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Institut de Mathématiques de Toulouse;
UMR 5219; Université de Toulouse; CNRS
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Abstract: Uniformly valid confidence intervals post model selection in re-
gression can be constructed based on Post-Selection Inference (PoSI) con-
stants. PoSI constants are minimal for orthogonal design matrices, and can
be upper bounded in function of the sparsity of the set of models under
consideration, for generic design matrices.

In order to improve on these generic sparse upper bounds, we consider
design matrices satisfying a Restricted Isometry Property (RIP) condition.
We provide a new upper bound on the PoSI constant in this setting. This
upper bound is an explicit function of the RIP constant of the design matrix,
thereby giving an interpolation between the orthogonal setting and the
generic sparse setting. We show that this upper bound is asymptotically
optimal in many settings by constructing a matching lower bound.
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1. Introduction

Fitting a statistical model to data is often preceded by a model selection step.
The construction of valid statistical procedures in such post model selection
situations is quite challenging (cf. [21, 22, 23], [17] and [25], and the references
given in that literature), and has recently attracted a considerable amount of
attention. Among various recent references in this context, we can mention
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those addressing sparse high dimensional settings with a focus on lasso-type
model selection procedures [4, 5, 29, 31], those aiming for conditional coverage
properties for polyhedral-type model selection procedures [14, 19, 20, 27, 28]
and those achieving valid post selection inference universally over the model
selection procedure [1, 2, 6].

In this paper, we shall focus on the latter type of approach and adopt the
setting introduced in [6]. In that work, a linear Gaussian regression model is
considered, based on an n×p design matrixX. A model M ⊂ {1, ..., p} is defined
as a subset of indices of the p covariates. For a family M ⊂ {M |M ⊂ {1, . . . , p}}
of admissible models, it is shown in [6] that a universal coverage property is
achievable (see Section 2) by using a family of confidence intervals whose sizes
are proportional to a constant K(X,M) > 0. This constant K(X,M) is called a
PoSI (Post-Selection Inference) constant in [6]. This setting was later extended
to prediction problems in [1] and to misspecified non-linear settings in [2].

The focus of this paper is on the order of magnitude of the PoSI constant
K(X,M) for large p. We shall consider n ≥ p for simplicity of exposition in
the rest of this section (and asymptotics n, p → ∞). It is shown in [6] that
K(X,M) = Ω(

√
log(p)); this rate is reached in particular when X has orthog-

onal columns. On the other hand, in full generality K(X,M) = O(
√
p) for

all X. It can also be shown, as discussed in an intermediary version of [32],
that when M is composed of s-sparse submodels, the sharper upper bound
K(X,M) = O(

√
s log(p/s)) holds. Hence, intuitively, design matrices that are

close to orthogonal and consideration of sparse models yield smaller PoSI con-
stants.

In this paper, we obtain additional quantitative insights for this intuition,
by considering design matrices X satisfying restricted isometry property (RIP)
conditions. RIP conditions have become central in high dimensional statistics
and compressed sensing [8, 10, 15]. In the s-sparse setting and for design matrices
X that satisfy a RIP property of order s with RIP constant δ → 0, we show that
K(X,M) = O(

√
log(p)+ δ

√
s log(p/s)). This corresponds to the intuition that

for such matrices, any subset of s columns of X is “approximately orthogonal”.
Thus, under the RIP condition we improve the upper bound of [32] for the
s-sparse case, by up to a factor δ → 0. We show that our upper bound is
complementary to the bounds recently proposed in [18]. In addition, we obtain
lower bounds on K(X,M) for a class of design matrices that extends the equi-
correlated design matrix in [6]. From these lower bounds, we show that the new
upper bound we provide is optimal, in a large range of situations.

While the main interest of our results is theoretical, our suggested upper
bound can be practically useful in cases where it is computable whereas the PoSI
constant K(X,M) is not. The only challenge for computing our upper bound is
to find a value δ for which the design matrix X satisfies a RIP property. While
this is currently challenging in general for large p, we discuss, in this paper,
specific cases where it is feasible.

The rest of the paper is organized as follows. In Section 2 we introduce
in more details the setting and the PoSI constant K(X,M). In Section 3 we
introduce the RIP condition, provide the upper bound on K(X,M) and discuss
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its theoretical comparison with [18] and its applicability. In Section 4 we provide
the lower bound and the optimality result for the upper bound. All the proofs
are given in the appendix.

2. Settings and notation

2.1. PoSI confidence intervals

We consider and review briefly the framework introduced by [6] for which the
so-called PoSI constant plays a central role. The goal is to construct post-model
selection confidence intervals that are agnostic with respect to the model selec-
tion mehod used. The authors of [6] assume a Gaussian vector of observations

Y = μ+ ε, (1)

where the n×1 mean vector μ is fixed and unknown, and ε follows theN (0, σ2In)
distribution where σ2 > 0 is unknown. Consider an n×p fixed design matrix X,
whose columns correspond to explanatory variables for μ. It is not necessarily
assumed that μ belongs to the image of X or that n ≥ p.

A model M corresponds to a subset of selected variables in {1, . . . , p}. A
set of models of interest M ⊂ Mall = {M |M ⊂ {1, . . . , p}} is supposed to be
given. Following [6], for any M ∈ M, the projection based vector of regression
coefficients βM is a target of inference, with

βM := ArgMin
β∈R|M|

‖μ−XMβ‖2 = (Xt
MXM )−1Xt

Mμ, (2)

where XM is the submatrix of X formed of the columns of X with indices in M ,
and where we assume that for each M ∈ M, XM has full rank and M is non-
empty. We refer to [6] for an interpretation of the vector βM and a justification
for considering it as a target of inference. In [6], a family of confidence intervals
(CIi,M ; i ∈ M ∈ M) for βM is introduced, containing the targets (βM )M∈M
simultaneously with probability at least 1−α. The confidence intervals take the
form

CIi,M := (β̂M )i.M ± σ̂‖vM,i‖K(X,M, α, r); (3)

the different quantities involved, which we now define, are standard ingredients
for univariate confidence intervals for regression coefficients in the Gaussian
model, except for the last factor (the “PoSI constant”) which will account for
multiplicity of covariates and models, and their simultaneous coverage. The
confidence interval is centered at β̂M := (Xt

MXM )−1Xt
MY , the ordinary least

squares estimator of βM ; also, if M = {j1, . . . , j|M |} with j1 < . . . < j|M |,
for i ∈ M we denote by i.M the number k ∈ N for which jk = i, that is,
the rank of the i-th element in the subset M . The quantity σ̂2 is an unbiased
estimator of σ2, more specifically it is assumed that it is an observable random
variable, such that σ̂2 is independent of PXY and is distributed as σ2/r times a
chi-square distributed random variable with r degrees of freedom (PX denoting
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the orthogonal projection onto the column space of X). We allow for r = ∞
corresponding to σ̂ = σ, i.e., the case of known variance (also called Gaussian
limiting case). In [6], it is assumed that σ̂ exists and it is shown that this indeed
holds in some specific situations. A further analysis of the existence of σ̂ is
provided in [1, 2].

The next quantity to define is

vtM,i := (e
|M |
i.M )tG−1

M Xt
M ∈ R

n, (4)

where eba is the a-th base column vector of R
b; and GM := Xt

MXM is the
|M | × |M | Gram matrix formed from the columns of XM . Observe that vM,i is
nothing more than the row corresponding to covariate i in the estimation matrix
G−1

M Xt
M , in other words (β̂M )i.M = vtM,iY .

Finally, K(X,M, α, r) is called a PoSI constant and we turn to its definition.
We shall occasionally write for simplicity K(X,M, α, r) = K(X,M). Further-
more, if the value of r is not specified in K(X,M), it is implicit that r = ∞.

Definition 2.1. Let M ⊂ Mall for which each M ∈ M is non-empty, and so
that XM has full rank. Let also

wM,i =

{
vM,i/‖vM,i‖, if ‖vM,i‖ 	= 0;

0 ∈ R
n else.

Let ξ be a Gaussian vector with zero mean vector and identity covariance matrix
on R

n. Let N be a random variable, independent of ξ, and so that rN2 follows a
chi-square distribution with r degrees of freedom. If r = ∞, then we let N = 1.
For α ∈ (0, 1), K(X,M, α, r) is defined as the 1− α quantile of

γM,r :=
1

N
max

M∈M,i∈M

∣∣wt
M,iξ
∣∣. (5)

We remark that K(X,M, α, r) is the same as in [6]. For j = 1, . . . , p, let Xj

be the column j of X. We also remark, from [6], that the vector vM,i/‖vM,i‖2
in (4) is the residual of the regression of Xi with respect to the variables
{j|j ∈ M \ {i}}; in other words, it is the component of the vector Xi orthogonal
to Span{Xj |j ∈ M \ {i}}. It is shown in [6] that we have, with probability larger
than 1− α,

∀M ∈ M, ∀i ∈ M, (βM )i.M ∈ CIi,M . (6)

Hence, the PoSI confidence intervals guarantee a simultaneous coverage of all
the projection-based regression coefficients, over all models M in the set M.

For a square symmetric non-negative matrix A, we let

corr(A) = (diag(A)†)1/2A(diag(A)†)1/2,

where diag(A) is obtained by setting all the non-diagonal elements of A to zero
and where B† is the Moore-Penrose pseudo-inverse of B. Then we show in the
following lemma that K(X,M) depends on X only through corr(XtX).

Lemma 2.2. Let X and Z be two n × p and m × p matrices satisfying the
relation corr(XtX) = corr(ZtZ). Then K(X,M, α, r) = K(Z,M, α, r).
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2.2. Order of magnitude of the PoSI constant

The confidence intervals in (3) are similar in form to the standard confidence
intervals that one would use for a single fixed model M and a fixed i ∈ M .
For a standard interval, K(X,M) would be replaced by a standard Gaussian
or Student quantile. Of course, the standard intervals do not account for mul-
tiplicity and do not have uniform coverage over i ∈ M ∈ M (see [1, 2]). Hence
K(X,M) is the inflation factor or correction over standard intervals to get uni-
form coverage; it must go to infinity as p → ∞ [6]. Studying the asymptotic
order of magnitude of K(X,M) is thus an important problem, as this order of
magnitude corresponds to the price one has to pay in order to obtain universally
valid post model selection inference.

We now present the existing results on the asymptotic order of magnitude of
K(X,M). Let us define

γM,∞ := max
M∈M,i∈M

∣∣wt
M,iξ
∣∣ , (7)

so that γM,r = γM,∞/N , where we recall that rN2 follows a chi-square distri-
bution with r degrees of freedom.

We can relate the quantiles of γM,r (which coincide with the PoSI constants
K(X,M)) to the expectation E[γM,∞] by the following argument based on
Gaussian concentration (see Appendix A):

Proposition 2.3. Let T (μ, r, α) denote the α-quantile of a noncentral T dis-
tribution with r degrees of freedom and noncentrality parameter μ. Then

K(X,M, α, r) ≤ T (E[γM,∞], r, 1− α/2).

To be more concrete, we observe that we can get a rough estimate of the latter
quantile via

T (E[γM,∞], r, 1− α/2) ≤ E[γM,∞] +
√
2 log(4/α)

(1− 2
√
2 log(4/α)/r)+

;

furthermore, as r → +∞, this quantile reduces to the (1 − α/2) quantile of a
Gaussian distribution with mean E[γM,∞] and unit variance.

The point of the above estimate is that the dependence in the set of models
M is only present through E[γM,∞]. Therefore, we will focus in this paper on
the problem of bounding E[γM,∞], which is nothing more than the Gaussian
width [15, chapter 9] of the set ΓM = {±wM,i|M ∈ M, i ∈ M}.

When n ≥ p, it is shown in [6] that E[γM,∞] is no smaller than
√
2 log(2p)

and asymptotically no larger than
√
p. These two lower and upper bound are

reached by respectively orthogonal design matrices and equi-correlated design
matrices (see [6]).

We now concentrate on s-sparse models. For s ≤ p, let us define Ms =
{M |M ⊂ {1, . . . , p}, |M | ≤ s}. In this case, using a direct argument based on
cardinality, one gets the following generic upper bound (proved in Appendix B).
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Lemma 2.4. For any s, n, p ∈ N, with s ≤ n, we have

E[γMs,∞] ≤
√
2s log(6p/s) . (8)

We remark that an asymptotic version of the bound in Lemma 2.4 (as p and
s go to infinity) appears in an intermediary version of [32].

3. Upper bound under RIP conditions

3.1. Main result

We recall the definition and a property of the RIP constant κ(X, s) associated
to a design matrix X and a sparsity condition s given in [15, Chap.6]:

κ(X, s) = sup
|M |≤s

∥∥Xt
MXM − I|M |

∥∥
op
. (9)

Letting κ = κ(X, s), we have for any subset M ⊂ {1, . . . , p} such that |M | ≤ s:

∀β ∈ R
|M |, (1− κ)+‖β‖2 ≤ ‖XMβ‖2 ≤ (1 + κ)‖β‖2 . (10)

Remark 3.1. The RIP condition may also be stated between norms instead of
squared norms in (10). Following [15, Chap.6] we will consider the formulation
in terms of squared norms, which is more convenient here.

Since the PoSI constant K(X,M) only depends on corr(XtX) (see Lemma
2.2), we shall rather consider the RIP constant associated to corr(XtX). We let

δ(X, s) = sup
|M |≤s

∥∥corr(Xt
MXM )− I|M |

∥∥
op
. (11)

Any upper bound for κ(X, s) yields an upper bound for δ(X, s) as shown in
the following lemma.

Lemma 3.2. Let κ = κ(X, s). If κ ∈ [0, 1), then

δ(X, s) ≤ 2κ

1− κ
.

The next theorem is the main result of the paper. It provides a new upper
bound on the PoSI constant, under RIP conditions and with sparse submodels.
We remark that in this theorem, we do not necessarily assume that n ≥ p.

Theorem 3.3. Let X be a n × p matrix with n, p ∈ N. Let δ = δ(X, s). We
have

E[γMs,∞] ≤
√
2 log(2p) + 2δ

(√
1 + δ

1− δ

)√
2s log(6p/s).

This upper bound is of the form

URIP(p, s, δ) = Uorth(p) + 2δc(δ)Usparse(p, s),

where:
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• Uorth(p) =
√

2 log(2p) is the upper bound in the orthogonal case;
• Usparse(p, s) is the right-hand side of (8) corresponding to the cardinality-

based upper bound in the sparse case;
• c(δ) =

√
1 + δ/(1 − δ) satisfies: c(δ) ≥ 0, c(δ) → 1 as δ → 0, and c is

increasing.

We observe that if δ → 0, our bound URIP is o(Usparse). Moreover, when

δ
√
s
√
1− log s/ log p+ 1/ log p → 0, then URIP is even asymptotically equiv-

alent to Uorth. In particular, this is the case if δ
√
s → 0.

We now consider the specific case where X is a subgaussian random matrix,
that is, X has independent subgaussian entries [15, Definition 9.1]. We discuss
in which situations δ = δ(X, s) → 0. The estimate of κ in [15, Theorem 9.2]
combined with Lemma 3.2 yields

δ = OP

(√
s log(ep/s)/n

)
, (12)

so that δ → 0 as soon as n/(s log(ep/s)) → +∞.

3.2. Comparison with upper bounds based on Euclidean norms

We now compare our upper bound in Theorem 3.3 to upper bounds recently
and independently obtained in [18]. Recall the notation Y , μ, βM and β̂M

from Section 2 and let r = ∞ for simplicity of exposition. The authors in
[18] address the case where X is random (random design) and consider de-

viations of β̂M to β̄M = E[Xt
MXM ]

−1
E[Xt

MY ], the population version of the
regression coefficients βM , assuming that the rows of X are independent ran-
dom vectors in dimension p. They derive uniform bounds over M ∈ Ms for∥∥β̄M − β̂M

∥∥
2
. They also consider briefly (Remark 4.3 in [18]) the fixed design

case with βM = (Xt
MXM )−1Xt

Mμ as in the present paper. This target βM can
be interpreted as the random design model conditional to X. They assume that
the individual coordinates of X and Y have exponential moments bounded by
a constant independently from n, p (thus their setting is more general than the
Gaussian regression setting, but for the purpose of this discussion we assume
Gaussian noise).

Let us additionally assume that the RIP property κ(X/
√
n, s) ≤ κ is satisfied

(on an event of probability tending to 1) and for κ restricted to a compact of
[0, 1) independently of n, p; note that we used the rescaling of X by

√
n, which

is natural in the random design case. Then some simple estimates obtained as
a consequence of Theorems1 3.1 and 4.1 in [18] lead to

sup
M∈Ms

∥∥βM − β̂M

∥∥
2
= OP

(
σ

√
s log(ep/s)

n

)
, (13)

1The technical conditions assumed by [18] imply a slightly weaker version of the RIP
property κ(X/

√
n, s) ≤ κ < 1.



Post selection inference under RIP 3743

as p, n → ∞ and assuming s log2 p = o(n). On our side, under the same assump-
tions we have that

sup
M∈Ms,i∈M

((
Xt

MXM

n

)−1
)

i.Mi.M

is bounded on an event of probability tending to 1. This leads to ‖vi.M‖ =
OP (1/

√
n) uniformly for all M ∈ Ms, i ∈ M . Hence, from Theorem 3.3, (3),

(6), we obtain

sup
M∈Ms

∥∥βM − β̂M

∥∥
∞ = OP

(
σ

(√
log(p)

n
+ δ

√
s log(ep/s)

n

))
. (14)

Thus, if δ = Ω(1), since the Euclidean norm upper bounds the supremum norm,
the results of [18] imply ours (at least in the sense of these asymptotic consid-
erations). On the other hand, in the case where δ → 0, which is the case we are
specifically interested in, we obtain a sharper bound (in the weaker supremum
norm).

In particular, if X is a subgaussian random matrix (as discussed in the pre-
vious section), due to (12) we obtain

sup
M∈Ms

∥∥βM − β̂M

∥∥
∞ = OP

(
σ

(√
log(p)

n
+

s log(ep/s)

n

))
. (15)

This improves over the estimate deduced from (13) as soon as s log(ep/s) = o(n),
which corresponds to the case where (13) tends to 0. Conversely, in this situation
our bound (15) yields for the Euclidean norm (using ‖w‖2 ≤ ‖w‖0‖w‖∞):

sup
M∈Ms

∥∥βM − β̂M

∥∥
2
= OP

(
σ

(√
s log(p)

n
+

s3/2 log(ep/s)

n

))
. (16)

Assuming s = O(pλ) for some λ < 1 for ease of interpretation, we see that (16)
is of the same order as (13) when s2 log(p) = O(n), and is of a strictly larger
order otherwise. In this sense, it seems that (14) and (13) are complementary
to each other since we are using a weaker norm, but obtain a sharper bound in
the case δ → 0.

3.3. Applicability

While the main interest of our results is theoretical, we now discuss the ap-
plicability of our bound. For any δ ≥ δ(X, s), Theorem 3.3 combined with
Proposition 2.3 provides a bound of the form URIP(p, s, δ) ≥ K(X,Ms), with

URIP(p, s, δ) = T

(√
2 log(2p) + 2δ

(√
1 + δ

1− δ

)√
2s log(6p/s), r, 1− α/2

)
.
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This bound can be used in practice in situations where δ(X, s) (or an upper
bound of it) can be computed, whereas K(X,Ms) cannot because the number
of inner products in (5) is too large. Indeed, for a given δ, it is immediate to
compute URIP(p, s, δ).

Upper bounding the RIP constant When n ≥ p, we have δ(X, s) ≤
δ(X, p) and δ(X, p) can be computed in practice for a given X. Specifically,
δ(X, p) is the largest eigenvalue of corr(XtX)− Ip in absolute value. When X is

a subgaussian random matrix, δ(X, p) ∼
√
p/n [3, 24]. Thus, if n is large enough

compared to p, the computable upper bound URIP(p, s, δ(X, p)) will improve on
the sparsity-based upper bound U sparse(p, s) = T ((2s log(6p/s))1/2, r, 1−α/2) ≥
K(X,Ms), see Proposition 2.3 and Lemma 2.4.

On the other hand, when n < p, it is typically too costly to compute δ(X, s)
(or an upper bound of it) for a large p. Nevertheless, if one knows that X is
a subgaussian random matrix, they can compute an upper bound δ̃ satisfying
δ̃ ≥ δ(X, s) with high probability, as in [15, Chapter 9]. We remark that using
the values of δ̃ currently available in the literature, one would need n to be very
large for URIP(p, s, δ̃) to improve on U sparse(p, s).

Alternative upper bound on the PoSI constant For any δ ≥ δ(X, s),
we now show how to compute an alternative bound of the form ŨRIP(p, s, δ) ≥
K(X,Ms). Our numerical experiments suggest that this alternative bound is
generally sharper than URIP(p, s, δ). For q, r, ρ ∈ N and � ∈ (0, 1), let B�(q, r, ρ)
be defined as the smallest t > 0 so that

Hq,ρ(t) := EG

(
min
(
1, ρ
[
1− FBeta,1/2,(q−1)/2(t

2/G2)
]))

≤ �,

where G2/q follows a Fisher distribution with q and r degrees of freedom, and
FBeta,a,b denotes the cumulative distribution function of the Beta(a, b) distribu-
tion. In the case r = +∞, B� is also defined and further described in [2, Section
2.5.2].

It can be seen from the proof of Theorem 3.3 (see specifically (22) which also
holds without the expectation operators), and from the arguments in [1], that
we have

K(X,Ms, α) ≤ Btα(n ∧ p, r, p) + 2δc(δ)B(1−t)α(n ∧ p, r, |Ms|)

for any t ∈ (0, 1). This upper bound can be minimized with respect to t, yielding
ŨRIP(p, s, δ).

The quantity B�(q, r, ρ) can be easily approximated numerically, as it is sim-
ply the quantile of the tail distribution Hq,ρ, which only involves standard dis-
tributions. Algorithm E.3 in the supplementary materials of [1] can be used to
compute B�(q, r, ρ). An implementation of this algorithm in R [26] is available
in Appendix C. Hence, the upper bound ŨRIP(p, s, δ) can be computed for large
values of p for a given δ.
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4. Lower bound

4.1. Equi-correlated design matrices

The goal of this section is to find a matching lower bound for Theorem 3.3. For
this we extend ideas of [6, Example 6.2] and, following that reference, we restrict
our study to design matrices X for which n ≥ p. The lower bound is based on
the p× p matrix Z(c,k) = (ep1, e

p
2, . . . , e

p
p−1, xk(c)), where

xk(c) = (c, c, . . . c︸ ︷︷ ︸
k

, 0, 0, . . . 0︸ ︷︷ ︸
p−1−k

,
√
1− kc2︸ ︷︷ ︸

1

)t,

where we assume k < p, and the constant c satisfies c2 < 1/k, so that Z(c,k) has
full rank. By definition, the correlation between any of the first k columns of
Z(c,k) and the last one is c, and Z(c,k) restricted to its first p− 1 columns is the
identity matrix Ip−1. The case where k = p − 1 is studied in [6, Example 6.2]:
Theorem 6.2 in [6] implies that the PoSI constant K(X,M), where X is a n×p
matrix such that XtX = (Z(c,k))tZ(c,k), is of the order of

√
p when k = p − 1

and M = Mall. The Gram matrix of Z(c,k) is the 3× 3 block matrix with sizes
(k, p− k − 1, 1)× (k, p− k − 1, 1) defined by

(Z(c,k))tZ(c,k) =

⎡⎣Ik [0] [c]
[0] Ip−k−1 [0]
[c] [0] 1

⎤⎦, (17)

where [a] means that all the entries of the corresponding block are identical to a.
We begin by studying the RIP coefficient δ(X, s) for design matrices X yielding
the Gram matrix (17). Since this Gram matrix has full rank p, there exists a
design matrix satisfying this condition if and only if n ≥ p.

Lemma 4.1. Let X be a n × p matrix for which XtX is given by (17) with
kc2 < 1. Then for s ≤ k ≤ p− 1, we have κ(X, s) = δ(X, s) ≤ c

√
s− 1.

4.2. A matching lower bound

In the following proposition, we provide a lower bound ofK(X,Ms) for matrices
X yielding the Gram matrix (17).

Proposition 4.2. For any s ≤ k < p, c2 < 1/k and α ≤ 1
2 , let X be a n × p

matrix for which XtX is given by (17) with kc2 < 1. We have

K(X,Ms, α,∞) ≥ A
c(s− 1)√

1− (s− 1)c2

√
log�k/s� −

√
2 log 2,

where A > 0 is a universal constant.



3746 F. Bachoc et al.

From the previous lemma, we now show that the upper bound of Theorem
3.3 is optimal (up to a multiplicative constant) for a large range of behavior
of s and δ relatively to p. As discussed after Theorem 3.3, in the case where
δ
√
s
√
1− log s/ log p+ 1/ log p = O(1), the upper bound we obtain is optimal,

since it can be written as O(
√
log p). In the next Corollary, we show that the up-

per bound of Theorem 3.3 is also optimal when δ
√
s
√

1− log s/ log p+ 1/ log p
tends to +∞, and when δ = O(p−λ) for some λ > 0.

Corollary 4.3 (Optimality of the RIP-PoSI bound). Let (sp, δp)p≥0 be se-
quences of values such that sp < p, δp > 0, δp → 0 and satisfying:

lim
p→∞

δp
√
sp

√
1− log sp/ log p+ 1/ log p = +∞.

Then Theorem 3.3 implies

sup
n∈N

s≤sp,X∈R
n×p

s.t. δ(X,s)≤δp

K(X,Msp) ≤ Bδp
√
sp

√
log(6p/sp), (18)

where B is a constant. Moreover, there exists a sequence of design matrices Xp

such that δ(Xp, sp) ≤ δp and

K(Xp,Msp) ≥ Aδp
√
sp

√
log
(
min(1/δ2p, �(p− 1)/sp�)

)
, (19)

where A is a constant.
In particular, if δp = O(p−λ) for some λ > 0 and if �(p − 1)/sp� ≥ 2, then

the above upper and lower bounds have the same rate.

Therefore, the upper bound in Theorem 3.3 is optimal in most configurations
of sp and δp, except if δp goes to 0 slower than any inverse power of p.

5. Concluding remarks

In this paper, we have proposed an upper bound on PoSI constants in s-sparse
situations where the n × p design matrix X satisfies a RIP condition. As the
value of the RIP constant δ increases from 0, this upper bound provides an
interpolation between the case of an orthogonal X and an existing upper bound
only based on sparsity and cardinality. We have shown that our upper bound is
asymptotically optimal for many configurations of (s, δ, p) by giving a matching
lower bound. In the case of random design matrices with independent entries,
since δ decreases with n, our upper bound compares increasingly more favorably
to the cardinality-based upper bound as n gets larger. It is also complementary
to the bounds recently proposed in [18]. The interest and various applications
of the RIP property are well-known in the high-dimensional statistics literature,
in particular for statistical risk analysis or support recovery. Our analysis puts
into light an additional interest of the RIP property for agnostic post-selection
inference (uncertainty quantification).
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The PoSI constant corresponds to confidence intervals on βM in (2). In sec-
tion 3.2 we also mention another target of interest in the case of random X,
β̄M = E[Xt

MXM ]
−1

E[Xt
MY ]. This quantity depends on the distribution of X

rather than on its realization, which is a desirable property as discussed in [1, 18]
where the same target has also been considered. In [1], it is shown that valid
confidence intervals for βM are also asymptotically valid for β̄M , provided that
p is fixed. These results require that μ belongs to the column space of X and
hold for models M such that μ is close to the column space of XM . It would be
interesting to study whether assuming RIP conditions on X enables to alleviate
these assumptions.

The purpose of post-selection inference based on the PoSI constant K(X,M)
is to achieve the coverage guarantee (6). The guarantee (6) implies that, for any
model selection procedure M̂ : Rn → M, with probability larger than 1 − α,
for all i ∈ M̂ , (M̂)i.M̂ ∈ CIi,M̂ . Hence, there is in general no need to make
assumptions about the model selection procedure when using PoSI constants.
On the other hand, the RIP condition that we study here is naturally associated
to specific model selection procedures, namely the lasso or the Dantzig selector
[9, 10, 30, 33]. Hence, it is natural to ask whether the results in this paper could
help post-selection inference specifically for such procedures. We believe that the
answer could be positive in some situations. Indeed, if the lasso model selector
is used in conjunction with a design matrix X satisfying a RIP property, then
asymptotic guarantees exist on the sparsity of the selected model [8]. Thus, one
could investigate the combination of bounds on the size of selected models (of
the form |M̂ | ≤ S and holding with high probability) with our upper bound, by
replacing s by S.

In the case of the lasso model selector, we have referred, in the introduc-
tion section, to the post-selection intervals achieving conditional coverage [19],
specifically for the lasso model selector. These intervals are simple to compute
(when the conditioning is on the signs, see [19]). Generally speaking, in compar-
ison with confidence intervals based on PoSI constants, the confidence intervals
of [19] have the benefit of guaranteeing a coverage level conditionally on the se-
lected model. On the other hand the confidence intervals in [19] can be large, and
can provide small coverage rates when the regularization parameter of the lasso
is data-dependent [1]. It would be interesting to study whether these general
conclusions would be modified in the special case of design matrices satisfying
RIP properties.

Finally, the focus of this paper is on PoSI constants in the context of linear
regression. Recently, [2] extended the PoSI approach to more general settings
(for instance generalized linear models), provided a joint asymptotic normality
property holds between model dependent targets and estimators. This extension
was suggested in the case of asymptotics for fixed dimension and fixed number of
models. In the high-dimensional case, an interesting direction would be to apply
the results of [12], that provide Gaussian approximations for maxima of sums
of high-dimensional random vectors. This opens the perspective of applying our
results to various high-dimensional post model selection settings, beyond linear
regression.
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Appendix

Appendix A: Gaussian concentration

To relate the expectation of a supremum of Gaussian variables to its quantiles,
we use the following classical Gaussian concentration inequality [13] (see e.g.
[16], Section B.2.2. for a short exposition):

Theorem A.1 (Cirel’son, Ibragimov, Sudakov). Assume that F : Rd → R is
a 1-Lipschitz function (w.r.t. the Euclidean norm of its input) and Z follows
the N (0, σ2Id) distribution. Then, there exists two one-dimensional standard
Gaussian variables ζ, ζ ′ such that

E[F (Z)]− σ|ζ ′| ≤ F (Z) ≤ E[F (Z)] + σ|ζ|. (20)

It is known that in certain situations one can expect an even tighter concen-
tration, through the phenomenon known as superconcentration [11]. While such
situations are likely to be relevant for the setting considered in this paper, we
leave such improvements as an open issue for future work.

We use the previous property in our setting as follows:

Proposition A.2. Let C be finite a family of unit vectors of Rn, ξ a standard
Gaussian vector in R

n and N an independent nonnegative random variable so
that rN2 follows a chi-squared distribution with r degrees of freedom. Define the
random variable

γC,r :=
1

N
max
v∈C

∣∣vtξ∣∣.
Then the (1−α) quantile of γC,r is upper bounded by the (1−α/2) quantile of a
noncentral T distribution with r degrees of freedom and noncentrality parameter
E[maxv∈C |vtξ|].
Proof. Observe that ξ �→ maxv∈C |vtξ| is 1-Lipschitz since the vectors of C are
unit vectors. Therefore we conclude by Theorem A.1 that there exists a standard
normal variable ζ (which is independent of N since N is independent of ξ) so
that the following holds:

γC ≤ 1

N

(
E

[
max
v∈C

∣∣vtξ∣∣]+ |ζ|
)
.

We can represent the above right-hand side as max(T+, T−) where

T± =
1

N

(
E

[
max
v∈C

∣∣vtξ∣∣]± ζ
)
,
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i.e. T+, T− are two (dependent) noncentral t distributions with r degrees of
freedom and noncentrality parameter E[maxv∈C |vtξ|]. Finally since

P[max(T+, T−) > t] ≤ P[T+ > t] + P[T− > t] = 2P[T+ > t],

we obtain the claim.

Since a noncentral distribution is (stochastically) increasing in its noncen-
trality parameter, any bound obtained for E[maxv∈C |vtξ|] will result in a corre-
sponding bound on the quantiles of the corresponding noncentral T distribution
and therefore of those of γC . In the limit r → ∞, the quantiles of the noncen-
tral T distribution reduce to those of a shifted Gaussian distribution with unit
variance.

Here is a naive bound on (some) quantiles of a noncentral T :

Lemma A.3. The 1− α quantile of a noncentral T distribution with r degrees
of freedom and noncentrality parameter μ ≥ 0 is upper bounded by:

(μ+
√
2 log(2/α)/(1− 2

√
2 log(2/α)/r)+.

Proof. Let

T =
μ+ ζ√
V/r

,

where ζ ∼ N (0, 1) and V ∼ χ2(r). We have (as a consequence of e.g. [7], Lemma
8.1), for any η ∈ (0, 1]:

P

[√
V ≤

√
r − 2
√
2 log η−1

]
≤ η,

as well as the classical bound

P

[
ζ ≥
√
2 log η−1

]
≤ η.

It follows that

P

[
T ≥ (μ+

√
2 log η−1)/(1− 2

√
2 log(η−1)/r)+

]
≤ 2η.

The claimed estimate follows.

Appendix B: Proofs

Proof of Lemma 2.2. With the notation of Definition 2.1, K(X,M, α, r) is the
1 − α quantile of (1/N)‖z‖∞ where z = (zM,i,M ∈ M, i ∈ M) is a Gaussian
vector, independent of N , with mean vector zero and covariance matrix corr(Σ),
where Σ is defined by, for i ∈ M ∈ M and i′ ∈ M ′ ∈ M,

Σ(M,i),(M ′,i′) = vtM,ivM ′,i′

= (e
|M |
i.M )t(Xt

MXM )−1Xt
MXM ′(Xt

M ′XM ′)−1e
|M ′|
i′.M ′ .
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Hence, Σ depends on X only through XtX. Also, if X is replaced by XD, where
D is a diagonal matrix with positive components, Σ becomes the matrix Λ with
for i ∈ M ∈ M and i′ ∈ M ′ ∈ M,

Λ(M,i),(M ′,i′) = (e
|M |
i.M )tD−1

M,M (Xt
MXM )−1Xt

MXM ′(Xt
M ′XM ′)−1D−1

M ′,M ′e
|M ′|
i′.M ′

= D−1
i,i D

−1
i′,i′Σ(M,i),(M ′,i′).

Hence, corr(Σ) = corr(Λ). This shows that Σ depends on X only through
corr(XtX) (we remark that because ∪MM = {1, . . . , p} and each Xt

MXM is
invertible we have that ‖Xi‖ > 0 for i = 1, . . . , p). Hence K(X,M, α, r) de-
pends on X only through corr(XtX).

Proof of Lemma 2.4. Using a direct cardinality-based bound we have the well-
known inequality E[γMs,∞] ≤

√
2 log(2|Ms|), hence

E[γMs,∞] ≤

√√√√2 log

(
2

s∑
i=1

i

(
p

i

))
,

moreover
s∑

i=1

i

(
p

i

)
≤ s

s∑
i=0

(
p

i

)
≤ s
(pe
s

)s
,

the last inequality being classical and due to(
s

p

)s s∑
i=0

(
p

i

)
≤

s∑
i=0

(
s

p

)i(
p

i

)
≤
(
1 +

s

p

)p
≤ es.

Since log s ≤ s/e, and using e1+2/e ≤ 6, we obtain

log

(
2

s∑
i=1

i

(
p

i

))
≤ log 2s+ s log

(pe
s

)
≤ s log

(p
s
e1+2/e
)
≤ s log

(
6p

s

)
,

implying (8).

Proof of Lemma 3.2. Put κ = κ(X, s) < 1. Then, ‖Xi‖ ≥ (1 − κ)1/2 for i =
1, ..., p so that for i ∈ M ∈ Ms, corr(X

t
MXM ) = DMXt

MXMDM where DM is a
|M |×|M |matrix defined by [DM ]i.M,i.M = 1/‖Xi‖. Hence ‖DM‖op ≤ 1/

√
1− κ.

We have, by applications of the triangle inequality and since ‖.‖op is a matrix
norm,∥∥corr(Xt

MXM )− I|M |
∥∥
op

=
∥∥(DM − I|M |)X

t
MXMDM +Xt

MXM (DM − IM ) +Xt
MXM − I|M |

∥∥
op

≤
∥∥DM − I|M |

∥∥
op

∥∥Xt
MXM

∥∥
op
‖DM‖op +

∥∥DM − I|M |
∥∥
op

∥∥Xt
MXM

∥∥
op

+
∥∥Xt

MXM − I|M |
∥∥
op

=
∥∥DM − I|M |

∥∥
op

∥∥Xt
MXM

∥∥
op

(
‖DM‖op + 1

)
+
∥∥Xt

MXM − I|M |
∥∥
op
. (21)
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From (9)-(10), we have for all M ∈ Ms: ‖Xt
MXM‖op ≤ 1 + κ, as well as

∥∥DM − I|M |
∥∥
op

≤ max
i=1,...,p

∣∣∣∣ 1

‖Xi‖
− 1

∣∣∣∣
≤max

(
1− 1√

1 + κ
,

1√
1− κ

− 1

)
=

1√
1− κ

− 1.

Plugging this into (21), we obtain

δ(X, s) ≤
(

1√
1− κ

− 1

)
(1 + κ)

(
1√
1− κ

+ 1

)
+ κ

=
2κ

1− κ
.

Proof of Theorem 3.3. From Lemma 2.2, it is sufficient to treat the case where,
for any M , GM = Xt

MXM has ones on the diagonal; in that case δ(X, s) =
κ(X, s). We have

vtM,i = (e
|M |
i.M )tG−1

M Xt
M

= (e
|M |
i.M )tI|M |X

t
M + (e

|M |
i.M )t
(
G−1

M − I|M |
)
Xt

M

= Xt
i + rtM,i,

say. We have

rtM,irM,i = (e
|M |
i.M )t
(
G−1

M − I|M |
)
GM

(
G−1

M − I|M |
)
e
|M |
i.M

≤
∥∥e|M |

i.M

∥∥2∥∥G−1
M − I|M |

∥∥2
op
‖GM‖op.

From (10), the eigenvalues of GM are all between (1− δ) and (1 + δ), hence we
have

rtM,irM,i ≤
(

δ

1− δ

)2
(1 + δ),

so that letting c(δ) =
√
1 + δ/(1− δ)

‖rM,i‖ ≤ δc(δ),

and

‖wM,i −Xi‖ =
∥∥∥ vM,i

‖vM,i‖
−Xi

∥∥∥ = ∥∥∥ vM,i

‖vM,i‖
(1− ‖vM,i‖) + vM,i −Xi

∥∥∥
≤ 2‖rM,i‖,



3752 F. Bachoc et al.

from two applications of the triangle inequality, and using that ‖Xi‖ = 1 since
we assumed that GM has ones on its diagonal for all M . Hence, we have

E[γMs,∞] = E

[
sup

M∈Ms;i∈M
|wt

M,iξ|
]

≤ E

[
sup

M∈Ms;i∈M
|Xt

i ξ|
]
+ E

[
sup

M∈Ms;i∈M

∣∣∣(wM,i −Xi)
t
ξ
∣∣∣]

≤ E

[
sup

i=1,...,p
|Xt

i ξ|
]

+ 2δc(δ)E

[
sup

M∈Ms;i∈M

∣∣∣∣( wM,i −Xi

‖wM,i −Xi‖

)t
ξ

∣∣∣∣] (22)

≤
√
2 log(2p) + 2δc(δ)

√
2s log(6p/s),

where in the last step we have used Lemma 2.4.

Proof of Lemma 4.1. Since ‖Xi‖ = 1 for i = 1, ..., p we have corr(XtX) = XtX
and so κ(X, s) = δ(X, s). The Gram matrix in (17) can be written as Ip+cUp,k,
where Up,k is the 3× 3 block matrix with sizes (k, p− k− 1, 1)× (k, p− k− 1, 1)
defined by

Up,k =

⎡⎣[0] [0] [1]
[0] [0] [0]
[1] [0] 0

⎤⎦.
Consider a model M with |M | = s ≤ k ≤ p − 1, and denote by GM its

Gram matrix. If p /∈ M , then GM = Is and ‖GM − Is‖op = 0. If p ∈ M , then
GM = Is + cUs,m, where m = m(M) = |(M \ {p}) ∩ {1, . . . k}| ≤ s − 1. The
operator norm of GM−Is is the square root of the largest eigenvalue of (cUs,m)2,
where U2

s,m is a 3×3 block matrix with sizes (m, s−m−1, 1)× (m, s−m−1, 1)
defined by

U2
s,m =

⎡⎣[1] [0] [0]
[0] [0] [0]
[0] [0] m

⎤⎦.
The first block is a m ×m matrix with all entries equal to 1, hence its only

non-null eigenvalue is m. This is also the (only) eigenvalue of the last block (an
1×1 matrix). Thus, the largest eigenvalue of U2

s,m is m. Therefore, as m ≤ s−1,

we have ‖GM −Is‖op = c
√
s− 1 for all M such that |M | = s ≤ k ≤ p−1, which

concludes the proof.

Proof of Proposition 4.2. Without loss of generality (by Lemma 2.2) we can
assume that X = Z(c,k), where Z(c,k) is the p×p matrix defined as the beginning
of Section 4.1. The proof is an extension of the proof of [6, Theorem 6.2]. For
m ≥ 0, consider a model M such that M � p, M ∩ {k + 1, . . . , p− 1} = ∅,
and |M | = m + 1; in other words, M = {i1, . . . , im, p} such that i1, . . . , im
are elements of {1, . . . , k}. Denote as M+p

m:k the set of all such models. Let
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uM,p = Zp − PM\{p}(Zp), where Zp is the last column of Z(c,k), and where
PM\{p}(Zp) is the orthogonal projection of Zp onto the span of the columns

with indices M \ {p}. Observe that the column ij of Z(c,k) is the ij-th base
column vector of Rp that we write eij , therefore

PM\{p}(Zp) =

m∑
j=1

(etijZp)eij = c(ei1 + . . .+ eim).

Hence, we have, for M ∈ M+p
m:k,

[
uM,p

]
j
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for j = k + 1, . . . , p− 1,

0 for j = 1, . . . , k; j ∈ M,

c for j = 1, . . . , k; j 	∈ M,√
1− kc2 for j = p.

Recall that we have wM,p = uM,p/‖uM,p‖. Hence, for M ∈ M+p
m:k,

[wM,p]j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for j = k + 1, . . . , p− 1,

0 for j = 1, . . . , k; j ∈ M,

c/
√
1−mc2 for j = 1, . . . , k; j 	∈ M,√

1− kc2/
√
1−mc2 for j = p.

Hence, we have

E[γMs,∞] = E

[
max

|M |≤s,i∈M
|wt

M,iξ|
]

≥ E

[
max

M∈M+p
(s−1):k

wt
M,pξ

]

= E

[ √
1− kc2√

1− (s− 1)c2
ξp +

c√
1− (s− 1)c2

k−s+1∑
j=1

ξk−j:k

]
,

where ξ1:k ≤ . . . ≤ ξk:k are the order statistics of ξ1, . . . , ξk. Hence, since s−1 <
k, we obtain

E[γMs,∞] ≥ 0 +
c√

1− (s− 1)c2
E

[
k∑

j=1

ξj −
s−1∑
j=1

ξj:k

]

=
c√

1− (s− 1)c2
E

[
s−1∑
j=1

ξk−j:k

]

≥ c√
1− (s− 1)c2

E

[
s−1∑
j=1

max
l=1,...,�k/s	

ξ(j−1)�k/s	+l

]
.
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In the above display, each maximum has mean value larger than A
√

log�k/s�,
with A > 0 a universal constant (see e.g. Lemma A.3 in [11]). Hence, we have

E[γMs,∞] ≥ A
c(s− 1)√

1− (s− 1)c2

√
log�k/s�.

Finally, a consequence of Gaussian concentration (Theorem A.1) is that mean
and median of γMs,∞ are within

√
2 log 2 of each other. Since we assumed α ≤ 1

2 ,

K(Z(c,k),Ms, α,∞) ≥ E[γMs,∞]−
√
2 log 2, which concludes the proof.

Proof of Corollary 4.3. When δp
√
sp
√

1− log sp/ log p+ 1/ log p → ∞, one can
see that in Theorem 3.3, the first term is negligible compared to the second one.
Since δp → 0, the first result (18) follows from Theorem 3.3.

We now apply Proposition 4.2 with cp = δp/
√
sp − 1 and kp = min(p −

1, �1/c2p − 1�). From Lemma 4.1, δ(Z(cp,kp), sp) ≤ cp
√
sp − 1 = δp. We then

have, with two positive constants A′ and A,

K(Z(cp,kp),Ms, α,∞) ≥A′δp
√
sp

√
log

(⌊
min(p− 1, �1/c2p − 1�)

sp

⌋)
≥Aδp

√
sp

√
log
(
min(�(p− 1)/sp�, 1/δ2p)

)
.

This concludes the proof of (19).

Appendix C: Code for computing B�(q, r, ρ)

Bl <- function(q, r, rho, l, I = 1000) {

##

## Compute an upper bound for the quantile 1-l of

## max_{i=1,...,rho} (1/N) | w_i’ V |

## where:

## - the w_1,...w_{rho} are unit vectors

## - V follows N(0,I_q)

## - N^2/r follows X^2(r)

##

## Adapted from K4 in Bachoc, Leeb, Poetscher 2018

##

## Parameters:

## q.......: dimension of the Gaussian vector

## r.......: degrees of freedom for the variance estimator

## rho.....: number of unit vectors

## l.......: type I error rate (1 - confidence level)

## I.......: numerical precision

##

## Value:

## A numerical approximation of the upper bound



Post selection inference under RIP 3755

##

## vector of quantiles of Beta distribution:

vC <- qbeta(p = seq(from = 0, to = 1/rho, length = I),

shape1 = 1/2, shape2 = (q-1)/2,

lower.tail = FALSE)

## Monte-Carlo evaluation of confidence level

## for a constant K

fconfidence <- function(K){

prob <- pf(q = K^2/vC/q, df1 = q,

df2 = r, lower.tail = FALSE)

mean(prob) - l

}

quant <- qf(p = l, df1 = q, df2 = r, lower.tail = FALSE)

Kmax <- sqrt(quant) * sqrt(q)

uniroot(fconfidence, interval = c(1, 2*Kmax))$root

}
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[24] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets
of random matrices. Mathematics of the USSR-Sbornik, 1(4):457, 1967.
MR0221550

[25] B. M. Pötscher. Confidence sets based on sparse estimators are necessarily
large. Sankhya, 71:1–18, 2009. MR2579644

[26] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2018.

http://www.ams.org/mathscinet-getitem?mr=2243152
http://www.ams.org/mathscinet-getitem?mr=3157205
http://www.ams.org/mathscinet-getitem?mr=3161448
http://www.ams.org/mathscinet-getitem?mr=0458556
https://arxiv.org/abs/1410.2597
http://www.ams.org/mathscinet-getitem?mr=3100033
http://www.ams.org/mathscinet-getitem?mr=3307991
http://www.ams.org/mathscinet-getitem?mr=2256178
https://arxiv.org/abs/1802.05801
http://www.ams.org/mathscinet-getitem?mr=3485948
http://www.ams.org/mathscinet-getitem?mr=2153856
http://www.ams.org/mathscinet-getitem?mr=2212693
http://www.ams.org/mathscinet-getitem?mr=0221550
http://www.ams.org/mathscinet-getitem?mr=2579644


Post selection inference under RIP 3757

[27] R. J. Tibshirani, A. Rinaldo, R. Tibshirani, and L. Wasserman. Uniform
asymptotic inference and the bootstrap after model selection. The Annals
of Statistics, forthcoming, 2015. MR3798003

[28] R. J. Tibshirani, J. Taylor, R. Lockhart, and R. Tibshirani. Exact post-
selection inference for sequential regression procedures. Journal of the
American Statistical Association, 111(514):600–620, 2016. MR3538689
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