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Abstract: Complex interactions between entities are often represented as
edges in a network. In practice, the network is often constructed from noisy
measurements and inevitably contains some errors. In this paper we con-
sider the problem of estimating a network from multiple noisy observations
where edges of the original network are recorded with both false positives
and false negatives. This problem is motivated by neuroimaging applica-
tions where brain networks of a group of patients with a particular brain
condition could be viewed as noisy versions of an unobserved true network
corresponding to the disease. The key to optimally leveraging these mul-
tiple observations is to take advantage of network structure, and here we
focus on the case where the true network contains communities. Communi-
ties are common in real networks in general and in particular are believed
to be presented in brain networks. Under a community structure assump-
tion on the truth, we derive an efficient method to estimate the noise levels
and the original network, with theoretical guarantees on the convergence of
our estimates. We show on synthetic networks that the performance of our
method is close to an oracle method using the true parameter values, and
apply our method to fMRI brain data, demonstrating that it constructs
stable and plausible estimates of the population network.
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1. Introduction

Networks provide a natural way to model many complex systems, and network
data are increasingly common in many areas of application. Statistical network
analysis to date has largely focused on the case of observing a single network,
without noise, and analyzing the observed network in order to learn something
about its structure, for example, identifying communities. The problem of com-
munity detection in particular, in a single noiseless network, is very well studied
and understood by now (see [16, 13, 1] for reviews of this topic and [2, 10, 26, 14]
for some of the many important recent developments). Much effort in this field
has focused on the analysis of exchangeable networks, where any permutation
of nodes results in the same distribution of the edges [5, 20, 11, 35].

In this paper, our focus is on applications where multiple noisy realizations
are available rather than a single network, much like an i.i.d. sample in classical
multivariate analysis, except our observations are networks rather than vectors.
The particular application that motivated this work is neuroimaging, where a
network of connections in the brain is constructed separately for each subject,
and there is a sample of subjects available, e.g., people suffering from a men-
tal illness. Nodes in this context correspond to locations or regions of interest
in the brain, and connections between nodes are measured in various ways de-
pending on the technology used. Here we focus on data from resting state fMRI
brain imaging [40, 41], where time series of blood oxygen levels are recorded at
multiple voxels in the brain while the subjects “rest” in the fMRI machine (see
Section 4.2 for more details). Inferring connections between nodes from this type
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of data invariably involves a lot of preprocessing (registration, background sub-
traction, normalization, etc.), and is typically measured by computing Pearson
correlations between the processed time series for each pair of nodes, although
arguments have also been made for using partial correlations and more generally
Markov random fields [32, 31].

However the connections between nodes are computed, they are then fre-
quently thresholded in order to obtain a connectivity matrix with binary entries,
from which various network summaries such as the average degree and the clus-
tering coefficient can be computed and averaged over the sample to characterize
the population [8, 4, 18, 21]. These one-number summaries necessarily result
in loss of information, and one may want to learn more about the prototypical
brain network for a population of patients beyond one-number summaries. For
instance, one may want to find regions of the brain consisting of similar voxels
in terms of functional connectivity and comparing them to healthy controls, or
compare levels of functional connectivity within known anatomical regions. A
natural question to ask then is how to estimate a population network adjacency
matrix A (an n × n matrix where Aij = 1 if there is an edge between node
i and node j, and Aij = 0 otherwise) from a sample of noisy observations,
with noise resulting from both preprocessing and natural individual variations.
In other words, we pose the question of how to compute the “mean” from a
sample of N independent noisy realizations A(1), A(2), . . . , A(N) of an unknown
underlying adjacency matrix A, while respecting and ideally taking advantage of
the network structure of the problem instead of simply averaging the observed
matrices.

We next introduce basic notation to focus the discussion. Since the underlying
true A is binary and so are the observations, the noise in each entry of A can only
be present in the form of false positive and false negative edges. We assume that
the entries of A above the diagonal are generated independently (an assumption
that certainly simplifies reality but enables analysis that has been found to give
useful practical results in much of previous literature on networks), and that the
noise is independent of A. Let P be the n×n symmetric matrix of false positive
probabilities, and Q the n× n symmetric matrix of false negative probabilities.

That is, for each 1 ≤ m ≤ N and i < j, if Aij = 1 then A
(m)
ij is drawn from

Bernoulli(1−Qij), and if Aij = 0 then A
(m)
ij is drawn from Bernoulli(Pij). The

entries above the diagonal of A(m) are independent, A
(m)
ij = A

(m)
ji , and diagonal

entries of A(m) are set to zero, though the latter is not important. In other
words, true edges Aij = 1 are randomly removed with probabilities Qij while
non-edges Aij = 0 are randomly replaced with false edges with probabilities Pij .
For identifiability, we assume that all entries of P and Q are less than 1/2.

In principle, each entry Aij of the underlying true network A can be estimated

separately from the corresponding entries A
(m)
ij , 1 ≤ m ≤ N . However, this

naive approach does not take advantage of any potential structure in A. Given
that real networks typically exhibit a lot of structure, we can expect to gain
by estimating the entries of A jointly. More specifically, we assume that the
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structure in A takes the form of communities, frequently encountered in many
real-world networks in general and in brain networks in particular [36]. We
will model this structure in A through one of the most commonly used network
community models, the stochastic block model (SBM) [17]. The SBM is a simple
and easily tractable model which can also serve as a basic building block in
approximating a much larger family of network models, much in the same way
that a step-wise constant function can be used to approximate any smooth
function [35]. Making this assumption about A allows us to share information
among edges while retaining the flexibility to fit a wide range of network data.

The SBM assumes that the network is generated by first drawing a vector
of node labels c ∈ {1, . . . ,K}n from a multinomial distribution with parameter
π = {π1, . . . , πK}. The number of communities K is often assumed to be known,
or can be estimated by using one of several methods now available [9, 44, 24].
Edges between pairs of nodes i, j are then drawn independently with probability
P (Aij = 1) = Bcicj , where B is a K×K matrix of within and between commu-
nities edge probabilities. Following the literature, we condition on c and treat
it as a fixed unknown vector from this point on. Community detection under
the SBM has been studied intensively in the last decade and many methods are
available by now, e.g., [34, 5, 2, 23, 26], and many others.

We make a further assumption that the expectation W = EA of A and the
noise probability matrices P and Q share the same block structure. That is, if
ci = ci′ and cj = cj′ then Pij = Pi′j′ and Qij = Qi′j′ . In other words, edges
between nodes with the same patterns of connectivity are subject to the same
noise levels. For the SBM, one can think of this assumption as the probability
of making an error about an edge being a function of the probability of that
edge existing. In many biological contexts, it is plausible to assume that the
probability of a false negative is higher when the probability of an edge is small,
as it is harder to detect, and conversely for an edge with high probability, the
probability of a false negative might be low.

The main contribution of this work is an algorithm to estimate the true unob-
served “population” adjacency matrix A by taking advantage of the community
structure in both the network and the noise. The algorithm works by first esti-
mating the community structure of A from an initial naive estimate, using an
existing method such as spectral clustering or pseudo-likelihood [2]. Then the
estimated community structure is used in an EM-type algorithm to update the
estimate of A and the parameters of interest. Results in Section 4 show that
our method performs well on both simulated data and functional connectomics
brain data [40, 41]. The method is computationally efficient because we can
leverage existing fast algorithms for community detection in the first stage and
the EM algorithm in the second stage only involves simple updates which con-
verge quickly. More complicated models of the relationship between the network
and the noise are certainly possible and are left to future work, but even with
this simple model we demonstrate conclusively that “network-aware” analyses
of samples of networks, as opposed to “massively univariate” analyses that vec-
torize the adjacency matrices and ignore their network structure, are needed to
take full advantage of the network nature of the data.
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The problem we consider in this paper shares some similarity with the prob-
lem of estimating the edge probability matrix from independent network ob-
servations A(1), ..., A(N) studied in [39, 43]. Assuming that A(1), ..., A(N) are
identically distributed and EA(1) is of low rank, the authors of [39] estimate

EA(1) by a low rank approximation H of N−1
∑N

m=1 A
(m). In [43], the authors

model the entrywise logit of EA(m) as the sum of a baseline matrix Z and an
individual-specific matrix Dm and propose a spectral method to estimate them.

Note that in our setting, EA(1) is a matrix with entries EA
(1)
ij = Pij if Aij = 1

and EA
(1)
ij = 1−Qij if Aij = 0. Since entries of P and Q are less than 1/2, in

principle one can threshold entries of H or the estimate of Z at 1/2 to obtain
an estimate of A. However, these are not good estimates because (i) EA(1) is
not a low-rank matrix, (ii) they are not designed specifically for estimating a
binary matrix, and (iii) estimates of P and Q are required for a noise-dependent
threshold. Therefore the problem of estimating a binary network must be treated
differently, and it is the main focus of this work.

Finally, there is a connection between the problem we study in this paper and
the problem of crowdsourcing [12]. Crowdsourcing aims to recover the latent la-
bels of a set of items based on independent estimates of several workers; in our

setting, (binary) Aij is the latent label of the item indexed by (i, j) and A
(m)
ij is

an estimate of the m-th worker. A number of methods have been developed to
address this problem, including SVD-based methods [15], variational methods
[29], Bayesian inference [37] and EM algorithms [12, 46]. The two-stage proce-
dure of [46] is especially relevant to our paper, where the labels are initialized
by the method of moments and updated by the EM algorithm.

Our setting corresponds to crowdsourcing if we take the number of commu-
nities to be K = 1, and ignore any network structure in particular the fact that
the n(n−1)/2 edge labels come from only n nodes, and that these n nodes form
communities. The setting with a general community structure is much more
challenging, because it requires estimating two layers of latent variables, the
community labels and the edge values themselves. Taking community structure
into account is crucial for the method to be relevant in neuroimaging applica-
tions, and differs from the crowdsourcing setting in highly non-trivial ways.

2. Optimal estimates and the role of noise

We start by deriving two estimators of A when parameters W,P,Q are known: a
maximum likelihood estimator and an estimator based on likelihood ratio tests.
These are not practical, but since they are provide optimal estimation error and
test power, it is instructive to understand their behavior as a function of noise
level. We will also use these estimators as oracle benchmarks for comparisons,
and to derive the EM algorithm presented in the next section.

When W,P and Q are known and the only unknown is the underlying matrix
A, treated as fixed, we can estimate each entry Aij independently, since the only
source of randomness is independent noise. To simplify notation, we fix a pair
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(i, j) of nodes and denote a = Aij , am = A
(m)
ij , s =

∑N
m=1 am, w = Wij , p = Pij

and q = Qij .

2.1. Maximum likelihood estimation

The likelihood of a given the data a1, ..., aN is

L(a; a1, . . . , aN ) =
[
w

N∏
m=1

(1− q)amq1−am

]a
·
[
(1−w)

N∏
m=1

pam(1− p)1−am

]1−a

.

Up to a constant, we can write the log-likelihood as

logL(a) ∝ a

(
s log

(1− p)(1− q)

pq
− log

1− w

w
−N log

1− p

q

)
. (1)

Since a can only take on values of 0 or 1, the estimate will be determined by the
sign of the multiplier of a in (1). Therefore, the maximum likelihood estimator
of a is

a∗ = 1{s ≥ μ}, where μ =
log 1−w

w +N log 1−p
q

log (1−p)(1−q)
pq

. (2)

To understand how the optimal estimate a∗ depends on the noise, consider the
estimation error of a∗, which has the form

P(a∗ �= a) = w P(s < μ|a = 1) + (1− w) P(s ≥ μ|a = 0). (3)

The probabilities are binomial: conditional on a = 1, s is Binomial(N, 1 − q),
and conditional on a = 0, s is Binomial(N, p). Since the threshold t depends
on p, q, and w, the dependence of the error on these parameters is somewhat
complicated, but straightforward to compute. Figure 1 shows the error P(a∗ �= a)
as a function of p and q. When p or q increases and all other parameters are fixed,
the estimation error increases. This observation is confirmed by the following
lemma (the proof is given in Appendix A).

Lemma 2.1 (The role of noise). The estimation error P(a∗ �= a) defined by (3)
is an increasing function of p and q.

2.2. Likelihood ratio tests and FDR

An alternative approach to estimating a when all parameters are known is to
perform a test. Unlike maximum likelihood estimation, testing allows us to ex-
plicitly control the false discovery rate (FDR), which is often important in prac-
tice.

Consider the null hypothesis a = 0 and the alternative hypothesis a = 1.

Under the null, s =
∑N

m=1 am follows Binomial(N, p); under the alternative, s
follows Binomial(N, 1− q). For a given confidence level α, let Tα be a likelihood
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Fig 1. The contour of the estimation error of A∗
ij as a function of Pij on the x-axis and Qij

on the y-axis. The errors shown on each plot are measured at coordinates (0.4, 0.4), (0.2, 0.4),
(0.3, 0.2) and (0.2, 0.1).

ratio test with critical value kα ∈ N that accepts the null if s < kα and accepts
the alternative if s > kα; when s = kα, it accepts the alternative with a certain
probability adjusted to achieve the level α. The power γα of the test Tα is then
also a function of α. Since

P
{
Tα rejects the null

}
= αP

{
a = 0

}
+ γαP

{
a = 1

}
= α(1− w) + γαw,

P
{
Tα falsely rejects the null

}
= αP

{
a = 0

}
= α(1− w),

the false discovery rate ξα of Tα can be computed by

ξα =
α(1− w)

α(1− w) + γαw
. (4)

We state a property of ξα that we will use to control the false discovery rate
(the proof is given in Appendix A).

Lemma 2.2 (Monotonicity of false discovery rate). Consider the likelihood ratio
test Tα and the false discovery rate ξα of Tα defined by (4). If p, q ≤ 1/2 then
ξα is an increasing function of α.

It is easy to see that ξα takes values from zero to 1− w (γα tends to one as
α tends to one). Therefore, for a fixed ξ ∈ (0, 1 − w), by the monotonicity of
ξα, we can estimate a by performing test Tα with α being the unique solution
of equation (4).

Figure 2 shows the power γα of Tα as a function of p and q when N = 10,
w = 0.2 and the false discovery rate is fixed at ξα = 0.05. We see that γα
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Fig 2. Power of the likelihood ratio test Tα with w = 0.2, N = 10 and the false discovery rate
fixed at ξα = 0.05.

decreases when either p or q increases and the other is fixed. Also, γα is close to
one when both p, q are small and γα is close to zero when both p, q are large.

In Section 3, we estimate unknown parameters via the EM algorithm and
use the estimates as plugins for the unknown parameters to perform likelihood
ratio tests.

3. The estimation algorithm

We now return to the more realistic case of unknown parameters, and derive
an algorithm to estimate A, W , P and Q at the same time. We obtain an
initial estimate of the underlying block structure shared by W , P and Q from
the matrix S =

∑N
m=1 A

(m). Then we apply the EM algorithm to estimate
submatrices of A, W , P and Q associated with the estimated blocks.

3.1. Estimating the block structure

Let Â = (Âij) be the n × n matrix with entries Âij = 1(Sij ≥ N/2). Under
the assumption that entries of P and Q are at most 1/2, without which the
problem becomes unidentifiable, the matrix Â is a consistent estimate of A.
We can estimate the block structure of W by applying a community detection
algorithm, such as spectral clustering [2, 19, 25] or the pseudo-likelihood method
[2], to the initial estimate Â. We will assume that the number of communities
K is known, as is usually done in network literature, or alternatively K can be
first estimated by one of several methods available [9, 44, 24]. Having estimated
the block structure, we condition on the node labels and treat them as known,
so that the entries of W , P , and Q are constant within each estimated block.
With this assumption in mind, we now present the EM algorithm to recover the
sub-matrix of A corresponding to each estimated block.
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3.2. The EM algorithm when node labels are known

In this section, we derive an estimate of A using the EM algorithm, assuming
that the vector of node labels c is known. To get the final estimate of A, we will
replace c with an estimate from Section 3.1.

Recall that A is generated from a block model withK communities. Therefore
W = EA is a symmetric matrix with K2 blocks (determined by c), with equal
entries within each block. To focus on one such block, we fix k, l ∈ {1, ...,K}
with k �= l (the case k = l is treated similarly) and consider the (k, l) block
according to c:

J = {(i, j) : ci = k, cj = l}.
By assumption of shared block structure, restrictions of W , P and Q to J
are matrices of constant entries, values of which we denote by w, p, and q,
respectively. Thus, Wij = w, Pij = p and Qij = q for all (i, j) ∈ J . The

likelihood of AJ and A
(m)
J – restrictions of A and A(m) to J – takes the form

L =
∏

(i,j)∈J

[
w

N∏
m=1

q1−A
(m)
ij (1− q)A

(m)
ij

]Aij

×
[
(1− w)

N∏
m=1

pA
(m)
ij (1− p)1−A

(m)
ij

]1−Aij

.

For each 0 ≤ r ≤ N , define Ir = {(i, j) ∈ J : Sij = r}. Adding up the

log-likelihoods of the independent A
(m)
J , 1 ≤ m ≤ N , and grouping the terms

with (i, j) ∈ Ir, we obtain

logL =

N∑
r=0

∑
(i,j)∈Ir

{
Aij logw + (1−Aij) log(1− w)

+ Aij

[
(N − r) log q + r log(1− q)

]
+ (1−Aij)

[
r log p+ (N − r) log(1− p)

]}
.

For each (i, j) ∈ Ir, define τr = E[Ai,j |Sij = r]. Hereafter, we use |R| to de-
note the cardinality of a set R. Taking the conditional expectation of the log-

likelihood given the data, L̃ = E(logL|{A(m)
J }Nm=1), we obtain for the E-step

L̃ =

N∑
r=0

|Ir|
{ [

τr logw + (1− τr) log(1− w)
]

+ τr
[
(N − r) log q + r log(1− q)

]
+ (1− τr)

[
r log p+ (N − r) log(1− p)

]}
.

The M-step involves finding estimates of w, p, q that maximize L̃. These esti-
mates are unique, since L̃ is concave in w, p, q. The partial derivative of L̃ with
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respect to w has the form

∂L̃
∂w

=

N∑
r=0

|Ir|
(
τr
w

− 1− τr
1− w

)
.

Setting the derivative to zero yields an estimate ŵ of w:

ŵ =
1

|J |

N∑
r=0

τr|Ir|. (5)

Similarly, the estimates of p and q take the form

p̂ =

∑N
r=0 r(1− τr)|Ir|∑N
r=0 N(1− τr)|Ir|

, q̂ =

∑N
r=0 τr(N − r)|Ir|∑N

r=0 τrN |Ir|
. (6)

Since the τr’s are unknown, we initialize by majority vote τ̂r = 1(r ≥ N/2).
The Bayes rule gives

τr = P(Aij = 1|Sij = r)

=
P(Sij = r|Aij = 1) P(Aij = 1)

P(Sij = r|Aij = 1) P(Aij = 1) + P(Sij = r|Aij = 0) P(Aij = 0)

=
w(1− q)rqN−r

w(1− q)rqN−r + (1− w)pr(1− p)N−r
.

Therefore, once ŵ, p̂ and q̂ are computed, we can update τ̂r by

τ̂r =
ŵ(1− q̂)r q̂N−r

ŵ(1− q̂)r q̂N−r + (1− ŵ)p̂r(1− p̂)N−r
. (7)

The EM steps are then iterated until convergence.

3.3. The complete EM algorithm with unknown labels

In Section 3.2 we assume that c is known and derive the EM algorithm for
estimating A. Since c is unknown in practice, we first compute its estimate ĉ
using Â as described in Section 3.1. We then repeat the following steps until
convergence: (i) treat ĉ as the ground truth and estimate A by applying the EM
algorithm described in Section 3.2 for each block, (ii) update ĉ using the new
estimate of A.

Recall that S is the sum of observations A(m), 1 ≤ m ≤ N , and Â is the
matrix with entries Âij = 1(Sij ≥ N/2). We initialize an estimate ĉ of com-

munity labels c by applying an existing clustering algorithm on Â. Although
we can choose any consistent clustering algorithm, for concreteness, we will use
spectral clustering. Similar to Section 3.2, we fix k, l ∈ {1, ...,K} and consider
the (k, l) block according to ĉ:

Ĵ = {(i, j) : ĉi = k, ĉj = l}.
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Within block Ĵ , we estimate entries of W , P and Q by ŵ, p̂ and q̂, respectively,
and compute them as follows. Denote Îr = {(i, j) ∈ Ĵ : Sij = r}. Initialize
τ̂r = 1(r ≥ N/2) and repeat T times:

1. Compute ŵ, p̂, and q̂ by

ŵ =
1

|Ĵ |

N∑
r=0

τ̂r|Îr|,

and

p̂ =

∑N
r=0 r(1− τ̂r)|Îr|∑N
r=0 N(1− τ̂r)|Îr|

, q̂ =

∑N
r=0(N − r)τ̂r|Îr|∑N

r=0 Nτ̂r|Îr|
.

2. Using current estimates ŵ, p̂, and q̂, update the posterior τ̂r

τ̂r =
ŵ(1− q̂)r q̂N−r

ŵ(1− q̂)r q̂N−r + (1− ŵ)p̂r(1− p̂)N−r
.

3. Return to step (1) unless the parameter estimates have converged.
4. Update the Ĵ block of Â by Âij = 1{τ̂r ≥ 1/2}.
5. Update the label estimate ĉ by applying spectral clustering on current Â.

In practice, we obtain reasonable results with only a few updates of ĉ. The
EM updates in steps (1)–(3) also converge quickly given a good estimate of the
community label. For all simulations in Section 4, we set T = 2 and the number
of EM iterations to be 20.

Remark 3.1. We note that the alternation of EM updates with community
label updates in the algorithm above leaves something to be desired, in that it
would be preferable to have a single EM algorithm that jointly optimizes Â, ŵ
and ĉ. Of course, efforts toward such an algorithm immediately run up against
the well-known fact that the natural EM update in the SBM is computationally
intractable. In light of this, one might consider adapting the pseudo-likelihood
method proposed in [2], but this approach only solves the problem of updating
ĉ and ŵ based on (an estimate of) A. Incorporating the observed networks
A(1), A(2), . . . , A(N) is non-trivial in light of the fact that these observed net-
works are dependent through A. The development of a more principled update
procedure, using pseudo-likelihood or other similarly-motivated approximations
such as variational methods or profile-likelihood, is a promising avenue for future
research, but one which we do not pursue further here.

Remark 3.2. Our algorithm is initialized by the majority vote instead of the
method of moments that is often used in crowdsourcing [46]. While the two
initializations may have different accuracy, we have found through simulations
that there is not much difference once EM has been applied, and most of the
time EM improves substantially over the initial value, whichever method is used
to initialize. We believe this is because by assuming the block structure, we are
able to leverage the information shared among many entries within each block.
For simplicity, we only use the majority vote initialization in this paper.
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3.4. A theoretical guarantee of convergence

We focus our theoretical investigation of convergence properties on the case
T = 1. Before stating the result, we need to introduce further notation. Recall
that ĉ is the estimate of the label assignment c output by spectral clustering.
Following [19], we measure the error between ĉ and c by

γ(c, ĉ) = min
c̃

max
1≤k≤K

|{i : ĉi = k, c̃i �= k}|+ |{i : c̃i = k, ĉ �= k}|
|{i : c̃i = k}| , (8)

where the minimum is over all c̃ obtained from c by permuting labels of c.
For x, y ∈ (0, 1/2), define

h(x) :=
log(2− 2x)

log(2− 2x)− log(2x)
, (9)

φ(x) := x− h−1

(
x

2
+

h(x)

2

)
, (10)

ϕ(x, y) :=
(
x− h(x)

)2(
y − h(y)

)2
, (11)

where h−1 is the inverse of h and the graph of h−1 is shown in Figure 8. A simple
analysis shows that h is an increasing function, h(x) ≥ x for every x ∈ (0, 1/2),
limx→0 h(x) = 0 and limx→1/2 h(x) = 1/2. This implies φ(x) ≥ 0 for every
x ∈ (0, 1/2) and limx→0 φ(x) = limx→1/2 φ(x) = 0; similarly, limx→0 ϕ(x) =
limx→1/2 φ(x) = 0. For every δ ∈ (0, 1/4), denote

Rδ :=
{
θ = (x, y, z)T : δ ≤ y, z ≤ 1/2− δ and δ ≤ x ≤ 1− δ

}
. (12)

We can now formalize a convergence result for the algorithm in Section 3.3.
The following theorem establishes exponential convergence of the parameter
estimates for P,Q and W . A proof can be found in Appendix B.

Theorem 3.3 (Convergence of the EM algorithm). Consider the algorithm
in Section 3.3 with T = 1. Fix k, l ∈ {1, ...,K} and consider the (k, l) block
J = {(i, j) : ci = k, cj = l} of size nk × nl. Denote by w, p and q the common
values of entries of W , P and Q on J , respectively. Further, let θ = (w, p, q)T

and θt be the estimate of θ after repeating steps (1) through (3) a total of t
times. Assume that θ ∈ Rδ and

N ≥ C

δ2
max

{
log

1

δφ(p)
, log

1

δφ(q)
,
log(1/δ)

ϕ(p, q)

}
,

nknl ≥ Cr2N

δ3
max

{
1

δ2
,

1

φ2(p)
,

1

φ2(q)

}
,

γ2(ĉ, c) ≤ δ

C
max {δ, φ(p), φ(q)} ,

where C is a sufficiently large constant. Then with probability at least 1 −
exp(−r),

‖θt − θ‖ ≤ exp

(
−t

[
Nδϕ(p, q)− log

N

δ4

])
· ‖θ0 − θ‖+ γ2(ĉ, c)

δ
+

rΦ

δ
,
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where

Φ := min

{
log2

(
1

δ
− 1

)√
N

nknl
,

1

δ
·
(
1 + δ

)−Nϕ(p,q)
+

1√
δnknl

}
.

The error bound in Theorem 3.3 depends critically on δ (note that φ(x)
tends to zero as x → 0); a similar dependence of the error bound on δ appears
in the crowdsourcing literature (see, e.g. [46, Theorems 1 and 2]). As δ becomes
smaller, i.e., (w, p, q)T gets closer to the boundary of the set (0, 1) × (0, 1/2)2,
the problem of estimating parameters becomes harder, and therefore a larger
sample size N is required. In the ultra-sparse regime when the average degree
does not grow with n, δ = O(1/n) and N must grow linearly in n in order to
maintain a meaningful error bound. Although we do not focus on optimizing
the dependence on δ, the simulations in Section 4 suggest that the bound is
not tight in terms of δ; empirically, the algorithm still performs reasonably well
when networks are relatively sparse.

The error bound in Theorem 3.3 consists of three terms. The first term goes
to zero exponentially fast as t → ∞ when N is sufficiently large. The sec-
ond term depends on the error γ(ĉ, c) in estimating communities, which is es-
sentially proportional to the inverse of the expected node degree of A when
the community signal is sufficiently strong. This can be easily shown using
existing results on community detection (see, e.g., [26]), and we do not de-
velop this further in this paper. The last term is a statistical error of order
O(Kmin{

√
N/n, 1/n+ exp(−N)}) if all communities are of similar sizes.

Theorem 3.3 implies consistency of the estimates of W,P and Q, as well as
vanishing fraction of incorrectly estimated edges of the latent adjacency matrix
A, provided the number of iterations t, the number of networks N and the block
sizes all grow suitably quickly.

Corollary 3.4. For fixed W,P,Q ∈ R
K×K and under suitable growth assump-

tions on the number of iterations t, the number of networks N and the block
sizes {nk}Kk=1, the algorithm of Section 3.3 yields consistent estimates of W,P
and Q. Under slightly stronger growth conditions (essentially that the number
of networks N cannot grow too quickly), the estimates {τ̂r} converge to the true
{τr} as defined in Section 2, i.e., the estimate furnished by the algorithm in
Section 3.3 converges to the likelihood ratio test derived in Section 2.1.

Remark 3.5. While Theorem 3.3 is stated for binary A and {A(m)}Nm=1, a
generalization to weighted graphs and a broader class of edge error models is
possible. Analogues to Theorem 3.3 can be obtained provided that spectral clus-
tering of A recovers most community labels correctly under the assumed model,
the observed matrices {A(m)}Nm=1 concentrate about A, and the edge distribu-

tions for Ai,j and {A(m)
i,j : m = 1, 2, . . . , N ; i, j = 1, 2, . . . , n} are well-behaved.

More details are given in Appendix C.
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4. Numerical results

In this section we empirically compare performance of several estimators of
A: the “naive” majority-vote estimate Â described in Section 3.1 (MV), which
estimates each entry of A separately; the EM estimate we proposed in Section 3.3
(EM); and, in simulations, the oracle estimate described in Section 2.1 which
uses known parameter values of W , P , and Q (OP). To control the false positive
rate, we also consider variants EM[T] and OP[T] of EM and OP. Assuming that
parameters are known, OP[T] estimates A by performing the likelihood ratio test
on each entry of A, as discussed in Section 2.2. EM[T] first estimates parameters
by EM and then plugs them in as true parameters to perform the likelihood ratio
test. We set the false discovery rate to be 0.05 for both EM[T] and OP[T].

As discussed in the Introduction, one can obtain an estimate of A by thresh-
olding (at 1/2) the entries of the low-rank estimate of EA(1) proposed by [39].
However, this does not yield a good estimate of A and in fact produces very
large errors, on a different scale from all other methods. As a result, we omit it
from comparisons in order to be able to plot all the other errors together at an
appropriate scale.

For our main algorithm (described in Section 3.3), we set the number of outer
loops to T = 2 and the number of EM iterations to 20. This means the algorithm
first estimates the community structure using Â as the input. Once node labels
are computed, it estimates all parameters of the model, including the posterior
τ̂ , by running 20 iterations of the inner loop. The posterior τ̂ is then thresholded
to obtain an estimate of the original network A. This estimate is used in the
second run of the outer loop to update the node labels and subsequently re-
estimate all parameters and A.

We first test the methods on synthetic networks and then apply them to brain
fMRI data, the motivating example discussed in the Introduction. To initialize
EM, we use regularized spectral clustering [2, 19, 25] to estimate the community
labels. Let Âreg = Â+ 0.5n−111T, D = diag(Âreg1) and L = D−1/2ÂregD

−1/2.
We first compute the K eigenvectors of L that correspond to its K largest
eigenvalues. We then apply the K-means algorithm on row vectors of the n×K
matrix obtained by stacking the K eigenvectors together to find the commu-
nity labels. The K-means algorithm is implemented via the MATLAB function
kmeans and is run with 20 iterations.

The performance of all estimators is measured by the false discovery rate
(FDR) and the true positive rate (TPR). For an estimate Â of A, FDR and
TPR are defined as

FDR =
|{(i, j) : Âij = 1, Aij = 0}|

|{(i, j) : Âij = 1}|
, TPR =

|{(i, j) : Âij = 1, Aij = 1}|
|{(i, j) : Aij = 1}| .

For each method, we also report the overlap 1 − γ(ĉ, c) between community
assignments ĉ and c, where γ(ĉ, c) is defined by (8) and ĉ is computed by applying
regularized spectral clustering on the estimate of A produced by that method.
Note that γ(ĉ, c) can be greater than one; in that case we set the overlap to zero.
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Finally, we report the errors in estimating the false positive, false negative and
edge probabilities of EM and MV (the corresponding errors of EM[T] are very
similar to that of EM and therefore omitted). For EM, we measure the errors
by directly computing the ratios of Frobenius norms:

‖Ŵ −W‖F
‖W‖F

,
‖P̂ − P‖F

‖P‖F
,

‖Q̂−Q‖F
‖Q‖F

.

For MV, we first estimate edge probabilities in each block specified by ĉ by the
average number of non-zero entries of Â in that block and then compute the
Frobenius norm errors defined above for W . To estimate P and Q from MV,
for each pair of nodes (i, j), if Âij = 0 then we estimate Pij by P̂ij = Sij/N ;

if Âij = 1, we estimate Qij by Q̂ij = 1 − Sij/N . We measure the errors of
estimating P and Q by the Frobenius norm ratios computed separately over the
zero and non-zero entries of Â:

(∑
(i,j):Âij=0(Pij − P̂ij)

2∑
(i,j):Âij=0 P

2
ij

)1/2

,

(∑
(i,j):Âij=1(Qij − Q̂ij)

2∑
(i,j):Âij=1 Q

2
ij

)1/2

.

4.1. Synthetic data

We first test the performance of the estimates on a simple example of a sample of
networks with shared community structure. We generate the adjacency matrix
A from an SBM with n = 300 nodes and K = 3 communities of 100 nodes each.
We parameterize the 3 × 3 matrix B of within and between communities edge
probabilities of this SBM as

B = ρw

⎛
⎝ 1 βw βw

βw 1 βw

βw βw 1

⎞
⎠ .

The parameter ρw controls the overall expected node degree of the model
while βw specifies the ratio of the between-community edge probability to the
within-community edge probability. Smaller values of βw correspond to easier
community detection. Conversely, a larger value of ρw indicates more observed
edges and therefore an easier community detection problem. Note, however, that
the difficulty of the community detection problem does not directly translate
into the difficulty of estimating the underlying true A, which is also influenced
by P and Q.

We similarly parameterize the 3 × 3 noise matrices P and Q of within- and
between-communities false positive and false negative probabilities as

P = ρp

⎛
⎝ 1 βp βp

βp 1 βp

βp βp 1

⎞
⎠ , Q = ρq

⎛
⎝ 1 βq βq

βq 1 βq

βq βq 1

⎞
⎠ .
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Thus, Pij = Pcicj and Qij = Qcicj for 1 ≤ i, j ≤ n. The overall numbers of false
positive and false negative edges are controlled by parameters ρp and ρq, re-
spectively. The relative prevalence of false positives and false negatives between
communities compared to within communities is controlled by parameters βp

and βq, respectively. Thus, if A ≡ 0 (a network with no edges) then the average
degree of a noisy realization of A is ρp(1 + 2βp)(n− 1); if A = 11T − diag(1) (a
fully connected network), then the average degree of a noisy realization of A is
(n− 1)− ρq(1 + 2βq)(n− 1).

In order to focus attention on the relative performance of various methods
dealing with a noisy sample of networks, we will use the true number of commu-
nities in simulations, K = 3. When the number of communities is not known, it
can be estimated from Â in the first stage by several methods [9, 44, 24], which
have been shown to provide accurate results when K is relatively small com-
pared to n. Alternatively, one could use a larger K and interpret the stochastic
block model fit as a histogram approximation to the network rather than the
true model, as was argued in [35].

The performance of all methods — majority vote (MV), our proposal (EM,
EM[T]) and oracle parameters (OP, OP[T]) — is shown in Figures 3, 4 and 5.
In all cases, n = 300, K = 3, community sizes are equal, ρw = 0.15, ρq = 0.2,
ρp = 0.25, the target FDR is set to 0.05, and all results are averaged over
100 replications. To see the effect of structured versus unstructured noise, we
consider three different settings where we fix two of the parameters βw, βp, βq

and let the third one vary. In Figure 3 the out-in ratios βp = βq = 1, meaning
that P and Q do not have any community structure and all entries of A are
equally likely to be flipped to the opposite. When βw is not too close to 0 or
1, community labels and parameters of the SBM are accurately estimated, EM
performs similarly to the oracle and has a much smaller FDR (essentially equal
to the target of 0.05) than MV. In contrast, when βw is close to 0 or 1, EM does
not estimate all SBM parameters accurately, but it still provides a reasonable
estimate of A. When likelihood ratio tests are used, both EM[T] and OP[T]
output estimates with stable FDR close to the target 0.05, although the FDR
of EM[T] is slightly larger due to the errors from parameter estimation. In most
cases, MV has large FDR and TPR, which indicates that it estimates A as
having many more edges than it really does. Compared to EM and EM[T], MV
also has larger errors in estimating false positive and false negative probabilities.
All methods perform fairly similarly in recovering communities, with MV being
the least accurate and OP[T] the most accurate.

Figures 4 and 5 show the effect of false positive and false negative edges when
one of parameters βp, βq is set to 1 and the other varies. Again, EM and OP
perform similarly when βp, βq are not too large and community labels can be
accurately estimated. EM also has much smaller FDR than MV in all settings.
Both EM[T] and OP[T] have stable FDRs, close to the target of 0.05, but at
the expense of lower TPR as βp or βq increases.

Overall, as one would expect, all methods perform better as the sample size
N increases, βw, βp and βq decrease, and the community structure becomes
stronger. EM and OP perform very similarly and provide better FDR than MV
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in all settings, especially when N is small. EM[T] and OP[T] also perform well in
controlling the FDR. These empirical results show the importance of leveraging
the block structure for estimating the original network A.

Fig 3. A comparison of different methods as the out-in edge probability ratio βw increases
and false positives and false negatives occur uniformly at random (βp = βq = 1). First
row: false discovery rate for edges of A. Second row: true positive rate for edges of A, Third
row: overlap 1 − γ(ĉ, c) between the true labels c and an estimate ĉ obtained from the es-
timated A for each method. Fourth row: errors of EM and MV in estimating matrices W ,
P and Q. For all cases, ρw = 0.15, ρq = 0.2, ρp = 0.25, n = 300, K = 3, and the target
false positive rate for both EM[T] and OPT[T] is 0.05. All measures are averaged over 100
replications.

4.2. Brain networks

In this section we evaluate the performance of our proposed EM method on
functional brain networks [40, 41]. The data are obtained from resting state fMRI
images, where blood oxygenation levels at different locations in the brain are
recorded over time. These time series of oxygen levels are then preprocessed and
used to compute a Pearson correlation between each pair of locations. Finally,
the correlations are thresholded to construct a binary network matrix.

The dataset we analyze here includes 81 subjects, 39 suffering from schizo-
phrenia and 42 healthy controls (see [40, 41] for details on the data). The result-
ing correlation matrices are 264× 264, corresponding to 264 regions of interest
(ROIs) in the brain. For a given value of the threshold ν ∈ (0, 1), we construct
a brain network A(m) for subject m from its correlation matrix C(m) by setting

A
(m)
ij = 1 if |C(m)

ij | > ν and A
(m)
ij = 0 otherwise. We view each network A(m)

as a noisy observation of an underlying true biological network A, which differs
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Fig 4. A comparison of different methods as the out-in false positive probability ratio βp

increases, false negatives occur uniformly at random (βq = 1) and out-in edge probability
βw = 0.2. First row: false discovery rate for edges of A. Second row: true positive rate for
edges of A, Third row: overlap 1−γ(ĉ, c) between the true labels c and an estimate ĉ obtained
from the estimated A for each method. Fourth row: errors of EM and MV in estimating
matrices W , P and Q. For all cases, ρw = 0.15, ρq = 0.2, ρp = 0.25, n = 300, K = 3, and
the target false positive rate for both EM[T] and OPT[T] is 0.05. All measures are averaged
over 100 replications.

between schizophrenics and controls. Note that the number of edges in A(m)

depends on ν. In practice, there is no consensus on how to choose ν, therefore
it is desirable to have a method that is accurate and stable over a large range
of ν values.

Since the number of communities K is unknown, we first estimate it from
the majority vote matrix Â using a spectral method for estimating the number
of communities based on counting the negative eigenvalues of the graph Bethe-
Hessian [24]. As expected, the estimated number of communities depends on
the threshold value; please see Figure 6. However, there is a stable range of
ν roughly between 0.2 and 0.4, and the estimated K over that range is close
to 14, the number of functional regions suggested independently by [36]. To
facilitate comparison with this known functional parcellation, we fit our EM-
based method with K = 14 in the subsequent analysis.

Figure 6 shows several global summary statistics of the estimates of A for
a range of ν. Global network summary statistics have been a popular tool in
the study of brain networks [38] and can be used to predict disease status, but
here our focus is on how the network estimation method affects the population
estimates of these summary statistics. In particular, since there is no consen-
sus on choosing ν, a stable estimate over a range of values of ν is desirable.
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Fig 5. A comparison of the performance of different methods as the out-in false negative
probability ratio βq increases, false positives occur uniformly at random (βp = 1) and out-in
edge probability is fixed (βw = 0.2). First row: false discovery rate for edges of A. Second
row: true positive rate for edges of A, Third row: overlap 1− γ(ĉ, c) between the true labels c
and an estimate ĉ obtained from the estimated A for each method. Fourth row: errors of EM
and MV in estimating matrices W , P and Q.

Overall, the plots in Figure 6 show that the EM method produces much more
stable estimates over a wider range of ν. For all statistics, the left column shows
schizophrenics and the right column healthy controls. The first row shows esti-
mated population average degree for the EM and MV methods, along with the
range (from minimum to maximum value) and sample median of individual’s
average network degrees. Two other summary statistics shown in the second and
third rows, global efficiency (the average inverse shortest path length, viewed
as a measure of network functional integration) and transitivity (a normalized
average fraction of triangles around an individual node, viewed as a measure of
network functional segregation that reflects the presence of communities), are
also more stable over a wider range of ν for the EM method. The fourth row
shows the strength of the networks estimated by EM and MV, measured by
modularity optimized via spectral clustering [33].

Finally, the fifth row presents the estimated number of communities based on
counting the negative eigenvalues of the graph Bethe-Hessian [24]. For almost
all summaries, the estimates obtained by EM are closer to the median values
obtained from the individual networks, suggesting the EM produces a more
accurate population estimate, or at least one that is more representative of the
sample. The exception to this general pattern occurs only at very low values of
ν, where the network is likely too dense to be informative.

Figure 7 shows sagittal views of the underlying networks estimated by EM
and MV for the threshold parameter ν = 0.5. We use ν = 0.5 since higher ν
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Fig 6. Global summary statistics of brain networks estimated by EM and MV as the threshold
parameter ν changes. Left column: schizophrenics; right column: healthy controls. First row:
average degree. Second row: global efficiency. Third row: transitivity. Fourth row: modularity
value of the community labels estimated by spectral clustering. Fifth row: number of commu-
nities estimated by the Bethe-Hessian based spectral method from majority vote matrix Â.
The sample median refers to the median of values computed from individual networks after
thresholding, and is shown together with the range.

produces sparser networks that are easier to visualize, and the network statistics
are still fairly stable in that range. The plots are drawn by the brain network
visualization tool BrainNet Viewer [45].

5. Discussion

We have proposed a novel way to estimate an underlying “population” net-
work from its multiple noisy realizations, leveraging the underlying community
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Fig 7. Estimates of underlying population networks with threshold ν = 0.5. Left column:
schizophrenics; right column: healthy controls. Top row: EM; bottom row: MV.

structure. In contrast to most previous work (with the notable exceptions of
[39, 43]), our algorithm does not vectorize the network or reduce it to global
summaries; the procedure is designed specifically for network data, and thus
tends to outperform methods that do not respect the underlying network struc-
ture. While we focused on the stochastic block model as the underlying network
structure, because of its simple form and its role as an approximation to any
exchangeable network model, this assumption is not essential. An extension to
the degree-corrected stochastic block model is left as future work, and we be-
lieve in practice the algorithm will work well for any network with community
structure. On the other hand, the assumption of independent noise is important
and unlikely to be relaxed. The assumption of false positive and false negative
probability matrices being piecewise constant is also important, as it allows us
to significantly reduce the number of parameters and estimate them using the
shared information within each block, but clearly many other ways to impose
sharing information are possible, perhaps through a general low rank formula-
tion. We leave exploring such a formulation for future work.

Appendix A: Estimation error

We first prove Lemma 2.1, which formalizes the intuitive fact that the estimation
error is an increasing function of noise levels. Recall that for a fixed pair of nodes
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(i, j), s =
∑N

m=1 A
(m)
ij and μ is the threshold defined in (2).

Proof of Lemma 2.1. Denote by f = f(w, p, q) the estimation error (3), that is

f(w, p, q) = P(a∗ �= a) = wP(s < μ|a = 1) + (1− w)(1− P(s < μ|a = 0)).

We show that there exists a finite set M ⊆ [0, 1/2] such that the partial deriva-
tive ∂f/∂q is positive for all q ∈ [0, 1/2] \M and f is continuous for all q. This
clearly implies that f is an increasing function of q; the proof that f is increasing
in p is similar.

Let M be the set of points q ∈ [0, 1/2] such that μ = μ(w, p, q) is an integer;
this set is finite because μ is a smooth function of q. Fix q0 �∈ M and choose an
integer k so that k < μ(w, p, q0) < k + 1. For any q sufficiently close to q0, the
event s < μ is the same as s ≤ k. Since s ∼ Binomial(N, 1− q) given a = 1 and
s ∼ Binomial(n, p) given a = 0, we have

P(s ≤ k|a = 1) = (n− k)

(
N

k

)∫ q

0

tn−k−1(1− t)kdt, (13)

P(s ≤ k|a = 0) = (n− k)

(
N

k

)∫ 1−p

0

tn−k−1(1− t)kdt. (14)

It follows that

∂f

∂q
(w, p, q0) = w(n− k)

(
N

k

)
qn−k−1
0 (1− q0)

k > 0.

Let us now fix q0 ∈ M and choose an integer k such that μ(w, p, q0) = k. We
consider four possible cases based on the local behavior of μ near q0: μ reaches
local maximum at q0, μ reaches local minimum at q0, μ is increasing, and μ is
decreasing.

If μ reaches local maximum at q0 then for any q sufficiently close to q0, the
event s < μ(w, p, q) is the same as s ≤ k−1. Using (13) and (14) we obtain that
f is continuous at q0. Similarly, f is continuous at q0 if μ reaches local minimum
at q0.

If μ is increasing near q0 then for any q sufficiently close to q0, the event
s < μ(w, p, q) is the same as s ≤ k − 1 if q ≤ q0 and s ≤ k if q > q0. Therefore
the jump of f at q0 is

h = wP(s = k|a = 1)− (1− w)P(s = k|a = 0).

Using s|a = 1 ∼ Binomial(N, 1 − q0) and s|a = 0 ∼ Binomial(N, p), a simple
calculation shows that k = μ(w, p, q0) is equivalent to h = 0, which implies the
continuity of f at q0. Similarly, f is continuous at q0 if μ is decreasing near q0,
and the proof is complete.

Proof of Lemma 2.2. Recall that Tα rejects the null hypothesis if s > kα; when
s = kα it rejects the null with some probability ηα adjusted to achieve confidence
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level α. Since s follows Binomial(N, p) if a = 0 and Binomial(N, 1− q) if a = 1,
the confidence level and power of Tα satisfy

α = ηα

(
N

kα

)
pkα(1− p)N−kα +

N∑
m=kα+1

(
N

m

)
pm(1− p)N−m,

γα = ηα

(
N

kα

)
(1− q)kαqN−kα +

N∑
m=kα+1

(
N

m

)
(1− q)mqN−m.

Solving for ηα from the first equation and plugging it into the second equation,
we obtain

γα
α

=

(
1− q

p

)kα
(

q

1− p

)N−kα

+
1

α

N∑
m=kα+1

(
N

m

)
(1− q)mqN−m

[
1−
(

pq

(1− p)(1− q)

)m−kα
]
.

Note that kα is a piecewise constant function of α. On every interval of α where
kα is constant, the coefficient of 1/α in the above representation of γα/α is
positive because

1−
(

pq

(1− p)(1− q)

)m−kα

≥ 0

for every m ≥ kα + 1 by the assumption p, q ≤ 1/2. This implies that γα/α
is decreasing on every such interval, and in turn on the whole interval (0, 1]
because γα/α is a continuous function of α. Since the false positive rate ξα is a
decreasing function of γα/α by (4), the claim of Lemma 2.2 follows.

Appendix B: Convergence of the EM algorithm

In this section we prove Theorem 3.3, establishing the convergence of our al-
gorithm described in Section 3.3. The proof consists of two steps: showing the
convergence of population-level updates (Section B.1) and bounding the error
between population-level updates and sample-level updates (Section B.2).

B.1. Population-level updates

B.1.1. Preliminaries

We first briefly recall the population-level updates of our algorithm and set up
additional notation. To simplify notation, let us fix a pair of nodes (i, j) and

denote a = Aij , s = Sij =
∑N

m=1 A
(m)
ij , w = Wij , p = Pij , q = Qij and

θ = (w, p, q)T. Recall that

w = P(a = 1), p = P(A
(m)
ij = 1|a = 0), q = P(A

(m)
ij = 0|a = 1),
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and s follows a mixture of binomial distributions, namely

s ∼ wBinomial(N, 1− q) + (1− w)Binomial(N, p). (15)

Let fθ be the joint likelihood of s and a. Assume that fθ belongs to a para-
metric family {fθ′ |θ′ := (w′, p′, q′)T ∈ Θ}, with Θ to be specified. For each
θ′ ∈ Θ, the joint likelihood fθ′(s, a) of s and a has the form

fθ′(s, a) =
[
Xθ′(s)

]a[
Yθ′(s)

]1−a
,

where

Xθ′(s) = w′(1− q′)s(q′)N−s, Yθ′(s) = (1− w′)(p′)s(1− p′)N−s. (16)

Summing over a, we obtain the marginal likelihood fθ′(s) = Xθ′(s) + Yθ′(s) of
s. For each θ′′ ∈ Θ, the conditional expectation of log fθ′′(s, a) given s takes the
form

Tθ′′|θ′(s) =
Xθ′(s)

Xθ′(s) + Yθ′(s)

[
logw′′ + s log(1− q′′) + (N − s) log q′′

]
(17)

+
Yθ′(s)

Xθ′(s) + Yθ′(s)

[
log(1− w′′) + s log p′′ + (N − s) log(1− p′′)

]
.

The population-level update of a current parameter estimate θ′ is computed by

M(θ′) = argmax
θ′′

ETθ′′|θ′(s). (18)

To compute M̂(θ′), let us denote by F,G and L the following functions:

Fθ′(t) =
Xθ′(t)

Xθ′(t) + Yθ′(t)
, Gθ′(t) =

tXθ′(t)

Xθ′(t) + Yθ′(t)
, Lθ′(t) =

tYθ′(t)

Xθ′(t) + Yθ′(t)
,

(19)
where Xθ′ and Yθ′ are defined in (16). Setting partial derivatives of Tθ′′|θ′ to
zero, we find that the components of M(θ′), which we denote by M(w′), M(p′)
and M(q′), respectively, can be computed by

M(w′) = EFθ′(s), M̂(p′) =
ELθ′(s)

N −N EFθ′(s)
,

M(q′) =
N EFθ′(s)− EGθ′(s)

N EFθ′(s)
. (20)

It follows from a simple calculation and (20) that M(θ) = θ.

B.1.2. Guarantee of convergence

We show that the map θ′ �→ M(θ′) is a contraction in a neighborhood of θ. To
specify such a neighborhood, we need additional notation. For x, y ∈ [0, 1/2],
define

H(x, y) :=
log 1−x

y

log 1−x
y + log 1−y

x

. (21)
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Note that the function h defined in (9) satisfies h(x) = H(x, 1/2). It is easy to
check that H(x, y) is increasing in x and decreasing in y. Moreover, H(x, y) ≥ x
and H(x, y) ≤ 1− y for all x, y ∈ [0, 1/2].

For p, q ∈ [0, 1/2] and ε ∈ [0, 1), define a neighborhood of (p, q) by

Uε(p, q) =

(
h−1
(
εh(p) + (1− ε)p

)
,
1

2

)
×
(
h−1
(
εh(q) + (1− ε)q

)
,
1

2

)
, (22)

where h−1 is the inverse function of h (see Figure 8). Since h(x) = H(x, 1/2) ≥ x
and h is increasing, it follows that h−1(x) ≤ x for all x ∈ [0, 1/2]. Therefore
Uε(p, q) is a rectangle containing (p, q) and Uε1(p, q) ⊆ Uε2(p, q) if ε1 ≥ ε2. Note
that for every x ∈ [0, 1/2],

h−1(x) ≤ h−1(εh
(
x) + (1− ε)x

)
≤ x.

Fig 8. Graphs of function h−1 and the identity function.

Lemma B.1 (Contraction of population-level updates). Let δ ∈ (0, 1/4), ε ∈
(0, 1) and M(θ′) be the population-level update of θ′ defined by (20). Assume
that θ, θ′ ∈ Rδ, with the set Rδ defined by (12), and (p′, q′) ∈ Uε(p, q). Then

‖M(θ′)− θ‖ ≤ 30N‖θ′ − θ‖
δ4

exp
(
−Nδε2ϕ(p, q)

)
,

where ϕ is defined by (11).

Proof. The technique used for proving this lemma closely follows [3]. For t ∈
[0, 1], let θt = (wt, pt, qt)

T = θ + t(θ′ − θ) and define g(t, s) = Fθt(s), where s
satisfies (15) and Fθt(s) is defined in (19). Then M(w′)−w = E(g(1, s)−g(0, s))
becauseM(w) = w. By the mean value theorem, for each s there exists ts ∈ [0, 1]
such that

g(1, s)− g(0, s) =
∂g(ts, s)

∂t
.

To compute the partial derivative of g, note that

Fθ(s) =
1

1 + exp
(
log 1−w

w + (N − s) log 1−p
q − s log 1−q

p

) =
1

1 + exp(〈Z, η〉) ,
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where 〈., .〉 denotes the inner product, Z = Z(s) := (1, N − s,−s)T and

η = η(θ) :=

(
log

1− w

w
, log

1− p

q
, log

1− q

p

)T

.

A simple calculation shows that∣∣∣∂g(t, s)
∂t

∣∣∣ =
|〈ψt, θ

′ − θ〉|[
exp
(

1
2 〈Z, η(θt)〉

)
+ exp

(
− 1

2 〈Z, η(θt)〉
)]2

≤ ‖ψt‖‖θ′ − θ‖[
exp
(

1
2 〈Z, η(θt)〉

)
+ exp

(
− 1

2 〈Z, η(θt)〉
)]2 ,

where

ψt =

(
1

wt(1− wt)
,
Npt − s

pt(1− pt)
,
N(1− qt)− s

qt(1− qt)

)T

.

Since s ≤ N and θ′, θ ∈ Rδ, it is easy to see that ‖ψt‖ ≤ 3N/δ2. Therefore

E

∣∣∣∂g(ts, s)
∂t

∣∣∣ ≤ 3N‖θ′ − θ‖
δ2

× E
1[

exp
(

1
2 〈Z(s), η(θts)〉

)
+ exp

(
− 1

2 〈Z(s), η(θts)〉
)]2

=:
3N‖θ′ − θ‖

δ2
Φ. (23)

Let s1 ∼ Binomial(N, p) and s2 ∼ Binomial(N, 1 − q) be binomial random
variables. Since s is a mixture of s1 and s2 with weights 1−w and w, respectively,
we have

Φ ≤ (1− w) max
t∈[0,1]

E
1[

exp
(

1
2 〈Z(s1), η(θt)〉

)
+ exp

(
− 1

2 〈Z(s1), η(θt)〉
)]2

+ w max
t∈[0,1]

E
1[

exp
(

1
2 〈Z(s2), η(θt)〉

)
+ exp

(
− 1

2 〈Z(s2), η(θt)〉
)]2

= (1− w) max
t∈[0,1]

EΦ1 + w max
t∈[0,1]

EΦ2, (24)

where Φ1 and Φ2 denote the corresponding expressions under the expectation.
We now use concentration of s1 and s2 to bound EΦ1 and EΦ2. Note that

exp
(
− 〈Z(s1), η(θt)〉

)
=

1− wt

wt

(
1− pt
qt

)N (
ptqt

(1− pt)(1− qt)

)s1

≥ 1− wt

wt

(25)
if and only if s1 ≤ H(pt, qt)N . Therefore if s1 � pN is sufficiently smaller than
H(pt, qt)N , then exp(−〈Z(s1), η(θt)〉) grows exponentially in N . This implies
that Φ1 is of order exp(−N) and so is EΦ1.
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To make this argument rigorous, let α = mint∈[0,1] h(pt). Since (p′, q′) ∈
Uε(p, q) and h is monotone, it follows that

α− p = min{h(p′)− p, h(p)− p} > ε(h(p)− p) > 0. (26)

Using the monotonicity of H, we have

min
t∈[0,1]

H(pt, qt) ≥ min
t∈[0,1]

H(pt, 1/2) = α > p.

For 0 < ε0 < α− p, denote by E the event s1 ≤ (p+ ε0)N . By Lemma B.2, we
have P(Ec) ≤ exp(−2ε20N). When E occurs,

s1 ≤ (p+ ε0)N < αN ≤ N min
t∈[0,1]

H(pt, qt).

This implies that (25) holds and s1 ≤ H(pt, qt)N−(α−p−ε0)N for any t ∈ [0, 1].
Since θt ∈ Rδ, we have

Φ1 ≤ exp
(
〈Z(s1), η(θt)〉

)
≤ 1

δ

(
max
t∈[0,1]

ptqt
(1− pt)(1− qt)

)(α−p−ε0

)
N

.

Since the function x �→ x/(1−x) is increasing and pt, qt ≤ 1/2−δ for all t ∈ [0, 1]
because θ′, θ ∈ Rδ, it follows that

max
t∈[0,1]

ptqt
(1− pt)(1− qt)

≤
(
1− 2δ

1 + 2δ

)2

.

Choose ε0 = (α − p)/2. Using the fact that P(Ec) ≤ exp(−2ε20N) and Φ1 ≤ 1,
we have

max
t∈[0,1]

EΦ1 ≤ exp(−2ε20N) +
1

δ
exp
(
−N(α− p− ε0) log(1 + 4δ)

)

≤ 2

δ
exp
(
−Nδ(α− p)2

)
≤ 2

δ
exp
(
−Nδε2

(
h(p)− p

)2)
.

Similarly,

max
t∈[0,1]

EΦ2 ≤ 2

δ
exp
(
−Nδε2

(
h(q)− q

)2)
.

Together with (23) and (24), we obtain

|M(w′)− w| ≤ E

∣∣∣∂g(ts, s)
∂t

∣∣∣ (27)

≤ 6N‖θ′ − θ‖
δ3

exp
(
−Nδε2

(
h(p)− p

)2(
h(q)− q

)2)
=: Ψ.

It remains to bound |M(p′) − p| and |M(q′) − q|, which boils down to con-
trolling ELθ′(s) and EGθ′(s). Since s ≤ N , from (27), we have

|EGθ′(s)− EGθ(s)| = |E s(Fθ′(s)− Fθ(s))| ≤ NΨ.
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Similarly,

|ELθ′(s)− ELθ(s)| = |EGθ′(s)− EGθ(s)| ≤ NΨ.

Combining these inequalities, we obtain

|M(p′)− p| ≤ 3NΦ

δ
, |M(q′)− q| ≤ 3NΦ

δ
,

and the claim of Lemma B.1 follows.

Lemma B.2 (Tail bound for binomial distribution). If s ∼ Binomial(N, p) then
for any ε ≥ 0,

P
{
s ≤ (p− ε)N

}
≤ exp

(
−2ε2N

)
,

P
{
s ≥ (p+ ε)N

}
≤ exp

(
−2ε2N

)
.

Proof. This is a direct consequence of Hoeffding’s inequality.

B.2. Sample-level updates

B.2.1. Preliminaries

We now turn to the sample-level updates. Let ĉ be an estimate of the label
assignment c. Recall from (8) that the discrepancy between ĉ and c is measured
by

γ(c, ĉ) = min
c̃

max
1≤k≤K

|{i : ĉi = k, c̃i �= k}|+ |{i : c̃i = k, ĉi �= k}|
|{i : c̃i = k}| ,

where the minimum is over all c̃ obtained from c by permuting the labels.
Without loss of generality, assume that the minimum is achieved at c̃ = c.
We will focus on a single block (out of K2 blocks) determined by c and ĉ. Fix
k, l ∈ {1, ...,K} and denote

J :=
{
(i, j) : ci = k and cj = l

}
, Ĵ :=

{
(i, j) : ĉi = k and ĉj = l

}
. (28)

By definition of γ(c, ĉ), we have

|J \ Ĵ | ≤ γ2(c, ĉ)|J |, |Ĵ \ J | ≤ γ2(c, ĉ)|J |.

To compare sample-level and population-level updates, for any pair of nodes
(i, j) ∈ J , denote (as in Section B.1)

w = Wij , p = Pij , q = Qij , θ = (w, p, q)T.

Also, let s be a mixture of Binomial distributions defined by (15). Recall the
population-level update M(θ′) and its components M(w′), M(p′) and M(q′) in
(18) and (20). In the finite sample, instead of taking the expectation of Tθ′′|θ′ ,
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we compute the average of Tθ′′|θ′ over all entries within the block Ĵ . The sample-
level update is then the maximizer of this average:

M̂(θ′) = argmax
θ′′

1

|Ĵ |
∑

(i,j)∈Ĵ

Tθ′′|θ′(Sij),

To compute M̂(θ′), denote

ÊFθ′ =
1

|Ĵ |
∑

(i,j)∈Ĵ

Fθ′(Sij), ÊGθ′ =
1

|Ĵ |
∑

(i,j)∈Ĵ

Gθ′(Sij),

ÊLθ′ =
1

|Ĵ |
∑

(i,j)∈Ĵ

Lθ′(Sij),

where Fθ′ , Gθ′ and Lθ′ are defined in (19). Then similar to (20), the components
of M̂(θ′), which we denote by M̂(w′), M̂(p′) and M̂(q′), can be computed by

M̂(w′) = ÊFθ′ , M̂(p′) =
ÊLθ′

N −N ÊFθ′
, M̂(q′) =

N ÊFθ′ − ÊGθ′

N ÊFθ′
. (29)

B.2.2. Concentrations of sample-level updates

We first prove uniform bounds for ÊFθ′ −EFθ′(s), ÊGθ′ −EGθ′(s) and ÊLθ′ −
ELθ′(s) in Lemmas B.3 and B.4. Combined with Lemma B.1, this yields a
uniform bound for M̂(θ′)−M(θ′) in Corollary B.5. Finally, Lemma B.6 shows
that our initial parameter estimates belong to a desired neighborhood of the true
parameter θ. The convergence of the sample-level updates then follows from the
contraction of the population updates (Lemma B.1), the uniform bound between
the sample-level updates and the population updates (Corollary B.5), and the
accuracy of the initial parameter estimates (Lemma B.6).

Lemma B.3 (Concentration of sample updates with small N). Let δ ∈ (0, 1/4)
and s be a mixture of Binomial distributions defined by (15). Then for any r ≥ 0
the following hold with probability at least 1− e−r:

sup
θ′∈Rδ

|ÊFθ′ − EFθ′(s)| ≤ 4γ2(ĉ, c) + 50r log2
(
1

δ
− 1

)√
N

|J | ,

sup
θ′∈Rδ

|ÊGθ′ − EGθ′(s)| ≤ 4Nγ2(ĉ, c) + 50rN log2
(
1

δ
− 1

)√
N

|J | ,

where the supremum is taken over Rδ defined in (12).

Note that |ÊLθ′ −ELθ′(s)| = |ÊGθ′ −EGθ′(s)|, therefore the second inequal-

ity of Lemma B.3 also provides a bound for supθ′∈Rδ
|ÊLθ′ − ELθ′(s)|.
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Proof. We begin with bounding ÊFθ′ − EFθ′(s). Denote

Ψ :=
1

|J |
∑

(i,j)∈J

Fθ′(Sij). (30)

Then Ψ is the average of Fθ′(Sij) over J while M̂(w′) is the average of Fθ′(Sij)

over Ĵ . Using the fact that |Fθ′(Sij)| ≤ 1 and the definition of γ2(ĉ, c), we have

|ÊFθ′ −Ψ| ≤
∣∣∣∣∣ 1|Ĵ | −

1

|J |

∣∣∣∣∣ |Ĵ ∩ J |+ |Ĵ \ J |
|Ĵ |

+
|J \ Ĵ |
|J | ≤ 4γ2(ĉ, c). (31)

We now focus on bounding Ψ−EFθ′(s). Condition on J , Sij are i.i.d. copies of a
mixture of binomial distributions wBinomial(N, 1− q)+ (1−w)Binomial(N, p).
Let λ > 0 be a positive scalar and εij be independent symmetric Bernoulli
random variables, also independent of Sij . By symmetrization (see e.g. [22,
Theorem 2.1]), we have

E exp

(
λ sup

θ′∈Rδ

|Ψ− EFθ′(s)|
)
≤ E exp

⎛
⎝ 2λ

|J | sup
θ′∈Rδ

∣∣∣∣∣∣
∑

(i,j)∈J

εij

(
Fθ′(Sij)−

1

2

)∣∣∣∣∣∣
⎞
⎠ .

(32)
Note that Fθ′(Sij) = 1/

(
1 + exp(ZT

ijη(θ
′))
)
, where

Zij := (1, N − Sij ,−Sij)
T, η(θ′) :=

(
log

1− w′

w′ , log
1− p′

q′
, log

1− q′

p′

)T

.

(33)
Since t �→ 1/(1 + et) − 1/2 is Lipschitz with constant one and ‖η(θ′)‖ ≤
2 log(1/δ − 1) because θ′ ∈ Rδ, using (32) and Talagrand’s comparision the-
orem (see e.g. [27, Theorem 4.12]), we obtain

E exp

(
λ sup

θ′∈Rδ

|Ψ− EFθ′(s)|
)

≤ E exp

⎛
⎝ 4λ

|J | sup
θ′∈Rδ

∣∣∣ ∑
(i,j)∈J

εijZ
T
ijη(θ

′)
∣∣∣
⎞
⎠

≤ E exp

⎛
⎝4λ log

(
1
δ − 1

)
|J |

∥∥∥ ∑
(i,j)∈J

εijZij

∥∥∥
⎞
⎠

≤
∑

κ∈{−1,1}3

E exp

⎛
⎝4λ log

(
1
δ − 1

)
|J |

∑
(i,j)∈J

εijZ
T
ijκ

⎞
⎠

=
∑

κ∈{−1,1}3

∏
(i,j)∈J

E exp

(
4λ log

(
1
δ − 1

)
|J | εijZ

T
ijκ

)
.
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Since εijZ
T
ijκ are sub-Gaussian random variables with sub-Gaussian norm at

most
√
3N , we have E exp(tεijZ

T
ijκ) ≤ exp(3t2N) for every t ≥ 0. Therefore

E exp

(
λ sup

θ′∈Rδ

|Ψ− EFθ′(s)|
)

≤ 8 exp

(
48Nλ2 log2

(
1
δ − 1

)
|J |

)
.

Using Markov inequality, we conclude that with probability at least 1− e−r the
following holds:

sup
θ′∈Rδ

|Ψ− EFθ′(s)| ≤ 50r log2
(
1

δ
− 1

)√
N

|J | .

Therefore using (31) and a triangle inequality, we obtain that with probability
at least 1− e−r:

sup
θ′∈Rδ

|ÊFθ′ − EFθ′(s)| ≤ 4γ2(ĉ, c) + 50r log2
(
1

δ
− 1

)√
N

|J |

It remains to bound ÊGθ′ , which is similar to ÊFθ′ except that Gθ′ contains
an additional factor s. Proceeding the proof in the same way as for ÊFθ′ , and
bound s by N when necessary, we obtain that with probability at least 1− e−r,
the following holds

sup
θ′∈Rδ

∣∣∣ÊGθ′ − EGθ′(s)
∣∣∣ ≤ 4Nγ2(ĉ, c) + 50rN log2

(
1

δ
− 1

)√
N

|J | .

The proof is complete.

The following lemma provides alternative bounds to the bounds in Lemma B.3
when N is large. Note that the upper bounds of Lemma B.3 contain the factor√

N/|J |; they become uninformative when N is larger than |J |. This is an arti-
fact of our proof as we use Talagrand’s comparison theorem. Lemma B.4 shows
that when N is large, we can directly compare M̂(θ′) and the true parameter θ
and effectively remove the factor

√
N .

Lemma B.4 (Sample updates with large N). Let δ ∈ (0, 1/4) and ε ∈ (0, 1).
Assume that θ′, θ ∈ Rδ and (p′, q′) ∈ Uε(p, q). Then there exists a constant
C > 0 such that for any r > 0 the following holds with probability at least
1− exp(−r):

sup
θ′∈Rδ

|ÊFθ′ − w| ≤ C

δ

(
1 + δ

)−Nε2ϕ(p,q)
+

Cr√
δ|J |

+ 4γ2(ĉ, c),

sup
θ′∈Rδ

|ÊGθ′ −Npw| ≤ CN

δ

(
1 + δ

)−Nε2ϕ(p,q)
+

CNr√
δ|J |

+ 4Nγ2(ĉ, c).
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Proof. We show the first inequality; the second inequality is proved using a
similar argument. From (30) and (31) we have

|M̂(w′)− w| ≤ |M̂(w′)−Ψ|+ |Ψ− w| ≤ 4γ2(ĉ, c) + |Ψ− w|. (34)

Therefore it is enough to bound |Ψ−w|. Denote by J0 the set of indices (i, j) ∈ J
such that Aij = 0 and by J1 the set of indices (i, j) ∈ J such that Aij = 1. Then
Sij ∼ Binomial(N, p) if (i, j) ∈ J0 and Sij ∼ Binomial(N, 1 − q) if (i, j) ∈ J1.
By Lemma B.2, for r > 0 we have

P

{∣∣|J1| − |J |w
∣∣ > r

√
|J |
}
≤ 2 exp(−2r2). (35)

Note that

Ψ =
1

|J |
∑

(i,j)∈J0

Fθ′(Sij) +
1

|J |
∑

(i,j)∈J1

Fθ′(Sij) =: Ψ0 +Ψ1. (36)

We first show that Ψ1 is close to w. Note that Fθ′(Sij) = 1/
(
1+exp(ZT

ijη(θ
′))
)
,

where

Zij := (1, N − Sij ,−Sij)
T, η(θ′) :=

(
log

1− w′

w′ , log
1− p′

q′
, log

1− q′

p′

)T

.

Condition on A, by Lemma B.2, for any ε1 > 0 and (i, j) ∈ J1 the following
holds

P
{
Sij < (1− q − ε1)N

}
≤ exp(−2ε21N). (37)

Therefore with conditional probability at least 1− exp(−2ε21N) we have

ZT
ijη(θ

′) = log
1− w′

w′ + log
(1− p′)(1− q′)

p′q′
[
NH(p′, q′)− Sij

]
≤ log

1− w′

w′ +N log
(1− p′)(1− q′)

p′q′
[
H(p′, q′)− (1− q − ε1)

]
.(38)

Here H is the function defined in (21). Since (p′, q′) ∈ Uε(p, q), it follows that
h(q′) ≥ εh(q) + (1 − ε)q. Using the fact that H(p′, q′) is increasing in p′ and h
is increasing, we have

H(p′, q′)− (1− q) ≤ H(1/2, q′)− 1 + q = −h(q′) + q ≤ −ε(h(q)− q) < 0.

Note that if δ ≤ t ≤ 1/2− δ then 1 + 4δ ≤ (1− t)/t ≤ (1− δ)/δ. Therefore for
θ′ ∈ Rδ, using ε1 = ε(h(q)− q)/2, we obtain

ZT
ijη(θ

′) ≤ log
1− δ

δ
−Nε(h(q)− q) log(1 + 4δ).

Denote by I1 the set of indices (i, j) ∈ J1 such that Sij ≥ (1− q − ε1)N . Using
inequalities 0 ≤ Fθ′(Sij) ≤ 1 and 1/(1 + x) ≥ 1− x for x ≥ 0, this implies

|I1|
(
1− 1

δ

(
1 + 4δ

)−Nε(h(q)−q)
)

≤
∑

(i,j)∈I1

Fθ′(Sij) ≤ |J1|. (39)
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To lower bound |I1|, note that |I1| is a sum of independent Bernoulli ran-
dom variables with success probabilities at least 1 − exp(−2ε21N) by (37). By
Lemma B.2 and condition on A, we have

P

{
|I1| ≥ |J1|

(
1− exp(−2ε21N)− r/

√
δ|J |
)}

≥ 1− exp
(
−2r2|J1|/(δ|J |)

)
.

Using (35), assumption |J | ≥ 4r2/δ2 and ε1 = ε(h(q) − q)/2, we obtain that
with probability at least 1− 3 exp(−r2) the following holds:

|I1|
|J | ≥ w − exp

(
−Nε2(h(q)− q)2)

2

)
− 2r√

δ|J |
.

It then follows from (35) and (39) that with probability at least 1− 3 exp(−r2)
the following holds:

w − 2

δ

(
1 + δ

)−Nε2(h(q)−q)2 − 2r√
δ|J |

≤ sup
θ∈Rδ

Ψ1 ≤ w +
r√
|J |

. (40)

Similarly, with probability at least 1− 3 exp(−r2) we have

sup
θ′∈Rδ

Ψ0 ≤ 2

δ

(
1 + δ

)−Nε2(h(p)−p)2

+
r√
δ|J |

. (41)

From (40), (41) and using a triangle inequality, we obtain that with probability
at least 1− 6 exp(−r2):

sup
θ′∈Rδ

|Ψ− w| ≤ 4

δ

(
1 + δ

)−Nε2[h(p)−p]2[h(q)−q]2

+
4r√
δ|J |

.

Together with (34) this provides a bound on |M̂(w′)− w|.

Corollary B.5 (Sample updates). Let δ ∈ (0, 1/4) and ε ∈ (0, 1). Then there
exist constants C1, C2 > 0 such that for any r > 0 the following holds with
probability at least 1− exp(−r). Assume that θ′, θ ∈ Rδ, (p

′, q′) ∈ Uε(p, q) and

N ≥ C1 log(1/δ)

ε2
[
h(p)− p

]2[
h(q)− q

]2 .
Then

sup
θ′∈Rδ

‖M̂(θ′)−M(θ′)‖ ≤ C2rΦ+ 8γ2(ĉ, c)

δ
,

where

Φ := min

{
log2

(
1

δ
− 1

)√
N

|J | ,
1

δ

(
1 + δ

)−Nε2[h(p)−p]2[h(q)−q]2

+
1√
δ|J |

}
.
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Proof. Recall the components of M̂(θ′) and M(θ′) in (20) and (29). Lemma B.3
and Lemma B.4 show that M̂(w′) concentrates around M(w′); they also show
that numerators and denominators of M̂(p′) and M̂(q′) concentrate around that
ofM(p′) andM(q′). To obtain a bound for ‖M̂(θ′)−M(θ′)‖, it remains to bound
the denominators of M(p′) and M(q′) away from zero. That is done by the help
of Lemma B.1.

We now show that initial parameter estimates of our algorithm belong to a
desired neighborhood of the true parameters; this allows us to establish consis-
tency of our algorithm. Denote by θ0 = (w0, p0, q0)

T the initial value of θ taken
by our algorithm, and

I =
{
(i, j) ∈ J : Sij < N/2

}
, Î =

{
(i, j) ∈ Ĵ : Sij < N/2

}
. (42)

From Section 3.3 we have

w0 =
|Ĵ \ Î|
|Ĵ |

, p0 =

∑
(i,j)∈Î Sij

N |Î|
, q0 =

∑
(i,j)∈Ĵ\Î(N − Sij)

N |Ĵ \ Î|
. (43)

For x ∈ [0, 1/2], denote

φ(x) := x− h−1

(
x

2
+

h(x)

2

)
, (44)

where h is the function defined in (21). Note that φ(x) ≥ 0 and φ(x) = 0 if and
only if x = 0 or x = 1/2. Recall the definition of Uε(p, q) in (22) and definition
of Rδ in (12).

Lemma B.6 (Validity of initial parameter estimates). Assume that θ ∈ Rδ and
the following conditions hold for some constant C > 0:

N ≥ C

δ2
max

{
log

1

δ2
, log

1

δφ(p)
, log

1

δφ(q)

}
,

|J | ≥ C

δ3
max

{
r2

δ2
,

r2

φ2(p)
,

r2

φ2(q)

}
,

γ2(ĉ, c) ≤ δ

C
max {δ, φ(p), φ(q)} ,

where φ is the function defined in (44). Then θ0 ∈ Rδ and (p0, q0) ∈ U1/2(p, q)
with probability at least 1− 25 exp(−r2).

Proof. We partition J as J = J0 ∩ J1, where

J0 = {(i, j) ∈ J : Aij = 0}, J1 = {(i, j) ∈ J : Aij = 1}.

Similarly, we partition Ĵ as Ĵ = Ĵ0 ∪ Ĵ1, where Ĵ0 and Ĵ1 are sets of indices
(i, j) ∈ Ĵ where Aij = 0 and Aij = 1, respectively. Also, denote Ic = J \ I and

Îc = Ĵ \ Î, where I and Î are defined by (42).
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Edge probability estimate w0. Recall that w0 = |Îc|/|Ĵ |, where Îc is the set of
(i, j) ∈ Ĵ where Sij ≥ N/2. Since

Îc =
(
Îc ∩ J1

)
∪
(
Îc ∩ J0

)
∪
(
Îc \ J

)
, Îc ∩ J0 ⊆ Ic ∩ J0,

it follows that |Îc| ≤ |J1|+ |Ic ∩ J0|+ |Ĵ \ J |. Moreover, since

Îc ∩ J1 ⊆ Ic ∩ J1, (Ic ∩ J1) \ (Îc ∩ J1) ⊆ J \ Ĵ ,

we have |Îc| ≥ |Ic ∩ J1| − |J \ Ĵ |. Together with the definition of γ2(ĉ, c), we
obtain

|Ic ∩ J1| − γ2(ĉ, c)|J |
|J |+ γ2(ĉ, c)|J | ≤ w0 ≤ |J1|+ |Ic ∩ J0|+ γ2(ĉ, c)|J |

|J | − γ2(ĉ, c)|J | . (45)

We now estimate the terms in (45). Note that Sij follows a mixture of Binomial
distributions with parameter θ for every (i, j) ∈ J . By Lemma B.2, we have

P

{
|J1| ≤ w|J |+ r|J |1/2

}
≥ 1− exp(−2r2). (46)

We now upper bound |Ic ∩ J0|. Condition on A, for every (i, j) ∈ J0, by
Lemma B.2 we have

P
{
Sij ≥ N/2

}
≤ exp(−2δ2N).

Since |Ic ∩ J0| is a sum of Bernoulli random variables with success probability
at most exp(−2δ2N), by Lemma B.2,

P

{
|Ic ∩ J0| ≤ (exp(−2δ2N) + ε)|J0|

}
≥ 1− exp(−2ε2|J0|).

Also, using Lemma B.2 and assumption |J | ≥ 4r2/δ2, we have

P

{
|J0| ≥ δ|J |/2

}
≥ 1− exp(−2r2).

Setting ε = r/(δ|J |)1/2 and using |J0| ≤ |J |, we obtain

P

{
|Ic ∩ J0| ≤ exp(−2δ2N)|J |+ r(|J |/δ)1/2

}
≥ 1− 2 exp(−r2). (47)

We lower bound |Ic ∩ J1| in a similar way. Condition on A, by Lemma B.2,
for each entry (i, j) ∈ ∩J1 we have

P
{
Sij ≥ N/2

}
≥ 1− exp(−2δ2N).

Since |Ic ∩ J1| is a sum of Bernoulli random variables with success probability
at least 1− exp(−2δ2N), by Lemma B.2,

P
{
|Ic ∩ J1| ≥

(
1− exp(−2δ2N)− ε

)
|J1|
}
≥ 1− exp(−2ε2|J1|).
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Also, by Lemma B.2,

P

{
|J1| ≥ w∗|J | − r|J |1/2

}
≥ 1− exp(−2r2). (48)

Setting ε = r/(δ|J |)1/2 and using assumption |J | ≥ 4r2/δ2, we obtain

P

{
|Ic ∩ J1| ≥ w|J | − exp(−2δ2N)|J | − 2r(|J |/δ)1/2

}
≥ 1− 2 exp(−r2). (49)

We are now ready to bound w0 using (45) and subsequent estimates of terms
in (45). Using (46), (47), (49) and assumptions on N , |J | and γ2(ĉ, c), we obtain

P

{
δ

2
≤ w0 ≤ 1− δ

2

}
≥ 1− 5 exp(−r2). (50)

False positive estimate p0. Recall that

p0 =

∑
(i,j)∈Î Sij

N |Î|
,

where Î is the set of (i, j) ∈ Ĵ such that Sij < N/2. Note that

Î =
(
Î ∩ J0

)
∪
(
Î ∩ J1

)
∪
(
Î \ J

)
.

Using the partition of Î, the bound Sij ≤ N and the definition of γ2(ĉ, c), we
obtain ∑

(i,j)∈J0
Sij −N |Ic ∩ J0| −Nγ2(ĉ, c)|J |

N
(
|J0|+ |I ∩ J1|+ γ2(ĉ, c)|J |

)
≤ p0 ≤

∑
(i,j)∈J0

Sij +N |I ∩ J1|+Nγ2(ĉ, c)|J |
N |I ∩ J0| −Nγ2(ĉ, c)|J | (51)

We now estimate the terms in (51). By Lemma B.2, we have

P

{
|J0| ≤ (1− w)|J |+ r|J |1/2

}
≥ 1− exp(−2r2). (52)

To upper bound |I ∩ J1|, we first condition on A. By Lemma B.2, for each
(i, j) ∈ ∩J1 we have

P
{
Sij < N/2

}
≤ exp(−2δ2N).

Since |I ∩J1| is a sum of Bernoulli random variables with success probability at
most exp(−2δ2N), by Lemma B.2,

P
{
|I ∩ J1| ≤

(
exp(−2δ2N) + ε

)
|J1|
}
≥ 1− exp(−2ε2|J1|).
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Also, using Lemma B.2 and assumption |J | ≥ 4r2/δ2, we have

P

{
|J1| ≥ δ|J |/2

}
≥ 1− exp(−2r2).

Setting ε = r/(δ|J |)1/2, we obtain

P

{
|I ∩ J1| ≤ exp(−2δ2N)|J |+ r(|J |/δ)1/2

}
≥ 1− 2 exp(−r2). (53)

We now lower bound |I ∩J0|. Condition on A, by Lemma B.2, for each entry
(i, j) ∈ ∩J0 we have

P
{
Sij < N/2

}
≥ 1− exp(−2δ2N).

Since |I ∩J0| is a sum of Bernoulli random variables with success probability at
least 1− exp(−2δ2N), by Lemma B.2,

P
{
|I ∩ J0| ≥

(
1− exp(−2δ2N)− ε

)
|J0|
}
≥ 1− exp(−2ε2|J0|).

By Lemma B.2,

P

{
|J0| ≥ (1− w)|J | − r|J |1/2

}
≥ 1− exp(−2r2). (54)

Setting ε = r/(δ|J |)1/2 and using assumption |J | ≥ 4r2/δ2, we obtain

P

{
|I ∩ J0| ≥ (1− w∗)|J | − exp(−2δ2N)|J | − 2r(|J |/δ)1/2

}
≥ 1− 2 exp(−r2).

(55)
It remains to control

∑
(i,j)∈J0

Sij . Condition on A, by Bernstein’s inequality,
we have

P

⎧⎨
⎩
∣∣∣ ∑
(i,j)∈J0

Sij − |J0|Np
∣∣∣ > t

⎫⎬
⎭ ≤ 2 exp

(
−t2/2

|J0|Np(1− p) +Nt/3

)
.

Taking t = r(|J |N)1/2, using (52), (54) and assumption |J | ≥ 2r2N/δ4, we
obtain

P

⎧⎨
⎩
∣∣∣ ∑
(i,j)∈J0

Sij −N |J |(1− w)p
∣∣∣ ≤ 2rN |J |1/2

⎫⎬
⎭ ≥ 1− 3 exp(−r2). (56)

We are now ready to bound p0 using (51) and subsequent estimates of terms
in (51). Using (52), (53), (47), (55), (56) and assumptions on N , |J | and γ2(ĉ, c),
we obtain

P

{
max

{
δ, h−1

(
q

2
+

h(q)

2

)}
≤ p0 ≤ 1

2
− δ

}
≥ 1− 10 exp(−r2). (57)
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False negative estimate q0. Recall that

q0 =

∑
(i,j)∈Îc

(N − Sij)

N |Îc|
,

where Îc is the set of all (i, j) ∈ Ĵ such that Sij ≥ N/2. Note that

Îc =
(
Îc ∩ J1

)
∪
(
Îc ∩ J0

)
∪
(
Îc \ J

)
.

Using the partition of Îc, the bound N − Sij ≤ N and the definition of γ2(ĉ, c),
we obtain ∑

(i,j)∈J1
(N − Sij)−N |I ∩ J1| −Nγ2(ĉ, c)|J |

N (|J1|+ |Ic ∩ J0|+ γ2(ĉ, c)|J |)

≤ q0 ≤
∑

(i,j)∈J1
(N − Sij) +N |Ic ∩ J0|+Nγ2(ĉ, c)|J |
N |Ic ∩ J1| −Nγ2(ĉ, c)|J | . (58)

All terms in (58) have been estimated except
∑

(i,j)∈J1
(N − Sij). Condition

on A, by Bernstein’s inequality, we have

P

⎧⎨
⎩
∣∣∣ ∑
(i,j)∈J1

(N − Sij)− |J1|Nq
∣∣∣ > t

⎫⎬
⎭ ≤ 2 exp

(
−t2/2

|J1|Nq(1− q) +Nt/3

)
.

Taking t = r(|J |N)1/2, using (46), (48) and |J | ≥ 2r2N/δ4, we obtain

P

⎧⎨
⎩
∣∣∣ ∑
(i,j)∈J1

(N − Sij)−N |J |wq
∣∣∣ ≤ 2rN |J |1/2

⎫⎬
⎭ ≥ 1− 3 exp(−r2). (59)

We are now ready to bound q0 using (58) and subsequent estimates of terms
in (58). Using (46), (47), (49), (53), (59) and assumptions on N , |J | and γ2(ĉ, c),
we obtain

P

{
max

{
δ, h−1

(
q

2
+

h(q)

2

)}
≤ q0 ≤ 1

2
− δ

}
≤ 10 exp(−r2). (60)

Finally, the claim of Lemma B.6 follows from (50), (57) and (60).

Proof of Theorem 3.3. The proof of Theorem 3.3 follows directly from Lem-
ma B.1, Corollary B.5 and Lemma B.6.

Appendix C: Extension to weighted graphs

In this section, we briefly present an extension of the model considered in the
main text to the case where both the latent graph and the observed graphs
may have a broader class of edge noise distributions, including the possibility of
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weighted edges. As before, denote by c ∈ [K]n the vector of vertex community
memberships, and let A ∈ R

n×n be the symmetric adjacency matrix of a (pos-
sibly weighted) graph. We assume that each of the N networks {A(m)}Nm=1 has
independent edges distributed as

A
(m)
ij ∼ f(A

(m)
ij | Aij)

for some distribution f parameterized by Aij . Suppose further that the upper-
triangular entries of A are themselves distributed according to vertex community
memberships. That is, there is a distribution g parameterized by the entries of
a K-by-K array B,

Aij ∼ g(Aij | Bcicj ).

The setting of the main text is a special case, with f a Bernoulli distribution
with probability of success equal to Pij1{Aij = 0} + (1 − Qij)1{Aij = 1}, and
g corresponding to a stochastic block model with connectivity matrix B.

We are interested in choices of f and g for which results akin to Theorem 3.3
hold under reasonable assumptions. Abstracting the algorithm from Section 3.3
suggests the following procedure for estimating B, A and c from the observed
graphs {A(m)}Nm=1. Suppose that we have initial estimates Â and ĉ for A and c,
obtained, for example, by averaging the observed networks followed by spectral
clustering. We then repeat the following two steps for T iterations:

1. Alternate the following until convergence:

(a) Estimate {Bk� : 1 ≤ k ≤ � ≤ K} by

ŵk� = argmax
w

∏
i,j:ĉi=k,ĉj=�

g(Âij | w). (61)

(b) Estimate {Aij : 1 ≤ i < j ≤ n} by

Âij = argmax
α

g(α | ŵĉi,ĉj )

N∏
m=1

f(A
(m)
ij | α) (62)

2. Update ĉ via spectral clustering of Â.

Note that we have assumed that the updates (61) and (62) are computed exactly,
as will be possible for certain parametric choices of f and g, but that in other
cases it may suffice to simply approximate this optimization to some degree of
precision.

In order to obtain a result similar to Theorem 3.3, we need conditions on f
and g that guarantee the following informally stated properties:

1. Spectral clustering of A recovers a large fraction of the community labels.
2. The initial estimate Â based on {A(m)}Nm=1 concentrates around the true

adjacency matrix A in spectral norm (which implies that spectral cluster-
ing of Â is a reasonable approximation to the spectral clustering of A, and
hence recovers a large enough fraction of the community labels).
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3. The distribution g(Aij | Bk�) is such that the estimate ŵk� based on
{Aij : ĉi = k, ĉj = �} concentrates about the true value wk� when suitably
many entries of ĉ are correct.

4. The distribution f(A
(m)
ij | Aij) is such that the estimate Âij of Aij based

on the samples {A(m)
ij : m = 1, 2, . . . , N} concentrates suitaby well about

the true value Aij .

Note that we state these conditions under the assumption that community mem-
berships are estimated via spectral clustering, hence the spectral norm concen-
tration required in condition 2. All four above conditions depend, ultimately, on
certain concentration inequalities holding, which will depend upon the choice of
model. For example, the condition described in 1 and 2 can be ensured using
machinery similar to that in [30] and [28] to guarantee that the eigenvalues and
eigenvectors of Â and A are suitably close, provided the entries (Â − A)ij are
zero-mean with suitably-bounded moments. We leave a precise statement of the
most general analogue of Theorem 3.3 for future work, and sketch one natural
approach to the general setting below.

Suppose we take f(A
(m)
ij | Aij) to be an exponential family, so that

f(x | α) = h(x) exp{αx− B(α)}, (63)

where α ∈ R is a parameter, h : R → R is the base measure of the exponential
family and B is an appropriately-chosen log-partition function. Then, using basic
properties of exponential families, it is easy to construct a distribution g such
that inference as in the Algorithm of Section 3.3 is feasible. By Proposition 1.6.1
in [6], given the exponential family in (63), we can find an exponential family
with parameter w ∈ R

2 that is a conjugate prior to the distribution f , with
density of the form

g(α | w) = exp{wT (α,B(α))−Z(w)}, (64)

where Z is a log-partition function. By basic properties of conjugate priors,
the posterior f̃(α | x;w) ∝ f(x | α)g(α | w) is an exponential family of the
same form as g(α | w). This is particularly useful, since maximum likelihood
estimates of exponential families are typically easy to compute, and thus the
updates in (61) and (62) are feasible. Further, a suitable choice of f will ensure
that the concentration inequalities in the conditions above hold. For instance,
it is straightforward to verify that choosing f to have at most subgamma tails
[7, 42] leads to an analogue of Theorem 3.3 for this broader class of models.

As an illustrative example, consider the case where f is the density of an
exponential distribution with scale parameter Aij , and g is the density of a
gamma distribution with shape parameter κ > 0 and scale parameter σ > 0.
Under this approach, the matrix B in the main text becomes a K-by-K-by-2
array of parameters, with Bk� = (κk�, σk�)

T ∈ R
2 for all k, � ∈ [K]. Taking
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ci = k and cj = � for ease of notation, we have

f(A
(m)
ij | Aij) =

exp{−A
(m)
ij /Aij}

Aij

g(Aij | κk�, σk�) =
Aκk�−1

ij exp{−Aij/σk�}
σκk�

k� Γ(κk�, σk�)
,

where Γ denotes the gamma function. Since we have chosen g to be the conjugate
prior to f , and because maximum-likelihood estimators for the exponential and
gamma distributions can be computed with relative ease (via numerical methods
in the case of the gamma distribution), the maximization problems in (61)
and (62) are feasible.

Under this model, we can also ensure that conditions 1 and 2, as follows.
Since the entries of the matrix A have subgamma tails [7], one can show us-
ing the results in [42] that A concentrates about its mean EAij = κcicjσcicj in
spectral norm. Thus, ‖A−EA‖ = O(h(κ, σ)

√
n) for a suitable function h. Simi-

larly, the mean of the entries N−1
∑N

m=1 A
(m)
ij concentrate about their expecta-

tion κcicjσcicj , and the spectral norm error grows as ‖N−1
∑N

m=1 A
(m) −A‖ =

O(
√

n/Nh(1, A)). Under suitable assumptions on the growth rates of N and n,
the community sizes, and the parameters A, κ, σ, the techniques from [30, 28]
can be used to turn these two spectral norm bounds into a guarantee that an
asymptotically vanishing fraction of the vertices are mislabeled, thus ensuring

conditions 1 and 2. The fact that {A(m)
ij : m = 1, 2, . . . , N} are drawn i.i.d. from

an exponential distribution ensures that the MLE in (62) concentrates about
Aij for all i, j ∈ [n], as required by condition 4. This fact, along with the fact
that the initial estimate ĉ recovers most entries of c (ensured by conditions 1
and 2) similarly imply that the maximizer in (61) is close to the true value of
Bcicj = (κcicj , σcicj ), thus guaranteeing condition 3. This general analysis can,
of course, be applied to any choice of exponential family f and conjugate prior
g so long as f and g have suitably light tails.
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