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Abstract: High-dimensional data, where the number of variables exceeds
or is comparable to the sample size, is now pervasive in many scientific
applications. In recent years, Bayesian shrinkage models have been devel-
oped as effective and computationally feasible tools to analyze such data,
especially in the context of linear regression. In this paper, we focus on the
Normal-Gamma shrinkage model developed by Griffin and Brown [7]. This
model subsumes the popular Bayesian lasso model, and a three-block Gibbs
sampling algorithm to sample from the resulting intractable posterior dis-
tribution has been developed in [7]. We consider an alternative two-block
Gibbs sampling algorithm, and rigorously demonstrate its advantage over
the three-block sampler by comparing specific spectral properties. In par-
ticular, we show that the Markov operator corresponding to the two-block
sampler is trace class (and hence Hilbert-Schmidt), whereas the operator
corresponding to the three-block sampler is not even Hilbert-Schmidt. The
trace class property for the two-block sampler implies geometric conver-
gence for the associated Markov chain, which justifies the use of Markov
chain CLT’s to obtain practical error bounds for MCMC based estimates.
Additionally, it facilitates theoretical comparisons of the two-block sampler
with sandwich algorithms which aim to improve performance by insert-
ing inexpensive extra steps in between the two conditional draws of the
two-block sampler.
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1. Introduction

In recent years, the explosion of data, due to advances in science and in-
formation technology, has left almost no field untouched. The availability of
high-throughput data from genomic, finance, environmental, marketing (among
other) applications has created an urgent need for methodology and tools for
analyzing high-dimensional data. In particular, consider the linear model Y =
Xβ+σε, where Y is an n×1 real valued response variable, X is a known n×p
matrix, β is an unknown p×1 vector of regression coefficients, σ is an unknown
scale parameter and the entries of ε are independent standard normals. In the
high-dimensional datasets mentioned above, often n < p, and classical least
squares methods fail. The lasso [30] was developed to provide sparse estimates
of the regression coefficient vector β in these sample-starved settings (several
adaptations/alternatives have been proposed since then). It was observed in
[30] that the lasso estimate is the posterior mode obtained when one puts i.i.d
Laplace priors on the elements of β (conditional on σ). This observation has led
to a flurry of recent research concerning the development of prior distributions
for (β, σ) that yield posterior distributions with high (posterior) probability
around sparse values of β, i.e., values of β that have many entries equal to 0.
Such prior distributions are referred to as “continuous shrinkage priors” and the
corresponding models are referred to as “Bayesian shrinkage models”. Bayesian
shrinkage methods have gained popularity and have been extensively used in a
variety of applications including ecology, finance, image processing and neuro-
science (see, for example, [34, 4, 5, 11, 33, 20, 8, 25, 26]).

In this paper, we focus on the well-known Normal-Gamma shrinkage model
introduced in Griffin and Brown [7]. The model is specified as follows:

Y | β, τ , σ2 ∼ Nn

(
Xβ, σ2In

)
β | σ2, τ ∼ Np

(
0p, σ

2Dτ

)
σ2 ∼ Inverse−Gamma (α, ξ) (allow for impropriety via α = 0 or ξ = 0)

τj
i.i.d∼ Gamma(a, b) for j = 1, 2, ..., p, (1)
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whereNp denotes the p-variate normal density, andDτ is a diagonal matrix with
diagonal entries given by {τj}pj=1. Also, Inverse-Gamma(α, ξ) and Gamma(a, b)
denote the Inverse-Gamma and Gamma densities with shape parameters α and
a, and rate parameters ξ and b respectively. The marginal density of β given σ2

in the above model is given by

π(β | σ2) =

p∏
j=1

ba

Γ(a)
√
2πσ

(
β2
j

2bσ2

)a/2

Ka

(
|βj |

√
2b

σ

)
,

where Ka is the modified Bessel function of the second kind. The popular
Bayesian lasso model of Park and Casella [23] is a special case of the Normal-
Gamma model above with a = 1, where the marginal density of β simplifies
to

π(β | σ2) =

p∏
j=1

√
b√
2σ

exp

(
−|βj |

√
2b

σ

)
.

In this case, the marginal density for each βj (given σ2) is the double exponential
density. The Normal-Gamma family offers a wider choice for the tail behavior
(as a decreases, the marginal distribution becomes more peaked at zero, but has
heavier tails), and thereby a more flexible mechanism for model shrinkage.

The posterior density of (β, σ2) for the Normal-Gamma model is intractable
in the sense that closed form computation or direct sampling is not feasible.
Griffin and Brown [7] note that the full conditional densities of β, σ2 and τ 2 are
easy to sample from, and develop a three-block Gibbs sampling Markov chain to
generate samples from the desired posterior density. This Markov chain, denoted
by Φ̃ := {(β̃m, σ̃2

m)}∞m=0 (on the state space R
p ×R+), is driven by the Markov

transition density (Mtd)

k̃
((
β, σ2

)
,
(
β̄, σ̄2

))
=

∫
R

p
+

π
(
σ̄2 | β̄, τ ,Y

)
π
(
β̄ | σ2, τ ,Y

)
π
(
τ | β, σ2,Y

)
dτ .

(2)

Here π(· | ·) denotes the conditional density of the first group of arguments given
the second group of arguments. The one-step dynamics of this Markov chain to

move from the current state,
(
β̃m, σ̃2

m

)
, to the next state,

(
β̃m+1, σ̃

2
m+1

)
can

be described as follows:

• Draw τ from π(· | β̃m, σ̃2
m,Y).

• Draw σ̃2
m+1 from π(· | β̃m, τ ,Y).

• Draw β̃m+1 from π(· | σ̃2
m+1, τ ,Y).

In [21], the authors show that the distribution of the Markov chain Φ̃ converges
to the desired posterior distribution at a geometric rate (as the number of steps
converges to ∞).

As mentioned previously, the Bayesian lasso Markov chain of [23] is a special
case of the Normal-Gamma Markov chain when a = 1. In recent work [12, 29], it
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was shown that a two-block version of the Bayesian lasso chain (and a variety of
other chains for Bayesian regression) can be developed. The authors in [29] then
focus their theoretical investigations on the Bayesian lasso, and show that the
two-block Bayesian lasso chain has a better behaved spectrum than the original
three-block Bayesian lasso chain in the following sense: the Markov operator
corresponding to the two-block Bayesian lasso chain is trace class (eigenvalues
are countable and summable, and hence in particular square-summable), while
the Markov operator corresponding to the original three-block Bayesian lasso
chain is not Hilbert-Schmidt (the corresponding absolute value operator either
does not have a countable spectrum, or has a countable set of eigenvalues that
are not square-summable).

Based on the method outlined in [29], a two-block version of the three-block
Normal-Gamma Markov chain Φ̃ can be constructed as follows. The two-block
Markov chain, denoted by Φ = {(βm, σ2

m)}∞m=0 (on the state space R
p × R+),

is driven by the Markov transition density (Mtd)

k
(
(β, σ2), (β̄, σ̄2)

)
=

∫
R

p
+

π(τ | β, σ2,Y) π(β̄, σ̄2 | τ ,Y)dτ . (3)

The one-step dynamics of this Markov chain to move from the current state,(
βm, σ2

m

)
, to the next state,

(
βm+1, σ

2
m+1

)
can be described as follows:

• Draw τ from π(· | βm, σ2
m,Y).

• Draw σ2
m+1 from π(· | τ ,Y) and draw βm+1 from π(· | σ2

m+1, τ ,Y).

Note that the Markov chain Φ arises from a two-block Data Augmentation
(DA) algorithm, with (β, σ2) as the parameter block of interest and τ as the
augmented parameter block. Hence the corresponding Markov operator is a
positive, self-adjoint operator (see [9]).

The goal of this paper is to investigate whether the theoretical results for
the Bayesian lasso in [29] hold for the more general and complex setting of the
Normal-Gamma model. In particular, we establish that the Markov operator
corresponding to the two-block chain Φ is trace class when a > 1

2 (Theorem
1). On the other hand, the Markov operator corresponding to the three-block
chain Φ̃ is not Hilbert-Schmidt for all values of a (Theorem 2). These results
hold for all values of the sample size n and the number of independent variables
p. Since the Bayesian lasso is a special case with a = 1, our results subsume
the spectral results in [29]. Establishing that the positive self-adjoint operator
Φ is trace class implies that it has a discrete spectrum, and that (countably
many, non-negative) eigenvalues are summable. The trace class property im-
plies compactness of the corresponding Markov operator, which further implies
geometric ergodicity of the underlying Markov chain (see [22, Section 2], for
example). Geometric ergodicity, in turn, facilitates use of Markov chain central
limit theorems to provide error bounds for Markov chain based estimates of
relevant posterior expectations. Geometric ergodicity of the three block chain
Φ̃ has already been established in [21].

Since both chains are geometrically ergodic, a natural question for a prac-
titioner is: do the theoretical results in this paper provide any insight to help



170 L. Zhang et al.

him/her choose between the two Markov chains? Note that the two main re-
sults (Φ is trace class, Φ̃ is not Hilbert-Schmidt) give us information about the
spectrum of these two Markov chains. The spectrum of a Markov chain plays a
crucial role in quantities of practical interest such as distance from stationarity
or effective sample size. In particular, if a self-adjoint Markov operator K (with
stationary density π) has a countable spectrum {λi(K)}∞i=0 (with λ0 = 1), and
corresponding sequence of eigenfunctions {φi}∞i=0, then or any h ∈ L2(π), the
asymptotic variance of the Markov chain based cumulative averages for estimat-
ing Eπ[h] is given by

Eπ[h
2] + 2

∞∑
i=1

λi(K)

1− λi(K)
(Eπ[hiφi])

2, (4)

and the χ2-distance from stationarity after n steps of the Markov chain with
initial state x is given by

∞∑
i=1

λi(K)2nφ2
i (x). (5)

The trace class property for the two block chain Φ is equivalent to
∑∞

i=1 λi(Φ) <

∞, whereas the lack of Hilbert-Schmidt property for the three-block chain Φ̃ im-
plies either that the corresponding operator is not compact, or it is compact and∑∞

i=1 λi(Φ̃
∗Φ̃) = ∞. Although this does not exactly characterize the difference

between the asymptotic variance or distance to stationarity between the two
chains, in view of (4) and (5), one would in general expect the asymptotic vari-
ance for the two block chain to be lower than the three block chain (same for the
distance to stationarity). Hence, the results in this paper rigorously establish
one way in which blocking affects the properties of hte Normal-Gamma Markov
chain, and indicates why one should expect the blocked chain to have better
performance in terms of essential sample size and convergence than the original
Normal-Gamma chain.

There are two more consequences of establishing the trace-class property for
Φ. Recent work in [27] provides a rigorous approach to estimate the largest
eigenvalue of trace class Markov chains. Hence, the trace class property (along
with an additional variance condition that we establish in Section 7) enables
us to estimate the largest eigenvalue of Φ, and explore its dependence on the
underlying parameters such as a, n, p. See Section 7 for an illustration. The DA
interpretation of Φ also enables us to use the Haar PX-DA technique from [9]
and construct a “sandwich” Markov chain by adding an inexpensive extra step
in between the two conditional draws involved in one step of Φ (see Section 5
for details). The trace class property for Φ, along with results in [14], implies
that the sandwich chain is also trace class, and that each ordered eigenvalue
of the sandwich chain is dominated by the corresponding ordered eigenvalue
of Φ (with at least one strict domination). While both these methods (eigen-
value estimation and sandwich) are applicable to the two-block Normal-Gamma
chain in theory, in the context of the Normal-Gamma Markov chain, we found
that while these methods work smoothly for small p settings, both encounter
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practical computational difficulties in the large p setting. Even so, obtaining
reasonable bounds for eigenvalues of continuous state space Markov chains used
in statistical practice is recognized as a really challenging problem, and getting
bounds on the largest eigenvalue even in the small p case is a useful step ahead.

The rest of the paper is organized as follows. In Section 2, we provide the form
of the relevant conditional densities for the Markov chains Φ and Φ̃. In Section
3, we establish the trace class property for the two-block Markov chain Φ. In
Section 4, we show that the three-block Markov chain is not Hilbert-Schmidt.
In Section 5, we derive the Haar PX-DA sandwich chain corresponding to the
two-block DA chain. Finally, in Section 6 we compare the performance of the
two-block, three-block and the Haar PX-DA based chains on simulated and real
datasets. In Section 7, we show that our results can be used along with a recent
technique in [27] to estimate the largest eigenvalue of the two-block chain.

2. Form of relevant densities

In this section, we present expressions for various densities corresponding to the
Normal-Gamma model in (1). These densities appear in the Mtd for the Markov
chains Φ and Φ̃.

The joint density for the parameter vector (β, τ , σ2) conditioned on the data
vector y is given by the following:

π(β, τ , σ2|Y) ∝
exp

(
− ((Y−Xβ)T (Y−Xβ))

2σ2

)
(
√
2π)nσn

exp
(
−βTD−1

τ β
2σ2

)
(
√
2π)pσp

×

⎛⎝ p∏
j=1

τ
a− 1

2−1
j exp (−bτj)

⎞⎠ (σ2)−a−1 exp

(
− ξ

σ2

)
. (6)

Based on the joint density in (6), the following conditional distributions can be
derived in a straightforward fashion.

• β | σ2, τ ,Y ∼ N p

((
XTX +D−1

τ

)−1
XTy, σ2

(
XTX +D−1

τ

)−1
)
,

where Np(μ,Σ) denotes the p-variate normal density with mean vector μ and
covariance matrix Σ.

• σ2 | β, τ ,Y ∼ Inverse−Gamma
(

n+p+2α
2 ,

(y−Xβ)T (y−Xβ)+βTD−1
τ β+2ξ

2

)
.

Here Inverse-Gamma(α, λ) referes to the Inverse-Gamma density with shape
parameter α and rate parameter λ. In particular, the Inverse-Gamma(α, λ) is
given by

Γ(α)−1λαx−α−1 exp(−λ/x)

for x > 0.
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• σ2 | τ ,Y ∼ Inverse−Gamma

(
n+2α

2 ,
YT (I−XA−1

τ XT )Y+2ξ

2

)
,

where Aτ = XTX +Dτ .

• Given β, σ2 and y, the variables τ1, τ2, ..., τp are conditionally independent,

and the conditional density of τj given β, σ2 and y is GIG(a− 1
2 , 2b,

β2
j

σ2 ).

Here GIG refers to the generalized inverse Gaussian density. The GIG(ν, r, s)
density is given by

(r/s)ν/2

2Kν(
√
rs)

xv−1 exp (−rx/2− s/2x) ,

for x > 0, with Kν being a modified Bessel function of the second kind.

2.1. Computational complexity

In this section, we evaluate the computational complexity (per iteration) of the
original three-block Gibbs sampler with the proposed two-block Gibbs sampler.
To this end, we examine the complexity of one iteration of each sampler starting
at (β, σ2) and ending at (β′, σ2′). Note that starting from (β, σ2), both algo-
rithms sample τ from the conditional posterior density given β, σ2,Y which
corresponds to p GIG draws and required O(p) computations. Then, the three

block sampler obtains σ2′ by sampling from an

Inverse−Gamma

(
n+ p+ 2α

2
,
(y−Xβ)

T
(y−Xβ) + βTD−1

τ β + 2ξ

2

)

density. This takes O(np) iterations, with computing Xβ being the computa-

tionally dominant step. On the other hand, the two block sampler obtains σ2′

be sampling from an

Inverse−Gamma

(
n+ 2α

2
,
YT

(
I −XA−1

τ XT
)
Y + 2ξ

2

)

density. Using the Sherman-Morrison-Woodbury identity it can be shown that

A−1
τ XTY = DτX

T (XDτX
T + In)

−1Y.

and hence can be computed in O(min(n2p, p3)) iterations. Finally, both samplers
obtain β′ from a p- variate Gaussian density, which requires O(min(n2p, p3))
computations. Hence, while the second step of the two block sampler is slightly
more expensive than the second step of the three block sampler (O(n2p) as
compared to O(np)), the overall computational complexity per iteration for
both algorithms is O(min(n2p, p3)).
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3. Properties of the two-block Gibbs sampler

In this section, we show that the operator associated with the two-block Gibbs
sampler Φ, with Markov transition density k specified in (3) is trace class when
a > 1

2 and is not trace class when 0 < a ≤ 1
2 .

Theorem 1. For all values of n and p, the Markov operator corresponding to
the two-block Markov chain Φ is trace class (and hence Hilbert-Schmidt) when
a > 1

2 and is not trace class when 0 < a ≤ 1
2 .

Proof. In the current setting, the trace class property is equivalent to the finite-
ness of the integral (see [13] and [22, Section 2], for example)∫∫

Rp×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2. (7)

We will consider five separate cases: a > 1, 3/4 ≤ a ≤ 1, 1/2 < a < 3/4,
0 < a < 1/2 and a = 1/2. In the first three cases, we will show that the integral
in (7) is finite, and in the last two cases we will show that the integral in (7) is
infinite. The proof is a lengthy and intricate algebraic exercise involving careful
upper/lower bounds for modified Bessel functions and conditional densities, and
we will try to provide a road-map/explanation whenever possible. We will start
with the case a > 1.

Case 1: a > 1
By the definition of k, we have∫∫

Rp×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2

=

∫∫∫
Rp×R

p
+×R+

π
(
τ | β, σ2,Y

)
π
(
β, σ2 | τ ,Y

)
dβ dτ dσ2

=

∫∫∫
Rp×R

p
+×R+

π
(
τ | β, σ2,Y

)
π
(
σ2 | τ ,Y

)
π
(
β | σ2, τ ,Y

)
dβ dτ dσ2. (8)

As a first step, we will gather all the terms with τ , and then focus on finding
an upper bound for the inner integral with respect to τ . Using the conditional
densities in Section 2, we get,∫∫

Rp×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2

=C1

∫∫∫
Rp×R

p
+×R+

p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j
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× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})(
σ2
)−n+2α

2 −1

× exp

(
−
YT

(
I −XA−1

τ XT
)
Y + 2ξ

2σ2

)(
YT

(
I −XA−1

τ XT
)
Y + 2ξ

)n+2α
2

× (σ2)−
p
2 |Aτ | 1

2

× exp

(
−
(
β −A−1

τ XTY
)T

Aτ

(
β −A−1

τ XTY
)

2σ2

)
dβ dτ dσ2

(a)

≤C2

∫∫∫
Rp×R

p
+×R+

exp
(
− ξ

σ2

)
(σ2)

n+2α
2 +1

| Aτ | 1
2

(σ2)
p
2

p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
− 1

2

{
2bτj +

β2
j

σ2

1

τj

}

− 1

2σ2

(
βTAτβ − 2βTXTY +YTY

))
dβ dτ dσ2

(a′)

≤ C2

∫∫∫
Rp×R

p
+×R+

exp
(
− ξ

σ2

)
(σ2)

n+p+2α
2 +1

| Aτ | 1
2

p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

2β2
j

σ2

1

τj

})
dβ dτ dσ2,

(9)

where C1 = 1

(2π)
p
2 2

n+2α
2 Γ(n+2α

2 )
and C2 =

(
YTY + 2ξ

)n+2α
2 C1. Note that (a)

follows from
YT

(
I −XA−1

τ XT
)
Y + 2ξ ≤ YTY + 2ξ,

and then combining/simplifying terms in the exponent. Similarly, (a′) follows
from

exp

(
− 1

2σ2

(
βTAτβ − 2βTXTY +YTY

))

= exp

(
−βD−1

τ β

2σ2

)
exp

{
− 1

2σ2

(
βTXTXβ − 2βTXTY +YTY

)}

≤ exp

(
−βD−1

τ β

2σ2

)
,
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and then combining/simplifying terms in the exponent. We now focus on the
inner integral in (9) defined by

H
(
β, σ2

) Δ
=

∫
R

p
+

| Aτ | 1
2

p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

2β2
j

σ2

1

τj

})
dτ (10)

Let λ denote the largest eigenvalue of XTX. Using the definition of Aτ , it
follows that

| Aτ | 1
2

p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

2β2
j

σ2

1

τj

})

≤
p∏

j=1

(√
λ+

1
√
τj

) p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

2β2
j

σ2

1

τj

})

=
[
λ

p
2 +

(
1√
τ1

+ ...+
1

√
τp

)
λ

p−1
2

+

(
1√
τ1τ2

+ ...+
1

√
τiτj

+ ...

)
λ

p−2
2 + ...+

1
√
τ1τ2...τp

] p∏
j=1

cj

(11)

where

cj =

(
2bσ2

) a− 1
2

2
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(√
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j
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(
−1

2

{
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σ2

1
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})
.

We now examine a generic term of the sum in (11). Note that cj and
cj√
τj

are

both (unnormalized) GIG densities. Hence, for any subset L = {�1, �2, · · · , �m}
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of {1, 2, · · · , p}, using the form of the GIG density, we get∫
R

p
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First, by [16, Page 266], we get that
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j

σ2
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2

(√
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j
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(
−
√
b |βj |
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)

for all a > 1
2 . Next, using the fact that if x > 0, then ν → Kν(x) is an increasing

function for ν > 0 (again, see [16, Page 266]), and a > 1, we get
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(√
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. (13)

Hence, from (12), we get that∫
R

p
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1
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It follows from (10), (11) and (14) that

H
(
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)
≤
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By (9) and (10), the trace class property will be established if we show that for
every L ⊆ {1, 2, · · · , p}, the integral

∫∫
R+×Rp

exp
(
− ξ
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)
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2 − |L|

4 +1

⎛⎝∏
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⎞⎠ dβ dσ2

is finite. We proceed to show this by first simplifying the inner integral with
respect to β. Using the form of the Gamma density, we get

∫
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It follows by (15) that

∫∫
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2 +α

< ∞.

As discussed above, this establishes the trace class property in the case a > 1.

Case 2: 3/4 ≤ a ≤ 1

In this case, we first note that all arguments in Case 1 go through verbatim
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until (12). Next, we note that
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If a ≥ 3
4 , then a− 1

2 > 0, and by [16, Page 266], we get
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(17)

Using the property that Kν(x) = K−ν(x) (see [1], Page 375), we obtain
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If 3

4 ≤ a < 1, then 0 < 1−a ≤ a− 1
2 . Since ν → Kν(x) is increasing in ν > 0 for

x > 0 (see [16, Page 266]), it follows that K1−a
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(√
4b

β2
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)
for 3

4 ≤ a < 1. Also, by the integral formula (see [1], Page 376)

Kν(t) =

∫ ∞

0

exp (−t cosh z) cosh(νz) dz, ν ∈ R.

Since cosh(νz) ≥ cosh(0) for any ν > 0, z > 0 (x → cosh(x) is increasing on
[0,∞)), we get

Kν(t) ≥ K0(t)

for ν > 0. In particular, K0(

√
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we have
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It follows from (16), (17) and (18) that
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Now, using exactly the same arguments as in the proof of Case 1 (following
(12)) the trace class property can be shown the case 3

4 ≤ a ≤ 1.

Case 3: 1/2 < a < 3/4
Again, in this case, we first note that all arguments in Case 1 go through ver-
batim until (12). Also, by [16, Page 266] and Kν(x) = K−ν(x) for x > 0, we
get
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Note that if 1/2 < a < 3/4, then 1− a− (a− 1
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2 ). It follows by
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By (12), for any subset L = {�1, �2, · · · , �m} of {1, 2, · · · , p} we get∫
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≤
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It follows from (10) that
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By (9), the trace class property will be established if we show that for every
L ⊆ {1, 2, · · · , p}, the integral

∫∫
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is finite. We proceed to show this by first integrating out β. Using the form of
the Gamma density, we get
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As discussed above, this establishes the trace class property in the case 1/2 <
a < 3/4.

Case 4: 0 < a < 1/2

Now, we’ll show that when a ∈
(
0, 1
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)
,∫∫
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By [1, Page 375], if ν > 0, then Kν(x)
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It follows from the form of the conditional densities in Section 2 that∫∫
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If we denote the entries of XTX and XTY by aij , bi, respectively, then it is easy
to see there is at least i such that aii > 0 (if not, aii = 0 for all i, indicating X
is exactly 0). Without loss of generality, we assume a11 > 0, so
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−βD−1

τ β

2σ2

)



184 L. Zhang et al.

×
p∏

j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
dβ dτ dσ2

= C1

∫∫
Rp×R+

exp
(
−2ξ+YTY

2σ2

)
(σ2)

n+p+2α
2 +1

g(σ2, β2, · · · , βp)

× exp
{
− a11
2σ2

(β1 + c)
2
} ∫
R

p
+

|D−1
τ | 12 exp

(
−βD−1

τ β

2σ2

)

×
p∏

j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
dτ dβ dσ2 (27)

By (22), the inner integral can be bounded below as

∫
R

p
+

|D−1
τ | 12 exp

(
−βD−1

τ β

2σ2

) p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
dτ

=

p∏
j=1

∫
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(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a−1)−1
j exp

(
−1

2

{
2bτj +

2β2
j

σ2

1

τj

})
dτj

=

p∏
j=1

(
2bσ2

) 1
4

(√
2
)a−1

|βj |−
1
2

Ka−1

(√
4b

β2
j

σ2

)
Ka− 1

2

(√
2b

β2
j

σ2

)
≥

p∏
j=1

(
2bσ2

) 1
4

(√
2
)a−1

|βj |−
1
2

(√
2
)a

Γ(1− a)

2 (2b)
1
4 Γ( 12 − a)

σ
1
2

|βj |
1
2

I(0<|βj |< σε1√
2b

)

=

(√
2
)2a−3

Γ(1− a)

Γ( 12 − a)
(σ2)

p
2

p∏
j=1

1

|βj |
I(0<|βj |< σε1√

2b
) (28)
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It follows from (27) and (28) that∫∫
R

p
+×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2

≥
(√

2
)2a−3

Γ(1− a)C1

Γ( 12 − a)

∫∫
Rp×R+

exp
(
−2ξ+YTY

2σ2

)
(σ2)

n+2α
2 +1

× g(σ2, β2, · · · , βp) exp

{
−a11 (β1 + c)

2

2σ2

}

×
p∏

j=1

1

|βj |
I(0<|βj |< σε1√

2b
) dβ dσ2

= C∗
1

∫
R+

exp
(
−2ξ+YTY

2σ2

)
(σ2)

n+2α
2 +1

{∫ σε1√
2b

− σε1√
2b

1

|β1|
exp

{
−a11 (β1 + c)

2

2σ2
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dβ1

}

×

⎧⎨⎩
∫
Rp−1

g(σ2, β2, · · · , βp)

p∏
j=2

1

|βj |
I(0<|βj |< σε1√

2b
)

p∏
j=2

dβj

⎫⎬⎭ dσ2 (29)

where C∗
1 =

(
√
2)

2a−3
Γ(1−a)C1

Γ( 1
2−a)

. However, we note that

∫ σε1√
2b

− σε1√
2b

1

|β1|
exp

{
−a11 (β1 + c)

2

2σ2

}
dβ1 ≥

σε1√
2b∫

0

1

β1
exp

{
−a11 (β1 + c)

2

2σ2

}
dβ1 = ∞

where the last step follows from Propositon A1. By (29), it follows that the
operator corresponding to the Markov transition density k is not trace class
when 0 < a < 1/2.

Case 5: a = 1/2

Finally, we show that when a = 1
2 , we have∫∫

R
p
+×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2 = ∞.

When a = 1
2 ,

Ka−1

(√
4b

β2
j

σ2

)

K
a− 1

2

(√
2b

β2
j

σ2

) =
K− 1

2

(√
4b

β2
j

σ2

)

K0

(√
2b

β2
j

σ2

) =
K 1

2

(√
4b

β2
j

σ2

)

K0

(√
2b

β2
j

σ2

) . By [1, Page 375],

if z → 0, then K0(z) ∼ − ln(z) and K 1
2
(z) ∼ Γ( 1

2 )

2

(
2
z

) 1
2 . As we did in Case 4,
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let y =

√
2bβ2

j

σ2 . It follows that

K 1
2
(
√
2y)

Γ( 1
2 )

2

(
2√
2y

) 1
2

(
K0(y)

− ln(y)

)−1

→ 1 as y → 0.

Hence there exists ε2 ∈ (0, 1) such that
K 1

2
(
√
2y)

K0(y)
≥ Γ( 1

2 )2
1
4

4
1

−√
y ln(

√
2y)

for 0 <

y < ε2. It follows that

K 1
2

(√
4b

β2
j

σ2

)
K0

(√
2b

β2
j

σ2

) =
K 1

2
(
√
2y)

K0(y)
≥

K 1
2
(
√
2y)

K0(y)
I(0<y<ε2)

≥
Γ( 12 )2

1
4

4

1

−√
y ln(

√
2y)

I(0<y<ε2)

=
C5(σ

2)
1
4

|βj |
1
2

(
− ln(

√
2b) + lnσ − ln |βj |

)I(0<|βj |< σε2√
2b

),

where C5 =
Γ( 1

2 )

4b
1
4
. We use this to get a lower bound for the inner integral with

respect to τ in (27). In particular, we note that

∫
R

p
+

|D−1
τ | 12 exp

(
−βD−1

τ β

2σ2

) p∏
j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
dτ

=

p∏
j=1

(
2bσ2

) 1
4

(√
2
)a−1

|βj |−
1
2

K− 1
2

(√
4b

β2
j

σ2

)
K0

(√
2b

β2
j

σ2

)
≥

p∏
j=1

(
2bσ2

) 1
4

(√
2
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|βj |−
1
2

C5(σ
2)

1
4

|βj |
1
2

(
− ln(

√
2b) + lnσ − ln |βj |

)I(0<|βj |< σε2√
2b

)

= (2b)
p
4 (
√
2)p(a−1)Cp

5 (σ2)
p
2

p∏
j=1

I(0<|βj |< σε2√
2b

)

|βj |
(
− ln(

√
2b) + lnσ − ln |βj |

)
Using (27), it follows that∫∫

R
p
+×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2
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≥ C1

∫∫
Rp×R+

exp
(
−2ξ+YTY

2σ2

)
(σ2)

n+p+2α
2 +1

g(σ2, β2, · · · , βp) exp
{
− a11
2σ2

(β1 + c)
2
}

×
∫
R

p
+

|D−1
τ | 12 exp

(
−βD−1

τ β

2σ2

)

×
p∏

j=1

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
dτ dβ dσ2

≥ (2b)
p
4 (
√
2)p(a−1)C1C

p
5

∫∫
Rp−1×R+

exp
(
−2ξ+YTY

2σ2

)
(σ2)

n+2α
2 +1

g(σ2, β2, · · · , βp)

×
p∏

j=2

I(0<|βj |< σε2√
2b

)

|βj |
(
− ln(

√
2b) + lnσ − ln |βj |

)
×

⎧⎨⎩
∫
R

exp
{
− a11
2σ2

(β1 + c)
2
} I(0<|β1|< σε2√

2b
)

|β1|
(
− ln(

√
2b) + lnσ − ln |β1|

) dβ1

⎫⎬⎭ dβ′ dσ2,

where β′ = (β2, · · · , βp). By Proposition A2, we obtain∫
R

exp
{
− a11
2σ2

(β1 + c)
2
} I(0<|β1|< σε2√

2b
)

|β1|
(
− ln(

√
2b) + lnσ − ln |β1|

) dβ1

≥

σε2√
2b∫

0

exp
{
− a11

2σ2 (β1 + c)
2
}

β1

(
− ln(

√
2b) + lnσ − lnβ1

) dβ1

= ∞

It follows that the operator corresponding to the Markov transition density k is
not trace class when a = 1

2 .

4. Properties of the three-block Gibbs sampler

In this section, we show that when a > 0, the Markov operator corresponding
to the three-block Gibbs sampler Φ̃, with Markov transition density k̃ specified
in (1), is not Hilbert-Schmidt. Let K̃ be the Markov operator corresponding to
Φ̃. We prove the following result.

Theorem 2. For all a > 0, the Markov operator K̃ is not Hilbert-Schmidt for
all possible values of p and n.
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Proof. Note that the Markov operator K̃ corresponding to the density k̃ is
Hilbert-Schmidt if and only if K̃∗K̃ is trace class (see [13], for example). Here
K̃∗ denotes the adjoint of K̃. It follows that K̃ is Hilbert-Schmidt if and only if
I < ∞, where

I :=

∫
Rp

∫
R+

∫
Rp

∫
R+

k̃

((
β, σ2

)
,
(
β̃, σ̃2

))
k̃∗
((

β̃, σ̃2
)
,
(
β, σ2

))
dβdσ2dβ̃dσ̃2

=

∫
Rp

∫
R+

∫
Rp

∫
R+

k̃2
((

β, σ2
)
,
(
β̃, σ̃2

)) π
(
β, σ2 | Y

)
π
(
β̃, σ̃2 | Y

)dβdσ2dβ̃dσ̃2.

(30)

The last step follows from the detailed balance condition for k̃ and its adjoint
k̃∗, i.e.,

π
(
β, σ2 | Y

)
k̃

((
β, σ2

)
,
(
β̃, σ̃2

))
= π

(
β̃, σ̃2 | Y

)
k̃∗
((

β̃, σ̃2
)
,
(
β, σ2

))
.

By (2), a straightforward manipulation of conditional densities, and Fubini’s
theorem, we obtain

I =

∫
R+

∫
R+

∫
Rp

∫
Rp

∫
R

p
+

∫
R

p
+

π
(
σ̃2 | β̃, τ ,Y

)
π
(
β̃ | τ , σ2,Y

)
π
(
τ | β, σ2,Y

)
×

π
(
β | τ̃ , σ2,Y

)
π
(
σ2 | β̃, τ̃ ,Y

)
π
(
τ̃ | β̃, σ̃2,Y

)
dσ2dσ̃2dβdβ̃dτdτ̃ (31)

For convenience, we introduce and use the following notation in the subsequent
proof.

β̂ = A−1
τ XTY β̂∗ = A−1

τ̃ XTY

Δ1 = (β̃ − β̂)TAτ (β̃ − β̂) Δ1∗ = (β − β̂∗)
TAτ̃ (β − β̂∗)

Δ̃ = (Y −Xβ̃)T (Y −Xβ̃) Δ̃∗ = (Y −Xβ̃)T (Y −Xβ̃)

+β̃TD−1
τ + β̃ + 2ξ +β̃TD−1

τ̃ β̃ + 2ξ. (32)

(33)

We first show I = ∞ for the simpler case with a > 1
2 and then consider the

significantly more complicated case 0 < a ≤ 1
2 .

Case 1: a > 1/2
Using 2Kν(x) ≤ x−νΓ(ν)2ν for ν > 0, x > 0 (Proposition A7 of [21]), we obtain
that if a > 1

2 ,

(
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j
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2
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2
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1
2

. (34)
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Similarly (
2bσ̃2

) a− 1
2

2

2
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2
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1
2
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Using the conditional densities from Section 2, along with (34) and (35), we get

π
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π
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)
π
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)
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)
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(36)

where

D1 =
1[

(2π)p2
n+p+2α

2 Γ(n+p+2α
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]2
(
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1
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1
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It follows from (36) that∫
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∫
R+

∫
Rp

∫
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π
(
σ̃2 | β̃, τ ,Y

)
π
(
β̃ | τ , σ2,Y

)
π
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)
×
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π
(
β | τ̃ , σ2,Y
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(a)
= ∞

for every (τ , τ̃ ) ∈ R
p
+ × R

p
+. Here (a) follows by repeating verbatim the argu-

ments between Equations (S4) - (S12) in [29]. We conclude from this fact that
the Markov operator K̃ is not Hilbert-Schmidt when a > 1

2 .

Case 2: 0 < a ≤ 1/2
By the integral formula (see [1], Page 376)

Kν(t) =

∫ ∞

0

exp (−t cosh z) cosh(vz) dz, ν ∈ R.

Since the hyperbolic function cosh is strictly decreasing on interval (−∞, 0], for
every x > 0, Kν(x) is strictly decreasing as ν increases on the interval (−∞, 0].
Note that when 0 < a ≤ 1

2 , −a− 3
2 < a− 1

2 ≤ 0. It follows that

Ka− 1
2
(x) < K−a− 3

2
(x)

for all x > 0. Moreover, when ν < 0 and x > 0, 2Kν(x) ≤ xνΓ(−ν)2−ν (see
Proposition A7 of [21]), which implies
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Similarly, we get (
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Using the conditional densities from Section 2, along with (37) and (38), we
obtain
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τ β
2σ2
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(σ2)

n+p+2α
2 +2p+1

}
, (39)

where

D2 =
(2ξ)n+p+2α[

(2π)p2
n+p+2α

2 Γ(n+p+2α
2 )

]2
(

ba+
1
2

2Γ(a+ 3
2 )

)2p

,

f1(τ , τ̃ ) =

{
p∏

j=1

τa−2
j exp (−bτj)

}{
p∏

j=1

τ̃a−2
j exp (−bτ̃j)

}
,

and the last inequality follows by

Δ̃
n+p+2α

2 ≥ (2ξ)
n+p+2α

2 , Δ̃
n+p+2α

2∗ ≥ (2ξ)
n+p+2α

2 , |Aτ |
1
2 ≥ |Dτ |−

1
2 and

|Aτ̃ |
1
2 ≥ |Dτ̃ |−

1
2 .

It follows by (39) and the form of the Inverse-Gamma density that∫
R+

∫
R+

π
(
σ̃2 | β̃, τ ,Y

)
π
(
β̃ | τ , σ2,Y

)
π
(
τ | β, σ2,Y

)
×π

(
β | τ̃ , σ2,Y

)
π
(
σ2 | β̃, τ̃ ,Y

)
π
(
τ̃ | β̃, σ̃2,Y

)
dσ2dσ̃2

≥ D3f1(τ , τ̃ )

p∏
j=1

(
β2
j β̃

2
j

)⎧⎪⎪⎨⎪⎪⎩
1[

Δ̃ + β̃TD−1
τ̃ β̃

]n+p+2α
2 +p

⎫⎪⎪⎬⎪⎪⎭
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×

⎧⎪⎪⎨⎪⎪⎩
1[

Δ1 +Δ1∗ + Δ̃∗ + βTD−1
τ β

]n+p+2α
2 +2p

⎫⎪⎪⎬⎪⎪⎭
(40)

where

D3 = 2n+4p+2α Γ

(
n+ p+ 2α

2
+ p

)
Γ

(
n+ p+ 2α

2
+ 2p

)
D2

We now establish some inequalities which will help converting the lower bound
in (40) into a simpler form. By (33), it follows that

Δ̃ + β̃TD−1
τ̃ β̃ = β̃T (XTX +D−1

τ )β̃ − 2YTXβ̃ +YTY + 2ξ + β̃TD−1
τ̃ β̃

≤ β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTY + Δ̃∗

≤ β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTY + Δ̃∗ +Δ1∗

+ βTD−1
τ β,

and

Δ1 +Δ1∗ + Δ̃∗ + βTD−1
τ β

= β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTX(XTX +D−1

τ )−1XTY

+Δ1∗ + Δ̃∗ + βTD−1
τ β

≤ β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTY + Δ̃∗ +Δ1∗ + βTD−1

τ β.

Also, note that

β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTY + Δ̃∗ +Δ1∗ + βTD−1

τ β

= β̃T (XTX +D−1
τ )β̃ − 2YTXβ̃ +YTY

+ β̃T (XTX +D−1
τ̃ )β̃ − 2YTXβ̃ +YTY + 2ξ +Δ1∗ + βTD−1

τ β

= β̃T (2XTX +D−1
τ +D−1

τ̃ )β̃ − 4YTXβ̃ + 2YTY + 2ξ +Δ1∗ + βTD−1
τ β

= (β̃ − μ)T (2XTX +D−1
τ +D−1

τ̃ )(β̃ − μ)

− 4YTX(2XTX +D−1
τ +D−1

τ̃ )−1XTY + f2(β, τ̃ ) + βTD−1
τ β

≤ (β̃ − μ)T (2XTX +D−1
τ +D−1

τ̃ )(β̃ − μ) + f2(β, τ̃ ) + βTD−1
τ β

≤
[
(β̃ − μ)T (2XTX +D−1

τ +D−1
τ̃ )(β̃ − μ) + f2(β, τ̃ ) + 1

]
(βTD−1

τ β + 1)

where

μ = (2XTX +D−1
τ +D−1

τ̃ )−1XTY and f2(β, τ̃ ) = 2YTY + 2ξ +Δ1∗.

By (40), we get∫
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∫
R+

π
(
σ̃2 | β̃, τ ,Y

)
π
(
β̃ | τ , σ2,Y

)
π
(
τ | β, σ2,Y

)
×
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π
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where μj = eTj μ, νj = 2n + 8p + 4α − 1, εj =

√
f2(β,τ̃ )+1

(2λ+ 1
τj

+ 1
τ̃j

)νj
and λ is the

greatest eigenvalue of matrix XTX. By Proposition A4, we have
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Hence, it follows from (41) and (42) that∫
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∫
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From (43), we obtain∫
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5. Construction of the Haar PX-DA sandwich Markov chain

The two-block Markov chain Φ can be interpreted as a Data Augmentation
(DA) algorithm, with (β, σ2) as the parameter block of interest, and τ as the
augmented block. The DA algorithm can suffer from slow convergence (just
like the EM algorithm, its analogous version in likelihood maximization). The
sandwich algorithm, introduced in [17, 9], aims to improve the convergence and
efficiency of the DA algorithm by adding an inexpensive extra step in between
the two conditional draws of the DA algorithm. In fact, there are many DA
chains (see [17, 19, 18, 10, 22], for example) where sandwich chains have been
constructed and shown to be significantly more efficient with roughly the same
computational effort per iteration. In this section, we will focus on deriving the
Haar PX-DA sandwich algorithm in the normal-gamma prior setting. The Haar
PX-DA algorithm has been shown in [9] to be the best among a class of sandwich
algorithms in terms of efficiency and operator norm.

A key ingredient in constructing the Haar PX-DA algorithm is a unimodular
group which acts on the augmented variable space (Rp in our case). We consider
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the multiplicative group G of positive real numbers, which acts on an element
of Rp through scalar multiplication. In particular, if g ∈ G and τ ∈ R

p, then
the result of the action of g on τ is given by gτ = (gτ1, gτ2, · · · , gτp). Another
choice that we need to make is the choice of the multiplier function χ : G → R+,
which satisfies

χ(g1g2) = χ(g1)χ(g2)

for any pair g1, g2 ∈ G, and

χ(g)

∫
Rp

φ(gτ )dτ =

∫
Rp

φ(τ )dτ

for any g ∈ G and any function φ : R
p → R. In this setting, the function

χ(g) = gp serves as a valid multiplier function. Also, the unimodular group G
has a Haar measure H(dg) = dg

g . With these ingredients in hand, we define the

density fG on G (with respect to the Haar measure) by

fG(g) =
π(gτ | Y)χ(g)

m(τ )
H(dg),

where m(τ ) =
∫
G π(gτ )χ(g)H(dg) is the normalizing constant. From (6), it

follows that

π(τ | Y) ∝
∏p

j=1 τ
a− 1

2−1
j exp (−bτj){

yTy − yTX(XTX +D−1
τ )−1XTy + 2ξ

}n
2 +α |XTX +D−1

τ | 12

and

fG(g) ∝
gp(a−

1
2 )−1 exp

(
−g(

∑p
j=1 bτj)

)
{
yTy − yTX(XTX + 1

gD
−1
τ )−1XTy + 2ξ

}n
2 +α

|XTX + 1
gD

−1
τ | 12

.

(44)
Using fG , we can now define the Haar PX-DA sandwich Markov chain, de-
noted by Φ∗ = {(βm, σ2

m)}∞m=0, whose one step transition from (βm, σ2
m) to

(βm+1, σ
2
m+1) can be described as follow.

1. Draw τ from the distribution π(· | σ2
m,βm,Y)

2. Draw g according to the density fG .

3. Draw (σ2
m+1,βm+1) by the following procedure

(a) Draw σ2
m+1 from π(· | gτ ,Y).

(b) Draw βm+1 from π(· | gτ , σ2
m+1,Y).

The lemma below, regarding spectral properties of the Haar PX-DA chain, fol-
lows by combining Theorem 1 and results from [14].
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Lemma 5.1. The operator corresponding to the Haar PX-DA Markov chain Φ∗

is trace class. Also, if {λ∗
i }∞i=1 and {λi}∞i=1 are the ordered eigenvalues corre-

sponding to Φ∗ and Φ respectively, then λ∗
i ≤ λi for i ≥ 1 with a strict inequality

holding for at least one i.

Note that fG is not a standard density. Samples from this univariate density
can be generated using a rejection sampling algorithm with respect to a Gamma
proposal density with shape parameter pa and rate parameter b

∑p
j=1 τj . The

ratio of the unnormalized density on the right hand side of (44) and this Gamma
density can be shown to be bounded by⎛⎝ p∏

j=1

√
τj

⎞⎠ (2ξ)−(n/2+α)Γ(pa)

⎛⎝b

p∑
j=1

τj

⎞⎠−pa

.

We found that for small p, this rejection sampler works fairly well, and the
sandwich step does not add much to the overall complexity of the DA chain.
However, when p is large, we found that the rejection sampler becomes very
inefficient. We tried other approaches such as approximate discretization or
Metropolis-Hastings, but these approaches also turn out to be computationally
inefficient is the large p setting, i.e., the extra computations for the sandwich
step are too burdensome in comparison to any potential improvement in the
speed of convergence.

6. Examples

In this section, we consider simulated and real data examples to compare the
performance of the three block, two block and Haar PX-DA sandwich chains.

6.1. Simulation I: small p

In this section, we consider two simulation settings with small values of p.
We consider a setting with n = 10 < p = 15 for the first simulation, and
n = 15 > p = 10 for the second simulation. For both cases,the elements of
the design matrix X and response y were chosen by generating i.i.d. N (0, 1)
random variables. We fit the Normal-Gamma model in (1) with hyper param-
eters a = 0.75, b = 2, ξ = 100, α = 0. To compare the efficiency performance
of the Markov chains, we compute the autocorrelations (up to lag 10) for all

the Markov chains for the function (Y −Xβ)
T
(Y −Xβ)+ σ2. The results are

summarized in Table 1 for the first simulation, and in Table 2 for the second
simulation. We can clearly see that for both datasets, the two block Gibbs sam-
pler has significantly lower autocorrelations than the three block Gibbs sampler,
and that the magnitude of the autocorrelations for the sandwich Markov chain
is lowest.
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Table 1

First ten autocorrelations for simulated data with n < p

Lag 1 2 3 4 5 6 7 8 9 10

Three block 0.502 0.269 0.151 0.079 0.04 0.026 0.01 0.005 0.005 -0.01

Two Block 0.164 0.072 0.055 0.022 0.005 0.009 0.016 0.003 0.017 0.017

Sandwich 0.018 0.001 -0.008 -0.036 -0.011 -0.015 -0.007 0.011 0.017 0.005

Table 2

First ten autocorrelations for simulated data with n > p

Lag 1 2 3 4 5 6 7 8 9 10

Three block 0.541 0.35 0.231 0.156 0.103 0.064 0.042 0.023 0.02 0.014

Two Block 0.116 0.054 0.03 0.041 0.034 0.013 0.004 -0.002 0.018 -0.004

Sandwich -0.02 -0.024 -0.008 0.051 -0.008 0.023 -0.004 -0.001 -0.005 -0.026

6.2. Simulation II: large p

In this section we consider a more extensive simulation setting with large p.
In particular, we choose p = 500, n = 100, consider five different values of a
(namely 0.25, 0.5, 0.75, 1, 1.25), and consider five different correlations (namely
0.1, 0.3, 0.5, 0.7, 0.9) between the entries of the design matrix X. For a given a
and correlation value r, the np elements of the design matrix X are drawn as
standard normal random variables with all pairwise correlations equal to r. The
response vector Y was generated as Xβ∗ + ε, where the first one-fifth elements
of β∗ are independent t2 random variables, and all other elements are set to
zero, and ε has independent t4 elements. We set α = 0.1, b = 2, and ξ = 10. The
original and fast Bayesian lasso chains were run for each a and r setting (there
are 25 such settings, giving a total of 50 Markov chains) 1. For each Markov
chain, we have a burn-in of 50, 000 iterations. For this simulation, based on a
referee’s suggestion, we use a recently introduced measure of Multivariate Es-
sential Sample Size (MESS) in [31] to measure performance of the Markov chain.
MESS uses multivariate batch means to construct an estimator of the effective
sample size. Hence, if we have N iterations of the Markov chain after burn-in,
then we divide the observations into an =

√
N batches of size bn =

√
N each.

Determinants of the covariance matrix Λ̂ of the an batch-mean vectors, and
the covariance matrix Σ̂ of all the N Markov chain iterates are then used to
construct the MESS estimator. In order to ensure the positivity of the deter-
minant of Λ̂ we need

√
N ≥ p + 1 (the total number of parameters in (β, σ2)

is 501). Hence N > 250000 is needed just for the estimator to be well-defined.
We found that even after N = 500000 or even N = 106 iterations the ESS es-
timator did not stabilize, and was sometimes giving unacceptable values (such

1Since the sandwich algorithm is computationally too burdensome for this setting, we do
not use it for comparison
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as a value greater than the number of iterates N). For computational efficiency,
we made the following adjustment. We run the Markov chain for N = 500000
iterations after burn-in, then we randomly choose 10 elements of β along with
σ2 as a representative set of parameters and compute the MESS based on these
21 parameters (instead of 501 parameters). The corresponding MESS values are
reported in Table 3 (for the original chain) and Table 4 (for the fast chain).

Table 3

Essential sample size for the original chain with 500000 iterations for various values of a
and design matrix correlation r

a = 0.25 a = 0.5 a = 0.75 a = 1 a = 1.25
r = 0.1 186168 271031 303710 328622 346134
r = 0.3 193194 281160 305893 319902 339629
r = 0.5 194229 271408 306098 323637 346594
r = 0.7 201308 275623 313876 326339 339132
r = 0.9 223571 287344 320764 331529 345776

Table 4

Essential sample size for the fast chain with 500000 iterations for various values of a and
design matrix correlation r

a = 0.25 a = 0.5 a = 0.75 a = 1 a = 1.25
r = 0.1 220021 326830 364800 384333 420936
r = 0.3 219422 330641 362150 381485 413435
r = 0.5 226298 339746 371326 401799 410920
r = 0.7 234131 325674 364228 404453 411481
r = 0.9 267711 339578 381108 402151 411189

6.3. Real data example

We consider the wheat data set from Perez and de los Campos [24], which is
available in the R package BGLR. The data was obtained from numerous inter-
national trials for n = 599 wheat lines across a wide variety of wheat-producing
environments. For our analysis, we consider the average grain yield for a particu-
lar environmental condition (there are four to choose from) as the response vari-
able, and p = 20 binary variables containing genotypic information as the predic-
tors. We fit the Normal-Gamma model in (1) with a = 0.75, b = 0.2, ξ = 1, α = 0

and compute autocorrelations for the function (Y −Xβ)
T
(Y −Xβ) + σ2 for

the three block, two block and Haar PX-DA sandwich chains. The results are
shown in Table 5. As in the simulated data examples, the two-block chain has
lower autocorrelations than the three-block chain, and the Haar PX-DA sand-
wich chain is the most efficient among all three Markov chains.

Table 5

First ten autocorrelations with wheat data

Lag 1 2 3 4 5 6 7 8 9 10

Three block 0.458 0.225 0.119 0.043 0.021 0.019 0.017 0.011 -0.007 -0.007

Two block 0.08 0.016 0.005 0.006 0.007 0.002 0.002 -0.022 -0.01 -0.013

Sandwich 0.054 0.016 0.001 0.034 0.007 0.031 -0.019 -0.044 -0.01 -0.016
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6.4. Discussion of numerical results

For both the simulated and real data settings, the two-block chain clearly has
a significantly better performance than the three-block chain. For example, in
all the settings the Lag 1 autocorrelation drops by 80% or more in the small
p setting, and the essential sample size increases by 20% or more in the large
p setting, when we compare the three-block and the two-block chains. These
findings support the theoretical results (Theorem 1 and Theorem 2) in the
paper. Since the two-block chain and the three-block chain require roughly the
same computational effort, our theoretical and experimental results, support the
overall conclusion that a practitioner should prefer the two-block chain over the
three-block chain.

7. Estimation of the largest eigenvalue of the two-block chain

In recent work [27], the authors provide a Monte Carlo based algorithm to es-
timate the largest eigenvalue of a trace-class Markov operator. This algorithm
provides upper and lower bounds for the largest eigenvalue. Both these bounds
are shown to converge to the largest eigenvalue. We briefly describe this algo-
rithm in the context of the Normal-Gamma two block Gibbs sampler.

For j ≥ 1, let kj(·, ·) denote the j-step transition density of the two-block
Markov chain, and let

sj =

∫
Rp

∫
R

kj((β, σ2), (β, σ2))dβdσ2.

Qin et al. [27] show that the trace-class property of k implies that all sj ’s are
finite. Furthermore, if λ1 denotes the largest eigenvalue of k, then

uk := (sk − 1)1/k ↓ λ1,

and

lk :=
sk − 1

sk−1 − 1
↑ λ1

as k → ∞ ([27, Proposition 1]).
Let ω be a density on R

p
+ defined by

ω(τ ) ∝
p∏

j=1

τ
(a− 1

2 )−1
j exp (−λτj) .

Then sj can be alternatively expressed as

sj = E

(
π(τ ∗

j | β∗
j , (σ

2)∗j ,Y)

ω(τ ∗
j )

)
,

where τ ∗
j ∼ ω, and β∗

j , (σ
2)∗j |τ ∗

j ∼
∫
Rp×R+

kj−1((β′, σ2′), ·)π(β′, σ2′ |τ ∗
j )dβ

′dσ2′.

This interpretation of sj allows us to use classical Monte Carlo to estimate sj
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by generating i.i.d. copies of (β∗
j , (σ

2)∗j , τ
∗
j ) and computing the average of the

corresponding
π(β∗

j ,(σ
2)∗j |τ∗

j ,Y)

ω(β∗
j ,(σ

2)∗j )
values (denote this average by ŝj). Of course, the

key to successful implementation of any Monte Carlo method is a finite variance,
and hence we need to check that

V ar

(
π(β∗

j , (σ
2)∗j | τ ∗

j ,Y)

ω(β∗
j , (σ

2)∗j )

)
< ∞.

The following theorem, combined with [27, Theorem 2] guarantees the finiteness
of the variance corresponding to ŝj for every j ≥ 1.

Theorem 3. For all values of n and p, and a > 1
2 , the conditional densities for

the Normal-Gamma chain satisfy∫
Rp

∫
R+

∫
R

p
+

π3(τ | β, σ2,Y)π(β, σ2 | τ ,Y)

ω2(τ )
dβdτdσ2 < ∞.

Proof. Note that

π
(
τ |β, σ2,Y

)
ω(τ )

=

p∏
j=1

(2bσ2)
a− 1

2
2

2|βj |a− 1
2 K

a− 1
2

(√
2b

β2
j

σ2

) τ
(a− 1

2 )−1

j exp
(
−1

2

{
2bτj +

β2
j

σ2
1
τj

})
λa− 1

2 (Γ(a− 1
2 ))

−1τ
(a− 1

2 )−1
j exp (−λτj)

=C1

p∏
j=1

exp (λτj) (
σ

|βj |
)a−

1
2

⎛⎝Ka− 1
2

⎛⎝√2b
β2
j

σ2

⎞⎠⎞⎠−1

× exp

(
−1

2

{
2bτj +

β2
j

σ2

1

τj

})
, (45)

where C1 =

(
(2b)

a− 1
2

2 Γ(a= 1
2 )

2λa− 1
2

)p

. When a > 1
2 , by Proposition A.2 in [21, Page

639], there exists ε > 0 and Cε > 0 such that⎛⎝Ka− 1
2

⎛⎝√2b
β2
j

σ2

⎞⎠⎞⎠−1

≤ Cε

⎛⎝K 1
2

⎛⎝√2b
β2
j

σ2

⎞⎠⎞⎠−1⎛⎝√2b
β2
j

σ2

⎞⎠(a− 1
2 )− 1

2

= C2

(
|βj |
σ

)a− 1
2

exp

(√
2b

|βj |
σ

)
, (46)

for 0 <

√
2b

β2
j

σ2 < ε. Here C2 =
√

2
πCε. When

√
2b

β2
j

σ2 ≥ ε, by Theorem 7 in [28],

for all x > 0, we get(
Ka− 1

2
(x))

)−1

≤ a+
√
a2 + x2

x

(
Ka+ 1

2
(x)

)−1

≤ 2a+ x

x

(
Ka+ 1

2
(x)

)−1

.
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Next, using the fact that if x > 0, then ν → Kν(x) is an increasing function for
ν > 0 (again, see [16, Page 266]), we get(

Ka− 1
2
(x))

)−1

≤ 2a+ x

x

(
Ka+ 1

2
(x)

)−1

≤ 2a+ x

x

(
K 1

2
(x)

)−1

=

√
2

π

2a+ x√
x

ex.

Thus when x ≥ ε > 0, we get(
Ka− 1

2
(x))

)−1

≤ C3(1 + x
1
2 )ex,

Here C3 = max{
√

2
π

2a√
ε
,
√

2
π}. Hence for a > 1

2 and

√
2b

β2
j

σ2 ≥ ε,

⎛⎝Ka− 1
2

⎛⎝√2b
β2
j

σ2

⎞⎠⎞⎠−1

≤ C4

(
1 +

(
|βj |
σ

) 1
2

)
exp

(√
2b

|βj |
σ

)
, (47)

where C4 = max{1, (2b) 1
4 }C3. It follows from (45), (46), (47) that

π
(
τ |β, σ2,Y

)
ω(τ )

≤C5

p∏
j=1

exp (λτj) exp

(
−1

2

(
2bτj − 2

√
2b

|βj |
σ

+
β2
j

σ2

1

τj

))

×
{
1{ |βj |

σ < ε√
2b

} +

((
|βj |
σ

) 1
2−a

+

(
|βj |
σ

)1−a
)
1{ |βj |

σ ≥ ε√
2b

}
}

≤C6

p∏
j=1

exp (λτj)

(
1 +

(
|βj |
σ

) 1
2

)
, (48)

where C5 = max{C2, C4} and C6 = max{1,
(

ε√
2b

) 1
2−a

}C5. It follows from (48)

that we only need to prove∫∫∫
R

p
+×Rp×R+

p∏
j=1

exp (2λτj)

(
1 + 2

(
|βj |
σ

) 1
2

+
|βj |
σ

)

× π
(
τ |β, σ2,Y

)
π
(
β, σ2|τ ,Y

)
dτdβdσ2 < ∞. (49)

Note that ∫∫∫
R

p
+×Rp×R+

π
(
τ |β, σ2,Y

)
π
(
β, σ2|τ ,Y

)
dτdβdσ2
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=

∫∫
Rp×R+

k
((
β, σ2

)
,
(
β, σ2

))
dβ dσ2,

and the finiteness of this integral has been proved in Theorem 1. Hence, we can
prove (49) by closely following the proof of Theorem 1. Using λ = b

8 , we can
reach a result similar to (11) except that instead of cj , we have

c′j =

(
1 + 2

(
|βj |
σ

) 1
2

+
|βj |
σ

) (
2bσ2

) a− 1
2

2

2 |βj |a−
1
2 Ka− 1

2

(√
2b

β2
j

σ2

)τ
(a− 1

2 )−1

j

× exp

(
−1

2

{
3b

2
τj +

2β2
j

σ2

1

τj

})
. (50)

With our c′j , the bound of (49) can be established with similar arguments to
those following (11).

We now illustrate the application of the method in [27] to the two-block
Normal-Gamma chain. We use p = 10 and n = 10 and generate datasets using
the same method as in Section 6.2 for a = 0.55, 0.65, 0.75, 0.85 and the common
design matrix correlation r = 0.1, 0.3, 0.5, 0.7, 0.9. We used 107 Monte Carlo
iterations to estimate ŝ5 values for each setting. The ŝ5 value was then used
to compute the lower and upper bounds for the largest eigenvalue. The results
are provided in Table 6, and show that the performance of the chain generally
improves as a increases.

Table 6

Lower and upper bound estimates for the largest eigenvalue of the two-block chain in
various settings using the method of [27]

a = 0.55 a = 0.65 a = 0.75 a = 0.85
r = 0.1 (0.35, 0.57) (0.32, 0.42) (0.26, 0.37) (0.14, 0.24)
r = 0.3 (0.24, 0.50) (0.28, 0.42) (0.30, 0.35) (0.2, 0.29)
r = 0.5 (0.30, 0.53) (0.38, 0.44) (0.23, 0.34) (0.24, 0.32)
r = 0.7 (0.48, 0.58) (0.36, 0.45) (0.31, 0.37) (0.24, 0.32)
r = 0.9 (0.44, 0.61) (0.28, 0.44) (0.37, 0.40) (0.21, 0.34)

We found that for larger p (such as p = 100 or p = 500), 107 or even 108

Monte Carlo iterations are not enough. The estimates of sk are much less than
1, whereas we know that sk > 1. The problem, which is common to importance-
sampling based procedures, and is enhanced as p increases, is that most of
the support for π(· | β, σ2) lies in a region which is a rare event for ω. While
there are methods available to practically address this issue, we were not able
to prove finiteness of the Monte Carlo variance for these revised approaches.
Hence, applying the method in [27] for the Normal-Gamma chain in large p
settings still remains a challenge.
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Appendix

Propositions A1, A2 and A3 are rather trivial, and hence we state them without
proof.

Proposition A1. Let x ∼ N(μ, σ2), then
c∫
0

1
xe

− (x−μ)2

2σ2 dx = ∞ for any posi-

tive constant c > 0.

Proposition A2. Let x ∼ N(μ, σ2), then
c1∫
0

1
x(c2−ln x) e−

(x−μ)2

2σ2 dx = ∞ for

any positive constant c1 and c2 > ln c1.

Proposition A3. Suppose the trandom variable U has a t-distribution with
scale parameter κ , location parameter ϑ and degrees of freedom ν. Then for
ν > 2,

E(U2) ≥ k2ν

ν − 2
.

Proposition A4. Let μ1 = eT1 μ, i.e. the first component of μ, ν1 = 2n+ 8p+

4α− 1, and ε1 =

√
f2(β,τ̃ )+1

(2λ+ 1
τ1

+ 1
τ̃1

)ν1
. Then there is a finite constant f3(β, τ̃ ) such

that ∫
R

β̃2
1(

1 +
(β̃1−μ1)

2

ν1ε21

) 1+ν1
2

dβ̃1 ≥ f3(β, τ̃ )

(
1

2λ+ 1
τ1

+ 1
τ̃1

) 3
2

.

Proof. Note that∫
R

β̃2
1(

1 +
(β̃1−μ1)

2

ν1ε21

) 1+ν1
2

dβ̃1 = ε1
Γ(ν1

2 )
√
πν

Γ(ν+1
2 )

E(U2),

where U follows a t-distribution with scale ε1, location μ1 and degrees of freedom
ν1. Using Proposition A3, we get that∫

R

β̃2
1(

1 +
(β̃1−μ1)

2

ν1ε21

) 1+ν1
2

dβ̃1

= ε1
Γ(ν1

2 )
√
πν

Γ(ν+1
2 )

E(U2)

≥
Γ(ν1

2 )
√
πν

Γ(ν+1
2 )

ν1
ν1 − 2

ε31,

=
Γ(ν1

2 )
√
πν

Γ(ν+1
2 )

ν1
ν1 − 2

(
f2(β, τ̃ ) + 1

ν1

) 3
2

(
1

2λ+ 1
τ1

+ 1
τ̃1

) 3
2
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= f3(β, τ̃ )

(
2λ+

1

τ1
+

1

τ̃1

)− 3
2

.

where f3(β, τ̃ ) =
Γ(

ν1
2 )

√
πν

Γ( ν+1
2 )

ν1

ν1−2

(
f2(β,τ̃ )+1

ν1

) 3
2

.
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