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Abstract: We consider bandwidth matrix selection for kernel density es-
timators of density level sets in Rd, d ≥ 2. We also consider estimation of
highest density regions, which differs from estimating level sets in that one
specifies the probability content of the set rather than specifying the level
directly. This complicates the problem. Bandwidth selection for KDEs is
well studied, but the goal of most methods is to minimize a global loss func-
tion for the density or its derivatives. The loss we consider here is instead
the measure of the symmetric difference of the true set and estimated set.
We derive an asymptotic approximation to the corresponding risk. The ap-
proximation depends on unknown quantities which can be estimated, and
the approximation can then be minimized to yield a choice of bandwidth,
which we show in simulations performs well. We provide an R package lsbs
for implementing our procedure.
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1. Introduction

As computing power has become greater and as data sets have become simul-
taneously larger and more complicated, demand for statistical methods that
are increasingly flexible and data driven has increased. Two related methods
for capturing the complex structure of a data set from a true density f0 are
to estimate either the density’s level sets (LS’s) or the density’s highest-density
regions (HDR’s). (We will explain the difference between estimating LS’s and
estimating HDR’s shortly.) For a density function f0 defined on Rd and a given
constant c > 0, the c-level set (sometimes known as a density contour) of f0 is
β(c) := {x ∈ Rd : f0(x) = c}, and the corresponding super-level set is

L(c) := {x ∈ Rd : f0(x) ≥ c}. (1)

Under some basic regularity conditions, the density super-level set is a set of
minimum volume having f0-probability at least

∫
L(c)

f0(x) dx (Garcia et al.,

2003). For this reason, perhaps the most common use for HDR estimation oc-
curs in Bayesian statistics. An HDR of a posterior density is a so-called (min-
imum volume) credible region, which is one of the most fundamental tools in
Bayesian statistics. There are quite a wide range of other applications for esti-
mation of density LS’s or density HDR’s and these estimation problems have
received increasing attention in the statistics and machine learning literatures
in recent years. (We consider estimation of density level sets and estimation of
density super-level sets to be equivalent tasks.) The applications of LS or HDR
estimation include outlier/novelty detection (Lichman and Smyth, 2014; Park,
Huang and Ding, 2010), discriminant analysis (Mammen and Tsybakov, 1999)
and clustering analysis (Hartigan, 1975; Rinaldo and Wasserman, 2010; Cuevas,
Febrero and Fraiman, 2001). LS estimation is one of the fundamental tools in
estimation of cluster trees and persistence diagrams, used in topological data
analysis (Chen (2017), Wasserman (2016)).

A common way to estimate the density super-level set L(c) based on inde-
pendent and identically distributed (i.i.d.) X1, . . . ,Xn ∈ Rd is to replace the
density function in (1) with a kernel density estimator (KDE)

f̂n,H(x) :=
1

n

n∑
i=1

K(H−1/2(x−Xi))|H |−1/2, (2)
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where H ∈ Rd×d is a symmetric positive definite bandwidth matrix and K is a
kernel function. This gives us the so-called plug-in estimator

L̂n,H(c) := {x ∈ Rd : f̂n,H(x) ≥ c}. (3)

We now explain the difference between “LS estimation” and “HDR estimation.”
Often the level of interest is only specified indirectly through a given probability
τ ∈ (0, 1) which yields a level fτ,0 := inf{y > 0 :

∫
Rd f0(x)1{f(x)≥y} dx ≤ 1−τ}.

Then the corresponding super-level set is

L(fτ,0) := {x ∈ Rd : f0(x) ≥ fτ,0}, (4)

and the corresponding plug-in estimators are

f̂τ,n := inf

{
y ∈ (0,∞) :

∫
Rd

f̂n,H(x)1{f̂n,H(x)≥y} dx ≤ 1− τ

}
and

L̂n,H(f̂τ,n) := {x ∈ Rd : f̂n,H(x) ≥ f̂τ,n}. (5)

Estimating (4) based on specifying τ is known as the HDR estimation problem;
this has extra complication over the LS estimation problem because fτ,0 has
to be estimated rather than being fixed in advance. Thus we use the phrase
LS estimation to mean estimation of (1) with c fixed in advance (equivalently,
estimation of (4) with fτ,0 fixed). When we use the phrase HDR estimation
we mean estimation of (4) with τ (but not fτ,0) fixed in advance. Thus, LS’s
and HDR’s are mathematically equivalent, but estimating LS’s and estimating
HDR’s are statistically different tasks.

Early work on LS or HDR estimation includes Hartigan (1987), Müller and
Sawitzki (1991), Polonik (1995), Tsybakov (1997), and Walther (1997). Some
recent work has focused on asymptotic properties of KDE plug-in estimators,
including results about consistency, limit distribution theory, and statistical in-
ference. Báıllo, Cuesta-Albertos and Cuevas (2001) show that the probability
content of the plug-in estimator converges to the probability of the true super-
level set as the sample size tends to infinity. Báıllo (2003) proves the strong
consistency of the plug-in estimator under an integrated symmetric difference
metric. Cadre (2006) further obtains the rate of convergence of the plug-in esti-
mator when the loss is given by the generalized symmetric difference of sets. Ma-
son and Polonik (2009) give the asymptotic normality of estimated super-level
sets under the same metric as Cadre (2006). Chen, Genovese and Wasserman
(2017) find a more practically usable limiting distribution of the plug-in esti-
mator for LS’s by using Hausdorff distance as the metric for set difference and
provide methods for constructing confidence regions for LS’s based on this lim-
iting distribution. Jankowski and Stanberry (2012) and Mammen and Polonik
(2013) also investigate the formation of confidence regions for LS’s.

It is well known that KDE’s are sensitive to the choice of the bandwidth (ma-
trix). The optimal bandwidth (matrix) depends on the objective of estimation.
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There are many tools that have been developed for selecting the bandwidth
when d = 1 or the bandwidth matrix when d > 1; these include minimizing
an asymptotic approximation to an appropriate risk function, as well as com-
putational methods such as the bootstrap or cross-validation, and are largely
focused on globally estimating the density or its derivatives well. A good sum-
mary of those methods can be found in Wand and Jones (1995), Sain, Baggerly
and Scott (1994a), or Jones, Marron and Sheather (1996).

However, Duong, Koch and Wand (2009, page 505) state that, “a number of
practical issues in highest density region estimation, such as good data-driven
rules for choosing smoothing parameters, are yet to be resolved.” Samworth
and Wand (2010) is the only published work we know of that investigates the
problem of selecting bandwidths for HDR estimation (and we know of no pub-
lished works that directly investigate bandwidth selection for LS estimation).
Samworth and Wand (2010) study the KDE plug-in estimator when d = 1, and
show by simulation that the kernel density estimator aiming for HDR estimation
can be very different from the one aiming for global density estimation. They
also propose an asymptotic approximation to a risk function that is suitable for
HDR estimation and a corresponding bandwidth selection procedure based on
the approximation, all when d = 1.

In this paper, we consider the multivariate setting, where d ≥ 2. In this case,
we are estimating a level set manifold, which involves some added technical dif-
ficulties over the case d = 1 (in which case the level set is a finite point set),
but we believe that LS or HDR estimation when d ≥ 2 is of great practical
interest because of the large variety of complicated structures that multivariate
level sets can reveal. We derive asymptotic approximations to a risk function
for LS estimation and to a risk function for HDR estimation. We believe that
our approximations and derivations will be very valuable for any future proce-
dures that do (either) LS or HDR bandwidth selection. Our calculations shed
light on the important quantities relating to LS or HDR estimation. Further-
more, we develop a “plug-in” bandwidth selector method based on minimizing
an estimate of the LS or the HDR risk approximation. This approach can be
used to optimize over all positive definite bandwidth matrices or over restricted
classes of matrices (e.g., diagonal ones). Our theory applies for all d ≥ 2. We
have developed code to implement our bandwidth selector when d = 2. It is
straightforward to implement a numeric approximation to Hausdorff integrals
that appear in our approximations (see Subsection 2.1 for discussion of the Haus-
dorff measure) when d = 2. It is less immediately obvious how to implement
such approximations when d ≥ 3, although we indeed believe that implementa-
tion is feasible for such approximations. In fact, we believe that computational
feasibility is an important benefit of using a closed-form approximation to the
risk, particularly in the multivariate setting that we consider in this paper. As
will be discussed later in the paper, many simple problems in the univariate
setting are more complicated in the multivariate setting and must be solved
by Monte Carlo. Thus performing bootstrap or cross-validation, which involves
nested Monte Carlo computations, quickly becomes infeasible.

During the development of the present paper we became aware of the recent
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related work, Qiao (2018). Qiao (2018) also considers problems about bandwidth
selection for KDE’s in settings related to level set estimation. However, the main
focus of Qiao (2018) is somewhat different than the one here. In fact, Qiao (2018)
states that bandwidth selection for multivariate HDR estimation is “far from
trivial” and does not consider this problem. We will discuss the approach taken
by Qiao (2018) again in the Discussion section.

The structure of the paper is as follows. We present our two asymptotic risk
approximation theorems, as well as corollaries about the risk approximation
minimizers, in Section 2. We present methodology to select bandwidth matrices
in Section 3. In Section 4 we study the performance of our bandwidth selector
in simulation experiments as well as in analysis of two real data sets, the Wis-
consin Breast Cancer Diagnostic data and the Banknote Authentication data.
We give concluding discussion in Section 5. Proofs of the main results are given
in Appendix A, and further details, technical results, and intermediate lemmas
are given in Appendix B and Appendix C. Some notation and assumptions are
presented in Subsections 2.1 and 2.2.

2. Asymptotic risk results

2.1. Notation

We use the following notation throughout. For a density function f0 on Rd and
a Borel measurable set A ⊂ Rd, define the measure μf0(A) =

∫
A
f0(x) dx.

For a function f on Rd, a measure P , and 1 ≤ p < ∞, we let ‖f‖pp,P =∫
Rd |f(z)|pdP (z) if this quantity is finite. If P is Lebesgue measure we ab-
breviate ‖f‖p,P ≡ ‖f‖p, 1 ≤ p < ∞. Let ‖f‖∞ = supz∈Rd |f(z)|, and for a
function g with vector or matrix values, that is, g : Rd → Rp×q, let ‖g‖∞ =

max1≤i≤p,1≤j≤q ‖gij‖∞. We let ‖x‖ = (
∑d

i=1 x
2
i )

1/2 for x ∈ Rd. Let ∇f be the

gradient (column) vector of f and let ∇2f be the Hessian matrix
(

∂2

∂xi∂xj
[f ]
)
i,j
.

Let H be d − 1 dimensional Hausdorff measure (Evans and Gariepy, 2015).
The Hausdorff measure is useful for measuring the volume of lower dimensional
sets, like manifolds, embedded in a higher dimensional ambient space. Let λ
denote Lebesgue measure. Recall that β(c) := {x ∈ Rd : f0(x) = c} and

L(c) := {x ∈ Rd : f0(x) ≥ c}, we let Lτ ≡ L(fτ,0) and L̂τ,H ≡ L̂H(f̂τ,n). We
generally use bold to denote vectors. We use “≡” to denote notational equiva-
lences and “:=” or “=:” for definitions. Any integral whose domain is not spec-
ified explicitly is taken over all of Rd. We will occasionally omit the integrating
variable when there’s no confusion in doing so. We use S to denote the set of all
d × d symmetric positive definite matrices. For a symmetric matrix A, we use
λmax(A) and λmin(A) to denote the largest and the smallest eigenvalues of A
respectively. In this paper, we will use the f0-probability volume of the symmet-
ric difference as the distance between the true set and its estimator. We use Δ to
denote the symmetric difference operation between two sets: for two sets A and
B, AΔB := (A∪B)\(A∩B) where “\” is set difference. Figure 1 shows the sym-
metric difference between the 0.02 super-level set of standard bivariate normal
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distribution and an “estimated” super-level set. We let Ac be the complement
of a set A. For δ > 0 and x ∈ Rd, let B(x, δ) :=

{
y ∈ Rd : ‖y − x‖ ≤ δ

}
, and

for a set A, let Aδ := ∪x∈AB(x, δ).

Fig 1. Symmetric difference between the true level set and an estimated level set. The solid
black line is the boundary of the true level set and the dashed red line is the boundary of the
estimated level set. The shaded area is the symmetric difference of the two sets.

2.2. Assumptions

To derive our asymptotic expansion, we make the following basic assumptions
on the underlying density, kernel function and bandwidth matrix.

Assumption D1a.

1. Let X1, . . . ,Xn be i.i.d. from a bounded density f0 on Rd, d ≥ 2.
2. Fix infx∈Rd f0(x) < c < ‖f0‖∞. There exists a constant a > 0 such that

(a) f0 has two bounded continuous partial derivatives over the set Ua :=
{x : c− a ≤ f0(x) ≤ c+ a}, (b) infUa ‖∇f0‖ > 0, and (c) Ua is contained
in β(c)δ for some δ > 0.

Assumption D1b.

1. Let X1, . . . ,Xn be i.i.d. from a bounded density f0 on Rd, d ≥ 2.
2. The density f0 has two bounded continuous partial derivatives for all

x ∈ Rd.
3. There exists a constant a > 0 such that Ua := {x : fτ,0 − a ≤ f0(x) ≤

fτ,0 + a} satisfies (a) infUa ‖∇f0‖ > 0, and (b) Ua is contained in βδ
τ for

some δ > 0.

Assumption D1a will be used for LS estimation and Assumption D1b for HDR
estimation. We need the stronger global twice differentiability assumption in
HDR estimation because of the need to estimate fτ,0 (which involves estimating
the f0-probability content of Lτ ). The global twice differentiability assumption
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in Assumption D1b could be weakened to an assumption of twice differentiability
either on Lδ

τ or on (Lc
τ )

δ.
Assumptions D1a and D1b entail that the gradient of f0 is nonzero on (a

neighborhood of) the level set of interest. This implies by the preimage theo-
rem that the level set β, taken to be either β(c) or βτ , is a (d− 1)-dimensional
(boundaryless) manifold (Guillemin and Pollack, 1974). The only additional
assumption we need is one of compactness, which rules out only very patholog-
ical cases, where f0 has “spikes” of increasingly small width going out towards
infinity.

Assumption D2. Let infx∈Rd f0(x) < c < ‖f0‖∞ or 0 < τ < 1 be as in
Assumptions D1a and D1b. Assume that β(c) or βτ is compact.

Our assumption on the kernel will come in the form of a so-called Vapnik-
Chervonenkis (VC) (Dudley, 1999) type of assumption. For a metric space (T, d)
and τ > 0, the covering number N(T, d, τ) is the smallest number of balls of
radius τ (and centers which may or may not be in T ) needed to cover T . If a
class of functions F is a VC class, we have that

sup
P

N(F , ‖ · ‖2,P , τ‖F‖2,P ) ≤
(
A

τ

)v

(6)

for some positive A, v, where the sup is over all probability measures P , and
where F is the envelope of F meaning supf∈F |f | ≤ F (Chapter 2.6, van der
Vaart and Wellner (1996)). We will simply directly assume that the needed
classes satisfy (6). Thus our assumptions are as follows.

Assumption K.

1. The kernel K is an everywhere continuously differentiable bounded density
on Rd with bounded partial derivatives. Both

∫
K2 dλ and

∫
(∇K)(∇K)′ dλ

are finite or have finite entries, respectively. Assume that
∫
K(x)x dx =

0,
∫
xx′K(x) dx = μ2(K)I, where I is the identity matrix and μ2(K) =∫

x2
iK(x) dx is independent of i.

2. Assume that (6) is satisfied with F taken to be{
K
(
H−1/2(t− ·)

)
: t ∈ Rd,H ∈ S

}
and (7){

‖∇K
(
H−1/2(t− ·)

)
‖ : t ∈ Rd,H ∈ S

}
. (8)

Let R(K) :=
∫
K2dλ and let R(∇K) be the largest eigenvalue of∫

(∇K)(∇K)′ dλ.

Assumption H.

1. LetH ≡ Hn ∈ S, such that for some c > 0, |H| ↘ 0, n|H|1/2/ log |H|−1/2 →
∞, log logn/ log |H|−1/2 → 0, as n → ∞, and |Hn|1/2 ≤ c|H2n|1/2.

2. Assume that λmax(H) = O{λmin(H)} and n|H|1/2λmin(H)/ log |H|−1/2 →
∞ and λmax = O(n−2/(4+d)) as n → ∞.
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Here, an ↘ 0 means that an decreases monotonically to 0. Assumptios D1a
and D1b are standard in the KDE literature (see, e.g., page 95 of Wand and
Jones (1995)). Note that Assumption 3 of Assumption D1b implies that there
exists a constant L > 0 such that for δ > 0 small enough that λ(f−1

0 ([fτ,0 −
δ, fτ,0+δ])) ≤ Lδ; this is a standard type of assumption that appears in the level
set estimation literature (Polonik, 1995). Assumption D2 is not very limiting and
only rules out pathological cases.

Our Assumption K on the kernel function is not restrictive and all of the
conditions imposed are fairly standard. For Assumption 1 see, e.g., page 95 of
Wand and Jones (1995) where similar conditions are imposed. Assumption 2 is
also fairly standard in the KDE literature (e.g., Chen, Genovese and Wasserman
(2017) uses similar conditions in the context of inference for level sets). This
assumption is needed to apply the results of Giné and Guillou (2002) to get

almost sure convergence rates of f̂n,H and ∇f̂n,H . Assumption K1 of Giné and
Guillou (2002) (or Assumption K, page 2572, of Giné, Koltchinskii and Zinn
(2004)) is an easy-to-verify condition that implies Assumption 2 holds, and
shows that Assumption 2 holds for Gaussian kernels and for many compactly
supported kernels.

The expansions given in our Theorem 2.1 and 2.2 hold for the range of band-
widths given in Assumption H. This is sufficient to develop a practical band-
width selector, since larger or smaller bandwidths can be easily ruled out. See
Corollaries 2.1 and 2.2.

2.3. Asymptotic risk expansions

Our main results are stated in the following two theorems. The first gives the
asymptotic risk expansion for level set estimation. Let Φ(·) and φ(·) denote the
standard normal distribution function and density function, respectively.

Theorem 2.1. For given constant c with infx∈Rd f0(x) < c < ‖f0‖∞, let As-
sumptions K, H, D1a and D2 hold. Moreover, the kernel function K has bounded
support. Then

E

[
μf0{L(c)ΔL̂H(c)}

]
= LS(H) + o

{
(n|H|1/2)−1/2 + tr(H)

}
as n → ∞, where

LS(H) :=
c√

n|H|1/2

∫
β(c)

2φ(Bx(H)) + 2Φ(Bx(H))Bx(H)−Bx(H)

−Ax
dH(x),

Ax := −‖∇f0(x)‖√
R(K)c

, and Bx(H) := −
√

n|H|1/2D1(x,H)√
R(K)c

, (9)

with D1(x, H) := 1
2μ(K) tr(H∇2f0(x)).

Note that the first summand (including the factor c/
√
n|H|1/2) in the in-

tegral defining LS(H) is of the order of magnitude of a variance term in a
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mean-squared error decomposition, and the second two summands are of the
same order of magnitude of a squared bias term. The next theorem gives the
HDR asymptotic risk expansion.

Theorem 2.2. Let Assumptions D1b,D2,K and H hold. Then

E

[
μf0{LτΔL̂τ,H}

]
= HDR(H) + o

{
(n|H|1/2)−1/2 + tr(H)

}
as n → ∞, where

HDR(H) :=
fτ,0√
n|H|1/2

∫
βτ

2φ(Cx(H)) + 2Φ(Cx(H))Cx(H)− Cx(H)

−Ax
dH(x),

Cx(H) := Bx(H) +

√
n|H|1/2
R(K)fτ,0

D2(H).

Ax and Bx(H) are defined in the same way as in Theorem 2.1 with c replaced
by fτ,0. And

D2(H) := w0 {V1(H) + V2(H)} ,

with w0 := (
∫
βτ

1/∇f0 dH)−1 and

V1(H) :=

∫
βτ

D1(x,H)

‖∇f0(x)‖
dH(x) V2(H) :=

1

fτ,0

∫
Lτ

D1(x,H) dx.

We defer the proofs to the appendix. Next, we would like to study the theoret-
ical behavior of the minimizers of LS(·) and HDR(·). Note that the minimizers
of LS(·) or of HDR(·) are not practically usable bandwidth matrices, since LS(·)
and HDR(·) depend on the true, unknown density f0. We will discuss estimation
of HDR(·) and of LS(·) and practical bandwidth selectors in the next section.
Presently, we consider the minimizers of LS(·) and HDR(·), which serve as oracle
bandwidth selectors.

Unfortunately, LS(·) and HDR(·) are quite complicated functions so studying
their minimizers in general is not at all straightforward. Thus we will make some
simplifying assumptions. We will consider f0 that is unimodal and spherically
symmetric about some point (taken to be the origin in Corollary 2.1 and 2.2).
We will consider optimizing over the subclass S1 :=

{
h2I : h > 0

}
of band-

width matrices, where I is the d × d identity matrix. These assumptions are
made largely for simplicity and ease of presentation of the following two corol-
laries, and are far from necessary for the conclusions to hold. We discuss these
assumptions again after the corollaries. By a slight abuse of notation, we let
LS(h) ≡ LS(h2I) and HDR(h) ≡ HDR(h2I).

Corollary 2.1. Let the assumptions of Theorem 2.1 hold. Assume further that
f0(x) = g(‖x‖) and that the function g(r) defined for r > 0 is strictly decreasing
on [0,∞). Then there exists a constant sopt depending on f0 and K (but not
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on n) such that there is a unique positive number hopt = argminh∈[0,∞) LS(h)
satisfying

hopt = soptn
−1/(d+4) and h0 = hopt(1 + o(1)) as n → ∞,

where h0 is any minimizer of E[μf0{L(c)ΔL̂H(c)}].
Corollary 2.2. Let the assumptions of Theorem 2.2 hold. Assume further that
f0(x) = g(‖x‖) and that the function g(r) defined for r > 0 is strictly decreasing
on [0,∞). Then there exists a constant sopt depending on f0 and K (but not
on n) such that there is a unique positive number hopt = argminh∈[0,∞) HDR(h)
satisfying

hopt = soptn
−1/(d+4) and h0 = hopt(1 + o(1)) as n → ∞,

where h0 is any minimizer of E[μf0{LτΔL̂τ,H}].
The proof of the two corollaries follows exactly the same way, so we provide

the proof for HDR estimation and omit that for LS estimation. The corollaries
tell us the order of magnitude of the true optimal bandwidths and of the oracle
bandwidths. We used the assumptions of unimodality and spherical symmetry
because these assumptions imply that f0, ∇f0, and ∇2f0 are constant on βτ and
β(c). We believe that (an analogous form of) the conclusions of Corollary 2.1 and
2.2 hold for Hopt ∈ argminH∈S HDR(H) and for Hopt ∈ argminH∈S LS(H),
and for much more general densities f0. Our simulations show that our practical
bandwidth selector (studied in the next section) does not require such extreme
assumptions.

3. Bandwidth selection methodology

In the previous section, we provided asymptotic expansions of symmetric risks
for HDR estimation and LS estimation, which could be used as guidance for
bandwidth selection in those two scenarios. Minimizers of LS(H) and HDR(H)
are natural bandwidth selectors for HDR estimation and LS estimation, respec-
tively. The theoretical performance of the bandwidth selector using “oracle”
knowledge of the functionals of the true density is studied in Corollary 2.1 and
2.2. Of course, in practice, one does not have this oracle knowledge. In the
present section, we develop an effective practical bandwidth selection procedure
for HDR estimation (a procedure for level set estimation is simpler and can be
derived in a similar way). We will also study the theoretical performance of our
bandwidth selector restricted to a simplified class S1 = {h2I, h > 0}.

Since there are unknown quantities that HDR(H) depends on, a natural
“plug-in” approach is to estimate those quantities using different kernel density
estimators and plug the estimates in. Moreover, the unknown functionals depend
on the truth through f0,∇f0,∇2f0, so we will use three pilot kernel density
estimators. To be specific, we use f̂n,H0 to estimate fτ,0 and Lτ ; we use ∇f̂n,H1

to estimate ∇f0, and βτ combined with the pilot estimator of fτ,0; we use
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∇2f̂n,H2 to estimate ∇2f0, where H0, H1 and H2 are corresponding pilot
bandwidth matrices for the three kernel density estimators. (One could also use

three different kernels for f̂n,Hi , i = 0, 1, 2, but we will use the same kernel for
all three.) For our theoretical results to hold, we require just the bandwidth
matrix Hr to be of the optimal order for estimating the rth derivatives of f0
(see Corollary 3.2 and Assumption H2, below). We use two-stage direct plug-in
estimators for the pilot bandwidths in our algorithm below, which converge at
the correct rate. A detailed description about plug-in estimators could be found
in Wand and Jones (1995, Chapter 3) and Chacón and Duong (2010).

Once we have those estimated functionals, we can plug them into HDR(H) to

obtain an estimated loss function ĤDR(H). Note H appears in the integrand of
a Hausdorff integral and cannot be factored out of the integral; thus minimizing

ĤDR(H) directly is infeasible. Instead, we minimize a discretized approximation

to ĤDR(H). To illustrate this idea, we use the minimization of HDR(H) as an
example. Let A = {Ai}mi=1 be a partition of βτ such that H(Ai) is sufficiently
small for i = 1, 2, . . . ,m. Then w0 = (

∫
βτ

1
‖∇f0‖ dH)−1 can be approximated

by w̃0 =
∑m

i=1
1

‖∇f0(x̃i)‖H(Ai), where x̃i is an arbitrary point belonging to Ai.

Note for d = 2, H(Ai) is well approximated by the length of the line segment
connecting the boundary points of Ai. V1(H) and V2(H) can be computed
approximately in similar ways. Replacing w0, V1(H), V2(H) with corresponding
discretized approximations in Cx(H) gives us an approximation C̃x(H) for each
x. Then

HDR(H) ≈ fτ,0√
n|H|1/2

∫
βτ

2φ(C̃x(H)) + 2Φ(C̃x(H))C̃x(H)− C̃x(H)

−Ax
dH(x)

≈ fτ,0√
n|H|1/2

m∑
i=1

2φ(C̃x̃i(H)) + 2Φ(C̃x̃i(H))C̃x̃i(H)− C̃x̃i(H)

−Ax̃i

×H(Ai). (10)

The last line above provides a computable, optimizable and close approxima-
tion to HDR(H) as long as H(Ai) is small enough for each i. We use K = φ
throughout the algorithm.

The full algorithm for the HDR bandwidth selector is as follows:

1. With given i.i.d random sample X1,X2, . . . ,Xn, estimate H0, H1, H2

using two-stage direct plug-in strategies.
2. Obtain the pilot estimator of f0, ∇f0, ∇2f0 based on the kernel density

estimators f̂n,H0 , f̂n,H1 , f̂n,H2 .

3. Let f̂τ,n,H0 := inf{y ∈ (0,∞) :
∫
Rd f̂n,H0(x)1{f̂n,H0

(x)≥y} dx ≤ 1 − τ} be

the pilot estimator of fτ,0, L̂τ,H0 := {x ∈ Rd : f̂n,H0(x) ≥ f̂τ,n,H0} be

the pilot estimator of Lτ and β̂τ,H1 := {x ∈ Rd : f̂n,H1(x) = f̂τ,n,H0} be
the pilot estimator of βτ .

4. Substitute the estimators from Step 2 and 3 into the expressions for Cx
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and Ax to obtain Ĉx and Âx. Then ĤDR(H) is equal to

f̂τ,n,H0√
n|H|1/2

∫
β̂τ,H1

2φ(Ĉx(H)) + 2Φ(Ĉx(H))Ĉx(H)− Ĉx(H)

−Âx

dH(x).

5. Minimize the discretized approximation of ĤDR(H) described in the pre-
vious paragraph with Newton’s method to obtain the estimated optimal
HDR bandwidth.

Note for the above procedure, in step 3, unlike the pilot estimator for Lτ ,
the pilot estimator for βτ is obtained using f̂n,H1 with f̂τ,n,H0 as the level. The

reason we use f̂n,H1 instead of f̂n,H0 is because the error bound for estimating
βτ depends on the difference between the gradient of true density and that of
the kernel density estimator and using f̂n,H1 yields a better error bound (See
Lemma B.5 and proof of Corollary 3.1, 3.2 for details).

Newton’s method does not guarantee the optimum will be a positive definite
bandwidth matrix. Luckily, in practice the global minimum appears to always

be positive definite. The objective function ĤDR appear to be locally convex
although not globally convex (see Figures 2 and 3 for some plots of LS(·) and
HDR(·)), so one has to be slightly careful about starting values for Newton’s
algorithm.

Notice also that in Step 3 of the above algorithm we need to calculate the
level f̂τ,n,H0 having f̂n,H0 -probability 1 − τ . Hyndman (1996) suggests two

similar methods for calculating f̂τ,n,H0 . One is to use an appropriate empirical

quantile of the values f̂n,H0(Xi), i = 1, . . . , n (“Approach H1”). An approach
of this type is studied by Cadre, Pelletier and Pudlo (2013) (and by Chen

(2016) in calculating his α̂n(x)). However, this estimator is not equal to f̂τ,n,H0 ,
and we have not yet quantified the difference, so we choose not to use this

approach. Alternatively, Hyndman (1996) suggests resampling X̃1, . . . , X̃M
iid∼

f̂n,H , and then using the appropriate empirical quantile of f̂n,H0(X̃i), i =
1, . . . ,M (“Approach H2”). Any desired accuracy can be attained by taking M
large enough. Another method is to simply use numeric integration: one can
do a binary search over (0, ‖f̂n,H0‖∞), computing the integral (numerically) at

each level until one arrives at f̂τ,n,H0 within desired accuracy. When d = 2,
we found the numeric integration and binary search to be the fastest method
for calculating f̂τ,n,H0 . We suspect for higher dimensions, Approach H2 will
be faster than numeric integration. Of course, Approach H1 is faster than the
other two, and so it would be helpful to study how the Approach H1 estimator
compares to f̂τ,n,H0 .

In our pilot estimation process when d = 2, we use numerical interpolation to
generate points on β̂τ,H1 and to calculate A. In more detail: we generate dense
grid points along both the x-axis and the y-axis, and we estimate the density
values at those grid points. Then we perform interpolation between grid points
to get points such that the estimated density values at those points are (approxi-

mately) f̂τ,n,H0 , and those points induce a partition of β̂τ,H1 . Then for any Ai in
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the partition, Ai is defined by two end points, and H(Ai) can be approximated
by the length of the line segment connecting those two end points. By generat-
ing enough dense and equally spaced grid points, we expect those line segments
will approximate the true partition A well and thus the Hausdorff integral will
also be well approximated. However, this method is hard to implement in di-
mension larger than 2 because there is no simple approximation for the volumes
of corresponding partition sets of β̂τ,H1 . One approach that may be fruitful for
solving this problem is to use Quasi-Monte Carlo integration to calculate the
Hausdorff integral (see De Marchi and Elefante, 2018). The idea is to generate
a set of points b1, . . . , bm on the manifold β such that those points are ap-
proximately uniformly distributed and then we can approximate

∫
β
γ(x) dH by

1
m

∑m
i=1 γ(bi). Analysis and numerical simulation for the method has been done

for special Hausdorff integrals over special manifolds (cone, cylinder, sphere and
torus). There is further work needed to extend the method to the more general
manifolds that arise in our problem, which we believe is non-trivial and beyond
the scope of this paper.

Note that the method just described for computing the approximation (10)
can be implemented as a so-called midpoint method of numerical integration,
for which classical analysis shows an error rate of O(m−2) (m is the number
of equi-sized partitioning sets of the interval), provided that the function being
integrated has bounded second derivative and the domain being integrated is a
compact interval in R (Hämmerlin and Hoffmann, 1991). The same error applies
for using the midpoint method to numerically compute Hausdorff integrals over
one dimensional compact manifolds embedded in R2, by the change of variables
Theorem 2 (page 99) of Evans and Gariepy (2015). Thus the errors for our
selected bandwidths in the corollaries below will also have an error dependent
on m, but in our experience m can be chosen large enough that this is negligible
(when d = 2), so we do not include it in the analysis.

To give the asymptotic performance of our bandwidth selector, we need the
following additional assumptions.

Assumption D3. The true density function f0 has four continuous bounded
and square integrable derivatives.

Assumption K2. K is symmetric along each coordinate, i.e., for i = 1, . . . , d,
we have K(x1, . . . , xi, . . . , xd) = K(x1, . . . ,−xi, . . . , xd). And all the first and
second partial derivatives of K are square integrable.

Assumption H2. For r = 0, 1, 2, the bandwidth matrix Hr is symmetric,
positive definite, such thatHr → 0 elementwise, and n−1|Hr|−1/2(H−1

r )⊗r → 0
as n → ∞, where ⊗ stands for Kronecker product.

This assumption and notation is as in Chacón, Duong and Wand (2011). Here
for a matrix A, A⊗0 = 1 ∈ R and A⊗1 = A. Now, recall that LS(h) ≡ LS(h2I)
and

LS(h2I) =
c

(nhd)1/2

∫
β(c)

φ(Bx(h)) + 2Φ(Bx(h))Bx(h)−Bx(h)

−Ax
dH(x),
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where Bx(h) = (bhd+4)1/2Fx with Fx = −1
2μ(K) tr(∇2f0(x))/

√
R(K)c. And

HDR(h) ≡ HDR(h2I) with

HDR(h2I) =
fτ,0

(nhd)1/2

∫
βτ

φ(Cx(h)) + 2Φ(Cx(h))Cx(h)− Cx(h)

−Ax
dH(x),

where Cx(h) = (nhd+4)1/2Gx, and

Gx = −μ(K) tr(∇2f0(x))√
R(K)fτ,0

+
w0

∫
βτ

μ(K) tr(∇2f0)
2‖∇f0‖ dH+ w0

fτ,0

∫
Lτ

μ(K) tr(∇2f0)
2 dλ√

R(K)fτ,0
.

By letting s = (nhd+4)1/2, we see that minimizing LS(h) is equivalent to mini-
mizing

ARLS(s) := s−d/(d+4)

∫
β(c)

φ(sFx) + 2Φ(sFx)sFx − sFx

−Ax
dH(x),

and minimizing HDR(h) is equivalent to minimizing

ARHDR(s) := s−d/(d+4)

∫
βτ

φ(sGx) + 2Φ(sGx)sGx − sGx

−Ax
dH(x).

he following corollaries show the convergence rate of the estimated optimal
bandwidth for H ∈ S1.

Corollary 3.1. Let Assumptions D1a, D2, D3, K, K2 and H2 hold. Assume
further that sopt is a unique minimizer of ARLS(s) for s > 0 and AR′′

LS(sopt) >
0. Then

ĥopt

hopt
= 1 +Op

(
n−2/(d+8)

)
and

ĥopt

h0
= 1 +Op

(
n−2/(d+8)

)
,

as n → ∞, where ĥopt is the minimizer of L̂S(h), hopt is the minimizer of LS(h)

and h0 is any minimizer of E[μf0{L(c)ΔL̂H(c)}] over the class S1 = {h2I, h >
0}.

Corollary 3.2. Let Assumptions D1b, D3, K, K2 and H2 hold. Assume further
that sopt is a unique minimizer of ARHDR(s) for s > 0 and AR′′

HDR(sopt) > 0.
Then

ĥopt

hopt
= 1 +Op

(
n−2/(d+8)

)
,

as n → ∞, where ĥopt is the minimizer of ĤDR(h) and hopt is the minimizer
of HDR(h).
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Corollaries 3.1 and 3.2 both assume existence of a point sopt. Corollary 2.1
and 2.2 show the existence of sopt under one set of assumptions, although (as
discussed after those corollaries) this conclusion holds in many other scenarios.

Remark 3.1. In Corollary 3.1, we provide the rates of convergence for both
the estimated optimal bandwidth to the oracle bandwidth selector and the esti-
mated optimal bandwidth to the true minimizer of E[μf0{L(c)ΔL̂H(c)}], while
in Corollary 3.2, we only provide the rate of convergence for the estimated
optimal bandwidth to the oracle bandwidth selector. The main difficulty for
proving the convergence rate of the estimated optimal bandwidth to the true
minimizer of E[μf0{LτΔL̂τ,H}], as we can see from the proof of Theorem 2.2, is

understanding the Var f̂τ,n term. At present, we can only show that Var f̂τ,n is
o( 1

n|H|1/2 ), but do not have a more explicit expression. Thus (even with higher

order derivative assumptions) we cannot say anything stronger about Var f̂τ,n,
which is different than when βτ is a discrete point set, in the d = 1 case.

Remark 3.2. The rates of convergence given in Corollaries 3.1 and 3.2 are
known as relative rates of convergence since they are of the form (ĥopt − h̃)/h̃

for some h̃ (which is itself converging to 0) (Wand and Jones, 1995). One can
compare the relative rates from Corollaries 3.1 and 3.2 to the relative rates of
other KDE bandwidth selectors. If we plug d = 1 into the rate n−2/(d+8) we
recover the rate that arose in Theorem 3 of Samworth and Wand (2010). We can
also make comparisons to bandwidth selector relative rates based on global loss
functions. Duong and Hazelton (2005) study relative rates of convergence for
various bandwidth selectors to the bandwidth matrix that minimizes mean inte-
grated squared error, E

∫
Rd(f̂n,H(x)−f0(x))

2 dx. (An alternative benchmark is

the bandwidth that minimizes integrated squared error,
∫
Rd(f̂n,h(x)−f0(x))

2 dx,
for which e.g., LSCV performs well (Hall and Marron, 1987), but the relative
rates for that problem behave quite differently than the ones we study in Corol-
laries 3.1 and 3.2, so we do not mention them here.) Table 1 of Duong and Hazel-
ton (2005) presents the convergence rates for plug-in, unbiased cross validation,
biased cross validation, and smoothed cross validation bandwidth matrix estima-
tors. (See also Sain, Baggerly and Scott (1994b); Wand and Jones (1994); Duong
and Hazelton (2003); Scott and Terrell (1987); Sheather and Jones (1991); Hall,
Marron and Park (1992).) Consider d ≥ 2. The unbiased and biased cross valida-
tion methods have relative convergence rates of n−min(d,4)/(2d+8). The smoothed
cross validation method and the plug-in method of Duong and Hazelton (2003)
both have rates of n−2/(d+6). The plug-in method of Wand and Jones (1994)
has a rate of n−4/(d+12) which is the fastest rate for all d. The rate presented
in our corollaries is faster than n−min(d,4)/(2d+8) but slower than n−2/(d+6).
This suggests that more careful development of our plug-in procedure, perhaps
involving more careful pilot bandwidth selection procedures, could potentially
improve the asymptotic rate. However the analysis (in particular understand-

ing how Var(f̂τ,n) behaves) may not be trivial. Also, procedures with better
asymptotics may be inferior until the sample size is unrealistically large (this
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is somewhat common in bandwidth selection settings (Wand and Jones, 1995,
Section 3.8)).

4. Simulations and data analysis

In Section 3, we used LS(H) and HDR(H) to develop a bandwidth selection
procedure for level set and HDR estimation. We have implemented our pro-
cedure in an R (R Core Team, 2018) package lsbs. In this section, we assess
the accuracy of LS(H) and HDR(H) at approximating the true risks. We also
use simulation to compare our procedure with the least square cross validation
procedure (LSCV), An established ISE-based bandwidth selector (See Rudemo,
1982; Bowman, 1984). We simulate from the 12 bivariate normal mixture den-
sities constructed by Wand and Jones (1993). These densities have a variety
of shapes and have between 1 and 4 modes. In addition to those 12 density
functions, we also simulate from

2

3
N

((
0
0

)
,

(
1/4 0
0 1

))
+

1

3
N

((
0
0

)
,
1

50

(
1/4 0
0 1

))
, (11)

which is constructed to play a bivariate analogy to the sharp mode density 4
in Marron and Wand (1992) (see also Figure 1 of Samworth and Wand (2010)).
The specific form in (11) is chosen to match that used by Qiao (2018).

We will close this section with a real data analysis in which we apply HDR
estimation to novelty detection for the Wisconsin Diagnostic Breast Cancer
dataset and Banknote Authentication dataset, which are available on the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/).

4.1. Assessment of approximation and estimation comparison

Since it is infeasible to exactly evaluate the true symmetric risk
E[μf0{LτΔL̂τ,H}], we approximate the true risk through Monte Carlo. For

given n, τ,H, for a large Monte Carlo sample size M , E[μf0{LτΔL̂τ,H}] ≈
1
M

∑M
i=1 μf0{LτΔL̂[i]

τ,H}, where L̂[1]
τ,H , L̂[2]

τ,H , . . . , L̂[M ]
τ,H are M independent real-

izations of L̂τ,H . In a multivariate KDE the bandwidth matrix contains d(d +
1)/2 parameters. For the purpose of visualization, we restrict H ∈ S1 = {h2I}
so that it can be parametrized by a single parameter h.

Figures 2 and 3 compare the asymptotic risk approximation with the simu-
lated true risk for HDR estimation and LS estimation, respectively, for densities
corresponding to Densities C, D, E and K of Wand and Jones (1993). Contour
plots of the densities are given in the top row of the figures. In Figure 3, we
choose τ to be 0.2, 0.5 and 0.8 while in Figure 2, we use the same levels but
with true level values computed from the underlying true density functions. For
both scenarios, the sample size is chosen to be 2000 and the kernel is set to be
the Gaussian kernel throughout the simulation (Theorem 2.1 requires K to be

http://archive.ics.uci.edu/ml/
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Fig 2. Comparison of the simulated true risk function E[μf0{L(c)ΔL̂H(c)}] with LS(H) for
four densities in Wand and Jones (1993). The panels in the first row are the contour plots
for four densities with the contours of interest plotted in red color. The panels in the rest of
the rows are the comparison plots for the simulated true risk (solid line) and LS(H) (dashed
line) corresponding to the density at the top of the column for τ = 0.2, 0.5, 0.8. The positions
of the solid vertical line and the dashed line stand for the optimal bandwidths obtained from
the simulated true risk and the asymptotic approximation respectively over the restricted class
S1. The sample size for all the cases is 2000.

compactly supported, but nonetheless, the simulation results are not sensitive
to the choice of Guassian kernel). We can see from Figures 2 and 3, in both sce-
narios, our asymptotic expansions provide a good approximation to the truth.
The approximation works fairly well for the small values of bandwidth but the
discrepancy becomes obvious when h is larger, which is unlike what was ob-
served from the simulation in univariate cases (see Samworth and Wand, 2010).
This is consistent with our Assumption H which imposes an upper bound on
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Fig 3. Comparison of the simulated true risk function E[μf0{LτΔL̂τ,H}] with HDR(H) for
four densities in Wand and Jones (1993). The panels in the first row are the contour plots for
four densities with the contours of interest plotted in red color. The panels in the rest of the
rows are the comparison plots for the simulated true risk (solid line) and the HDR(H) (dashed
line) corresponding to the density at the top of column for τ = 0.2, 0.5, 0.8. The positions of
the solid vertical line and the dashed line stand for the optimal bandwidths obtained from the
simulated true risk and the asymptotic approximation respectively over the restricted class
S1. The sample size for all the cases is 2000.

the largest eigenvalue of the bandwidth matrix, restricting it not to converge
too slowly. One more thing to notice from these two figures is that the optimal
bandwidth chosen from the asymptotic expansion serves as a good approxima-
tion to the true optimal bandwidth, as we can see they are quite close in most
cases in simulation.

We ran a simulation study to compare the performance of our bandwidth
selection method with LSCV for all the 12 densities in Wand and Jones (1993)
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Fig 4. Plot of simulated errors generated by HDR-tailored bandwidth and LSCV for the sharp
mode density (11). The horizontal axis stands for errors of HDR bandwidth and vertical axis
stands for errors of LSCV bandwidth.

Fig 5. Plot of boundaries of true HDR, HDR estimated by HDR bandwidth and HDR es-
timated by LSCV bandwidth from one simulated sample with 2000 observations. The three
panels correspond to τ = 0.2, 0.5, 0.8 respectively.

and for density (11). For each density function, 250 Monte Carlo samples with
2000 observations were generated. For each sample, we estimated the 0.2, 0.5,
0.8 HDR with bandwidth matrices chosen by our method and LSCV respec-
tively. The HDR error μf0{LτΔL̂τ,H} was calculated for each method in each
replication. Figure 4 shows the plot of the estimation errors generated by the two
methods for density (11). Figure 5 shows the boundaries of the estimated HDR
by HDR bandwidth and by the LSCV bandwidth selector from one of the simu-
lated samples. We can see for τ = 0.2, 0.5, the performance of HDR bandwidth
selector outperformed LSCV bandwidth selector greatly for each simulated in-
stance. For τ = 0.8, the HDR bandwidth performed slightly less well than the
LSCV bandwidth on average. One hypothesis for why our method suffers when
τ = .8 is that Assumption D1b requires that ‖∇f0‖ > 0 in a neighborhood of
the HDR. However, when τ = .8, f0 is close to having gradient zero on the true
HDR which is close to the density mode.
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It is worth noticing in Figure 5 that the HDR estimated by our method
discovers the true underlying topological structure of the density, while the HDR
estimated by LSCV does a very poor job of revealing the topological structure
when τ = .2 or .5 (the LSCV estimates have many spurious separate connected
components rather than a single one).

Applying the Wilcoxon signed rank test to the simulated paired errors gener-
erated by our HDR bandwidth and LSCV bandwidth showed that for τ = 0.2,
our method outperformed LSCV for 12 out of 13 density functions; for τ = 0.5,
our method did better for 8 out of 13 density functions; for τ = 0.8, our method
did better in 8 out of 13 density functions.

Note that for any given fixed density, it is likely to be the case for some
HDR that the MISE-optimal bandwidth and the HDR-optimal bandwidth will
approximately coincide. Thus we may not expect our method to be better than
LSCV for all densities and levels simultaneously. Of course, in practice one does
not know whether LSCV will work well for the τ value one is interested in. Our
HDR method appears to work well for lower τ values, which are the useful values
in many applications of HDR estimation. For example in novelty detection, the
value of τ equals the probability of type-I error which is often set to be 0.05
or 0.1; in clustering analysis, τ corresponds to fraction of the data that will be
discarded during analysis and is also set to be a value close to 0. As mentioned in
the previous paragraph, this may be related to the assumption that ‖∇f0‖ > 0
on the HDR boundary. Relaxing this assumption is an important direction for
future work, but seems likely to involve somewhat different approximations than
the ones used in this paper.

4.2. Real data analysis

We now discuss two real datasets. The Wisconsin Diagnostic Breast Cancer
data contains 699 instances of breast cancer cases with 458 of them being be-
nign instances and 241 being malignant instances. Nine cancer-related features
were measured for each instance. For the Banknote Authentication data, images
were taken of 1372 banknotes, some fake and some genuine. Wavelet transforma-
tion tools were used to extract four descriptive features of the images. For both
datasets, we reduced the original features to the first two principal components.
We apply our method to perform novelty detection for the two data sets. Novelty
detection is like a classification problem where only the “normal” class is ob-
served in the training data. Then, for a new data point xnew, we want to test the
null hypothesis H0 : xnew is a normal point (or, alternatively, to classify xnew

as “normal” or “anomalous”). For level set (HDR) based novelty detection, we
can consider an oracle decision rule, or acceptance region, A := {x : f0(x) ≥ c}
(based on knowing f0); if f0(xnew) ∈ A, we accept the null hypothesis, and we
reject otherwise. For the breast cancer data, “normal” means healthy, and for
the banknote data, “normal” means genuine. If we take c = fτ , then the oracle
decision rule will have type-I error, or False Positive Rate (FPR), of τ (under a
regularity condition). Additionally, under regularity conditions, A has the min-
imum volume of any acceptance rule with FPR of τ , since HDR’s are minimum
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volume sets (Garcia et al., 2003). This property is beneficial for controlling the
type-II error rate, or False Negative Rate (although the actual False Negative
Rate depends on the unknown “anomaly” distribution).

In this section, for each of the two data sets we use a KDE with our bandwidth
selection procedure to estimate an HDR based on the “normal” class data and
use the estimated HDR to perform classification. We delete the observations
with missing values for any covariates and randomly split the data set into two
parts, training data and testing data. For the Wisconsin Breast Cancer data,
345 benign instances are contained in the training data and 200 (with half being
benign and another half being malignant) are contained in the testing data. For
the Banknote Authentication data, 400 genuine instances are contained in the
training data and again, 200 (with half being genuine and another half being
fake) are contained in the testing data. We estimate the 90% HDR using our
method based on the training data. The first row of Figure 6 shows the plot of the
data and the boundaries of the 90% HDR which are the decision boundaries for
the two classification problems. The asymptotic FPR in these two classification
problems is τ = 0.1. For the Wisconsin Breast Cancer data, on the test data,
the observed FPR is 0.09 and the True Positive Rate (TPR) is 0.99. For the
Banknote Authentication data, the observed FPR is 0.04, and the observed
TPR is 0.61. We also generated full ROC curves for the two datasets which are
shown in the second row of Figure 6. The ROC curves are based on 30 different
splits of the data into training and test sets (with the reported FPR and TPR
given by the averages over the 30 test sets). The ROC curve clearly shows that
the Wisconsin Breast Cancer data is an example where HDR-based anomaly
detection is highly effective. The Banknote data is not as easy for our method;
it may be the case that using an HDR based on all four variables improves the
classification performance. We leave the very interesting question of how best
to combine HDR-based classification with dimension reduction for future work.

5. Discussion

In this paper, we derive asymptotic expansions of the symmetric risk for LS
estimation and HDR estimation based on kernel density estimators. We provide
an efficient bandwidth selection procedure using a plug-in strategy. We also
study by theory and by simulation the performance of our bandwidth selector.
Simulation studies show that both our asymptotic expansion and our bandwidth
selector are effective tools. The two asymptotic risk approximations we provide
may also be useful in the analysis of other procedures, developed in future work,
for doing LS or HDR bandwidth selection.

As discussed in the Introduction, the interesting paper Qiao (2018) also con-
siders problems of bandwidth selection for KDE’s via minimizing asymptotic
expansions of risk functions that are based on loss functions related to level
sets. Qiao (2018) does not consider HDR estimation. Qiao (2018) does con-
sider the LS estimation problem. Our Theorem 2.1 is similar to Qiao (2018)’s
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Fig 6. Plot of data and boundary of estimated 90% HDR for the Wisconsin Diagnostic Breast
Cancer Data and Banknote Authentication Data. Solid dots correspond to training data,
circles are testing data of normal instances and crosses are testing data of anomaly instances.
The two panels in the second row are the corresponding ROC curves for the two classification
problems.

Corollary 3.1; both results consider the LS estimation setting, and give risk ex-
pansions based on loss functions that are given by integrating the symmetric
set differences against f0 (or against something similar). Our theorem requires
only that f0 have two continuous derivatives in a neighborhood of β(c) (which
we believe to be approximately the weakest possible conditions), whereas Qiao
(2018) requires four continuous derivatives. On the other hand, Qiao (2018) al-
lows for using higher order kernels if one has higher order smoothness of f0.
While Qiao (2018)’s Corollary 3.1 studies the same risk function approxima-
tion, LS(·), that we study in our Theorem 2.1, Qiao (2018) does not present
any algorithm for minimizing LS(·) and thus presents no simulations related to



Bandwidth selection multivariate LS’s & HDR’s 4335

LS(·). Rather, Qiao (2018) focuses more attention on a different risk function
(the “excess risk”) approximation that allows for an analytic solution, at least
when d = 2.

There are many interesting avenues for extending the work done in the present
paper. We describe a few here.

(A). (Regression and classification) In the present paper we have considered
only the density estimation context, but estimation of level sets of regres-
sion functions estimated by kernel-based methods is also interesting, as is
consideration of classification problems.
Regression level set estimation has received less attention than density
level set estimation, although it has been studied in some settings; Cavalier
(1997) studies multivariate nonparametric regression level set minimax
rates of convergence.
One method for classification is to estimate densities for different classes
and then classify a point by the class density having highest value at the
point. In that case, rather than estimating a level set of one density, one
is estimating the 0 level set of a difference of two densities. Mason and
Polonik (2009, page 1110) discuss this approach to classification. In the
context of an application in flow cytometry, Duong, Koch andWand (2009)
also study estimation of HDR’s of density differences (without specifically
focusing on classification). We believe the methods of this paper can be
extended to those contexts.

(B). (Topological data analysis and critical points) Another important avenue
of research is to consider modifications of the assumptions under which our
approximations hold. Level set estimation is one of the main tools in topo-
logical data analysis (TDA). Estimation of LS’s which have zero gradient
(at some points) on the boundary (which is ruled out by our assumptions)
is of great interest in TDA, because the topology of level sets can change
as the level crosses critical points (points having zero gradient). In fact, in
the context of using tools based on level set estimates, Wasserman (2016,
Section 5) states that “the problem of choosing tuning parameters is one
of the biggest open challenges in TDA”. Thus, developing tools for band-
width selection when the gradient is zero would be very useful for TDA.
Unfortunately, at points where the gradient is zero we cannot apply the
inverse function theorem which is used in Lemma A.1 (implicitly) and by
several results in Appendix B, so a very different analysis than the one
we completed here may be necessary in such cases. In general, there are
very few theoretical works on level set estimation at levels that contain
critical values (points where ∇f0 is 0). In fact, the only one we know of is

Chen (2016), in which a rate of convergence of λ
{
L(c)ΔL̂H(c)

}
(where

λ is Lebesgue measure) is derived.
(C). (MCMC level sets) The work in this paper is restricted to the case where

X1, . . . ,Xn are independent. An important extension is to allow the Xi

to be samples from a Markov chain. It is well known that KDE’s often
work similarly when the data exhibit weak dependence as when they are
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independent (Wand and Jones, 1995). This would allow our tools for HDR
estimation to be used to form credible regions based on Markov chain
Monte Carlo output in Bayesian statistical analyses. At present, ad-hoc
methods are often used for forming credible regions based on Markov chain
Monte Carlo output.

Appendix A: Proof of main results

A.1. Proof of Theorem 2.2

First, we observe that

μf0(LτΔL̂τ,H) =

∫
Rd

f0(x)
∣∣∣1{f̂n,H(x)≥f̂τ,n} − 1{f0(x)≥fτ,0}

∣∣∣ dx
=

∫
Lc

τ

f0(x)1{f̂n,H(x)≥f̂τ,n} dx+

∫
Lτ

f0(x)1{f̂n,H(x)<f̂τ,n} dx.

Then by Tonelli’s Theorem (Folland, 1999, Theorem 2.37), we have

E

[
μf0{LτΔL̂τ,H}

]
=

∫
Lc

τ

f0(x)P
(
f̂n,H(x) ≥ f̂τ,n

)
dx

+

∫
Lτ

f0(x)P
(
f̂n,H(x) < f̂τ,n

)
dx.

(12)

For a density function f on Rd, let fτ (f) := inf{y ≥ 0 :
∫
Rd f(x)1{f(x)≥y} dx ≤

1 − τ}. By this definition, fτ,0 ≡ fτ (f0). The following lemma bounds the
modulus of continuity of fτ when the difference between two density functions
is sufficiently small.

Lemma A.1. Let the assumptions of Theorem 2.2 hold. Let f̃ be another uni-
formly continuous density function on Rd and f̃τ ≡ fτ (f̃). Then there exists a
constant C1 ≥ 1 such that for all ε > 0 sufficiently small, |f̃τ − fτ,0| ≤ C1ε

whenever ‖f̃ − f0‖∞ ≤ ε.

It is intuitively believable that when the sample size n is sufficiently large,
the values of the two integrals on the right of (12) are mostly governed by the
integrals over a small neighborhood of βτ . To shrink the region of integration,
for δ > 0, and for a given level t > 0, we let βδ(t) :=

⋃
x∈β(t) B(x, δ), and

βδ
τ ≡ βδ(fτ,0). We also let

Lδ(fτ,0) :=
⋃

x∈Lτ

B(x, δ) and L−δ(fτ,0) := L(fτ,0)\βδ
τ .

Then we can shrink the integral region using the following lemma.
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Lemma A.2. Let the assumptions of Theorem 2.2 hold. Then for a sequence
δn > 0 converging to 0 such that λmax(H) = o(δn), we will have∫

Lδn (fτ,0)c
f0(x)P

(
f̂n,H(x) ≥ f̂τ,n

)
dx

+

∫
L−δn (fτ,0)

f0(x)P
(
f̂n,H(x) < f̂τ,n

)
dx

(13)

is o(n−1) as n → ∞.

The definition of f̂τ,n is simple and straightforward, however there is no
explicit form for this quantity. So we want to seek an asymptotic expansion for
f̂τ,n. For a uniformly continuous density f on Rd and y ≥ 0, we define

ψ(f, y) :=

∫
Rd

f(x)1{f(x)≥y} dx.

First, we observe for ε > 0 sufficiently small,∣∣∣∣ψ(f0, fτ,0 + ε)− ψ(f0, fτ,0)− ε

∫
βτ

f0(x)

‖∇f0(x)‖
dH(x)

∣∣∣∣
=

∣∣∣∣∫
Rd

f0(x)1{fτ,0≤f0(x)≤fτ,0+ε} dx− ε

∫
βτ

f0(x)

‖∇f0(x)‖
dH(x)

∣∣∣∣ = O(ε2),

(14)

as ε ↘ 0, where the last line comes from a similar argument of (67) and (68).
A similar argument shows the same result when ε ↗ 0. Next, we look at∣∣∣∣ψ(f̃ , f̃τ )− ψ(f0, f̃τ )− fτ,0

∫
βτ

g

‖∇f0‖
dH−

∫
Lτ

g dλ

∣∣∣∣
=

∣∣∣∣∫ f̃1{f̃≥f̃τ} dλ−
∫

f01{f0≥f̃τ} dλ− fτ,0

∫
βτ

g

‖∇f0‖
dH−

∫
Lτ

g dλ

∣∣∣∣
=

∣∣∣∣∫ f0(1{f̃≥f̃τ} − 1{f0≥f̃τ}) dλ− fτ,0

∫
βτ

g

‖∇f0‖
dH

+

∫
g(1{f̃≥f̃τ} − 1{f0≥fτ,0}) dλ

∣∣∣∣ ,
(15)

where g(x) = f̃(x)−f0(x). For the first integral on the last line, since 1{f̃≥f̃τ}−
1{f0≥f̃τ} �= 0 indicates that f̃(x) ≥ f̃τ , f0(x) < f̃τ or f̃(x) < f̃τ , f0(x) ≥ f̃τ ,

we have f0(x) ∈ [f̃τ − |g(x)|, f̃τ + |g(x)|]. Combining (16) with our result in
Lemma A.1 yields

f0(x) = fτ +O(‖g‖∞), (16)

for x ∈ {y : f̃(y) ≥ f̃τ}Δ{y : f0(y) ≥ f̃τ}. Next we need the following lemmas.
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Lemma A.3. Let the assumptions of Theorem 2.2 hold and the notation be as
defined above. As ‖g‖2∞ + ‖g‖∞‖∇g‖∞ → 0, we have∫

1{f̃≥f̃τ} − 1{f0≥f̃τ} dλ =

∫
βτ

g

‖∇f0‖
dH+O(‖g‖2∞ + ‖g‖∞‖∇g‖∞). (17)

Lemma A.4. Let the assumptions of Theorem 2.2 hold and the notation be as
defined above. As ‖g‖2∞ + ‖g‖∞‖∇g‖∞ → 0, we have∫

Rd

g(x)
(
1{f̃(x)≥f̃τ} − 1{f0(x)≥fτ}

)
dx = O(‖g‖2∞).

Now with Lemma A.3, A.4 and (16), we can see that (15) equals O(‖g‖2∞ +
‖g‖∞‖∇g‖∞). Note that if ‖∇g‖∞ → 0, then ψ(f̃ , f̃τ ) = 1− τ . Combining this
with (14) and the order of (15), we have

0 = ψ(f̃ , f̃τ )− ψ(f, fτ,0)

= ψ(f̃ , f̃τ )− ψ(f, f̃τ ) + ψ(f, f̃τ )− ψ(f, fτ,0)

= −(f̃τ − fτ,0)fτ,0

∫
βτ

1

‖∇f0‖
dH+ fτ,0

∫
βτ

g

‖∇f0‖
dH

+

∫
Lτ

g dx+O(‖g‖2∞ + ‖g‖∞‖∇g‖∞)

(18)

as ‖g‖2∞ + ‖g‖∞‖∇g‖∞ → 0. We want to apply (18) with f̃ = f̂n,H , so that

g = f̂n,H − f0. To do this, note by Theorem B.1 that ‖f̂n,H − Ef̂n,H‖∞ =

Oa.s.

(√
log |H|−1/2

n|H|1/2

)
, ‖∇f̂n,H−E∇f̂n,H‖∞ = Oa.s.

(√
log |H|−1/2

n|H|1/2λmin(H)

)
, by (71),

‖E(f̂n,H) − f0‖∞ = O {λmax(H)}. We also have that ‖E∇f̂n,H − ∇f0‖∞ =

O{λ1/2
max(H)}. Then applying the above results, we have

f̂τ,n − fτ,0 = w0

{∫
βτ

f̂n,H(x)− f0(x)

‖∇f0(x)‖
dH(x) +

1

fτ,0

∫
Lτ

f̂n,H(x)− f0(x) dx

}

+Op

(
log |H|−1/2

n|H|1/2
√

λmax(H)
+ λ3/2

max(H)

)
.

(19)

Note from (2) and (19), for fixed x, f̂n,H(x) − f̂τ,n can be expressed as the
average of i.i.d. random variables with a negligible stochastic error term. This
motivates us to use the Berry-Essen Theorem (Ferguson, 1996) to approximate
the two probabilities appearing on the right of (13). In order to do so, we will

need to approximate the mean and variance of f̂τ,n, which we do in the next
lemmas.

Lemma A.5. Let the assumptions of Theorem 2.2 hold and the notation be as
defined above. Then we have

Ef̂τ,n − fτ,0 = w0 {V1(H) + V2(H)}+ o {tr(H)} , (20)

as n → ∞.
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Recall V1 and V2 are defined in Theorem 2.2. The next lemma shows Var f̂τ,n
is negligible compared with other terms in the expansion.

Lemma A.6. Let the assumptions of Theorem 2.2 hold and the notation be as
defined above. Then Var f̂τ,n = o(n−1|H|−1/2).

Now according to Lemma A.2 and (12), we have

Eμf0(LτΔL̂τ,H)

=

∫
Lc

τ\Lδn (fτ )c
f0(x)P

(
f̂n,H(x) ≥ f̂τ,n

)
dx

+

∫
Lτ\L−δn (fτ,0)

f0(x)P
(
f̂n,H(x) < f̂τ,n

)
dx+ o

(
n−1
)

=

∫
βδn
τ

f0(x)
∣∣∣P (f̂n,H(x) < f̂τ,n

)
dx− 1{f0(x)<fτ,0}

∣∣∣ dx+ o
(
n−1
)
.

Then by Lemma B.4 when δn is small enough, the dominating term on the last
line above is equal to∫

βτ

∫ δn

−δn

f0(x+ tux)
∣∣∣P (f̂n,H(x+ tux) < f̂τ,n

)
− 1{f0(x+tux)<fτ,0}

∣∣∣ dtdH(x)

+O(δ2n),

(21)

where ux := −∇f0(x)/‖∇f0(x)‖ is the unit outer normal vector of βτ at x. Now

for a fixed x ∈ βτ , let x
t = x+ t√

n|H|1/2
ux for t ∈ [−

√
n|H |1/2δn,

√
n|H|1/2δn],

we see (21) equals

1√
n|H|1/2

∫
βτ

∫ √
n|H|1/2δn

−
√

n|H|1/2δn
f0
(
xt
) ∣∣∣P (f̂n,H (xt

)
< f̂τ,n

)
− 1{t>0}

∣∣∣ dtdH(x)

(22)

+O(δ2n). (23)

By Taylor Expansion, we have

f0

(
x+

t√
n|H|1/2

ux

)
= f0(x) +∇f0

(
x+

st√
n|H |1/2

ux

)′
t√

n|H|1/2
ux,

for some s ∈ [0, 1]. Since by Assumption D1b, f0 has bounded first derivatives,
we see the dominating term in (22) equals

fτ,0√
n|H|1/2

∫
βτ

∫ √
n|H|1/2δn

−
√

n|H|1/2δn

∣∣∣P (f̂n,H(xt) < f̂τ,n

)
− 1{t>0}

∣∣∣ dtdH(x) +O(δ2n),

(24)

as n → ∞.
We can further shrink the region of interest by the following lemma.
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Lemma A.7. Let the assumptions of Theorem 2.2 hold and the notation be
as defined above. Then for n sufficiently large, E{f̂n,H(xt)− f̂τ,n} is a strictly

monotone function of t ∈ [−
√

n|H|1/2δn,
√
n|H|1/2δn], with a unique zero t∗x.

For a sequence tn diverging to infinity and tn = O(
√

n|H|1/2δn), let

Inx = [−
√

n|H|1/2δn,
√
n|H |1/2δn]\[t∗x − tn, t

∗
x + tn].

We have ∫
βτ

∫
In
x

|P (f̂n,H(xt) < f̂τ,n)− 1{t>0}| dtdH(x) → 0 (25)

as n → ∞.

To complete the proof of Theorem 2.2, by (24) and Lemma A.7 it suffices to
show that there exists a sequence tn diverging to infinity slowly such that

fτ,0√
n|H|1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

|P (f̂n,H(xt) < f̂τ,n)− 1{t<0}| dtdH(x)

= HDR(H) + o
{
(n|H|1/2)−1/2 + tr(H)

}
.

For i = 1, 2, . . . , n, let Zni(x) = KH(x−Xi) and Ȳn = n−1
∑n

i=1 Yni, where

Yni = Zni(x
t)− fτ,0 −

{∫
βτ

1

‖∇f0‖
dH
}−1{∫

βτ

Zni(x)− f0(x)

‖∇f0(x)‖
dH(x)

+
1

fτ,0

∫
Lτ

Zni(x)− f0(x) dx

}
.

Then by (18) and (19), we can write f̂n,H(xt) − f̂τ,n = Ȳn + Rn, where Rn −

E(Rn) = op

(
1√

n|H|1/2

)
. By Lemma A.6, we know Var(Ȳn) is O(n−1|H|−1/2)

uniformly in t and x. Let tn diverge slowly such that for fixed x ∈ βτ ,

• P
(

|Rn−E(Rn)|
Var1/2(Ȳn)

> 1
t2n

)
≤ 1

t2n
uniformly for t ∈ [t∗x − tn, t

∗
x + tn].

• E(Ȳn+Rn) = { t√
n|H|1/2

‖∇f0(x)‖+D1(x,H)−D2(x,H)}
{
1 + o(t−2

n )
}
,

uniformly for t ∈ [t∗x− tn, t
∗
x+ tn] and x ∈ βτ , by Assumption D1b part 3.

• n|H|1/2 Var Ȳn = R(K)fτ,0+o(t−2
n ) uniformly for t ∈ [t∗x− tn, t

∗
x+ tn] and

x ∈ βτ .

Then

P (f̂n,H(xt) < f̂τ,n)− Φ (Axt+ Cx(H))

= P (Ȳn +Rn − E(Ȳn +Rn) < −E(Ȳn +Rn))− Φ (Axt+ Cx(H))

≤ P

(
|Rn − E(Rn)|
Var1/2(Ȳn)

>
1

t2n

)
+ P

(
Ȳn − E(Ȳn)

Var1/2(Ȳn)
≤ −E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)
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− Φ (Axt+ Cx(H))

= O

(
1

t2n

)
+ P

(
Ȳn − E(Ȳn)

Var1/2(Ȳn)
≤ −E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)
− Φ (Axt+ Cx(H)) .

Applying the Berry-Esseen theorem (Ferguson, 1996) to the last two terms on
the last line yields∣∣∣∣∣P

(
Ȳn − E(Ȳn)

Var1/2(Ȳn)
≤ −E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)
− Φ

(
−E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)∣∣∣∣∣
≤ CE|Yni|3

Var3/2(Yni)
√
n
.

Now since we know Var(Ȳn) = R(K)fτ,0/(n|H|1/2)+ o(n−1|H|−1/2) uniformly,
Var(Yni) = R(K)fτ,0/(|H|1/2)+o(|H |−1/2) and it can be shown that E|Yni|3 =
O(|H |−1), we further have∣∣∣∣∣P

(
Ȳn − E(Ȳn)

Var1/2(Ȳn)
≤ −E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)
− Φ

(
−E(Ȳn +Rn)

Var1/2(Ȳn)
+

1

t2n

)∣∣∣∣∣
= O

(
1√

n|H|1/2

)
,

and then

P (f̂n,H(xt) < f̂τ,n)− Φ (Axt+ Cx(H))

≤ O

(
1

t2n
+

1√
n|H |1/2

)
+Φ

(
−E(Ȳn +Rn)

Var1/2(Ȳn)

)
− Φ (Axt+ Cx(H)) ,

uniformly in t and x. A similar argument shows a lower bound of the same
order. Now we look at the integrated error

1√
n|H|1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

∣∣∣∣∣Φ
(
−E(Ȳn +Rn)

Var1/2(Ȳn)

)
− Φ (Axt+ Cx(H))

∣∣∣∣∣ dt dH(x).

We can see that |Φ
(

−E(Ȳn+Rn)

Var1/2(Ȳn)

)
− Φ (Axt+ Cx(H)) | is bounded by{

(tn + |t∗x|)‖∇f0‖∞ +
√
n|H|1/2|D1(x,H)|+

√
n|H|1/2|D2(x,H)|

}
o(t−2

n ).

uniformly in x. From (86) we know |t∗x| is uniformly O(
√

n|H |1/2 tr(H)), then

1√
n|H|1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

(tn + |t∗x|)‖∇f0‖∞o(t−2
n ) dt dx
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= o

(
1√

n|H|1/2
+ tr(H)

)
,

and similarly

1√
n|H|1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

{√
n|H|1/2 (|D1(x,H)|+ |D2(x,H)|)

}
o(t−2

n ) dt dx

= o

(
1√

n|H |1/2
+ tr(H)

)
.

So we have

fτ,0√
n|H |1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

∣∣∣P (f̂n,H(xt) < f̂τ,n

)
− 1{t<0}

∣∣∣ dt dH(x)

=
fτ,0√
n|H |1/2

∫
βτ

∫ t∗x+tn

t∗x−tn

∣∣Φ (Axt+ Cx(H))− 1{t<0}
∣∣ dt dH(x)

+ o

(
1√

n|H|1/2
+ tr(H)

)
.

It remains to see from Lemma B.3 that

fτ,0√
n|H|1/2

∫
βτ

∫ ∞

−∞

∣∣Φ (Axt+ Cx(H))− 1{t<0}
∣∣ dt dH(x)

=
fτ,0√
n|H|1/2

∫
βτ

2φ(Cx(H)) + 2Φ(Cx(H))Cx(H)− Cx(H)

Ax
dH(x).

A.2. Proof of Theorem 2.1

We also provide a brief proof for Theorem 2.1, which is a simpler and shares
the same idea as that of Theorem 2.2. First, we have

E

[
μf0{L(c)ΔL̂H(c)}

]
= E

∫
Rd

f0(x)
∣∣∣1{f̂n,H(x)≥c} − 1{f0(x)≥c}

∣∣∣ dx
=

∫
L(c)c

f0(x)P
(
f̂n,H(x) ≥ c

)
dx+

∫
L(c)

f0(x)P
(
f̂n,H(x) < c

)
dx.

(26)

Like Lemma A.2, we can shrink the region of interest. We show that for each
δ > 0 sufficiently small, we have∫

Lδ(c)c
f0(x)P

(
f̂n,H(x) ≥ c

)
dx+

∫
L(c)

f0(x)P
(
f̂n,H(x) < c

)
dx = o(n−1),
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as n → ∞.
Observe that under Assumption D1a if δ > 0 is sufficiently small, then there

exists ε > 0 s.t f0(x) ≤ c− ε for x ∈ Lδ(c)
c and f0(x) ≥ c + ε for x ∈ L−δ(c).

By reducing δ > 0 if necessary, for x ∈ Lδ(c)
c,

P
(
f̂n,H(x) ≥ c

)
= P

(
f̂n,H(x)− c ≥ 0

)
≤ P

(
f̂n,H(x)− c+ c− f0(x) ≥ ε

)
≤ P

(
‖f̂n,H − f0‖∞ ≥ ε

)
.

Similarly we can show the same bound for x ∈ L−δ(c). Then∫
Lδ(c)c

f0(x)P
(
f̂n,H(x) ≥ c

)
dx+

∫
L−δ(c)

f0(x)P
(
f̂n,H(x) < c

)
dx

≤ P
(
‖f̂n,H − f0‖∞ ≥ ε

)
≤ P

(
‖f̂n,H − Ef̂n,H‖∞ ≥ ε

2

)
+ P

(
‖Ef̂n,H − f0‖∞ ≥ ε

2

)
,

where P (‖Ef̂n,H−f0‖∞ ≥ ε
2 ) = 0 for n large enough. So with the same argument

in proof Lemma A.2, the above quantity is o(n−1). Further, we have that for a
sequence δn converging to 0 such that λmax(H) = o(δn),∫

Lδn (c)c
f0(x)P

(
f̂n,H(x) ≥ c

)
dx+

∫
L−δn (c)

f0(x)P
(
f̂n,H(x) < c

)
dx

= o(n−1).

(27)

and we also prove this by showing that E(δ, δn) which is defined as∫
Lδn (c)c

f0(x)P
(
f̂n,H(x) ≥ c

)
dx+

∫
L−δn (c)

f0(x)P
(
f̂n,H(x) < c

)
dx

−
{∫

Lδ(c)c
f0(x)P

(
f̂n,H(x) ≥ c

)
dx+

∫
L−δ(c)

f0(x)P
(
f̂n,H(x) < c

)
dx

}

=

∫
Lδn (c)c\Lδn (c)c

f0(x)P
(
f̂n,H(x) ≥ c

)
dx

+

∫
L−δn (c)\L−δ(c)

f0(x)P
(
f̂n,H(x) < c

)
dx

is o(n−1) as n → ∞. Note that there exits a constant c2 small s.t if we
take εn = c2δn, then we have |f0(x) − c| ≥ εn when x ∈ Lδn(c)

c\Lδn(c)
c ∪

L−δn(c)\L−δ(c).Then for x ∈ Lδn(c)
c\Lδn(c)

c,

P
(
f̂n,H(x) ≥ c

)
≤ P

(
f̂n,H(x)− c+ c− f0(x) ≥ εn

)
≤ P

(
‖f̂n,H − f0‖∞ ≥ εn

)
.
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We can derive the same bound for x ∈ L−δn(c)\L−δ(c). Then

E(δ, δn) ≤ P
(
‖f̂n,H(x)− f0(x)‖∞ ≥ εn

)
≤ P

(
‖f̂n,H − Ef̂n,H‖∞ ≥ εn

2

)
+ P

(
‖Ef̂n,H − f0‖∞ ≥ εn

2

)
is o(n−1) when n is large enough.

Now the risk function can be expressed as

Eμf0

{
L(c)ΔL̂(c)

}
=

∫
L(c)c\Lδn (c)c

f0(x)P
(
f̂n,H(x) ≥ c

)
dx

+

∫
L(c)\L−δn (c)

f0(x)P
(
f̂n,H(x) < c

)
dx+ o(n−1)

=

∫
β(c)δn

f0(x)
∣∣∣P (f̂n,H(x) < c

)
− 1{f0(x)<c}

∣∣∣ dx
+ o(n−1).

Then according to Lemma B.4, when δn is small enough∫
β(c)δn

f0(x)
∣∣∣P (f̂n,H(x) < c

)
− 1{f0(x)<c}

∣∣∣ dx
=

∫
β(c)

∫ δn

−δn

f0(x+ tux)
∣∣∣P (f̂n,H(x+ tux) < c

)
− 1{f0(x+tux)<c}

∣∣∣ dtdH(x)

+O(δ2n),

where ux is the unit normal outer vector at x ∈ β(c). And by simple transfor-
mation,∫

β(c)

∫ δn

−δn

f0(x+ tux)
∣∣∣P (f̂n,H(x+ tux) < c

)
− 1{f0(x+tux)<c}

∣∣∣ dtdH(x)

=
1√

n|H|1/2

∫
β(c)

∫ √
n|H|1/2δn

−
√

n|H|1/2δn
f0
(
xt
) ∣∣∣P (f̂n,H(xt) < c

)
− 1{t<0}

∣∣∣ dtdH(x)

=
c√

n|H|1/2

∫
β(c)

∫ √
n|H|1/2δn

−
√

n|H|1/2δn

∣∣∣P (f̂n,H(xt) < c
)
− 1{t<0}

∣∣∣ dtdH(x)

+O(δ2n).

To further shrink the intervals of interest, we also argue that when n is large
enough, E{f̂n,H(xt} is a strictly monotone function of t when t falls within the

interval [−
√
n|H|1/2δn,

√
n|H|1/2δn] with a unique zero t∗x. Now we claim for

a sequence tn diverging to infinity,∫
β(c)

∫
In
x

∣∣∣P (f̂n,H(xt) < c
)
− 1{t<0}

∣∣∣ dtdH(x) → 0
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as n → ∞, where Inx = [−
√
n|H|1/2δn,

√
n|H|1/2δn]\[t∗x−tn, t

∗
x+tn]. For detail

of proof, please refer to the proof of Theorem 2.2.
Now by previous steps, we know

Eμf0{L(c)ΔL̂(c)}

=
c√

n|H|1/2

∫
β(c)

∫ t∗x+tn

t∗x−tn

∣∣∣P (f̂n,H (xt
)
< c
)
− 1{t<0}

∣∣∣ dtdH(x)

+ o

(
1√

n|H|1/2

)
,

To complete the proof, it suffices to show the dominating term above is equal
to LS(H) + o(1/

√
n|H|1/2). Let Zni(x) = KH(x−Xi) and Yni = Zni(x

t)− c.

Then f̂n,H(xt)− c = Ȳn. Now let tn diverge slowly such that

E(Ȳn) =

{
t√

n|H|1/2
‖∇f0(x)‖+D1(x,H)

}
{1 + o(t−2

n )}, (28)

by Assumption D1b part 3, and

n|H|1/2 Var Ȳn = R(K)c+ o(t−2
n ), (29)

uniformly for ∈ [t∗x − tn, t
∗
x + tn] and x ∈ β(c). Then

P
(
f̂n,H

(
xt
)
< c
)
− Φ(Axt+Bx(H))

= P

(
Ȳn − EȲn

Var1/2 Ȳn

≤ −EȲn

Var1/2 Ȳn

)
− Φ(Axt+Bx(H)),

applying the Berry-Esseen theorem (Ferguson, 1996, Page 31) to the first term
above yields ∣∣∣∣P ( Ȳn − EȲn

Var1/2 Ȳn

≤ −EȲn

Var1/2 Ȳn

)
− Φ

(
−EȲn

Var1/2 Ȳn

)∣∣∣∣
≤ CE|Yni|3

Var3/2(Yni)
√
n
= O

(
1√

n|H|1/2

)
,

and

P

(
Ȳn − EȲn

Var1/2 Ȳn

≤ −EȲn

Var1/2 Ȳn

)
− Φ(Axt+Bx(H))

≤ Φ

(
−EȲn

Var1/2 Ȳn

)
− Φ(Axt+Bx(H)) +O

(
1√

n|H|1/2

)
,

uniformly for ∈ [t∗x−tn, t
∗
x+tn] and x ∈ β(c). A similar argument shows a lower

bound of the same order. Next, with a similar argument as we had in the last
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step of proof for Theorem 2.2, we can show the integrated error

1√
n|H|1/2

∫
β(c)

∫ t∗x+tn

t∗x−tn

∣∣∣∣Φ( −EȲn

Var1/2 Ȳn

)
− Φ(Ax +Bx(H))

∣∣∣∣ dtdH(x)

= o

(
1√

n|H|1/2
+ tr(H)

)
.

So we have

c√
n|H|1/2

∫
β(c)

∫ t∗x+tn

t∗x−tn

∣∣∣P (f̂n,H (xt
)
< c
)
− 1{t<0}

∣∣∣ dtdH(x)

=
c√

n|H|1/2

∫
β(c)

∫ t∗x+tn

t∗x−tn

∣∣Φ(Ax +Bx(H))− 1{t<0}
∣∣ dtdH(x)

+ o

(
1√

n|H|1/2
+ tr(H)

)
.

By Lemma B.3,

c√
n|H|1/2

∫
β(c)

∫ ∞

−∞

∣∣Φ(Ax +Bx(H))− 1{t<0}
∣∣ dtdH(x) = LS(H).

This completes the proof.

A.3. Proof of Corollary 3.1

Let H = h2I. If h2 is of order n−2/(d+4) then by Assumption D3,

f̂n,H(x) = f0(x) +
1

2
tr{H∇2f0(x)}+O

(
n−4/(d+4)

)
,

Var f̂n,H(x) = n−1|H|−1/2R(K)f0(x) +O
(
n−6/(d+4)

)
,

uniformly in x. From the proof of Theorem 2.1, if we specifically pick tn =√
logn, and δn =

√
logn/(n|H |1/2), we can further quantify the error in equa-

tions (28) and (29) as

E(Ȳn) =

{
t√

n|H|1/2
‖∇f0(x)‖+D1(x,H)

}
{1 +O(n−2/(d+4)

√
logn)},

n|H|1/2 Var Ȳn = R(K)c+O(n−2/(d+4)
√
logn),

and further

E[μf0{L(c)ΔL̂H(c)}] = LS(h) +O
(
n−4/(d+4)(log n)3/2

)
.

With a similar argument as in Corollary 2.2, we can see that hopt/h0 = 1 +
O(n−2/(d+4)(logn)3/2).
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Now we study ĥopt/hopt. Let gn,H0 = f̂n,H0−f0, gn,H1 = f̂n,H1−f0, gn,H2 =

f̂n,H0 − f0. Let

m(x) :=
φ(sFx) + 2Φ(sFx)sFx − sFx

−Ax
,

and with slight abuse of notation, we let m̂(x) be defined similarly where we

substitute f0 with f̂n,H0 , ∇f0 with ∇f̂n,H1 and ∇2f0 with ∇2f̂n,H0 . We look
at the difference∣∣∣∣∣

∫
β(c)

m(x) dH(x)−
∫
β̂n,H1

(c)

m̂(x) dH(x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫
β(c)

m(x) dH(x)−
∫
β(c)

m̂(x) dH(x)

∣∣∣∣∣
+

∣∣∣∣∣
∫
β(c)

m̂(x) dH(x)−
∫
β̂n,H1

(c)

m̂(x) dH(x)

∣∣∣∣∣ ,
(30)

where β̂n,H1(c) := f̂−1
n,H1

(c). By Lemma B.5, when we have H1 → 0 and

n−1|H1|−1/2(H−1
1 )⊗2 = O(1) as n → ∞, the term on the last line above is

Op(supx∈β(c) E[|gn,H1(x)|+‖∇2gn,H1(x)‖|gn,H1(x)|+‖∇gn,H1(x)‖]). For term
on the second line above, by Jensen’s inequality we know (

∫
β(c)

m(x) dH(x) −∫
β(c)

m̂(x) dH(x))2 ≤
∫
β(c)

(m(x)− m̂(x))2 dH(x). So for any (large) M > 0 we

have

P

(∣∣∣∣∣
∫
β(c)

m(x) dH(x)−
∫
β(c)

m̂(x) dH(x)

∣∣∣∣∣ > M

)

= P

⎛⎝∣∣∣∣∣
∫
β(c)

m(x) dH(x)−
∫
β(c)

m̂(x) dH(x)

∣∣∣∣∣
2

> M2

⎞⎠
which is bounded above by

P

(∫
β(c)

{m(x)− m̂(x)}2 dH(x) > M2

)
≤

E
∫
β(c)

{m(x)− m̂(x)}2 dH(x)

M2
,

by Markov’s inequality. By Tonelli’s Theorem, we can change the order of inte-
grals so that E

∫
β(c)

{m(x)− m̂(x)}2 dH(x) =
∫
β(c)

E {m(x)− m̂(x)}2 dH(x).

Since we assume the true density function has 4 continuous bounded deriva-
tives, by Theorem 4 in Chacón, Duong and Wand (2011) with slight modifica-

tion, it can be easily seen |f̂n,H1(x) − f0(x)| = Op(n
−2/(d+6)), ‖∇f̂n,H1(x) −

∇f0(x)‖ = Op(n
−2/(d+6)), ‖∇2f̂n,H2(x) − ∇2f0(x)‖ is Op(n

−2/(d+8)). Thus

F̂x = Fx +Op(n
−2/(d+8)), and Âx = Ax +Op(n

−2/(d+8)). And we can also see

sup
x∈β(c)

E[|gn,H1(x)|+ ‖∇2gn,H1(x)‖|gn,H1(x)|+ ‖∇gn,H1(x)‖] = O(n−2/(d+6)),
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Thus, we can check that
∫
β(c)

E {m(x)− m̂(x)}2 dH(x) is O(n−4/(d+8)), and the

first term on the last line of (30) is Op(n
−2/(d+8)). We can conclude that for any

0 < s1 < s2 < ∞, we have ÂRLS(s) = ARLS(s){1 + Op(n
−2/(d+8))} uniformly

for s ∈ [s1, s2]. Then we have ÂR
′
LS(ŝopt) = AR′

LS(ŝopt){1 + Op(n
−2/(d+8))} =

AR
′′

LS(s̃)(ŝopt − sopt){1 + Op(n
−2/(d+8))}, where AR

′′

LS(s̃) > 0 and is bounded
from 0 as n → ∞. This gives us ŝopt/sopt = 1 + Op(n

−2/(d+8)), and recall that

ĥopt = ŝ
2/(d+4)
opt n−1/(d+4), hopt = s

2/(d+4)
opt n−1/(d+4), we conclude

ĥopt

hopt
= 1 +Op

(
n−2/(d+8)

)
.

Combining this result with hopt/h0 = 1 + O(n−2/(d+4)(log n3/2)), we can see

ĥopt/h0 = Op(n
−2/(d+8)).

A.4. Proof of Corollary 3.2

Similar to the proof of Corollary 3.1, let gn,H0 = f̂n,H0−f0, gn,H1 = f̂n,H1 −f0,

gn,H2 = f̂n,H0 − f0, and let ε = f̂τ,n,H0 − fτ,0. Since we assume the true
density function has 4 continuous bounded derivatives, again by Theorem 4 in
Chacón, Duong and Wand (2011), it can be easily seen |f̂n,H0(x) − f0(x)| =
Op(n

−2/(d+4)), |f̂n,H1(x) − f0(x)| = Op(n
−2/(d+6)), ‖∇f̂n,H1(x) − ∇f0(x)‖ =

Op(n
−2/(d+6)), ‖∇2f̂n,H2(x)−∇2f0(x)‖ = Op(n

−2/(d+8)). And by Lemma A.1,

|f̂τ,n,H0 − fτ,0| = Op(n
−2/(d+8)). We first look at the difference∣∣∣∣∣

∫
βτ

1

‖∇f0‖
dH−

∫
β̂τ,H1

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

≤
∣∣∣∣∣
∫
βτ

1

‖∇f0‖
dH−

∫
βτ

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

+

∣∣∣∣∣
∫
βτ

1

‖∇f̂n,H1‖
dH−

∫
β̂τ,H1

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣ .

(31)

Since ‖∇f0 − ∇f̂n,H1‖ = Op(n
−2/(d+6)) by Chacón, Duong and Wand (2011),

it is easy to see the term on the second line above is Op(n
−2/(d+6)). Recalling

ε = f̂τ,n,H0 − fτ,0, we can bound the last term as∣∣∣∣∣
∫
βτ

1

‖∇f̂n,H1‖
dH−

∫
β̂τ,H1

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

≤
∣∣∣∣∣
∫
{f0=fτ,0}

1

‖∇f̂n,H1‖
dH−

∫
{f̂n,H1

=fτ,0}

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

+

∣∣∣∣∣
∫
{f0=fτ,0}

1

‖∇f̂n,H1‖
dH−

∫
{f̂n,H1

=fτ,0+ε}

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣ ,
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By Lemma B.5, the difference on the second line above |
∫
{f0=fτ,0}

1

‖∇f̂n,H1
‖ dH−∫

{f̂n,H1
=fτ,0}

1

‖∇f̂n,H1
‖ dH| can been seen of order Op(supx∈β(c) E[|gn,H1(x)| +

‖∇2gn,H1(x)‖|gn,H1(x)|+ ‖∇gn,H1(x)‖]). Next, by Taylor expansion, we have

∫
{f̂n,H1

=fτ,0+ε}

1

‖∇f̂n,H1‖
dH

=

∫
{f̂n,H1

=fτ,0}

1

‖∇f̂n,H1‖
dH−

(
d

de

∫
{f̂n,H1

=fτ,0+e}

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣
e=sε

)
ε,

where s ∈ [0, 1]. Then we have∣∣∣∣∣
∫
{f̂n,H1

=fτ,0}

1

‖∇f̂n,H1‖
dH−

∫
{f̂n,H1

=fτ,0+ε}

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

=

∣∣∣∣∣
(

d

de

∫
{f̂n,H1

=fτ,0+e}

1

‖∇f̂nH1‖
dH
∣∣∣∣∣
e=sε

)
ε

∣∣∣∣∣ .
(32)

From the proof of Lemma B.5, we can see when n is sufficiently large, the deriva-
tive on the last line of (32) is uniformly bounded. Moreover, by Lemma A.1,
ε = O(‖gn,H0‖∞), so we have

∣∣∣∣∣
∫
βτ

1

‖∇f̂n,H1‖
dH−

∫
β̂τ,H1

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣

= O(‖gn,H0‖∞)

+Op( sup
x∈β(c)

E[|gn,H1(x)|+ ‖∇2gn,H1(x)‖|gn,H1(x)|+ ‖∇gn,H1(x)‖])

= Op(n
−2/(d+6)).

Then ∣∣∣∣∣
∫
βτ

1

‖∇f0‖
dH−

∫
β̂τ,H1

1

‖∇f̂n,H1‖
dH
∣∣∣∣∣ = Op(n

−2/(d+6)),

and thus |w0 − ŵ0| = Op(n
−2/(d+6)). Using exactly the same trick, we can show

∣∣∣∣∣
∫
βτ

μ(K) tr(∇2f0)

2‖∇f0‖
dH−

∫
β̂τ,H1

μ(K) tr(∇2f̂n,H2)

2‖∇f̂n,H1‖
dH
∣∣∣∣∣ = Op(n

−2/(d+8)).



4350 C. R. Doss and G. Weng

Next, we provide the bound for |
∫
Lτ

μ(K) tr(∇2f0)
2 dλ−

∫
L̂τ,H0

μ(K) tr(∇2f̂n,H2
)

2 dλ|.
Similarly, we have∣∣∣∣∣
∫
Lτ

μ(K) tr(∇2f0)

2
dλ−

∫
L̂τ,H0

μ(K) tr(∇2f̂n,H2)

2
dλ

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Lτ

μ(K) tr(∇2f0)

2
dλ−

∫
L̂τ,H0

μ(K) tr(∇2f0)

2
dλ

∣∣∣∣∣
+

∣∣∣∣∣
∫
L̂τ,H0

μ(K) tr(∇2f0)

2
dλ−

∫
L̂τ,H0

μ(K) tr(∇2f̂n,H2)

2
dλ

∣∣∣∣∣ ,
(33)

and since we assume f0 has bounded second derivatives, the difference on the

second line above |
∫
Lτ

μ(K) tr(∇2f0)
2 dλ −

∫
L̂τ,H0

μ(K) tr(∇2f0)
2 dλ| = O{|λ(Lτ ) −

λ(L̂τ,H0)|}. Now we show |λ(Lτ ) − λ(L̂τ,H)| = O(‖gn,H0‖∞). It can be seen
that

{x : f0(x) ≥ fτ,0 + ε+ ‖gn,H0‖∞} ⊂ L̂τ,H0 and

L̂τ,H0 ⊂ {x : f0(x) ≥ fτ,0 + ε− ‖gn,H0‖∞},

and then

|λ(Lτ )− λ(L̂τ,H0)|
≤ |λ(Lτ )− λ{x : f0(x) ≥ fτ,0 + ε+ ‖gn,H0‖∞}|

+ |λ(Lτ )− λ{x : f0(x) ≥ fτ,0 + ε− ‖gn,H0‖∞}|.

Further by Proposition A.1 of Cadre (2006),

|λ(Lτ )− λ{x : f0(x) ≥ fτ,0 + ε+ ‖gn,H0‖∞}|

=

∣∣∣∣(ε+ ‖gn,H2‖∞)

∫
βτ

1

‖∇f0‖
dH
∣∣∣∣+ o(ε+ ‖gn,H0‖∞),

and

|λ(Lτ )− λ{x : f0(x) ≥ fτ,0 + ε− ‖gn,H0‖∞}|

=

∣∣∣∣(ε− ‖gn,H0‖∞)

∫
βτ

1

‖∇f0‖
dH
∣∣∣∣+ o(ε− ‖gn,H0‖∞),

and thus

|λ(Lτ )− λ(L̂τ,H0)| = O(‖gn,H0‖∞),

when ‖gn,H0‖∞ → 0.
Now for the last term of (33), by Jensen’s inequality we have(∫

L̂τ,H0

μ(K) tr(∇2gn,H2)

2
dλ

)2

≤
∫
L̂τ,H0

(
μ(K) tr(∇2gn,H2)

2

)2

dλ
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≤
∫ (

μ(K) tr(∇2gn,H2)

2

)2

dλ,

and then for any (large) M > 0,

P

(∣∣∣∣∣
∫
L̂τ,H0

μ(K) tr(∇2gn,H2)

2
dλ

∣∣∣∣∣ > M

)
≤

E
∫ (μ(K) tr(∇2gn,H2

)

2

)2
dλ

M2
,

where we applied Markov’s inequality to obtain the upper bound. Applying
Tonelli’s Theorem yields

E

∫ (
μ(K) tr(∇2gn,H2)

2

)2

dλ

=

∫
E

(
μ(K) tr(∇2gn,H2)

2

)2

dλ

= Op(n
−4/(d+8)).

So |
∫
Lτ

μ(K) tr(∇2f0)
2 dλ−

∫
L̂τ,H0

μ(K) tr(∇2f̂n,H2
)

2 dλ| = Op(n
−2/(d+8)).

Now from Chacón, Duong and Wand (2011), we know that Ĝx = Gx +

Op(n
−2/(d+8)), Âx = Ax + Op(n

−2/(d+8)). And using a similar trick as for w0,
we have

|ÂRHDR(s)−ARHDR(s)| = Op(n
−2/(d+6)).

And we can conclude that for any 0 < s1 < s2 < ∞, we have ÂR(s) =

AR(s){1 + Op(n
−2/(d+8))} uniformly for s ∈ [s1, s2]. And ÂR

′
HDR(ŝopt) =

AR′
HDR(ŝopt){1+Op(n

−2/(d+8))} = AR
′′

HDR(s̃)(ŝopt− sopt){1+Op(n
−2/(d+8))},

where AR
′′

HDR(s̃) > 0 and is bounded from 0 as n → ∞. This gives us ŝopt/sopt =

1 + Op(n
−2/(d+8)). Finally, recall that ĥopt = ŝ

2/(d+4)
opt n−1/(d+4) and hopt =

s
2/(d+4)
opt n−1/(d+4), we conclude

ĥopt

hopt
= 1 +Op

(
n−2/(d+8)

)
.

Appendix B: Additional theorems and proofs

The following theorem is a slight extension of Theorem 2.3 of Giné and Guillou
(2002) to allow general bandwidth matrices and to apply to gradient estimation.
Its proof is essentially the same as that of their Theorem 2.3, so is omitted.

Theorem B.1. Let X1, . . . ,Xn be i.i.d. from a bounded density on Rd, and
let Assumptions K, and H hold. We have

lim sup
n→∞

√
n|Hn|1/2

log |Hn|−1/2
‖f̂n,Hn − Ef̂n,Hn‖∞ = C0,1 a.s., (34)
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and

lim sup
n→∞

√
n|Hn|1/2λmin(H)

log |Hn|−1/2
‖∇f̂n,Hn − E∇f̂n,Hn‖∞ ≤ C0,2 a.s., (35)

Here C0,1 and C0,2 depend on d,K, and ‖f0‖∞.

The proof of Theorem B.1 also yields the following probability bound which
we need in particular.

Corollary B.1. Let X1, . . . ,Xn be i.i.d. from a bounded density on Rd, and
let Assumptions K, and H hold. Then for some constant C > 0 and for 0 < ε ≤
C‖K‖22‖f0‖∞/‖K‖∞, we have

P
{∥∥∥f̂n,H − Ef̂n,H

∥∥∥
∞

> ε
}
≤ L exp

{
−C0,1ε

2n|Hn|1/2
}
, (36)

where C0,1 depends on K, d, and ‖f0‖∞. Similarly, for 0 < ε small enough (with
bound depending on ∇K and ‖f0‖∞),

P
{∥∥∥∇f̂n,H − E∇f̂n,H

∥∥∥
∞

> ε
}
≤ L exp

{
−C0,2ε

2n|Hn|1/2λH

}
, (37)

where C0,2 > 0 depends on ∇K, d, and ‖f0‖∞, and where λH is the smallest
eigenvalue of H.

Proof. We let

FK,Hn :=
{
K(H−1/2

n (t− ·)) : t ∈ Rd
}
,

(which is a VC class by Assumption K). We have that for ε > 0

P
{∥∥∥f̂n,H − Ef̂n,H

∥∥∥
∞

> ε
}
= P

⎧⎨⎩ 1

n|Hn|1/2

∥∥∥∥∥
n∑

i=1

f(Xi)− Ef(Xi)

∥∥∥∥∥
FK,H

> ε

⎫⎬⎭.

(38)

Thus we set

σ2
n := |Hn|1/2‖K‖22‖f0‖∞ and U := ‖K‖∞

which satisfy the conditions of Corollary 2.2 of Giné and Guillou (2002) so
we have L and C (depending on K and d) from the corollary, so we set t =
εn|Hn|1/2, and λ = C so that (7) in Giné and Guillou (2002) is satisfied (using
that n|Hn|1/2 → ∞ for the lower bound). We conclude that (38) is bounded
above by

L exp

{
−Dε2n|Hn|1/2

‖K‖22‖f0‖∞

}
where D := (log(1 + C/4L))/LC, completing the proof.
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A similar proof shows that (37) holds. Let KH := |H|−1/2K(H−1/2·). Then
∇KH(y) = |H|−1/2H−1/2∇K(H−1/2y), so P

{∥∥∥∇f̂n,H − E∇f̂n,H

∥∥∥
∞

> ε
}

is

bounded above by

dP

{
1

n|Hn|1/2
‖aH‖

∥∥∥∥∥
n∑

i=1

‖∇K(H−1/2(· −Xi))− E∇K(H−1/2(· −Xi))‖
∥∥∥∥∥
∞

> ε

}

by the Cauchy-Schwarz inequality where a′H is a row of H−1/2 (and, recall,

‖ · ‖ is just Euclidean norm). Since ‖aH‖ ≤ λ
−1/2
H where λ

−1/2
H is the largest

eigenvalue of H−1/2, the previous display is bounded above by

P

⎧⎨⎩ 1

n|Hn|1/2λ1/2
H

∥∥∥∥∥
n∑

i=1

f(Xi)− Ef(Xi)

∥∥∥∥∥
FK,H

> ε

⎫⎬⎭
where

FK,Hn :=
{
‖∇K(H−1/2

n (t− ·))‖ : t ∈ Rd
}
,

is a VC class by Assumption K. We thus take σ2
n := |Hn|1/2R(∇K)‖f0‖∞ and

U :=
√
d‖∇K‖∞ and apply Corollary 2.2 of Giné and Guillou (2002). Here

R(∇K) is the largest eigenvalue of
∫
(∇K)(∇K)′dλ. We take t = εn|H|1/2λ1/2

H

and λ = C. Then (7) of Giné and Guillou (2002) is satisfied since we have

n1/2|H|1/4λ1/2
H /

√
log |H|−1/2 → ∞. This yields (37).

The following is referred to as the ε-Neighborhood Theorem by Guillemin and
Pollack (1974). It states that for certain manifolds, so-called Tubular Neighbor-
hoods exist.

Theorem B.2 (page 69, Guillemin and Pollack (1974)). For a compact bound-
aryless manifold Y in Rd and ε > 0, let Y ε be the open set of points in Rd with
distance less than ε from Y . If ε is small enough, then each point w ∈ Y ε pos-
sesses a unique closest point in Y , denoted π(w). Moreover, the map π : Y ε → Y
is a submersion.

A map between manifolds is a submersion if, at all points, the Jacobian map
between corresponding tangent spaces is of full rank; see page 20 of Guillemin
and Pollack (1974).

Theorem B.3 (Taylor’s Theorem in Several Variables). Suppose f : Rn → R

is of class Ck+1 on an open convex set S. If a ∈ S and a+ h ∈ S, then

f(a+ h) =
∑
|α|≤k

∂αf(a)

α!
hα +Ra,k(h), (39)
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where the remainder is given in Lagrange’s form by

Ra,k(h) =
∑

|α|=k+1

∂αf(a+ ch)
hα

α!
(40)

for some c ∈ (0, 1).

Lemma B.1. Let x = (x1, x2, . . . , xd)
′ be a d-dimensional vector and A = {aij}

be a d× d matrix. Then |x′Ax| ≤ d‖A‖∞‖x‖2, where ‖A‖∞ = maxi,j |aij |.
Proof. We have

|x′Ax| ≤
∑
i,j

|aijxixj | ≤
∑
i,j

|aij |
x2
i + x2

j

2
≤ ‖A‖∞

∑
i,j

x2
i + x2

j

2
= d‖A‖∞‖x‖2.

Lemma B.2. Let Assumption D1b and D2 hold, the for δn > 0 small enough,
there exists constant c2 > 0 and another sequence εn > 0 such that εn = c2δn
and |f0(x)−fτ,0| ≥ εn when x ∈ (Lδn(fτ,0)

c\Lδ(fτ,0)
c)∪(L−δn(fτ,0)\L−δ(fτ,0)).

Proof. The existence of such c2 can be proved by Theorem B.2, which says for
all δ > 0 sufficiently small, then for each x ∈

⋃
y∈β B(y, δ) there exist a unique

θ ∈ Id and |s| ≤ δ such that x = y(θ) + su(θ), where

u(θ) = − ∇f0(y)

‖∇f0(y)‖
,

is outer unit normal vector of βτ at y ≡ y(θ). And here we pick δ > 0 sufficiently
small such that not only the Tubular Neighborhood Theorem (Theorem B.2)

but also the following hold: When ‖y1 − y2‖ ≤ δ, |∂f0(y1)
xi

− ∂f0(y2)
xi

| ≤ γ, i =
1, 2, . . . , d, for some γ > 0.

Note these two conditions are both feasible because under Assumption D1b,
f0 has two continuous bounded derivatives, which indicates both f0 and ∇f0
are Lipschitz. Then for x ∈ (Lδn(fτ,0)

c\Lδ(fτ,0)
c) ∪ (L−δn(fτ,0)\L−δ(fτ,0)),

|f0(x)− fτ,0| = |f0(y + su)− f0(y)| = |∇f0(ξ)
′us|,

where ξ = y + lsu for some 0 ≤ l ≤ 1, y ∈ βτ . So

|f0(x)− fτ,0| =
∣∣∣∣∇f0(ξ)

′ ∇f0(y)

‖∇f0(y)‖
s

∣∣∣∣ .
Note that

|∇f0(ξ)
′∇f0(y)| =|‖∇f0(y)‖+ (∇f0(ξ)−∇f0(y))

′∇f0(y)|

Let b := infy∈βτ ‖∇f0(y)‖, so by Assumption D1b, b > 0. Then by Cauchy-
Schwarz inequality

|(∇f0(ξ)−∇f0(y))
′∇f0(y)| ≤ ‖∇f0(ξ)−∇f0(y)‖‖f0(y)‖ ≤

√
dγb
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We can choose γ > 0 sufficiently small such that |∇f0(ξ)
′∇f0(y)| ≥ 1

2b. Then
since ‖∇f0(y)‖ is bounded, |f0(x) − fτ,0| ≥ 1

2 supy∈β ‖∇f0(y)‖ |s|. Now for x ∈
(Lδn(fτ,0)

c\Lδ(fτ,0)
c) ∪ (L−δn(fτ,0)\L−δ(fτ,0)), |s| ≥ δn, so |f0(x) − fτ,0| ≥

εn = 1
2 supy∈β ‖∇f0(y)‖δn.

Lemma B.3. Let a < 0 and b ∈ R be two constants, then∫
R

|Φ(ax+ b)− 1{x<0}| dx =
2φ(b) + 2Φ(b)b− b

−a
.

Proof. Note∫
R

|Φ(ax+ b)− 1{x<0}| dx =

∫ 0

−∞
(1− Φ(ax+ b)) dx+

∫ ∞

0

Φ(ax+ b) dx.

And ∫ 0

−∞
(1− Φ(ax+ b) dx = x(1− Φ(ax+ b))|0−∞ +

∫ 0

−∞
xφ(ax+ b)a dx

which equals∫ 0

−∞
xφ(ax+ b)a dx =

1

a

∫ b

∞
(y − b)φ(y) dy

= −1− Φ(b)

a

∫ ∞

b

(y − b)
φ(y)

1− Φ(b)
dy

= −1− Φ(b)

a

(
φ(b)

1− Φ(b)
− b

)
= −φ(b)− (1− Φ(b))b

a
.

Also, ∫ ∞

0

Φ(ax+ b) dx = xΦ(ax+ b)|∞0 −
∫ ∞

0

axφ(ax+ b) dx

which equals

−
∫ ∞

0

axφ(ax+ b) dx =
1

a

∫ b

−∞
(y − b)φ(y) dy =

Φ(b)

a

∫ b

−∞
(y − b)

φ(y)

Φ(b)
dy

=
Φ(b)

a

(
−φ(b)

Φ(b)
− b

)
=

−φ(b)− Φ(b)b

a
.

Thus ∫
R

|Φ(ax+ b)− 1{x<0}| dx =
2φ(b) + 2Φ(b)b− b

−a
.
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Recall that βδ := ∪x∈βB(x, δ) and that we let ux be the unit outer nor-
mal vector to the manifold β at x. The following lemma gives a very useful
approximate change of variables type of theorem.

Lemma B.4. Let either Assumption D1a or Assumption D1b hold, and let
D2 hold for the density f0. Let either β := f−1

0 (c) in the LS setting or let
β := f−1

0 (fτ,0) in the HDR setting. Let δ > 0 be such that the conclusion of
Theorem B.2 holds for βδ. Let h be a bounded Lebesgue measurable function on

βδ and let H(x) :=
∫ δ

−δ
h(x+ tux)dt. Then∣∣∣∣∫

βδ

h(x)dx−
∫
β

H(z)dHd−1(z)

∣∣∣∣ ≤ C sup
x∈β

∫ δ

−δ

th(x+ tux)dt (41)

where C is a constant depending on f0.

Proof. Since β is compact (by Assumption D1b), it admits a finite “atlas”,
{(Uα, ϕα)}α, meaning {Uα}α is an open cover of β, that ϕα : V α → Uα is a
diffeomorphism, and that V α is open in Rd−1. Let V α

δ := V α × (−δ, δ). Let
Φα : V α

δ → βδ be defined by

Φα(θ, t) := ϕα(θ) + tuϕα(θ) where ux := − ∇f0
‖∇f0‖

(x).

Thus ux is the unit outer normal to β at x ∈ β. By the change of variables
Theorem 2 (page 99) of Evans and Gariepy (2015) (see also the example on
page 101), ∫

V α

h(ϕα(θ)))Jϕα(θ)dθ =

∫
Uα

h(y)dHd−1(y). (42)

Here,

Jϕα(θ) := det [(∇ϕα(θ))
′∇ϕα(θ)]

1/2
(43)

by Theorem 3 (page 88) of Evans and Gariepy (2015). Similarly,∫
V α
δ

h(Φα((θ, t))JΦα(θ, t)d(θ, t) =

∫
Uα

δ

h(y)dy (44)

where JΦα = | det∇Φα| and Uα
δ := Φα(V

α
δ ). We can see that

∇Φα(θ, t) =
(
∇ϕα(θ) + t∇uϕα(θ)|uϕα(θ)

)
. (45)

Thus, because ux is perpendicular to the tangent space of β at x, and this
tangent space is equal to the span of the columns of ∇ϕα(θ) for t ∈ [−δ, δ],
letting x = ϕα(θ), we have

∇Φα(θ, t)
′∇Φα(θ, t) =

(
At t∇u′

xux

tu′
x∇ux 1

)
(46)

where

At := ∇ϕα(θ)
′∇ϕα(θ) + t∇ϕα(θ)

′∇ux + t∇u′
x∇ϕα(θ) + t2∇u′

x∇ux. (47)
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Note that from (46) we have

JΦα(θ, 0) = Jϕα(θ). (48)

Now

det(A+ εAX) = detA+ ε detA trX +O(ε2) (49)

as ε → 0 (Magnus and Neudecker, 1999) for any square matrices A and X of
the same dimension. Thus

JΦα(θ, t) = (det∇Φα(θ, t)
′∇Φα(θ, t))

1/2

= (det∇Φα(θ, 0)
′∇Φα(θ, 0) +O(t))

1/2
by (49), (46), and (47),

which equals

JΦα(θ, 0) +O(t) as t → 0, (50)

by differentiability of z �→ z1/2 away from 0, since JΦα(θ, 0) is uniformly
bounded away from 0. The O(t) term is uniform in θ. Thus, by (48), (42),
and (44), ∫

Uα
δ

h(y) dy =

∫
Uα

H(y) dHd−1(y) + E (51)

where |E| ≤ C
∫
Id

∫ δ

−δ
th(Φα(θ, t))dtdθ where C is the constant from the O(t)

term in (50). This proves the lemma if β is parameterizable by a single open set;
for the general case, we use a partition of unity. Let {ρi} be a finite (smooth)
partition of unity subordinate to {Uα} (Spivak, 1965, page 63). Define ρδi (x +
tux) := ρi(x) for t ∈ (−δ, δ) (which thus forms a partition of unity of βδ

subordinate to {Uα
δ }α). Then replacing h in (51) by ρδi · h, since each ρi is

bounded, smooth, and zero outside one of the Uα,∫
βδ

h(y)dy =
∑
i

∫
βδ

ρδi (y)h(y)dy

=
∑
i

∫
β

ρiHdHd−1 + E2 =

∫
β

HdHd−1 + E2

since ρδi (x+ tux) = ρi(x), and where |E2| ≤ C2 supx∈β

∫ δ

−δ
th(x+ tux)dt.

Lemma B.5. Let Assumption D1a hold.

1. Assume that γ is a continuously differentiable function on an open neigh-
borhood of βτ in Rd. For ε near 0, let βε := f−1

0 (fτ,0+ ε) and assume βε is
compact for all ε in a neighborhood of 0. Then ε �→

∫
βε

γdH is continuously
differentiable in a neighborhood of ε = 0.

2. Let f̂n,H be the KDE (defined in (2)), where K satisfies Assumptions K
and K2, and H satisfies H → 0 and n−1|H|−1/2(H−1)⊗2 = O(1) as n →
∞. Let gn := f̂n,H − f0. Let β̌τ,n := f̂−1

n,H(fτ,0). Assume γn ≡ γ is poten-
tially random but satisfies supx∈βδ

τ
|γ(x)| = Op(1) and supx∈βδ

τ
‖∇γ(x)‖ =
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Op(1), for some δ > 0. Then∣∣∣∣∣
∫
βτ

γdHd−1 −
∫
β̌τ,n

γdHd−1

∣∣∣∣∣
= Op( sup

x∈βτ

E
[
|gn(x)|+ ‖∇2gn(x)‖|gn(x)|+ ‖∇gn(x)‖

]
)

as n → ∞.

Proof. Proof of Part 1: Fix x0 ∈ β0. By Assumption D1a, we may assume
without loss of generality that ∂

∂xd
f(x0) �= 0. Define

F (x1, . . . , xd) := (x1, . . . , xd−1, f(x1, . . . , xd))

and note that det∇F (x0) = ∂
∂xd

f(x0) �= 0. Since f is twice continuously dif-

ferentiable at x0 (Assumption D1a), F is twice continuously differentiable at
x0. By the inverse function theorem (pages 67–68, Bredon (1993)), F−1 exists
and is twice continuously differentiable in a neighborhood of F (x0). Clearly
F−1(y1, . . . , yd) equals (y1, . . . , yd−1, k(y1, . . . , yd)) for some k that is twice con-
tinuously differentiable and satisfies

f(y1, . . . , yd−1, k(y1, . . . , yd)) = yd.

Thus
ϕε(y1, . . . , yd−1) := (y1, . . . , yd−1, k(y1, . . . , yd−1, fτ,0 + ε))

is a twice-continuously differentiable invertible parameterization (is a “C2 dif-
feomorphism”) from an open set U ⊂ Rd−1 to Vε ⊂ βε where Vε � x0 is open
in βε. Each x0 ∈ βε has such a C2 diffeomorphism onto an open neighborhood
Vε ⊂ βε; since βε is compact, we can pick a finite number of them that cover βε

and construct a partition of unity (Spivak, 1965, page 63) on the cover. We will
continue considering our fixed x0 ∈ βε and the above-constructed parameteri-
zation on a neighborhood of x0. At the end of the proof, our local result can be
made global by using the partition of unity.

Now,
∫
βε

γdH =
∫
U
(γ ◦ϕε)Jϕεdλ

d−1 where λd−1 is Lebesgue measure (Evans

and Gariepy, 2015). Here Jϕε = det(∇ϕ′
ε∇ϕε)

1/2 is continuously differentiable
in ε (in a neighborhood of 0) since k is twice continuously differentiable and
since det(∇ϕ′

ε∇ϕε) �= 0. We also know that γ ◦ϕε is continuously differentiable
in ε since γ is assumed continuously differentiable. Since ∂

∂ε ((γ ◦ ϕε)Jϕε) is
continuous so is bounded on U × [−ε̃, ε̃], some ε̃ > 0, we can apply the Leibniz
rule (Billingsley, 2012) to see that

∂

∂ε

∫
Vε

γ dHd−1 =
∂

∂ε

∫
U

(γ ◦ ϕε)Jϕεdλ
d−1 =

∫
U

∂

∂ε
((γ ◦ ϕε)Jϕε)dλ

d−1

Thus, the derivative on the left side of the previous display exists, meaning that∫
βε

γ dH is indeed differentiable for ε near 0, as desired. This is true on the
neighborhood Vε; it extends to the case where Vε is replaced by βε by using the
partition of unity we constructed above.
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Proof of Part 2: We write g ≡ gn, suppressing dependence on n. For x ∈ Rd,
let h(x, δ) := f0(x)+δg(x), and let βδ := h−1

δ (fτ,0). We will explicitly construct
φδ : U → Vδ, for some open U ⊂ Rd−1 and Vδ ⊂ βδ, by the inverse function
theorem, and then check that ∂

∂δφδ(z) is Op(|g(φδ(z))|) and that ∂
∂δJφδ(z) is

Op(‖∇2g(φδ(z))‖|g(φδ(z))|+ |g(φδ(z))|+ ‖∇g(φδ(z))‖). Then the proof can be
finished as the proof of the previous part was finished.

Fix x0 ∈ βτ ≡ β0. Define F (x1, . . . , xd, δ) := (x1, . . . , xd−1, h(x, δ), δ). As in
the proof of the previous part, note that det∇F (x0) �= 0 (when ‖∇g(x0‖ is
small), so by the inverse function theorem F−1 exists, is twice continuously dif-
ferentiable in a neighborhood of F (x0), and clearly satisfies F−1(y1, . . . , yd, δ) =
(y1, . . . , yd−1, k(y1, . . . , yd, δ), δ). Let z := (x, δ) and note by definition

k(F (z)) = k(x1, . . . , xd−1, h(z), δ) = xd. (52)

From this we will derive formulas for the first and second derivatives of k. In this
proof, for a function f : Rp → R we use the notation fi(x) for

∂
∂xi

f(x1, . . . , xd)

and fij(x) for
∂2

∂xi∂xj
f(x1, . . . , xd). Taking

∂
∂xi

of (52) for 1 ≤ i ≤ d− 1, we see

that
ki(F (z)) = −kd(F (z))hi(x). (53)

Applying ∂
∂xd

to (52), we get that

kd(F (z))hd(z) = 1 or kd(F (z)) = 1/hd(z), (54)

and applying ∂
∂δ to (52), we get

kd(F (z))hd+1(z) + kd+1(F (z)) = 0, or kd+1(F (z)) = −hd+1(z)

hd(z)
= − g(x)

hd(z)
.

(55)
Applying ∂

∂δ to (53) yields

ki,d(F (z))hd+1(z) + ki,d+1(F (z))

= −
(
kd,d(F (z))hd+1(z) + kd,d+1(F (z))

)
hi(z)− kd(F (z))hi,d+1(x)

(56)

and, letting y := F (z), since hd+1(z) = g(x) and hi,d+1(z) = gi(x), this implies
that

ki,d+1(y) = −ki,d(y)g(x)−
(
kd,d(y)g(x)+ kd,d+1(y)

)
hi(z)− kd(y)gi(x). (57)

To understand the expression in (57) we need to control ki,d, kd,d, and kd,d+1.
Applying ∂

∂δ to (54) we see that

kd,d(F (z))hd+1(z) + kd,d+1(F (z)) = −hd,d+1(z)

h2
d(z)

,

so

kd,d+1(F (z)) = kd,d(F (z))g(x)− gd(x)

h2
d(z)

. (58)
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We will next verify that ki,d and kd,d are Op(1 + ‖∇2g‖) (which is Op(1) under
our assumption on H (Chacón, Duong and Wand, 2011)). Then by (57) and
(58), we will see, uniformly for δ ∈ [−1, 1], that

ki,d+1(F (z)) = Op(|g(x)|+ ‖∇g(x)‖+ ‖∇2g(x)‖|g(x)|) as n → ∞. (59)

Note that by (54), kd(F (z)) = Op(1) and 1/hd(z) = Op(1) (since by assumption
∂

∂xd
f(x0) �= 0 and ‖∇g(x)‖ →p 0).

Now applying ∂/∂xd to (54), we see

kd,d(F (z)) = −k2d(F (z))hd,d(z)

hd(z)
= −hd,d(z)

h3
d(z)

, (60)

so kd,d(F (z)) = Op(1 + ‖∇2g(x)‖). Applying ∂/∂xi to (the left expression in)
(54) yields

ki,d(F (z)) + kd,d(F (z))hi(z) = −hd,i(z)

h2
d(z)

. (61)

Thus by (60) we see ki,d(F (z)) = Op(1 + ‖∇2g(x)‖), so (59) holds.

Now we let

φδ(y1, . . . , yd−1) := (y1, . . . , yd−1, k(y1, . . . , yd−1, fτ,0, δ)),

which we have shown is a C2 parameterization from an open set U ⊂ Rd−1 to
Vδ ⊂ βδ where Vδ � x0 is open in βδ. We can check that Jφδ = det(∇φ′

δ∇φδ)
1/2

is continuously differentiable in δ for δ ∈ [−1, 1] by (59), and, by three Taylor
expansions,∫

V1

γdHd−1 =

∫
U

(γ ◦ φ1)Jφ1dλ
d−1 =

∫
U

((γ ◦ φ0(y))Jφ0(y) + ε(y) dy (62)

where ε(y) = Op(|g(x)|+‖∇g(x)‖+‖∇2g(x)‖|g(x)|), since we have ∂
∂δJφδ(y) is

Op(|g(x)|+‖∇g(x)‖+‖∇2g(x)‖|g(x)|) uniformly for δ ∈ [−1, 1], since ∂
∂δφδ(y) =

Op(|g(x)|) uniformly for δ ∈ [−1, 1] (by (55)), and since γ is continuously
differentiable in a neighborhood of βτ . In fact, we can see that E|ε(y)| is be
bounded by CE

[
|g(x)|+ ‖∇g(x)‖+ ‖∇2g(x)‖|g(x)|

]
for a constant C > 0. By

the Fubini-Tonelli theorem, E
∫
U
|ε(y)| dy =

∫
E|ε(y)| dy, so we can see∫

U

ε(y) dy = Op sup
x∈βτ

E
[
|g(x)|+ ‖∇g(x)‖+ ‖∇2g(x)‖|g(x)|

]
(63)

by Markov’s inequality. Combining (62), (63), and
∫
U
((γ ◦ φ0(y))Jφ0(y) =∫

V0
γdHd−1 we get∫

V1

γdHd−1 =

∫
V0

γdHd−1 +Op sup
x∈βτ

E
[
|g(x)|+ ‖∇g(x)‖+ ‖∇2g(x)‖|g(x)|

]
.
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Then the proof can be finished as in the proof of Part 1, including using a
partition of unity to extend V1 to β̌τ and V0 to βτ to conclude from the previous
display∫

β̌τ

γdHd−1 =

∫
βτ

γdHd−1 +Op sup
x∈βτ

E
[
|g(x)|+ ‖∇g(x)‖+ ‖∇2g(x)‖|g(x)|

]
.

B.1. Proof of Corollary 2.2

By our assumptions of unimodality and spherical symmetry of f0, we have that
∇f0 and ∇2f0 are constant on βτ , and we denote these two quantities as ∇τf0
and ∇2

τf0. Then for h > 0 we can write

B(h) = −(nhd+4)1/2F1 where F1 :=
μ2(K) tr(∇2

τf0)

2
√
R(K)fτ,0

,

and C(h) = B(h) + (nhd+4)1/2F2 where

F2 := ‖∇τf0‖
(∫

βτ

dH
)−1{

μ2(K) tr(∇2
τf0)

2‖∇τf0‖

∫
βτ

dH+
μ2(K)

2fτ,0
tr(∇2

τf0)

∫
Lτ

dx

}
.

Then

HDR(h) =
fτ,0
A

(∫
βτ

dH
)
(nhd)−1/2 (2φ(C(h)) + (2Φ(C(h))− 1)C(h))

where A = ‖∇τf0‖/
√
R(K)fτ,0. Note that 2φ(C(h)) + (2Φ(C(h)) − 1)C(h) =

2φ(|C(h)|) + (2Φ(|C(h)|) − 1)|C(h)|. Let G := |C(h)|/(nhd+4)1/2 = |F2 − F1|,
We will thus minimize

n2/(d+4)

(
A

fτ,0

∫
βτ

dH
)−1

HDR(h)

= (n1/2h(d+4)/2)−d/(d+4)

×
(
2φ(G(nhd+4)1/2) +G(nhd+4)1/2(2Φ(G(nhd+4)1/2)− 1)

) (64)

over h ≥ 0. By the change of variables

s = (nhd+4)1/2, (65)

minimizing (64) is equivalent to minimizing

HDR∗(s) := 2s−d/d+4φ(Gs) +Gs4/d+4(2Φ(Gs)− 1).

Note that HDR∗(s) → ∞ as s → ∞ and as s ↘ 0, so HDR∗(s) attains its
minimum on (0,∞). Now, HDR∗ has a unique minimum if (HDR∗)′(s) has a
unique 0, and by calculation,

(HDR∗)′(s) = 2
−d

d+ 4
s

−2d−4
d+4 φ(Gs) +G

4

d+ 4
s

−d
d+4 (2Φ(Gs)− 1),
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(HDR∗)′(s) has a unique 0 if and only if

(HDR∗)′(s)(2(d/d+ 4)s−(2d+4)/d+4φ(Gs))−1 = −1 +
2

d

Gs(2Φ(Gs)− 1)

φ(Gs)
(66)

has a unique 0. We can compute the derivative of (66) to be

G
2

d

(
2Gs+

(1 +G2s2)(2Φ(Gs)− 1)

φ(Gs)

)
> 0

for s ∈ (0,∞). Thus (66) is strictly increasing on (0,∞), is negative at 0, and
approaches ∞ as c → ∞, and so (66) has a unique zero. Let sopt > 0 be the

unique minimum of HDR∗(s), and let hopt := s
2/d+4
opt n−1/d+4. By (65), hopt

minimizes (64), and so minimizes HDR(h). By Theorem 2.2, we conclude that
for any h0 that minimizes E[μf0{LτΔL̂τ,H}], h0 = hopt(1 + o(1)).

Appendix C: Proof of intermediate results

Proof of Lemma A.1. Let C1 > 1 + 2λ ({f0(x) ≥ fτ,0}) /
∫
βτ

f0
‖∇f0‖ dH. Then

when ε > 0 is sufficiently small,∫
f̃(x)1{f̃(x)≥fτ,0−C1ε} dx ≥

∫
(f0(x)− ε)1{f(x)≥fτ,0−(C1−1)ε} dx

= 1− τ +

∫
f0(x)1{fτ,0−(C1−1)ε≤f0(x)<fτ,0} dx

− ελ ({f0(x) ≥ fτ,0 − (C1 − 1)ε})

≥ 1− τ +

∫
f0(x)1{fτ,0−(C1−1)ε≤f0(x)<fτ,0} dx

− 2ελ({f0(x) ≥ fτ,0}).

By Proposition A.1 of Cadre (2006),∫
f0(x)1{fτ,0−(C1−1)ε≤f0(x)<fτ,0} dx =

∫ fτ,0

fτ,0−(C1−1)ε

∫
β(s)

f0(x)

‖∇f0(x)‖
dH(x) ds.

(67)

So we can express
∫
f0(x)1{fτ,0−(C1−1)ε≤f0(x)<fτ,0} dx as

(C1 − 1)ε

∫
βτ

f0(x)

‖∇f0(x)‖
dH(x) +O(ε2), (68)

by Lemma B.5, and thus see that∫
f̃(x)1{f̃(x)≥fτ,0−C1ε} dx

≥ 1− τ + (C1 − 1)ε

∫
βτ

f0(x)

‖∇f0(x)‖
dH(x) + o(ε)− 2ελ({x : f0(x) ≥ fτ,0})
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> 1− τ,

when ε > 0 is sufficiently small. So f̃τ > fτ,0 −C1ε. For the upper bound, with

a similar argument, we get f̃τ < fτ,0 + C1ε. So we proved |f̃τ − fτ,0| ≤ C1ε for
ε > 0 sufficiently small.

Proof of Lemma A.2. We first prove an intermediate result that∫
Lδ(fτ,0)c

f0(x)P
(
f̂n,H(x) ≥ f̂τ,n

)
dx+

∫
L−δ(fτ,0)

f0(x)P
(
f̂n,H(x) < f̂τ,n

)
dx

(69)

is o(n−1) as n → ∞ for fixed δ > 0 sufficiently small. Observe that under
Assumption D1b if δ > 0 is sufficiently small, then there exists ε > 0 such that
f0(x) ≤ fτ,0 − ε for x ∈ Lδ(fτ,0)

c and f0(x) ≥ fτ,0 + ε for x ∈ L−δ(fτ,0). By
reducing δ > 0 if necessary, for x ∈ Lδ(fτ,0)

c,

P
(
f̂n,H(x) ≥ f̂τ,n

)
≤ P

(
f̂n,H(x)− f0(x)− (f̂τ,n − fτ,0) ≥ ε

)
≤ P

(
‖f̂n,H − f0‖∞ ≥ ε/2

)
+ P

(
|f̂τ,n − fτ,0| ≥ ε/2

)
≤ P

(
‖f̂n,H − f0‖∞ ≥ ε

2C1

)
+ P

(
|f̂τ,n − fτ,0| ≥

ε

2

)
,

where C1 ≥ 1 is the constant we defined in Lemma A.1 ; by that lemma, we
have

P
(
|f̂τ,n − fτ,0| ≥

ε

2

)
≤ P

(
‖f̂n,H − f0‖∞ ≥ ε

2C1

)
,

so

P
(
f̂n,H(x) ≥ f̂τ,n

)
≤ 2P

(
‖f̂n,H − f0‖∞ ≥ ε

2C1

)
. (70)

A similar argument yields the same upper bound for P (f̂n,H(x) < f̂τ,n) when
x ∈ L−δ(fτ,0). Now by Assumption D1b,

‖E(f̂n,H)− f0‖∞ → 0,

as n → ∞. Together with the inequality (70) together, this yields that for n
sufficiently large,∫

Lδ(fτ,0)c
f0(x)P

(
f̂n,H(x) ≥ f̂τ,n

)
dx+

∫
L−δ(fτ,0)

f0(x)P
(
f̂n,H(x) < f̂τ,n

)
dx

≤ 2P

(
‖f̂n,H − f0‖∞ ≥ ε

2C1

)
which is bounded above by

2P

(
‖f̂n,H − E(f̂n,H)‖∞ ≥ ε

4C1

)
+ 2P

(
‖E(f̂n,H)− f0‖∞ ≥ ε

4C1

)
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= 2P

(
‖f̂n,H − E(f̂n,H)‖∞ ≥ ε

4C1

)
≤ L exp

{
−C0,1ε

2n|H|1/2
16C2

1

}
= o(n−1),

where the last inequality comes from Corollary B.1.
Now it suffices to show that E(δ, δn) = o(n−1), where E(δ, δn) is defined as∫

Lδn (fτ,0)c\Lδ(fτ,0)c
f0(x)P (f̂n,H(x) ≥ f̂τ,n) dx

+

∫
L−δn (fτ,0)\L−δ(fτ,0)

f0(x)P (f̂n,H(x) < f̂τ,n) dx.

Using Taylor expansion, we have

‖E(f̂n,H)− f0‖∞ = sup
x∈Rd

∣∣∣∣∫ K(z)

{
1

2
(H1/2z)′∇2f0(xz)H

1/2z

}
dz

∣∣∣∣ ,
where xz = x − cH1/2z for some c ∈ (0, 1). Under Assumption D1b, f0 has
bounded second derivatives and let A > 0 be such that ‖∇2f‖∞ ≤ A. Then

‖E(f̂n,H)− f0‖∞ ≤ 1

2
dA

∫
K(z)z′Hz dz =

1

2
dAμ2(K) tr(H) = O {λmax(H)} ,

(71)

as |H| → 0. Now by Lemma B.2, there exists a constant c2 small enough
that if we take εn = c2δn, then we have |f0(x) − fτ,0| ≥ εn for all x ∈
(Lδn(fτ,0)

c\Lδ(fτ,0)
c)∪ (L−δn(fτ,0)\L−δ(fτ,0)). Moreover, λmax(H) = o(εn) by

our assumption, so for n sufficiently large, by (71), P (‖E(f̂n,H)−f0‖∞ ≥ εn
4C ) =

0. Then for n large enough,

E(δ, δn) ≤ 2P
(
‖f̂n,H − E(f̂n,H)‖∞ ≥ εn

4C

)
≤ L exp

{
−C0,1ε

2
nn|H|1/2
16C2

1

}
= o(n−1).

(72)

as n → ∞.

Proof of Lemma A.3. Let z ∈ {x ∈ Rd : f0(x) = f̃τ} and let y ∈ {x ∈ Rd :
f̃(x) = f̃τ} be such that z = x+ η1ux and y = x+ η2ux for some x ∈ βτ and
ηi ≡ ηi(x) ∈ R, i = 1, 2. By Taylor expansion, we have

f0(z) = f0(x+ η1ux)

= f0(x) + η1u
′
x∇f0(x) +

1

2
u′
x∇2f0(x+ s1η1ux)uxη

2
1 ,
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where s1 ∈ [0, 1], and

f̃(y) = f̃(x+ η2ux)

= f̃(x) + η2u
′
x∇f̃(x+ s2η2ux).

We then see

0 = f0(z)− f̃(y)

= f0(x) + η1u
′
x∇f0(x) +

1

2
u′
x∇2f0(x+ s1η1ux)uxη

2
1

− f̃(x)− η2u
′
x∇f̃(x+ s2η2ux),

(73)

where s2 ∈ [0, 1]. We thus have

η1 − η2 =
f0(x)− f̃(x)

‖∇f0(x)‖
+

u′
x∇2f0(x+ s1η1ux)uxη

2
1

2‖∇f0(x)‖

+ η2

〈
∇f̃(x+ s2η2ux)−∇f(x),∇f0(x)

〉
‖∇f0(x)‖2

.

(74)

A similar analysis as in (73), beginning from the identity f̃τ − fτ,0 = f̃(y) −
f0(x) shows that η2 = O(‖g‖∞) since by Lemma A.1, f̃τ − fτ,0 = O(‖g‖∞).
(Similarly, η1 = O(‖g‖∞).) Since by Assumption D1b, f0 has bounded second
derivatives,the second term on the right in (74) is O(‖g‖2∞). For the second
term, note 〈

∇f̃(x+ s2η2ux)−∇f(x),∇f0(x)
〉

‖∇f0(x)‖2

=

〈
∇f̃(x+ s2η2ux)−∇f0(x+ s2η2ux),∇f0(x)

〉
‖∇f0(x)‖2

+
〈∇f0(x+ s2η2ux)−∇f0(x),∇f0(x)〉

‖∇f0(x)‖2
,

and by Assumption D1b, ∇f0(x) is Lipschitz, we have the third term on the
right of (74) is O(‖g‖∞‖∇g‖∞ + ‖g‖2∞).

We will apply Lemma B.4 to h(y) = 1{f̃(y)≥f̃τ} − 1{f0(y)≥f̃τ}. For ‖g‖∞
small enough, {f̃ ≥ f̃τ}Δ{f0 ≥ f̃τ} ⊂ βδ

τ for some δ > 0, by Lemma A.1, and
by Assumption D1b (a) and (b). Thus the left side of (17) equals

∫
βδ
τ
h(y)dy.

We may shrink δ so that the conclusion of Theorem B.2 holds, so that for each
y ∈ βδ

τ there is a unique closest xy ∈ βτ . Now, for δ small enough, considering
1{f̃(x+tux)≥f̃τ} as a function of t ∈ [−δ, δ], we can see that 1{f̃(x+tux)≥f̃τ} =

1{−δ≤t≤η2(x)}, because ∇f̃(x)′∇f0(x) > 0, so f̃ is locally strictly decreas-
ing in the direction of ux = −∇f0(x)/‖∇f0(x)‖. Similarly 1{f0(x+tux)≥f̃τ} =

1{−δ≤t≤η1(x)}. Thus for y ∈ βδ
τ ,

h(y) = 1{η1(xy)≤t≤η2(xy)} − 1{η2(xy)≤t≤η1(xy)}, (75)
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(where 1{a≤t≤b} is just identically 0 if b < a) and so for x ∈ βτ ,

H(x) :=

∫ δ

−δ

h(x+ tux) dt = η2(x)− η1(x). (76)

We can now apply Lemma B.4 to see∫
βδ
τ

h(x)dx =

∫
βτ

H(x) dH(x) +O( sup
x∈βτ

η2(x)− η1(x))
2

as supx∈βτ
η2(x)− η1(x) → 0 and further we have∫

βδ
τ

h(x)dx =

∫
βτ

f̃(x)− f0(x)

‖∇f0(x)‖
dH(x) +O(‖g‖2∞) +O(‖g‖∞‖∇g‖∞)

as ‖g‖2∞ + ‖g‖∞‖∇g‖∞ → 0, by (76) and (74) (and because supx∈βτ
η2(x) −

η1(x) = O(‖g‖∞) and the term on the right of (74) is O(‖g‖∞‖∇g‖∞)).

Proof of Lemma A.4. Let y ∈ {x ∈ Rd : f̃(x) = f̃τ} be such that y = x+ ηux

for some x ∈ βτ . Then

f̃(y) = f̃(x) + η∇f̃(x+ sηux)
′ux,

where s ∈ [0, 1] depends on x. Then subtracting f0(x) on both sides yields

f̃τ − fτ,0 = f̃(x)− f0(x) + η∇f̃(x+ sηux)
′ux,

so

η =
f̃τ − fτ,0 − g(x)

∇f(x+ sηux)′ux
,

and by Lemma A.1, f̃τ −fτ,0−g(x) = O(‖g‖∞). We also know ∇f(x+sηux)
′ux

is bounded away from zero as ‖g‖2∞ + ‖g‖∞‖∇g‖∞ → 0. Then∫
Rd

g(x)
(
1{f̃(x)≥f̃τ} − 1{f(x)≥fτ}

)
dx

≤ ‖g‖∞
∫
Rd

∣∣∣1{f̃(x)≥f̃τ} − 1{f(x)≥fτ}

∣∣∣ dx
= O(‖g‖2∞).

Proof of Lemma A.5. It is well known (e.g., Wand and Jones (1995)) that

Ef̂n,H(x) = f0(x) +
1

2
μ2(K) tr{H∇2f0(x)}+ o{tr(H)}.

This statement and all asymptotic statements in this proof are as n → ∞
(implying H → 0). Now we show∫

βτ

Ef̂n,H(x)− f0(x)

‖∇f0(x)‖
dH(x) +

1

fτ,0

∫
Lτ

Ef̂n,H(x)− f0(x) dx
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= V1(H) + V2(H) + o{tr(H)}.

For fixed x ∈ βτ , by change of variable and a Taylor expansion, we have

Ef̂n,H(x)− f0(x)−
1

2
μ2(K) tr{H∇2f0(x)} (77)

≤ 1

2

∫
Rd

K(z)(H1/2z)T
∣∣∇2f0(xz)−∇2f0(x)

∣∣ (H1/2z) dz,

where xz = x − szH
1/2z for some sz ∈ (0, 1) depending on z. Now let

M(x, z) = max
{∣∣∇2f0(xz)−∇2f0(x)

∣∣}
i,j

which also implicitly depends on

H and is uniformly bounded since ∇2f0 is uniformly bounded. Then (77) is
bounded above by 1

2 tr
(
H
∫
Rd M(x, z)K(Z)zzT dz

)
. Then∫

βτ

Ef̂n,H(x)− f0(x)− 1
2μ2(K)f0(x)

‖∇f0(x)‖
dH(x) (78)

≤
∫
βτ

1

‖∇f0(x)‖
1

2
tr

(
H

∫
Rd

M(x, z)K(z)zzT dz

)
dH(x) (79)

which equals

1

2
tr

(
H

∫
βτ

1

‖∇f0(x)‖

∫
Rd

M(x, z)K(z)zzT dz dH(x)

)
.

Applying the Dominated Convergence theorem to both the outer integral and
the inner integral yields∫

βτ

1

‖∇f0(x)‖

∫
Rd

M(x, z)K(z)zzT dz dH(x) → 0,

and thus (78) equals∫
βτ

Ef̂n,H(x)− f0(x)− 1
2μ2(K)f0(x)

‖∇f0(x)‖
dH(x) =

∫
βτ

Ef̂n,H − f0
‖∇f0‖

dH− V 1(H)

= o {tr(H)} .

With the same argument, we can show

1

fτ,0

∫
Lτ

Ef̂n,H(x)− f0(x) dx− V2(H) = o {tr(H)} .

In order to finish the proof it is sufficient to show that for any η > 0,

E

∣∣∣f̂τ,n − fτ,0 − w0 {V1(H) + V2(H)}
∣∣∣ 1{‖f̂n,H−f0‖∞+‖∇f̂n,H−∇f0‖∞>η} (80)

is o{tr(H)}. It can be show that f̂τ,n = O(1). And we have

P (‖f̂n,H − f0‖∞ + ‖∇f̂n,H −∇f0‖∞ > η)

≤ P (‖f̂n,H − f0‖∞ > η/2) + P (‖∇f̂n,H −∇f0‖∞ > η/2) = o(n−1).

Then by the Cauchy-Schwarz inequality (80) is o{tr(H)}.
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Proof of Lemma A.6. First, we show

Var

{∫
Lτ

f̂n,H(x)− f0(x) dx

}
= O(n−1). (81)

We write the left side of (81) as

n−1 Var

{∫
Lτ

KH(x−Xi) dx

}
= n−1E

{∫
Lτ

KH(x−Xi) dx

}2

− n−1

[
E

{∫
Lτ

KH(x−Xi) dx

}]2
.

(82)

We first consider the first term on the right side of (82). If y is an interior point
of Lτ , there exists r > 0 such that B(y, r) ⊂ Lτ . Then we have∫

Lτ

|H|−1/2K(H−1/2(x− y)) dx ≥
∫
B(y,r)

|H|−1/2K(H−1/2(x− y)) dx

=

∫
1{‖H1/2z‖<r}K(z) dz,

and 1{‖H1/2z‖<r} → 1 as H → 0 for every z; thus by the Dominated Conver-

gence Theorem,
∫
Lτ

|H|−1/2K(H−1/2(x − y)) dx → 1 as H → 0. Similarly, if

y is an exterior point of {x|f0(x) ≥ fτ,0}, that is, there exists r > 0 such that
B(y, r) ∩ Lτ = ∅. Then∫

Lτ

KH(x− y) dx ≤ 1−
∫
B(y,r)

|H|−1/2K(H−1/2(x− y)) dx

= 1−
∫

1{‖H1/2z‖<r}K(z) dz → 0

as H → 0. And by Assumption D1b, P (f0(x) = fτ,0) = 0. So we have that

almost surely
(∫

Lτ
KH(x−Xi) dx

)p
→ 1Lτ , as n → ∞, for p = 1, 2. Applying

the Dominated Convergence Theorem to the two expectations on the right of
(82) yields

nVar

{∫
Lτ

f̂n,H(x)− f0(x) dx

}
→ P(f0(Xi) ≥ fτ,0)(1− P(f0(Xi) ≥ fτ,0)),

as n → ∞, which shows Var
{∫

Lτ
f̂n,H(x)− f0(x) dx

}
= O(n−1).

Next, we show

Var

{∫
βτ

f̂n,H(x)− f0(x)

‖∇f0(x)‖
dH(x)

}
= o

(
1

n|H|1/2

)
.
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The left side of the previous display equals

n−1 Var

∫
βτ

KH(x−Xi)

‖∇f0(x)‖
dH(x)

=
1

n
E

[{∫
βτ

KH(x−Xi)

‖∇f0(x)‖
dH(x)

}2
]

− 1

n

[
E

{∫
βτ

KH(x−Xi)

‖∇f0(x)‖
dH(x)

}]2
,

and
{∫

βτ

|H|−1/2K(H1/2(x−Xi))
‖∇f0(x)‖ dH(x)

}2

can be written as

∫
βτ

|H|−1/2K(H1/2(x−Xi))

‖∇f0(x)‖
dH(x)

∫
βτ

|H|−1/2K(H1/2(y −Xi))

‖∇f0(y)‖
dH(y).

By taking the expectation over Xi and reordering the integrals by Tonelli’s

theorem, we can then see that n−1E

{∫
βτ

KH(x−Xi)
‖∇f0(x)‖ dH(x)

}2

equals

1

n|H|

∫
βτ

∫
βτ

1

‖∇f0(x)‖
1

‖∇f0(y)‖
×∫

Rd

K(H−1/2(x− a))K(H−1/2(y − a))f0(a) da dH(x)dH(y).

(83)

And ∫
Rd

K(H−1/2(x− a))K(H−1/2(y − a))f0(a)da

=

∫
Rd

K(z)K(z +H−1/2(y − x))f0(x−H1/2z)|H|1/2dz

by the change of variables z = H−1/2(x−a). And by first-order Taylor expan-
sion, the previous display equals

|H|1/2
∫
Rd

K(z)K(z +H−1/2(y − x))
{
f0(x)−H1/2z∇f0(x− sH1/2z)

}
dz

where s ∈ [0, 1] depends on z. Since by Assumption D1b, ∇f0(x) is bounded,
we can express (83) as

fτ,0
n|H|1/2

∫
βτ

∫
βτ

1

‖∇f0(x)‖‖∇f0(y)‖
×∫

Rd

K(z)K(z +H−1/2(y − x))dzdH(y)dH(x)

+ o
(
n−1|H|−1/2

)
.

(84)
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Note that if x �= y, then∫
Rd

K(z)K(z +H−1/2(y − x))dz → 0,

as H → 0 by the Dominated Convergence Theorem. For fixed x = y, we have∫
Rd K(z)K(z +H−1/2(y − x))dz = R(K), so∫

Rd

K(z)K(z +H−1/2(y − x))dz → R(K)1{x=y},

as H → 0. Then applying the Dominated Convergence Theorem shows that the
first summand in (84) converges to

1

n|H|1/2
∫
βτ

f0(x)

∫
βτ

1

‖∇f0(x)‖‖∇f0(y)‖
R(K)1{x=y}dH(y)dH(x) = 0.

So we proved

Var

{∫
βτ

f̂n,H(x)− f0(x)

‖∇f0(x)‖
dH(x)

}
= o

(
1

n|H|1/2

)
. (85)

To complete the proof, it remains to show that for any η > 0,

E

{
f̂τ,n − E(f̂τ,n)

}2

1{‖f̂n,H−f0‖∞+‖∇f̂n,H−∇f0‖∞>η} = o

(
1

n|H|1/2

)
,

which follows the same steps we used at the end of the proof of Lemma A.5.
The proof is then complete by (19).

The reader may be surprised by the conclusion of (85), since Var f̂n,H(x) =

O(n−1|H|−1/2); for intuition, it may help to recall that
∫
Rd f̂n,H(x)dx = 1, so

has variance 0.

Proof of Lemma A.7. Note by Theorem B.1, we have that E∇f̂n,H(x) converges

to ∇f̂n,H(x) uniformly in x ∈ Rd. By Durrett (2010, Theorem A.5.1), we have

∇Ef̂n,H(x) = E∇f̂n,H(x), thus we also have ∇Ef̂n,H(x) also converges to
∇f0(x) uniformly in x.

Now, we show Ef̂n,H(x+ tux) is strictly monotone for t ∈ [−δn, δn] when n
is sufficiently. From our assumption, ∇f0 is Lipschitz. So when n large enough
and δn small enough, for each t ∈ [−δn, δn] there exists εt such that ∇Ef̂n,H(x+
tux) = ∇f0(x) + εt and ‖εt‖ < l

2 , where l = infx∈βτ ‖∇f0(x)‖ and we know
l > 0 from Assumption D1b. Then

dEf̂n,H(x+ tux)

dt
= ∇Ef̂n,H(x+ tux)ux

= (∇f0(x) + εt)
−∇f0(x)

‖∇f0(x)‖
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= −‖∇f0(x)‖ −
∇f0(x)

′εt
‖∇f0(x)‖

< − l

2
,

for all t ∈ [−δn, δn] by the Cauchy-Schwarz inequality. Moreover, from Lemma
A.5 we have

Ef̂τ,n = fτ,0 +

{∫
βτ

1

‖∇f0‖
dH
}−1

{∫
βτ

μ2(K) tr
(
H∇2f0

)
2‖∇f0‖

dH

+

∫
Lτ

1

2
μ2(K) tr

(
H∇2f0

)
dλ

}
+ o{tr(H)},

and we also know

Ef̂n,H

(
x+

t√
n|H |1/2

ux

)

= f0

(
x+

t√
n|H|1/2

ux

)

+
1

2

∫
z′H1/2∇2f0

(
x+

t√
n|H|1/2

ux − szH
1/2z

)
H1/2zK(z) dz

= f0(x) +∇f0

(
x+

wxt√
n|H|1/2

ux

)′
t√

n|H|1/2
ux

+
1

2

∫
z′H1/2∇2f0

(
x+

t√
n|H|1/2

ux − szH
1/2z

)
H1/2zK(z) dz,

and 1
2

∫
zTH1/2∇2f0

(
x+ t√

n|H|1/2
ux − szH

1/2z

)
H1/2zK(z) dz isO(tr(H))

uniformly in x. Then

t∗x√
n|H|1/2

∇f0

(
x+

wxt√
n|H|1/2

ux

)′

ux

=

[
w0

{∫
βτ

D1(x,H)

‖∇f0‖
dH+

∫
Lτ

D1(x,H) dλ

}
−1

2

∫
zTH1/2∇2f0

(
x+

t√
n|H|1/2

ux − szH
1/2z

)
H1/2zK(z) dz

]
(1 + o(1)). (86)

Since∇f0 is Lipschitz, when n is large enough∇f0

(
x+ t√

n|H|1/2
ux

)′
ux < − l

2

for all x ∈ βτ and all t ∈
[
−
√

n|H|1/2δn,
√
n|H|1/2δn

]
. To prove the last line
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of the lemma, since

dEf̂n,H(x+ tux)

dt
< − l

2
,

for all t ∈ [−δn, δn] and all x ∈ βτ ,

dEf̂n,H

(
x+ t√

n|H|1/2
ux

)
dt

≤ − l

2
√

n|H|1/2
,

for all x ∈ βτ and all t ∈ [−
√
n|H|1/2δn,

√
n|H|1/2δn]. Then by first order

Taylor expansion, it is easy to get when t ∈ Inx ,∣∣∣∣∣E
{
f̂n,H

(
x+

t√
n|H |1/2

ux

)
− f̂τ,n

}∣∣∣∣∣ ≥ l

2
√
n|H|1/2

|t− t∗x| ,

when n is large enough.
And then when t ≤ 0,∣∣∣P {f̂n,H (xt

)
< f̂τ,n

}
− 1{t>0}

∣∣∣
= P

{
f̂n,H

(
xt
)
< f̂τ,n

}
≤ P

{
f̂τ,n − f̂n,H

(
xt
)
+ E

(
f̂n,H

(
xt
)
− f̂τ,n

)
≥ l

2
√
n|H|1/2

|t− t∗x|
}

≤ P

{∣∣∣f̂n,H (xt
)
− Ef̂n,H

(
xt
)∣∣∣ ≥ l

4
√
n|H|1/2

|t− t∗x|
}

+ P

{∣∣∣f̂τ,n − Ef̂τ,n

∣∣∣ ≥ l

4
√
n|H |1/2

|t− t∗x|
}

(87)

and we can show the same bound for t > 0. Since

Var f̂n,H(x) =

n−1

[
|H|−1/2

∫
K(z)f

(
x−H1/2z

)
dz −

{∫
K(z)f

(
x−H1/2z

)
dz

}2
]
,

Var f̂n,H(x) is uniformly O(n−1|H|−1/2). And we know Var f̂τ,n is also of order
o(n−1|H|−1/2) from Lemma A.6. Then there exists C2 > 0 such that (87) can
be further bounded as∣∣∣P {f̂n,H (xt

)
< f̂τ,n

}
− 1{t>0}

∣∣∣
≤ P

{∣∣∣∣∣ f̂n,H (xt)− Ef̂n,H (xt)

Var f̂n,H (xt)

∣∣∣∣∣ ≥ C2|t− t∗x|
}
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+ P

{∣∣∣∣∣ f̂τ,n − Ef̂τ,n

Var f̂τ,n

∣∣∣∣∣ ≥ C2|t− t∗x|
}

≤ 2C2

(t− t∗x)
2

for all x ∈ βτ , t ∈
⋃

x∈βτ
Inx by Chebyshev inequality. And note that (t− t∗x)

2 ≥
t2n for all t ∈

⋃
x∈βτ

Inx . So 1In
x
· |P{f̂n,H(xt) < f̂τ,n} − 1{t>0}| converges to 0

uniformly in t and is dominated by max{1/(t − t∗x)
2, 1} which is a integrable

function over R. Then by Dominate Convergence Theorem, we have∫
In
x

∣∣∣P {f̂n,H (xt
)
< f̂τ,n

}
− 1{t>0}

∣∣∣ dt → 0,

as n → ∞. Also note that
∫
In
x
|P{f̂n,H(xt) < f̂τ,n}−1{t>0}| dt ≤

∫
max{ 1

t2 , 1} dt
for all x ∈ βτ . So we have∫

βτ

∫
In
x

∣∣∣P {f̂n,H (xt
)
< f̂τ,n

}
− 1{t>0}

∣∣∣ dtdH(x) → 0,

as n → ∞.
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