning can
preserve interactions but underestimate main effects.
However, models that are easy to simulate from and
present in a paper will naturally be gross simplifica-
tions of the distribution of data in real populations.

Simulations based on repeated sampling from re-
alistic populations can be more informative. In these
studies, a population is compiled from existing data.
Random samples are taken from these populations and
values are “blanked out” via a known stochastic non-
response mechanism. Each of the resulting incomplete
datasets are multiply imputed and used to compute a
range of estimates and confidence intervals, assessing
the bias, coverage and efficiency of the MI estimates
under the imputation model. Since the missing values

are known, these can all be compared against the fre-
quentist operating characteristics of the complete data
procedure without appeal to asymptotic theory or other
approximations. While the results are specific to a par-
ticular population and a set of estimands, this frame-
work is much closer to reality than fully synthetic ex-
amples.

There are several recent examples of this kind
of evaluation: Akande, Li and Reiter (2017) com-
pared FCS with CART, the DP-MPMN model de-
scribed in 6.1.1, and a default application of FCS with
main effects multinomial logistic regression in a large
repeated-sampling study of imputation using categori-
cal data from the American Community Survey. The
DP-MPMN imputations tended to yield better cov-
erage than FCS-CART overall, but had much worse
coverage for a small number of estimands. Manrique-
Vallier and Reiter (2014b) also demonstrated the util-
ity of accounting for structural zeros in this model
with a population constructed from publicly avail-
able data from the U.S. Census. A default version
of Murray and Reiter’s (2016) joint model for mixed
data types outperformed FCS using the default settings
in R’s mice package (Van Buuren and Groothuis-
Oudshoorn, 2011) in a large repeated-sampling study
with data from the Survey of Income and Program
Participation. Evidence suggested that misspecifica-
tion bias was primarily to blame for FCS’s poor per-
formance.

7.4 Imputation Model Diagnostics

A more obvious way to choose between imputation
models is by fitting multiple and choosing the one that
appears to fit the data best. Checking the fit of imputa-
tion models is challenging, but some approaches have
been proposed. For methods that employ univariate re-
gressions, imputers can examine standard diagnostics
for those models (Abayomi, Gelman and Levy, 2008,
Su et al., 2011). Abayomi, Gelman and Levy (2008)
suggested other diagnostic plots comparing imputed
and observed values, primarily comparing marginal
and bivariate distributions. Under MAR, the distribu-
tion of missing values may be different than the dis-
tribution of observed values; Bondarenko and Raghu-
nathan (2016) used estimated response propensities to
adjust for this and make diagnostic plots more compa-
rable. He and Zaslavsky (2012) proposed posterior pre-
dictive checks, comparing the distribution of estimands
computed on the multiply imputed datasets to the dis-
tribution of those estimands computed on entirely syn-
thetic datasets generated by the imputation method (see
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also Nguyen, Lee and Carlin, 2015). These checks re-
quire the imputer to choose relevant estimands and
generate many samples from posterior predictive dis-
tributions, which can be computationally expensive.

8. CONCLUSION

Over thirty years after Rubin’s extensive treatment
of MI (Rubin, 1987), experience with the method has
cemented its reputation as a principled and practical so-
lution to missing data problems. MI remains an active
and fertile research area. While the behavior of the MI
estimates have been the subject of intense scrutiny, rel-
atively little is known about the comparative merits of
various imputation models that have been proposed in
recent years. Considerations based on theoretical find-
ings suggest the use of more flexible imputation mod-
els where possible. Empirical evidence also suggests
that simple defaults (MVN/log-linear models, or de-
fault FCS imputation using simple imputation models
such as PMM with linear mean functions or regression
models including only main effects) should be avoided,
or at least carefully scrutinized.

Nonparametric Bayesian methods for generating im-
putations have recently emerged as a promising tech-
nique for generating imputations. In addition to new
model development, more work is needed on scalable
posterior computation with these models. In addition,
the heuristic justification for why Bayesian MI “tends
to be proper” is based on the asymptotic behavior of
parametric Bayesian models (Rubin, 1987). It would
be interesting to revisit this argument from the per-
spective of Bayesian nonparametric models, where the
asymptotics are more involved (see Rousseau, 2016
for a recent review). For example, can semiparamet-
ric Bernstein–von-Mises results be derived for likely
targets of MI inference under Bayesian nonparametric
models used for imputation?

Joint-sequential approaches appear understudied and
underutilized in the literature, perhaps because they
currently require more intervention to set up. More re-
search is needed on the implications of choosing dif-
ferent permutations of the variables in joint-sequential
approaches. Further development of algorithmic ap-
proaches for selecting good joint-sequential variable
orderings in the same vein as Li et al. (2014) would also
be welcome. There remains considerable work to be
done in characterizing the behavior of FCS approaches
to generating imputations; while some theoretical re-
sults exist, they are limited in scope and do not address
some of the most effective variants of these algorithms
(including PMM and CART).

More empirical comparisons of imputation methods
and models are also needed. The field would bene-
fit greatly from a repository of ready-to-use synthetic
populations constructed from real data files. A com-
mon set of samples from these populations complete
with missing values already generated would allow for
easy comparisons across methods. A forward-thinking
statistical agency could kickstart this repository, pro-
viding a public good (and possibly improving the state
of their own missing data imputation routines) by spon-
soring an imputation challenge in the spirit of a Kaggle
competition.

The applications of MI have grown far beyond im-
puting item missing data in public use files: MI is used
with synthetic data for disclosure limitation (Rubin,
1993, 2002, Raghunathan, Reiter and Rubin, 2003), to
adjust for measurement error (Cole, Chu and Green-
land, 2006, Blackwell, Honaker and King, 2015) and
to perform statistical matching/data fusion (Rässler,
2004, Reiter, 2012, Fosdick, DeYoreo and Reiter,
2016). In these new settings, the amount of missing
data can be much greater than typical applications of
MI for item missing data, and imputation model devel-
opment, selection and assessment is even more conse-
quential. We expect that new models and methods for
multiple imputation will be an active research area for
the foreseeable future.

APPENDIX: SOFTWARE FOR MULTIPLE
IMPUTATION

Pointers to many software implementations of MI
methods are available at http://www.stefvanbuuren.nl/
mi/Software.html, an updated version of Appendix A
of Van Buuren (2012). As of December 2017, it is
missing links to R packages for several nonparamet-
ric Bayesian joint models: These include the R pack-
ages MixedDataImpute (imputation for mixed contin-
uous and categorical missing values using the model
in Murray and Reiter, 2016), NPBayesImpute (impu-
tation for multivariate categorical data, possibly with
structural zeros, as presented in Si and Reiter, 2013,
Manrique-Vallier and Reiter, 2014a, 2014b) and Nest-
edCategBayesImpute (imputation got multivariate cat-
egorical data with hierarchical data structures, as de-
scribed in Hu, Reiter and Wang, 2017).
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