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Abstract: We consider importance sampling to estimate the probability μ
of a union of J rare events Hj defined by a random variable x. The sampler
we study has been used in spatial statistics, genomics and combinatorics
going back at least to Karp and Luby (1983). It works by sampling one
event at random, then sampling x conditionally on that event happening
and it constructs an unbiased estimate of μ by multiplying an inverse mo-
ment of the number of occuring events by the union bound. We prove some
variance bounds for this sampler. For a sample size of n, it has a variance
no larger than μ(μ̄− μ)/n where μ̄ is the union bound. It also has a coef-

ficient of variation no larger than
√

(J + J−1 − 2)/(4n) regardless of the
overlap pattern among the J events. Our motivating problem comes from
power system reliability, where the phase differences between connected
nodes have a joint Gaussian distribution and the J rare events arise from
unacceptably large phase differences. In the grid reliability problems even
some events defined by 5772 constraints in 326 dimensions, with probability
below 10−22, are estimated with a coefficient of variation of about 0.0024
with only n = 10,000 sample values.

Received February 2018.

1. Introduction

In this paper we consider a mixture importance sampling strategy to estimate
the probability that one or more of a set of rare events takes place. The sampler
repeatedly chooses a rare event at random, and then samples the system condi-
tionally on that one event taking place. For each such sample, the total number
of occuring events is recorded and a certain reciprocal moment of them is used
in the estimate.

This method is a special case of an algorithm in Adler et al. (2008, 2012)
for computing exceedance probabilities of Gaussian random fields. It was used
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earlier by Shi et al. (2007) and Naiman and Priebe (2001) for extrema of ge-
nomic scan statistics. Priebe et al. (2001) used it for extrema of some spatial
statistic involving marked point processes. The earliest uses that we know are
in the computer science literature for enumeration problems like estimating the
cardinality of the union of a given list of finite sets. See Karp and Luby (1983)
and Frigessi and Vercellis (1985). The above cited papers refer to this method
as importance sampling. To distinguish it from other samplers, we will call it
ALOE for “At Least One rare Event”.

We develop general bounds for the variance of the ALOE importance sampler,
and for its coefficient of variation. It has a sampling standard deviation that is
no more than some modest multiple of the event probability. This is an espe-
cially desirable property in rare event settings. For background on importance
sampling of rare events see L’Ecuyer et al. (2009).

Our motivating context is the reliability of the electrical grid when subject
to random inputs, such as variable demand by users and variable production,
as occurs at wind farms. The rare events describe unacceptably large electrical
phase differences at pairs of connected nodes in the grid.

It is common to use a simplified linear direct current (DC) model of the
electrical grid, because the equations describing alternating current (AC) are
significantly more difficult to work with, and some authors (e.g., Van den Bergh
et al. (2014)) find that there is little to be gained from the complexity of an
AC model. This DC model is presented in Sauer and Christensen (1984) and
Stott et al. (2009). It is also common to model the randomness in the grid as
Gaussian, especially over short time horizons.

We make both of these simplifications: linearity and Gaussianity. The prob-
ability we consider can then be written

μ = Pr
(
∪J
j=1Hj

)
, Hj = {xTωj � τj}, where x ∼ N (η,Σ). (1)

Section 2 introduces more notation for problem (1) and develops the ALOE
sampler as an especially convenient version of mixture importance sampling. In
this setting we can compute the union bound μ̄ =

∑J
j=1 Pr(Hj) � μ. Theorem 1

proves that the ALOE estimate μ̂ has variance at most μ(μ̄− μ)/n when n IID
samples are used. This can be much smaller than μ(1− μ)/n which arises from
sampling the nominal distribution of x. Section 3 discusses some further sam-
pling properties of our estimator that hold without the Gaussian assumption.
When there are J events, the variance of μ̂ is at most (J+J−1−2)μ2/(4n) when
the system is sampled n times. Section 4 compares ALOE to a state of the art
code mvtnorm (Genz et al., 2017) for estimating the probability that a multi-
variate Gaussian of up to 1000 variables with arbitrary covariance belongs to a
given hyperrectangle. ALOE is simpler and extends to higher dimensions. When
we studied rare event cases, ALOE was more accurate. In our examples that
are not rare events, mvtnorm was more accurate. We also make a comparison to
a directional sampling method studied recently by Ahn and Kim (2018). That
method is far better than ALOE on our low dimensional test problems but very
seriously underestimates the rare event probability on our high dimensional test
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problems. Section 5 describes the power system application. Section 6 contains
some discussions. The appendix proves Theorem 1 for any set of J events, not
just those given by a Gaussian distribution. The theorem applies so long as we
can sample conditionally on any one event Hj and then determine which other
events H� also occur. We finish this section with some comments and some
references.

One common way for rare event sampling to be inaccurate is that we might
fail to obtain any points where the rare event happens. That leads to a severe
under-estimation of the rare event probability. In ALOE, the corresponding
problem is the failure to sample any points where two or more of the rare
constituent events occur. In that case ALOE will return the union bound as the
estimated rare event probability instead of zero. That is also a setting where the
union bound is likely to be a good approximation. So ALOE is robust against
severe underestimates of the rare event probability. The second common problem
for rare event sampling is an extreme value of the likelihood ratio weighting
applied to the observations. In ALOE, the largest possible weight is only J
times as large as the smallest one.

Our sampler is closely related to instanton methods in power systems en-
gineering. See Chertkov, Pan et al. (2011), Chertkov, Stepanov et al. (2011),
and Kersulis et al. (2015). Out of all the configurations of random inputs to
a system, the most probable one causing the failure is called the instanton.
When there are thousands of failure types there are correspondingly thousands
of instantons, each one a conditional mode of the distribution of x. Our initial
thought was to do importance sampling from a mixture of distributions, with
each mixture component defined by shifting the Gaussian distribution’s mean
to an instanton. By sampling conditionally on an event, ALOE avoids wasting
samples outside the failure region. By conditioning instead of shifting, we get
better control over the likelihood ratio in the importance sampler.

ALOE is a form of multiple importance sampling. Multiple importance sam-
pling originated in computer graphics (Lafortune and Willems, 1993; Veach and
Guibas, 1994). Owen and Zhou (2000) found a useful way to combine it with
control variates defined by the mixture components. Elvira et al. (2015a,b) in-
vestigate computational efficiency of some mixture importance sampling and
weighting strategies.

We do not consider self-normalized importance sampling (SNIS) in this pa-
per. SNIS is useful in settings where we can compute an unnormalized version
of our target density but cannot sample from it efficiently, if at all. SNIS is
common in Bayesian applications (Liu, 2001, Chapter 2). For a recent adap-
tive version of SNIS, see Cornuet et al. (2012). For rare event estimation, we
show in the Appendix that self-normalized importance sampling cannot deliver
a coefficient of variation meaningfully below 2/

√
n asymptotically. The optimal

sampler for SNIS allocates precisely half of its probability in the rare event and
half outside of it. The optimal plain IS estimator, by contrast, places all of its
probability on the rare event and has zero variance. Ordinary importance sam-
pling can attain much smaller variances, and so we focus on it for the rare event
problem.
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Fig 1. The solid circles contain 10%, 20% up to 90% of the N (0, I) distribution. The dashed
circles contain all but 10−k of the probability for 3 � k � 7. The six solid lines denote half-
spaces. The solid points are the corresponding conditional modes (instantons). The rare event
of interest is x in the shaded region, when x ∼ N (0, I).

2. Gaussian case

For concreteness, we present ALOE first for Gaussian random variables. The
earliest use we have seen for Gaussian variables is Naiman and Priebe (2001). We
let x ∈ R

d have the standard Gaussian distribution, N (0, I), deferring general
Gaussians to Section 2.1. We are interested in computing the probability that
x lies outside a polytope P . In our motivating applications, the interior of the
polytope defines a safe operating region and we assume that x �∈ P is a rare
event. For j = 1, . . . , J , define half-spaces

Hj = {x | ωT
j x � τj}

where each τj ∈ R and ωj ∈ R
d, with ωT

j ωj = 1. Then P = ∩J
j=1H

c
j and we

want to find μ = Pr(x ∈ H) where H = ∪J
j=1Hj = Pc. The set P is convex and

not necessarily bounded. Ordinarily τj > 0, because we are interested in rare
events.

The setting is illustrated in Figure 1 for J = 6 half-spaces. In that example,
two of the half-spaces have their conditional modes inside the union of the other
half-spaces. One of those half-spaces is entirely included in the union of the
others.

Letting Pj = Pr(x ∈ Hj) = Φ(−τj), we know that

max
1�j�J

Pj =: μ � μ � μ̄ :=

J∑
j=1

Pj . (2)
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The right hand side is the union bound which is sometimes very conservative
and sometimes quite accurate.

We will need to use some inclusion-exclusion formulas, so some notation for
these follows. For any u ⊆ 1:J ≡ {1, 2, . . . , J}, let Hu = ∪j∈uHj , so Hj =
H{j} and by convention H∅ = ∅. We identify the set Hu with the function
Hu(x) = 1{x ∈ Hu}. Next define Pu = E(Hu(x)) for x ∼ N (0, I). We use −u
for complementary sets in 1:J especially within subscripts, and Hc

u(x) for the

complementary outcome 1−Hu(x). Let S(x) =
∑J

j=1 Hj(x) count the number
of rare events that happen. For s = 0, 1, . . . , J , let Ts = Pr(S = s) give the
distribution of S. We use |u| for the cardinality of u. Our estimand is

μ = P1:J =
∑
|u|>0

(−1)|u|−1Pu, (3)

by inclusion-exclusion.
Here we motivate ALOE as an especially simple mixture sampler. The mix-

ture components we use are conditional distributions qj = L(x | ωT
j x � τj), for

j = 1, . . . , J . They have probability density functions qj(x) = p(x)Hj(x)/Pj .

Let α1, . . . , αJ be nonnegative numbers summing to 1, and qα =
∑J

j=1 αjqj .
A mixture importance sampling estimate of μ based on n draws xi ∼ qα is

μ̂α =
1

n

n∑
i=1

p(xi)H1:J(xi)∑J
j=1 αjqj(xi)

=
1

n

n∑
i=1

H1:J(xi)∑J
j=1 αjHj(xi)P

−1
j

. (4)

Notice that p(xi) has conveniently canceled from numerator and denominator.
Although the inclusion-exclusion formula (3) contains 2J − 1 nonzero terms,
each summand in the unbiased estimate in (4) can be computed at cost O(J).

We can induce further cancellation in (4) by making αj/Pj constant in j.
Taking αj = α∗

j ≡ Pj/μ̄, we get

μ̂α∗ =
μ̄

n

n∑
i=1

H1:J (xi)∑J
j=1 Hj(xi)

=
μ̄

n

n∑
i=1

1

S(xi)
, xi

iid∼ qα∗ , (5)

because H1:J (x) = 1 always holds for x ∼ qα∗ . The estimate (5) is a multiplica-
tive adjustment to the union bound μ̄. The terms S(xi)

−1 range from 1 to 1/J
and so we will never get μ̂α∗ larger than the union bound or smaller than μ̄/J .
This is convenient because μ̄ � μ � μ̄/J always holds.

Theorem 1. Let μ̂α∗ be given by (5). Then

E(μ̂α∗) = μ, (6)

and

Var(μ̂α∗) =
1

n

(
μ̄

J∑
s=1

Ts

s
− μ2

)
� μ(μ̄− μ)

n
. (7)

Proof. See the appendix, where this is proved for a general set of J events, not
necessarily from Gaussian half-spaces.
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The upper bound (7) involves the unknown μ, so it is not available for plan-
ning purpose when we want to select n. The variance and the coefficient of
variation, cv(μ̂α∗) = Var(μ̂α∗)1/2/μ can both be bounded in terms of known
quantities μ̄ and μ from (2) as follows.

Corollary 1. Let μ̂α∗ be given by (5). Then Var(μ̂α∗) � μ̄2/(4n). If μ � μ̄/2
then also Var(μ̂α∗) � μ(μ̄− μ)/n. Similarly,

cv(μ̂α∗) � 1√
n
min

{√
μ̄/μ− 1,

√
J − 1

}
. (8)

Proof. The claims about Var(μ̂α∗) follow from maximizing (7) over μ ∈ [ μ, μ̄].

Next cv(μ̂α∗)2 = (μ̄− μ)/(nμ) = (μ̄/μ− 1)/n. Then (8) follows because μ � μ
and μ � μ̄/J .

A rare event estimator has bounded relative error if cv(μ̂) remains bounded
as one takes the limit in a sequence of problems (Asmussen and Glynn, 2007,
Chapter VI). The sequence is typically one where the event of interest becomes
increasingly rare, for instance as μ → 0 in the present context. Corollary 1
provides a bounded relative error property for ALOE in that limit or indeed in
any sequence of problems where J/n is uniformly bounded.

If the product Hu(x)H
c
−u(x) equals one then it means that x ∈ Hj if and

only if j ∈ u. We use this to write the union bound in a useful way:

μ̄ =

J∑
j=1

Pr(Hj(x)) =

J∑
j=1

∑
u⊆1:J

E
(
Hu(x)H

c
−u(x)

)
1j∈u =

J∑
s=1

sTs.

That is μ̄ = E(S(x)) = μE(S(x) | S(x) > 0) and so we may write (7) as

Var(μ̂α∗) =
μ2

n

(
E(S | S > 0)E(S−1 | S > 0)− 1

)
. (9)

We will use (9) in Section 3 to get additional bounds.

2.1. General Gaussians

Now suppose that we are given y ∼ N (η,Σ) and the half-spaces are defined by
γT
j y � κj . We assume that Σ is nonsingular. If it is not, then we can reduce y

to a subset of components whose variance is nonsingular, and write the other
components as linear functions of this reduced set. We also assume that we can
afford to take a matrix square root Σ1/2. Now x = Σ−1/2(y−η) ∼ N (0, I), and
y = η +Σ1/2x. Then the half-spaces are given by

ωT
j x � τj , where ωj =

γT
j Σ

1/2√
γT
j Σγj

, and τj =
κj − γT

j η√
γT
j Σγj

,

for x ∼ N (0, I). For rare events, we will have κj > γT
j η. In some of our moti-

vating contexts one must optimize a cost over η. Here we remark that changes
to η change τj but not ωj .
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2.2. Sampling algorithms

We want to sample x ∼ N (0, I) conditionally on xTω � τ for a unit vector ω
and scalar τ . We can use the following steps:

1) Sample z ∼ N (0, I).
2) Sample u ∼ U(0, 1).
3) Let y = Φ−1(Φ(τ) + u(1− Φ(τ))).
4) Deliver x = ωy + (I − ωωT)z.

These steps can be justified by the analysis in Doucet (2010) who attributes the
algorithm to the astrophysics literature. Step 3 replaces a N (0, 1) distribution
for y = xTω by a truncated Gaussian random variable obtained via inversion.

The algorithm above can be problematic numerically when Φ(τ) is close to 1
as it will be for very rare events. For instance, in the R language (R Core Team,
2015), Φ(10) yields 1 and then Φ−1(Φ(10) + u(1− Φ(10))) yields ∞ for any u.
Some of our electrical grid examples have maxj τj > 1010. That is, some of the
potential failure modes are virtually impossible.

Because τ > 0 might be quite large, we get better numerical stability by
sampling x ∼ N (0, I) conditionally on xTω � −τ and then delivering −x. The
advantage of simulating extreme Gaussians this way was goes back at least to
Cunningham (1969) and may well be older than that. The steps are as follows:

1) Sample z ∼ N (0, I).
2) Sample u ∼ U(0, 1).
3) Let y = Φ−1(uΦ(−τ)).
4) Let x = ωy + (I − ωωT)z.
5) Deliver x = −x.

Even a very small u = 10−12 combined with τ = 10 yields

Φ−1(10−12 × Φ(−10))
.
= Φ−1(7.62× 10−36)

.
= −12.44

without any underflow in the R language (R Core Team, 2015). In cases with
extremely large τj we will ordinarily get Pj = 0 and then never sample condi-
tionally on the corresponding Hj . We compute step 4 via x = ωy+ z − ω(ωTz)
to avoid a potentially expensive multiplication (I − ωωT)z.

3. Importance sampling properties

As shown in the Appendix, Theorem 1 holds more generally than the Gaussian
case. In this more general setting, we have J events, Hj , on a common sample
space X where x ∈ X has probability density p. Event Hj has probability
Pj . As before, we want μ = Pr(H) where H = ∪jHj and the union bound is
μ � μ̄ =

∑
j Pj . We assume that 0 < μ̄ < ∞. The upper bound only has to be

checked if J = ∞. If μ̄ = 0, then we know μ = 0 without any sampling.
When we sample, we ensure that at least one rare event takes place every

time, by first picking an event Hj with probability proportional to Pj . Then

we sample x ∈ X conditionally on Hj and find S(x) =
∑J

�=1 H�(x), the total
number of events that occur. This includes Hj and so our sample values always
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have S(xi) � 1. The importance sampling estimate μ̂α∗ averages μ̄/S(xi) over
n independent replicates. As in the prior section, we use

Ts = Pr(S(x) = s) =

∫
Rd

1{S(x) = s}p(x) dx,

for the probability of exactly s events happening. Then the variance of μ̂ is given
by (7).

The optimal importance sampling distribution for estimating μ is uniform on
H = {x | H(x) = 1}. Sampling from this distribution would yield an estimate
with variance zero. Not surprisingly, we are seldom able to do that in applica-
tions. The ALOE sampler takes x ∈ X with probability proportional to S(x),
so it has support set H.

We think that many applications will have events Hj that rarely co-occur.
In that case S(x) is nearly constant at 1 for x ∈ H, and the ALOE sampler
is close to the optimal importance sampler. Other applications may have a few
near duplicated events that co-occur often. One extreme setting has a common
cause that triggers all J events at once and those events almost never arise
outside of that common situation. In that case S(x) is again nearly constant on
H, this time usually equal to J , and ALOE is again nearly optimal.

The variance bound μ(μ̄− μ)/n from (7) can be conservative. It stems from
Ts/s � Ts, when s � 1. If Prα∗(S > 1) is appreciably large then the variance
can be meaningfully less than that bound. We can improve the variance bound
by using the following lemma.

Lemma 1. Let S be a random variable supported on {1, 2, . . . , J} for J ∈ N.
Then

E(S)E(S−1) � J + J−1 + 2

4
(10)

with equality if and only if S ∼ U{1, J}.
Proof. See the appendix.

Lemma 1 tells us that for J � 2, our worst case setting is one where half
of the time that one or more events happen, exactly one happens and half of
the time, all J of them happen. While that is not plausible for Gaussian x and
large J it can indeed happen for combinatorial enumeration problems like those
of Karp and Luby (1983). From Theorem 2 and Lemma 1, we get

Var(μ̂α∗) =
μ2

n

(( J∑
s=1

s
Ts

μ

)( J∑
s=1

s−1Ts

μ

)
− 1

)
� μ2

n

J + J−1 − 2

4
, (11)

because Ts/μ is a probability distribution on {1, 2, . . . , J}.
Sometimes we are interested in the probability of sub-events of H. Let f(x)

be supported on H and define ν(f) = ν =
∫
f(x)p(x) dx =

∫
H
f(x)p(x) dx.

We may use ALOE, via

ν̂ =
μ̄

n

n∑
i=1

f(xi)

S(xi)
, xi

iid∼ qα∗ .



Importance sampling the union of rare events 239

Then by the same arguments used in the Appendix,

E(ν̂) = ν and Var(ν̂) =
1

n

(
μ̄

∫
H

f(x)2p(x)

S(x)
dx− ν2

)
.

If f(x) ∈ {0, 1}, then Var(ν̂) � ν(μ̄ − ν)/n. That is, when f describes a rare
event that can only occur if one or more of the Hj also occur, we can reduce its
Monte Carlo variance from ν(1 − ν)/n to at most ν(μ̄ − ν)/n, in cases where
μ̄ < 1.

4. Comparisons

Here we consider some numerical examples comparing ALOE to pmvnorm from
the R package mvtnorm (Genz et al., 2017). This package can make use of special
properties of the Gaussian distribution, and it works in high dimensions.

We begin by describing mvtnorm based on Genz and Bretz (2009) and a
personal communication from Alan Genz. The program computes

Pr(a � y � b) ≡ Pr(aj � yj � bj , j = 1, . . . , d)

for y ∼ N (η,Σ), where −∞ � aj � bj � ∞ for j = 1, . . . , d, and Σ can be

rank deficient. We can use it to compute μ = Pr(
∑J

j=1 1{ωT
j x � τj} > 0) for

x ∼ N (0, I) via

1− μ = Pr(ΩTx � T ) = Pr(y � T ), y ∼ N (0,ΩTΩ).

The code can handle dimensions up to 1000. In our context, that means at
most J = 1000 half-spaces. The dimension d can be higher. The related pmvt

function handles multivariate t random variables. The code has three differ-
ent algorithms in it. One from Genz (2004) handles two and three dimensional
semi-infinite regions, one from Miwa et al. (2003) is for dimensions up to 20 and
the rest are handled by an algorithm from Genz and Bretz (2009). This latter
algorithm uses a number of methods. It uses randomized Korobov lattice rules
as described by Cranley and Patterson (1976) for the first 100 dimensions, in
conjunction with antithetic sampling. There are usually 8 randomizations. For
more than 100 dimensions it applies a method from Niederreiter (1972). There
are a series of increasing sample sizes in use, and the method provides an es-
timated error (3.5 standard errors) based on the randomization. The approach
is via sequential conditional sampling, after strategically ordering the variables
(e.g., putting unconstrained ones first). The R package calls a FORTRAN pro-
gram for the computation, so it is very fast. We use the default implementation
which uses up to 25,000 quadrature points.

The main finding in comparison to Genz and Bretz (2009) is that importance
sampling is more effective when the polytope of interest is the complement of a
rare event. This is not meant to be a criticism of pmvnorm. That code was not
specifically designed to compute the complement of a rare event. The comparison
is relevant because we are not aware of alternative code tuned for the high
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dimensional rare event cases that we need, and pmvnorm is a well regarded and
widely available general solution, that seemed to us like the best off-the-shelf
tool.

Botev and L’Ecuyer (2015) provide a competing method to Genz and Bretz
(2009) for estimating polytope probabilities with Gaussian and t-distributed
data. Like Genz and Bretz (2009) they address problems where x ∈ P is the
rare event, not x �∈ P . We have not compared their method numerically to
ALOE but we expect that like Genz and Bretz (2009), it will dominate ALOE
when the event is not rare but not when the event is rare.

A reviewer asked us to compare our method to the recent work in Ahn and
Kim (2018) on computing expectations over a union of half-spaces. Their ap-
proach is to pick a unit vector δ uniformly at random in S

d−1 = {x ∈ R
d |

xTx = 1} and average Pr(x ∈ H) over the line {yδ | y ∈ R}. This line ex-
tends in the positive y direction, reaching the set H at distance minj τj/ω

T
j δi

taking the minimum over j with ωTδ > 0. Should that set of j be empty, the
line never reaches H in the positive y direction. It has a similarly defined ex-
tent in the negative y direction. The scale y is a symmetric random variable
with y2 ∼ χ2

(d) because ‖x‖2 ∼ χ2
(d). Putting these together we find that their

directional simulation estimator is

μ̂AK =
1

2n

n∑
i=1

max
1�j�J

Ḡd

( τ2j
(ωTδi)2

)
1{ωTδi > 0} (12)

+ max
1�j�J

Ḡd

( τ2j
(ωTδi)2

)
1{ωTδi < 0}

where Ḡd is one minus the cumulative distribution function of χ2
(d). They use

their estimator on some ellipsoidally symmetric distributions generalizing the
Gaussian. We ran directional sampling on the two examples described next, and
it was extremely good on one of them and extremely inaccurate on the other.

4.1. Circumscribed polygon

Let P(J, τ) ⊂ R2 be the regular polygon of J � 3 sides circumscribed around
the circle of radius τ > 0. This polygon is the intersection of Hc

j where Hj =

{x ∈ R
2 | ωT

j x � τ} where ωT
j = (sin(2πj/J), cos(2πj/J)), for j = 1, . . . , J . We

want μ = Pr(x ∈ Pc) for x ∼ N (0, I). Here we know that μ � Pr(χ2
(2) � τ2) =

exp(−τ2/2). Also, the gap between the circle of radius τ and the circumscribed
polygon has area G(J, τ) = (J tan(π/J)− π)τ2. The bivariate Gaussian density
in this gap is at most exp(−τ2/2)/(2π). Therefore

Pr(x ∈ Pc) � exp(−τ2/2)−G(J, τ) exp(−τ2/2)/(2π)

that is

1 � Pr(x ∈ Pc)

exp(−τ2/2)
� 1− G(J, 1)τ2

2π

.
= 1− π2τ2

6J2
,

for large J .
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Fig 2. Results of 100 estimates of the Pr(x �∈ P(360, 6)), divided by exp(−62/2). Left panel:
ALOE. Right panel: pmvnorm.

Table 1

Results from 100 computations of Pr(x �∈ P(360, τ)) for various τ . The true mean μ is very
nearly exp(−τ2/2). Importance sampling is more accurate for large τ (rare events), while

pmvnorm is more accurate for small τ .

τ μ E((μ̂ALOE/μ− 1)2) E((μ̂MVN/μ− 1)2)

2 1.35×10−01 0.000399 9.42×10−08

3 1.11×10−02 0.000451 9.24×10−07

4 3.35×10−04 0.000549 2.37×10−02

5 3.73×10−06 0.000600 1.81×10+00

6 1.52×10−08 0.000543 4.39×10−01

7 2.29×10−11 0.000559 3.62×10−01

8 1.27×10−14 0.000540 1.34×10−01

For J = 360 and τ = 6, we have μ � exp(−18)
.
= 1.52 × 10−8. The lower

bound is about 0.9995 times the upper bound, so we treat the upper bound as
exact. Figure 2 shows histograms of 100 simulations of μ̂/μ using ALOE and
using pmvnorm. In this case ALOE is much more accurate. The mean square
relative error E((μ̂/μ− 1)2) is about 800-fold smaller for ALOE than pmvnorm.
We also see that pmvnorm has high positive skewness and the histogram of
estimates has most of its mass well below the mean.

Table 1 shows summary results for this problem with different values of τ . We
see that pmvnorm is superior when the event is not rare but ALOE is superior
for rare events. The large error for pmvnorm with τ = 5 stemmed from a small
number of outliers among the 100 trials.

The upper bound in equation (7) is Var(μ̂) � μ(μ̄−μ)/n, from which E((μ̂/μ−
1)2) � (μ̄/μ − 1)/n. For τ = 6 this yields about 0.022, which is over 20 times
the actual mean squared relative error from Table 1.
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It is possible that this example is artificially easy for importance sampling,
due to the symmetry. Whichever half-space Hj we sample, the distribution of
overlapping half-spaces Hk for k �= j is the same. Two half-spaces differ from
Hj by a one degree angle, two differ by a two degree angle and so on. To get
a more varied range of overlap patterns, we replaced angles 2πj/360 by angles
2π × p(j)/360 where p(j) is the j’th prime among integers up to 360. There
are 72 of them, of which the largest is 359. With τ = 6 and 100 replications
using n = 1000 points in importance sampling, we have variance of p̂/ exp(−18)
equal to 0.00077. The comparable figure for mvtnorm is 8.5. There were a few
outliers there including one that was more than 6 times the union bound. The
gap between the prime angle polygon and the inscribed circle is larger than the
one formed by the full polygon. Pooling all the importance sampling runs leaves
an estimate of about 0.94× exp(−18) for μ. In this example, we see importance
sampling working quite well without symmetry.

The estimator μ̂AK is much better than both ALOE and pmvnorm for this
problem. With only a sample of n = 100 it reached essentially double precision
accuracy, with a standard error of about 5×10−16 on the symmetric polygon. For
the problem using prime number angles the standard error was about 3×10−12.
This problem is even more artificially easy for directional simulation method
than the polygon is for ALOE. The distance from the origin to H is nearly
constant over all angles.

4.2. High dimensional half-spaces

The previous example was low dimensional and each of the half-spaces sampled
had numerous similar ones, differing in angle by a small number of degrees. Thus
μ was quite a bit smaller than μ̄. Here we consider a high dimensional setting
where the half-spaces have less overlap.

Two uniform random unit vectors ω1 and ω2 in R
d are very likely to be

nearly orthogonal for large d. Then xTωj > τj are nearly independent events.
For independent events, we would have

Pr(x �∈ P) = 1−
J∏

j=1

(1− Pj).

To make x �∈ P a rare event, the Pj must be small and then the probability
above will be close to the union bound. Theorem 2 predicts good performance
for importance sampling here.

For this test 200 sample problems were constructed. The dimensions were
chosen by d ∼ U{20, 50, 100, 200, 500}. Then there were J ∼ U{d/2, d, 2d} con-
straints chosen with uniform random unit vectors ωj ∈ R

d. The threshold τ
was chosen so that log10 of the union bound was U[4, 8], followed by rounding
to two significant figures. Then μ̂ was computed by importance sampling with
n = 1000 samples, and by pmvnorm. Figure 3 shows the results. The ALOE sam-
pling value was always very close to the union bound which in turn is essentially
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Fig 3. Results of 200 estimates of the μ for varying high dimensional problems with nearly
independent events.

equal to what one would see for independent events. The values from pmvnorm

were usually too small but sometimes far too large, orders of magnitude larger
than the union bound. By construction the intersection probabilities are quite
rare. In importance sampling, 77.5% of the simulations had no intersections
among 1000 trials and the others had only a few intersections. Therefore it is
clear that the probabilities should be close to the union bounds here.

We also ran the directional method on these high-dimensional half space
problems. It did very poorly because the set H only comes close to the origin
at a tiny proportion of the unit vectors δ ∈ S

d−1. The estimate μ̂AK was usually
smaller than the known lower bound μ = max1�j�J Φ(−τj), sometimes much

smaller, in one instance below 10−30μ. Two hundred results are presented in
Figure 4. That estimator was also larger than the known upper bound μ̄ by
as much as 40-fold in some simulations. It was less severe in that regard than
pmvnorm. Because it performed so poorly we did not implement it on the power
systems problem in the next section.

5. Power system infeasibility

5.1. Model

Our power system models are based on a network of N nodes, called busses.
Some busses put power into the network and others consume power. The M
edges in the network correspond to power lines between busses. The network is
ordinarily sparse, with M a small multiple of N .
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Fig 4. Results of 200 estimates of log10(μAK/μ) for varying high dimensional problems with
nearly independent events.

The power production at bus i is pi, with negative values indicating consump-
tion. For some busses, pi is tightly controlled and deterministic in the relevant
time horizon. Other busses have random pi corresponding, for example, to vari-
able consumption levels, that we treat as independent. Busses corresponding to
wind farms have random power production levels with meaningfully large cor-
relations. Our models contain one special bus S, called the slack bus, at which
the power is pS = −

∑
i �=S pi. The total power in the system is zero because

transmission power losses are ignored in the DC approximation that we use.
The power at all busses can be represented by the vector p = (pTF , p

T
R, pS)

T

corresponding to fixed busses, ordinary random busses (including any correlated
ones) and the slack bus. There are NF fixed busses, NS = 1 slack bus and
NR = N − NF − NS random busses apart from the slack bus. We will use 1R
to denote a column vector of NR ones, and IR to denote the identity matrix of
size NR and similarly for 1F and IF .

The power pi at bus i must satisfy the constraints

p
i
� pi � pi. (13)

The vector p has a Gaussian distribution, determined entirely by the random
components pR ∼ N (ηR,ΣRR). Therefore in the present context, pR is the
Gaussian random variable x from Section 2. The fixed components satisfy pF =
ηF and then the slack bus satisfies pS ∼ N (ηS ,ΣSS) where ηS = −1TRηR−1TF ηF
and ΣSS = 1TRΣRR1R. Because all of the randomness comes from pR, we will
abbreviate ΣRR to Σ.

The node to node inductances in the network form a Laplacian matrix B
where Bij �= 0 if busses i and j are connected with Bii = −

∑
j �=i Bij (up

to rounding). The Laplacian is symmetric and has one eigenvalue of zero for
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a connected network. It has a pseudo-inverse B+. We partition B and B+ as
follows

B =

⎛
⎝BRR BRF BRS

BFR BFF BFS

BSR BSF BSS

⎞
⎠ , and B+ =

⎛
⎝BRR BRF BRS

BFR BFF BFS

BSR BSF BSS

⎞
⎠ .

We also group B+ into three sets of columns via B+ =
(
B•R B•F B•S

)
.

The phase at bus i is denoted θi. In our DC approximation of AC power flow,
the phases approximately satisfy Bθ = p. Given the power vector p, we take

θ = B+p =

⎛
⎝BRR BRF BRS

BFR BFF BFS

BSR BSF BSS

⎞
⎠

⎛
⎝pR
pF
pS

⎞
⎠ .

The phase constraints on the network are

|θi − θj | � θ̄ij , for i �= j and Bij �= 0. (14)

In our examples, all θ̄ij = θ̄ for a single value θ̄ such as π/6 or π/4.
Let D ∈ {−1, 1}M×N be the incidence matrix. Each edge in the network is

represented by one row of D with an entry of +1 for one of the busses on that
edge and −1 for the other. The phase constraints are |Dθ| � θ̄ componentwise.
Now

Dθ = D
(
B•R B•F B•S

)⎛⎝pR
pF
pS

⎞
⎠ = D

(
B•RpR +B•F pF +B•SpS

)
.

The constraint that Dθ � θ̄ for every edge ij can be written

DB•RpR � θ̄ −DB•F pF −DB•SpS .

Now pS = −1TRpR − 1TF pF and pF = ηF , so the constraint on pR is

D
(
B•R −B•S1TR

)
pR � θ̄ −D

(
B•F −B•S1TF

)
ηF . (15)

We also have constraints Dθ � −θ̄ which can be written

D
(
B•S1TR −B•R)pR

)
� θ̄ +D

(
B•F −B•S1TF

)
ηF . (16)

Equations (15) and (16) supply 2M constraints on the random vector pR.
We have also the two slack bus constraints pS � pS and −pS � −p

S
, that is

−1TRpR � pS + 1TF ηF and 1TRpR � −p
S
+ 1TF ηF . (17)

Finally, there are individual constraints on the random busses

pR � pR, and − pR � −p
R
,

componentwise.
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Table 2

Rare event estimates for the winter peak grid. ω̄ is the phase constraint, μ̂ is the ALOE
estimate, se is the estimated standard error, μ is the largest single event probability and μ̄ is

the union bound.

ω̄ μ̂ se/μ̂ μ μ̄

π/4 3.7× 10−23 0.0024 3.6× 10−23 4.2× 10−23

π/5 2.6× 10−12 0.0022 2.6× 10−12 2.9× 10−12

π/6 3.9× 10−07 0.0024 3.9× 10−07 4.4× 10−07

π/7 2.0× 10−03 0.0027 2.0× 10−03 2.4× 10−03

When we combine all of the constraints on pR, we get a matrix Γ with rows
γj and a vector of upper bounds K with entries κj for which the constraints are
Γ× pR � K componentwise. Here those matrices are

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

IR

−IR

1TR
−1TR

D(B•R −B•S1TR)

−D(B•R −B•S1TR)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pR

−p
R

−p
S
+ 1TF ηF

pS + 1TF ηF

θ̄ −D
(
B•F −B•S1TF

)
ηF

θ̄ +D
(
B•F −B•S1TF

)
ηF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These are the linear constraints on pR. There are 2M phase constraints and
there are two constraints for all of the non-fixed busses, including the slack bus.
These constraints can be turned into constraints Ω and T on a N (0, IR) vector
as described in Section 2.1.

5.2. Examples

We considered several model electrical grids included in the MATPOWER dis-
tribution (Zimmerman et al., 2011). In each case we modeled violations of the
phase constraints, and used n = 10,000 samples. For some cases we found that,
under our model, phase constraint violations were not rare events. In some other
cases, the rare event probability was dominated by one single phase condition:
μ = maxJj=1 Pj ≈

∑J
j=1 Pj = μ̄. For cases like this there is no need for elab-

orate computation because we know μ is within a narrow interval [μ, μ̄]. The
interesting cases were of rare events not dominated by a single failure mode. We
investigate two of them.

The first is the Polish winter peak grid of 2383 busses. There were d = 326
random (uncontrolled) busses and J = 5772 phase constraints. We varied ω̄
as shown in Table 2. For ω̄ = π/7 constraint violations are not very rare. At
ω̄ = π/4 they are quite rare. The estimated coefficient of variation for ALOE
sampling is nearly constant over this range.

The second interesting case is the Pegase 2869 model of Fliscounakis et al.
(2013). This has d = 509 uncontrolled busses and J = 7936 phase constraints.
It is described as “power flow for a large part of the European system”. The
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Table 3

Rare event estimates for the Pegase 2869 model. The columns are as in Table 2. ∗The se
was 0 because there were never two or more failures in any sample. See text for discussion.

ω̄ μ̂ se/μ̂ μ μ̄

π/2 3.5× 10−20 0∗ 3.3× 10−20 3.5× 10−20

π/3 8.9× 10−10 5.0× 10−5 7.7× 10−10 8.9× 10−10

π/4 4.3× 10−06 1.8× 10−3 3.5× 10−06 4.6× 10−06

π/5 2.9× 10−03 3.5× 10−3 1.8× 10−03 4.1× 10−03

results are shown in Table 3. We include an unrealistically large bound ω̄ = π/2
in that table, to test the limits of our approach. For ω̄ = π/2, the standard error
given is zero. One half-space was sampled 9408 times, another was sampled 592
times but in no instance were there two or more phase violations. The estimate
reverts to the union bound. Getting 0 doubletons (S = 2) among n = 10,000
tries is compatible with the true probability of a doubleton being as high as 3/n.
Even if T1 = .9997 and T2 = .0003 then we would have μ = (1− (3/2)× 10−4)μ̄
instead of μ̄. We return to this issue in the discussion.

In addition to the examples above we investigated IEEE case 14, IEEE case
300, and Pegase 1354, which were all dominated by one failure. We considered a
system which included random and correlated wind power generators, but phase
failure was not a rare event in that system. Pegase 13659 was too large for our
computation. The Laplacian matrix has 37,250 rows and columns and we use
the SVD to compute the generalized inverses we need. Pegase 9241 was large
enough to be very slow and it did not have rare failures.

In our numerical tables we have used the plain sample variance of the im-
portance sampled values to compute a standard error. Botev et al. (2015) note
that the resulting standard error can be very inefficient and they propose a
superior estimator. A naive implementation of their method would cost O(J4)
for J linear constraints but they are able to reduce that cost to O(J3). We
have not used that method here because with J = 5772 (Polish winter peak)
or J = 7936 (Pegase 2869), even J3 is too much to pay for a better variance
estimate.

6. Discussion

We have introduced a version of mixture importance sampling for problems with
multiple failure modes. The sample values are constrained to have at least one
failure and we obtain bounded relative error.

The ALOE importance sampler is more accurate than a state of the art code
for computing high dimensional Gaussian probabilities in our rare event setting,
but not otherwise. It is also more reliable than the recent directional sampling
method of Ahn and Kim (2018). That method gains accuracy by integrating
over a randomly chosen line through the origin in R

d, but it samples those
lines uniformly and not by importance sampling. It is possible to combine the
ideas, sampling x by ALOE and then integrating over the line defined by the
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unit vector x/‖x‖. Preliminary results show this to improve upon ALOE in the
power grid problem, however a full discussion would add too much length and
detail to the present paper.

We have noticed two areas where ALOE can be improved. First, if we never
see S � 2 concurrent rare events, ALOE will return the union bound μ̂ = μ̄,
with an estimated variance of zero. That variance estimate could be undesirable
even when μ/μ̄ ≈ 1. Because S(x) is supported on {1, 1/2, . . . , 1/J} we can get
an interval estimate of μ by putting a multinomial prior on this support set and
using the posterior distribution given the sample. The solution in Botev et al.
(2015) is attractive when J is not so large.

A second and related issue is that while μ̄ � μ̂ � μ̄/J always occurs, it
is possible to get μ̂ < μ = max1�j�J Pj . We have seen this in cases where
μ̄ ≈ μ because one of the Pj dominates all of the others combined. In such
cases μ, μ̄ and μ are all very close together and μ̂ has small relative standard
deviation. Improving these two issues is outside the scope of this paper. They
are both things that happen in cases where we already have a very good idea
of the magnitude of μ. The problem was much less severe for ALOE than it
was for directional sampling. For instance, ALOE will not give μ̂ < μ̄/J , while
directional sampling can.

In large problems, the algebra can potentially be reduced by ignoring the very
rarest events and simply adding their probabilities to the estimate. This will
provide a mildly conservative bound. There is also the possibility of exploiting
many generalized upper and lower bounds on the probability of a union. See for
instance the survey by Yang et al. (2014).

Appendix: Proofs

Analysis of self-normalized importance sampling

Here we show that self-normalized importance sampling cannot attain the small-
est variances in a rare event setting. We build on a remark by Hesterberg (1988,
Chapter 2) and follow a derivation from Owen (2013, Chapter 9). The key
problem is that the optimal self-normalized importance sampler for a rare event
places only 1/2 of its probability in the rare event.

Hesterberg (1988, Chapter 2) quoting Kahn and Marshall (1953) notes that
the optimal self-normalized importance sampling density q for estimating μ =
E(f(x)) when x ∼ p is proportional to |f(x)−μ|p(x). Taking f(x) = 1{x ∈ A},
we get q(x) = |1{x ∈ A}−μ|p(x)/c for some c > 0. Solving q(A∪Ac) = 1 yields
c = 2μ(1 − μ) and then q(A) = q(Ac) = 1/2. The self-normalized importance
sampler is a ratio estimate

∑
i f(xi)p(xi)/q(xi)

/ ∑
i p(xi)/q(xi). Its variance

is asymptotic to σ2
q/n for

σ2
q = Eq

(p(x)2(f(x)− μ)2

q(x)2

)
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Half of the time q places x ∈ A yielding p(x)/q(x) = (1 − μ)−1/c and half of
the time x ∈ Ac with p(x)/q(x) = μ−1/c. Thus

σ2
q =

1

2

[ 1

c2
+

1

c2

]
= 4μ2(1− μ)2.

The best possible asymptotic coefficient of variation for SNIS is then 2(1 −
μ)/

√
n ≈ 2/

√
n for rare events.

Proof of Theorem 2

Our motivating problem involves probabilities defined by Gaussian content of
half-spaces. The approach generalizes to estimating the probability of the union
of any finite set of events. We can also consider a countable number of events
when the union bound is finite; see remarks below. We will assume that each
event has positive probability, but that condition can also be weakened to a
positive union bound, as described at the end of this section.

For definiteness, we define our sets in terms of indicator functions of a ran-
dom variable x ∈ R

d with probability density p. The same formulas work for
general sample spaces and the density can be with respect to an arbitrary base
measure.

We cast our notation into this more general setting as follows. For J � 1,
and j = 1, . . . , J , let the subset Hj ⊂ R

d define both the event Hj = {x ∈
Hj} and the indicator function Hj(x) = 1{x ∈ Hj}. For u ⊆ {1, . . . , J} we
define the event Hu = ∪j∈uHj and associated function Hu(x) = maxj∈u Hj(x),
with H∅(x) = 0. As before Pu = E(Hu(x)), the number of events is S(x) =∑J

j=1 Hj(x) and Pr(S = s) = Ts.
Recall that we use −u for complements with respect to 1:J , especially within

subscripts, and Hc
u(x) for the complementary outcome 1 − Hu(x). Then

Hu(x)H
c
−u(x) describes the event where xj ∈ Hj if and only if j ∈ u.

If Pj > 0, then the distribution qj of x given Hj is well defined: qj(x) =
p(x)Hj(x)/Pj . If minj Pj > 0 then we can define the mixture distribution

qα∗ =

J∑
j=1

α∗
j qj , α∗

j = Pj/μ̄, μ̄ =

J∑
j=1

Pj . (18)

For n � 1, our estimator of μ = Pr(S(x) > 0) is

μ̂α∗ =
μ̄

n

n∑
i=1

1

S(xi)
, xi

iid∼ qα∗ . (19)

In this section, some equations include both randomness due to xi ∼ qα∗ and
randomness due to x ∼ p. For section only, we use Pr∗, E∗ and Var∗ when the
randomness is from observations xi ∼ qα∗ , while E, Pr and Var are with respect
to x ∼ p.
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Theorem 2. If 1 � J < ∞ and minj Pj > 0 and n � 1, then μ̂α∗ defined
by (18) satisfies Pr∗(μ̄/J � μ̂α∗ � μ̄) = 1,

E∗(μ̂α∗) = μ, (20)

and

Var∗(μ̂α∗) =
1

n

(
μ̄

J∑
s=1

Ts

s
− μ2

)
� μ(μ̄− μ)

n
. (21)

Proof of Theorem 2. Let H(x) = max1�j�J Hj(x) and H = {x | H(x) = 1}.
If xi ∼ qα∗ , then xi ∈ H always holds. Then 1 � S(xi) � J holds establishing
the bounds on μ̂α∗ . Next

E∗

(( J∑
j=1

Hj(x1)

)−1
)

=

J∑
�=1

P�

μ̄

∫
H

H�(x)P
−1
� p(x)∑J

j=1 Hj(x)
dx =

1

μ̄

∫
H

p(x) dx =
μ

μ̄
,

establishing (20).
Because μ̂α∗ is unbiased its variance is

1

n

(
μ̄2

E∗

((
H(x1)∑J

j=1 Hj(x1)

)2)
− μ2

)
. (22)

Next

E∗
(( H(x1)∑

j Hj(x1)

)2)
=

J∑
j=1

Pj

μ̄

∫
H

( H(x)

1 +
∑

��=j H�(x)

)2 p(x)Hj(x)

Pj
dx

= μ̄−1

∫
H

p(x)∑J
j=1 Hj(x)

dx

= μ̄−1
∑
|u|>0

1

|u|

∫
Hu(x)H

c
−u(x)p(x) dx

= μ̄−1
J∑

s=1

1

s
Ts,

which, with (22), establishes the equality in (21). Next

μ̄−1
J∑

s=1

Ts

s
� μ̄−1

J∑
s=1

Ts = μ̄−1(1− T0) = μ̄−1μ.

Finally μ̄2(μ̄−1μ)− μ2 = (μ̄− μ)μ, establishing the upper bound in (21).

We can generalize the previous theorem to higher moments. Our estimate is
an average of μ̄/S(xi). The k’th moment of this quantity is

E∗
(( μ̄

S(x1)

)k )
= μ̄k

J∑
j=1

αj

∫
H

S(x)−kqj(x) dx
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= μ̄k
J∑

j=1

Pj

μ̄

∫
H

S(x)−k p(x)Hj(x)

Pj
dx

= μ̄k−1

∫
H

S(x)1−k dx

=

J∑
s=1

Ts

( μ̄
s

)k−1

.

Remark 1. Suppose that one of the Pj = 0 but μ̄ > 0. In this case qj is not
well defined. However qα∗ places probability 0 on qj , so we may delete the qj
component without changing the algorithm and then sampling from qα∗ is well
defined.

Remark 2. Next suppose that there are infinitely many events, one for each
j ∈ N. If μ̄ ∈ (0,∞), then qα∗ is well defined. The same proof goes through,
only now sums over 1:J must be replaced by sums over N.

Proof of Lemma 1

From the Cauchy-Schwarz inequality,

1− E(S)E(S−1) = Cov(S, S−1) � −
√

Var(S)Var(S−1). (23)

Now Var(S) � (J − 1)2/4 and Var(S−1) � (1− J−1)2/4 because the support of
S is in [1, J ]. Therefore

E(S)E(S−1) � 1 +
(J − 1)(1− J−1)

4
=

J + J−1 + 2

4
.

Finally, the unique distribution for which Var(S), Var(S−1) and −Corr(S, S−1)
all attain their maxima is U{1, J}.

Generalization

The lemma generalizes. If Pr(a � X � b) = 1 for 0 < a � b < ∞ then the same
argument yields E(X)E(X−1) � (a/b+ b/a+ 2)/4.
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