
Electronic Journal of Statistics
Vol. 12 (2018) 3397–3442
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1483

Weighted batch means estimators in

Markov chain Monte Carlo

Ying Liu

Department of Statistics
University of California, Riverside

e-mail: yliu055@ucr.edu

and

James M. Flegal

Department of Statistics
University of California, Riverside

e-mail: jflegal@ucr.edu

Abstract: This paper proposes a family of weighted batch means variance
estimators, which are computationally efficient and can be conveniently ap-
plied in practice. The focus is on Markov chain Monte Carlo simulations and
estimation of the asymptotic covariance matrix in the Markov chain central
limit theorem, where conditions ensuring strong consistency are provided.
Finite sample performance is evaluated through auto-regressive, Bayesian
spatial-temporal, and Bayesian logistic regression examples, where the new
estimators show significant computational gains with a minor sacrifice in
variance compared with existing methods.

AMS 2000 subject classifications: Primary 60J22; secondary 62F15.
Keywords and phrases: Batch means, confidence regions, covariance
matrix estimation, long run variance, Markov chain, Monte Carlo, strong
consistency.

Received July 2017.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3398
2 Covariance matrix estimation . . . . . . . . . . . . . . . . . . . . . . . 3400
3 Weighted BM estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 3402

3.1 Strong consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 3403
3.2 Increase in variance . . . . . . . . . . . . . . . . . . . . . . . . . . 3405
3.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . 3406

4 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3407
4.1 AR(1) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3407
4.2 Vector auto-regressive model . . . . . . . . . . . . . . . . . . . . 3408
4.3 Bayesian dynamic space-time model . . . . . . . . . . . . . . . . 3410
4.4 Bayesian logistic regression model . . . . . . . . . . . . . . . . . . 3411

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3412

3397

http://projecteuclid.org/ejs
https://doi.org/10.1214/18-EJS1483
mailto:yliu055@ucr.edu
mailto:jflegal@ucr.edu


3398 Y. Liu and J. M. Flegal

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3413
A Preliminaries for Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . 3413
B Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3414
C Preliminaries for Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . 3420
D Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3436
E Tukey-Hanning calculation . . . . . . . . . . . . . . . . . . . . . . . . 3438
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3439

1. Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to approximate
expectations with respect to a target distribution, see e.g. Liu (2001) and Robert
and Casella (2004). In short, an MCMC simulation generates a dependent sam-
ple from the target distribution and then uses ergodic averages to estimate a
vector of expectations. Variability of the ergodic averages is of interest because
it reflects the quality of estimation and can be used to construct confidence in-
tervals or confidence regions (see e.g. Flegal et al., 2008; Flegal and Jones, 2011;
Geyer, 1992; Vats et al., 2015; Jones and Hobert, 2001). Estimating variabil-
ity is akin to estimation of the asymptotic covariance matrix in a multivariate
Markov chain central limit theorem (CLT).

Let F be a probability distribution with support X ∈ R
d and g : X → R

p be a
F -integrable function. We are interested in estimating the p-dimensional vector

θ =

∫
X

g(x)dF.

Let X = {Xt, t ≥ 1} be a Harris ergodic Markov chain with invariant distribu-

tion F . Then if Yt = g(Xt) for t ≥ 1, Ȳn =
1

n

∑n
t=1 Yt → θ w.p. 1 as n → ∞.

The sampling distribution for Ȳn − θ is available via a Markov chain CLT if
there exists a positive definite symmetric matrix Σ such that

√
n(Ȳn − θ)

d−→ Np(0,Σ) as n → ∞, (1)

where

Σ = VarF (Y1) +

∞∑
k=1

[CovF (Y1, Y1+k) + CovF (Y1, Y1+k)
T ].

Provided an estimator of Σ is available, say Σ̂n, one can access variability of
the estimator Ȳn by constructing a p-dimensional ellipsoid. Further, Vats et al.
(2015) propose terminating the simulation when the ellipsoid volume is suffi-
ciently small, which is asymptotically equivalent to stopping when a multivari-
ate effective sample size is large enough. One of their necessary conditions is
that Σ̂n is a strongly consistent estimator of Σ.

Outside of recent work of Chan and Yau (2017), Dai and Jones (2017), Vats
et al. (2015), and Vats et al. (2018), estimating the covariance matrix is rarely
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done in MCMC. Instead most practitioners focus on univariate techniques to
estimate only the diagonal components. An incomplete list of univariate estima-
tors includes batch means (BM) and overlapping BM (Jones et al., 2006; Flegal
and Jones, 2010; Meketon and Schmeiser, 1984), spectral variance (SV) methods
including flat top estimators (Anderson, 1994; Politis and Romano, 1996, 1995),
initial sequence estimators (Geyer, 1992), recursive estimators of time-average
variances (Wu et al., 2009; Yau and Chan, 2016), and regenerative simulation
(Mykland et al., 1995; Hobert et al., 2002; Seila, 1982). Many of these univariate
techniques can be extended to the multivariate setting, but practical challenges
increase as the dimension increases.

Within the MCMC literature, the most common approach is univariate BM
since it is fast and simple to calculate. Speedy calculations are especially help-
ful in conjunction with sequential stopping rules where multiple variances or a
covariance matrix would be calculated each time a stopping criteria is checked
(see e.g. Flegal et al., 2008; Gong and Flegal, 2016). Unfortunately, Flegal and
Jones (2010) and Vats et al. (2015) illustrate BM methods tend to underesti-
mate confidence region volumes unless the number of Markov chain iterations
is extremely large. Practitioners familiar with the time-series literature may
argue for more complex SV estimators using Tukey-Hanning or flat top lag win-
dows. Flat top windows are especially appealing since they tend to reduce bias
leading to more accurate confidence region volumes. Despite the popularity in
fields where sample sizes are moderate, multivariate SV methods are challenging
to use in MCMC since they require substantial computational effort for large
sample sizes (see Section 3.3).

This paper introduces weighted BM variances estimators that are especially
convenient in MCMC but are applicable in other fields such as time-series and
nonparametric analysis. The proposed estimators incorporate the same flexible
lag windows of SV estimators while reducing computation time. For example,
we later show a weighted BM estimator is approximately 60 times faster for a
30× 30 covariance matrix with 5e5 iterations. Moreover, the speed up increases
as dimension or iteration increases.

The cost one pays for computational efficiency is an increase in relative effi-
ciency. Specifically, we show the variance is 1.875 higher for a flat top lag window
using weighted BM versus a traditional SV estimator. Our result is similar to
Flegal and Jones (2010) who show the variance of the BM estimator is 1.5 times
higher than that of the overlapping BM estimator.

In addition to calculating relative efficiency, we prove strong consistency of
weighted BM estimators. Strong consistency is important since it is required
for asymptotic validity of sequential stopping rules, see e.g. Flegal and Gong
(2015), Glynn and Whitt (1992), Jones et al. (2006), and Vats et al. (2015).
In short, asymptotic validity implies the simulation terminates with probability
one and ensures the final confidence regions have the right coverage probability.

The performance of weighted BM estimators is illustrated in univariate and
multivariate auto-regressive models. These finite sample simulations show
weighted BM estimators converge to the true known value and that flat top
lag windows enjoy significant bias reduction. As dimension or chain length in-
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creases, calculation of weighted BM estimators save significant time compared
with SV estimators. Our simulations also illustrate an increase in the variance
relative to SV estimators, which depends lag window choice.

We also consider a Bayesian spatial-temporal model applied to temperature
data collected from ten nearby weather station in the year 2010. In this example,
we estimate the covariance matrix associated with a vector of 185 parameters
and again illustrate the improved computational efficiency of weighted BM es-
timators. Our final example considers a Bayesian logistic regression model that
illustrates weighted BM estimators with a flat top window provide more accu-
rate coverage probabilities of multivariate confidence regions.

The rest of the paper is organized as follows. Section 2 summarizes current
multivariate estimators of Σ. Section 3 proposes weighted BM estimators, es-
tablishes conditions that ensure strong consistency, and calculates the variance
when using a Bartlett flat top lag window. Section 3 also investigates how chain
length n and dimension p impact computation times for weighted BM, SV,
and recursive estimators. Section 4 demonstrates the finite sample properties of
weighted BM estimators via four examples. We conclude with a discussion in
Section 5. All proofs are relegated to the Appendix.

2. Covariance matrix estimation

Estimating Σ is rarely done in MCMC output analysis. Instead, most researchers
ignore the cross-correlation and only estimate the diagonal entries of Σ. Com-
putationally efficient BM methods are usually preferred, but such methods can
lead to lower than expected coverage probabilities. In this section, we provide
formal definitions for existing estimators of Σ and provide some motivation for
our proposed weighted BM estimators. When p = 1 these estimators reduce to
the usual univariate estimators.

First consider BM estimators where a = an is the number of batches, b = bn
is the batch size, and n = ab. (Note a and b can depend on n, but we suppress
this dependency to simplify notation.) For l = 0, 1, ..., a − 1, denote the mean

vector for batch l as Ȳl(b) = b−1
∑b

t=1 Ylb+t. Then the sample variance of batch
means scaled up properly is used to estimate Σ, i.e.

Σ̂bm =
b

a− 1

a−1∑
l=0

(Ȳl(b)− Ȳn)(Ȳl(b)− Ȳn)
T . (2)

Alternatively, overlapping BM use n − b + 1 overlapping batches of length b
denoted Ẏl(b) = b−1

∑b
t=1 Yl+t for l = 0, . . . , n − b. Then the overlapping BM

estimator is given by

Σ̂obm =
nb

(n− b)(n− b+ 1)

n−b∑
l=0

(Ẏl(b)− Ȳn)(Ẏl(b)− Ȳn)
T . (3)

Computing overlapping BM is significantly slower than BM given the increased
quantity of batches.
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Fig 1. Plot of Bartlett, Tukey-Hanning, and Bartlett flat top lag windows.

SV methods can also be used to estimate Σ. First consider estimating the lag
k autocovariance denoted by Γ(k) = EF (Yt − θ) (Yt+k − θ)

T
with

Γ̂(k) =
1

n

n−k∑
t=1

(
Yt − Ȳn

) (
Yt+k − Ȳn

)T
.

Then the SV estimator of Σ truncates and downweights the summed lag k
autocovariances. That is,

Σ̂sv = Γ̂(0) +

b∑
k=1

wn(k)[Γ̂(k) + Γ̂(k)T ],

where b is the truncation point and wn(·) is the lag window.
We assume the lag window wn(·) is an even function defined on Z such that

(i) |wn(k)| ≤ 1 for all n and k, (ii) wn(0) = 1 for all n, and (iii) wn(k) = 0 for all
|k| ≥ b. Most commonly used lag windows satisfy this assumption, which is nec-
essary for our proof of strong consistency. Our discussion and simulations focus
on the Bartlett, Tukey-Hanning, and Bartlett flat top lag windows defined as

wn(k) = (1− |k|/b) I (|k| ≤ b) , (4)

wn(k) = ((1 + cos(π|k|/b))/2) I (|k| ≤ b) , and (5)

wn(k) = I (|k| ≤ b/2) + (2(1− |k|/b)) I (b/2 < |k| ≤ b) , (6)

respectively (see Figure 1). An interested reader is directed to Anderson (1994)
for more on lag windows.

It is well known the overlapping BM estimator at (3) is asymptotically equal
to the SV estimator with a Bartlett lag window apart from some end effects (see
e.g. Welch, 1987; Meketon and Schmeiser, 1984). Notice in Figure 1 that the
Tukey-Hanning lag window slightly reduces downweighting of small lag terms
compared to the Bartlett lag window in an effort to reduce bias. Politis and
Romano (1995, 1996) expanded on this idea when introducing flat top lag win-
dows that modify existing windows by letting wn(k) = 1 for k near 0. Their work
demonstrates SV estimators with flat top lag windows enjoy significant bias re-
duction while maintaining comparable variance. Politis and Romano (1999) later
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illustrate the superiority of flat top lag windows in nonparametric estimation of
multivariate density function.

We only consider the flat top window function constructed from the Bartlett
window with wn(k) = 1 for |k| ≤ b/2 as at (6). For this setting, Politis and Ro-
mano (1995, 1996) show the resulting SV estimator is equivalent to the difference
of two Bartlett SV estimators. Specifically, if wn(k) is the flat top window then

Σ̂sv = Γ̂(0) +

b∑
k=1

wn(k)[Γ̂(k) + Γ̂(k)T ] = 2Σ̂(1) − Σ̂(2), (7)

where Σ̂(1) and Σ̂(2) denote Bartlett SV estimators with bandwidths b and b/2,
respectively.

In the next section, we construct weighted BM estimators that inherit desired
properties from lag window functions but are computationally efficient due to a
nonoverlapping structure.

3. Weighted BM estimators

Consider first an alternative representation of the SV estimator that is akin
the overlapping BM estimator. Similar estimators have been previously studied
by Damerdji (1987, 1991) and Flegal and Jones (2010). To this end, define
Δ1wn(k) = wn(k− 1)−wn(k) and Δ2wn(k) = wn(k− 1)− 2wn(k)+wn(k+1).

Then recall Ẏl(k) = k−1
∑k

t=1 Yl+t for l = 0, ..., n−k and consider the estimator

Σ̇ =
1

n

b∑
k=1

n−k∑
l=0

k2Δ2wn(k)(Ẏl(k)− Ȳ )(Ẏl(k)− Ȳ )T .

If d = Σ̂sv-Σ̇ and b is fixed, Liu and Flegal (2018) show d = o(n−1) hence the
estimators are asymptotically equivalent. Starting with Σ̇, it is possible to re-
duce number of batches and computing time by only including non-overlapping
batches. First define the more general batch mean vector as Ȳl(k) =

k−1
∑k

t=1 Ylk+t for l = 0, 1, ..., ak − 1 and k = 1, 2, ..., b where ak = �(n/k)	.
Then the weighted BM estimator is

Σ̂w =

b∑
k=1

1

ak − 1

ak−1∑
l=0

k2Δ2wn(k)(Ȳl(k)− Ȳ )(Ȳl(k)− Ȳ )T . (8)

The estimator Σ̂w is not necessarily computationally efficient. However, if
the lag window is such that Δ2wn(k) = 0 for certain k values then the first
summation can be simplified. For the Bartlett lag window at (4) Δ2wn(k) = 0
for k = 1, 2, ..., (b− 1) and Δ2wn(b) = 1/b. Hence, Σ̂w at (8) reduces to the BM
estimator at (2).

We suggest using the Bartlett flat top lag window at (6) in an effort to reduce
bias. In this case, it is easy to show Δ2wn(b/2) = −2/b, Δ2wn(b) = 2/b, and



Weighted batch means estimators in MCMC 3403

Δ2wn(k) = 0 for all other k values. Hence, the first summation in (8) contains
two terms which is extremely computationally friendly. For this lag window,
Sections 3.3 and 4 illustrate computational and bias advantages, respectively.
Since the expression of Δ2wn(·) is similar to that of a second derivative of wn(·),
other piecewise linear functions would also be computationally efficient.

3.1. Strong consistency

This section establishes necessary conditions for strong consistency of Σ̂w for
estimating Σ. Denote the Euclidean norm by ‖·‖ and let {B(t), t ≥ 0} be a
p-dimensional multivariate Brownian motion. Then the primary assumption is
that of a strong invariance principle.

Assumption 1. There exists a p× p lower triangular matrix L, a nonnegative
increasing function ψ on the positive integers, a finite random variable D, and
a sufficiently rich probability space Ω such that for almost all ω ∈ Ω and for all
n > n0, ∥∥∥∥∥

n∑
t=1

Yt − nθ − LB(n)

∥∥∥∥∥ < D(ω)ψ(n) w.p. 1. (9)

Our results hold as long as Assumption 1 holds. This includes independent
processes, Markov chains, Martingale sequences, renewal processes and strong
mixing processes. An interested reader is directed to Vats et al. (2015) and the
references therein.

For commonly used Markov chains in MCMC settings, Vats et al. (2018) show
Assumption 1 holds using results from Kuelbs and Philipp (1980). Specifically
we require polynomial ergodicity, which is weaker than geometric or uniform
ergodicity (see e.g. Meyn and Tweedie, 2009).

Corollary 1. (Corollary 4 Vats et al., 2018) Suppose EF |Y1|2+δ
< ∞ for

some δ > 0. Let X be an F -invariant polynomially ergodic Markov chain of
order m > (1 + ε1)(1 + 2/δ) for some ε1 > 0. Then for any initial distribution,
(9) holds with ψ(n) = n1/2−λ for some λ > 0.

Remark 1. Kuelbs and Philipp (1980) show λ only depends on p, ε1, and δ, but
quantifying this relationship is an open problem. Damerdji (1991) notes that λ
is closer to 0 for slow mixing (heavily correlated) processes and closer to 1/2 for
fast mixing processes.

Remark 2. Under stronger assumptions of geometric ergodicity, a one step mi-
norization condition, and p = 1, Jones et al. (2006) and Bednorz and Latuszyński
(2007) provide an exact relationship between λ and the convergence rate of the
chain (see Lemma 3 of Flegal and Jones, 2010). Establishing a similar result for
p > 1 is a direction of ongoing research.

The weighted BM estimator can only be consistent if the batch size increases
with n leading to the following additional assumption.
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Assumption 2. The batch size b is an integer sequence such that b → ∞ and
n/b → ∞ as n → ∞, where b and n/b are both monotonically nondecreasing.

In Theorem 1 we show strong consistency of Σ̂w. The proof is given in Ap-
pendix B.

Theorem 1. Suppose the conditions of Corollary 1 hold, Assumption 2 holds,
and there exists a constant c ≥ 1 such that

∑
n(b/n)

c < ∞. If

b∑
k=1

kΔ2wn(k) = 1, (10)

bn1−2λ logn

(
b∑

k=1

|Δ2wn(k)|
)2

→ 0 as n → ∞, and (11)

n1−2λ
b∑

k=1

|Δ2wn(k)| → 0 as n → ∞, (12)

then with probability 1, Σ̂w → Σ as n → ∞.

Remark 3. Flegal and Jones (2010) and Vats et al. (2018) include conditions
at (11) and (12) to obtain strong consistency of univariate and multivariate SV
estimators, respectively. Lemma 1 of Vats et al. (2018) is especially useful in
checking these.

We now consider if some common lag windows satisfy (10), (11), and (12).
Simple Truncation: wn(k) = I(|k| < b). Since Δ2wn(b) = 1, condition (12) is

not satisfied.
Tukey-Hanning : wn(k) ((1 + cos(π|k|/b))/2) I(|k| ≤ b). Appendix E provides

a calculation to ensure (10) holds. Vats et al. (2018) show for the more general
Blackman-Tukey window (11) and (12) hold if b−1n1−2λ logn → 0 as n → ∞
using their Lemma 1.

Parzen: wn(k) = [1− |k|q/bq] I(|k| ≤ b) for q ∈ Z
+. A method of differences

calculation shows (10) holds. Vats et al. (2018) again show (11) and (12) hold
if b−1n1−2λ logn → 0 as n → ∞. When q = 1 this is the Bartlett window at
(4) and Σ̂w equals Σ̂bm defined at (2). Hence Theorem 1 provides an alternative
proof of strong consistency under the same conditions as Vats et al. (2015).

Theorem 2. (Theorem 2 Vats et al., 2015) Suppose the conditions of Corol-
lary 1 hold, Assumption 2 holds, and there exists a constant c ≥ 1 such that∑

n(b/n)
c < ∞. If b−1n1−2λ logn → 0 as n → ∞, then with probability 1,

Σ̂bm → Σ as n → ∞.

Scale-parameter modified Bartlett : wn(k) = [1− η|k|/b] I(|k| < b) where η is

a positive constant not equal to 1. Vats et al. (2018) show
∑b

k=1 |Δ2wn(k)| does
not converge to 0, hence (12) is not satisfied.

Bartlett flat top: wn(k) = I (|k| ≤ b/2)+(2(1− |k|/b)) I (b/2 < |k| ≤ b). Con-
dition (10) is satisfied since
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b∑
k=1

Δ2wn(k) = −2

b
· b
2
+

2

b
· b = 1.

However, (12) does not hold since Δ2wn(b/2) = −2/b and Δ2wn(b) = 2/b. We
can still ensure strong consistency since the estimator can be expressed as the
difference between two BM estimators similar to (7). Specifically,

Σ̂w = 2Σ̂bm − Σ̂
(2)
bm, (13)

where Σ̂bm is defined at (2) (batch size b) and Σ̂
(2)
bm defines a BM estimator with

batch size b/2. With (13), strong consistency follows from Theorem 2.

Corollary 2. Suppose the conditions of Theorem 2 hold and wn(k) is the flat
top lag window at (6), then with probability 1, Σ̂w → Σ as n → ∞.

A common choice is setting b = �nν	 for 0 < ν < 1. In this case, ν > 1− 2λ
ensures b−1n1−2λ logn → 0 as n → ∞. Finite sample performance naturally
depends on the choice of ν. Flegal and Jones (2010) and Liu and Flegal (2018)
minimize the asymptotic mean-squared error and conclude the optimal trunca-
tion point is proportional to �n1/3	.

3.2. Increase in variance

Since weighted BM variance estimators are based only on the nonoverlapping
batches, a variance inflation is expected relative to SV estimators. Here we focus
on estimating the diagonal entries of Σ for ease of exposition.

Suppose i ∈ {1, . . . , p} then denote estimators of the ith diagonal element of
Σ based on BM and weighted BM with a Bartlett flat top lag window as σ̂2

bm

and σ̂2
w, respectively. Further, denote SV estimators with Bartlett and Bartlett

flat top lag windows as σ̂2
b and σ̂2

f , respectively. Results in Flegal and Jones
(2010) imply

lim
n→∞

Var[σ̂2
bm]/Var[σ̂2

b ] = 1.5

since the overlapping BM estimator is asymptotically equivalent to σ̂2
b . The

variance of σ̂2
b has also been studied by Lahiri (1999) and Politis and White

(2004).
The following result establishes the variance ratio between weighted BM and

SV estimators with a Bartlett flat top lag window at (6). The proof is given in
Appendix D.

Theorem 3. Suppose the conditions of Corollary 1 hold, Assumption 2 holds,
ED4 < ∞ in (9), and EFY

4
1 < ∞. If as n → ∞, n1−2λb−1 logn → 0, then

lim
n→∞

Var[σ̂2
w]/Var[σ̂

2
f ] = 1.875.

Remark 4. For the Tukey-Hanning lag window, Δ2wn(k) �= 0 for all k and there
is no obvious simplification in the definition of Σ̂w at (8). Hence a variance ratio
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expression is challenging to obtain. (This difficulty persists for other lag windows
where a simplification in the definition of Σ̂w is unavailable.) Alternatively, this
ratio can be approximated via simulation as we illustrate in Section 4.

Remark 5. Results in Appendix D combined with Theorem 4 of Flegal and
Jones (2010) yield

lim
n→∞

Var[σ̂2
f ]/Var[σ̂

2
b ] = 2.

Politis and Romano (1996, 1995) mention such a variance increase for flat-top
estimators, but go on to argue it is offset by lower bias.

Remark 6. The ratios presented above are unchanged for the off-diagonal en-
tries. An interested reader is directed to Liu and Flegal (2018) and Vats and
Flegal (2018) for SV and weighted BM, respectively.

3.3. Computation time

This section investigates how chain length n and dimension p affect compu-
tation time for weighted BM, SV, and recursive estimators. Calculations were
completed on a 2016 MacBook (1.2 GHz Intel Core m5) and coded exclusively in
R to ensure fairness. Chan and Yau (2017) provide the R-package rTACM (version
3.1), which we utilize to compute recursive estimators.

As an example, consider the p-dimensional vector autoregressive process of
order 1 (VAR(1))

Xt = ΦXt−1 + εt,

for t = 1, 2, . . . where Xt ∈ R
p, εt are i.i.d. Np(0, Ip) and Φ is a p × p matrix.

When the largest eigenvalue of Φ in absolute value is less than 1 the Markov
chain is geometrically ergodic (Tjøstheim, 1990). Further, the invariant distri-
bution is Np(0, V ) where vec(V ) = (Ip2 − Φ ⊗ Φ)−1vec(Ip) and ⊗ denotes the
Kronecker product. Consider approximating θ = EX1 = 0 by Ȳn = X̄n. In the
CLT at (1), we have

Σ = Var[X1] +

∞∑
k=1

[Cov(X1, X1+k) + Cov(X1, X1+k)
T ]

= (Ip − Φ)−1V + V (Ip − Φ)−1 − V.

A geometrically ergodic Markov chain is generated with Φ chosen as follows.
Consider a p×p matrix A with each entry generated from standard normal dis-
tribution, and B = AAT which is a symmetric matrix with the largest eigenvalue
m. Then Φ = B/(m+1) ensures geometrically ergodicity. The corresponding Σ
is estimated by weighted BM and SV estimators with window functions at (4),
(5) and (6) using a truncation point of �n1/3	. Recursive estimators use default
settings from the rTACM package while only storing the final variance estimate.

For each combination of p ∈ {10, 20, 30} and n ∈ {1e5, 1e6, 5e6}, Table 1
presents average computing time over 10 replications. There are significant com-
putation gains for weighted BM with flat top and Bartlett lag windows. However,
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there is minimal computation gain for the Tukey-Hanning lag window since the
double sum in (8) must be evaluated fully. Table 1 also shows recursive estimates
are significantly slower (note recursive estimates are computed, but not stored,
for sample sizes ranging from 1 to n). When p = 30 and n = 5e5, recursive, flat
top SV, and flat top weighted BM estimators take approximately 30 minutes, 60
seconds, and one second, respectively. Increasing n to 1e6 iterations, the same
estimators require approximately one hour, three minutes, and two seconds, re-
spectively. Computation gains continue to increase with further increases to p
or n (see e.g. Section 4.3).

Table 1

Computation time in seconds (s) or minutes (min) for weighted BM, SV, and recursive
estimators. Monte Carlo standard errors are approximately 2% of reported times.

Weighted BM
Window Flat top BM Tukey-Hanning

n 5e4 1e5 5e5 5e4 1e5 5e5 5e4 1e5 5e5
p=10 <.1 s .1 s .4 s <.1 s <.1 s .2 s 1.9 s 4.8 s 27 s
p=20 .1 s .2 s .6 s <.1 s <.1 s .4 s 2.5 s 6 s 36 s
p=30 .1 s .2 s .9 s <.1 s .1 s .6 s 3 s 6.8 s 41 s

Spectral Variance
Window Flat top Bartlett Tukey-Hanning

n 5e4 1e5 5e5 5e4 1e5 5e5 5e4 1e5 5e5
p=10 .8 s 2 s 13 s .8 s 2.1 s 13 s .8 s 1.9 s 12 s
p=20 1.9 s 5.5 s 32 s 1.9 s 4.9 s 33 s 1.8 s 4.5 s 31 s
p=30 3.4 s 7.9 s 59 s 3.5 s 8.1 s 59 s 3.3 s 7.7 s 57 s

Recursive
n 5e4 1e5 5e5

p=10 42 s 1.6 min 6.1 min
p=20 1.7 min 3.5 min 14.9 min
p=30 3.2 min 6.3 min 28.5 min

4. Simulation studies

This section considers four examples to evaluate the finite sample properties of
weighted BM estimators. Our first two examples consider geometrically ergodic
Markov chains generated from univariate and multivariate vector auto-regressive
models. The aim here is to compare weighted BM and SV estimators in terms
of accuracy since the true value of Σ is known. Our final two examples compare
performances of the two estimators on real datasets where the true values are
unknown.

4.1. AR(1) model

Consider the autoregressive process of order 1 (AR(1)) where

Xt = φXt−1 + εt for t = 1, 2, . . .

and εt are i.i.d. N(0,1). For |φ| < 1 the Markov chain is geometrically ergodic.
Consider estimating θ = E[X1] = 0 by Ȳn = X̄n, then in the CLT at (1) we
have
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Fig 2. Estimation of Σ for AR(1) model with φ between 0.6 and 0.9. Results are based on
500 independent replications with n = 1e5.

Σ = Var[X1] + 2

∞∑
k=1

Cov(X1, X1+k) = 1/(1− φ)2.

A range of φ from 0.6 to 0.9 are evaluated and the true value of Σ is used to
compare weighted BM and SV estimators.

For each φ, generate an AR(1) Markov chain of length 1e5 and compute
weighted BM and SV estimators using the three lag window functions at (4),
(5) and (6). Truncation point b equals to �n1/3	 = 46 for all six estimators.
The procedure is repeated independently for 500 times and the average of 500
replications are shown in Figure 2. When the autocovariance is low, all the
estimators perform well. As φ increases, the flat top lag window outperforms
Bartlett and Tukey-Hanning windows for both SV and weighted BM estimators.

Weighted BM and SV estimates with the same lag window are very close
as in Figure 2. To explore this relationship in more detail, Figure 3 plots SV
against weighted BM estimates for the same Markov chain realizations when
φ = {0.8, 0.9}. Again we see the flat top lag window reduces bias but the vari-
ability increases slightly agreeing with our theoretical results. Another interest-
ing observation is the Tukey-Hanning window estimates are closer to the identity
line implying its variance ratio is closer to one. Figure 4 verifies this observa-
tion showing the Tukey-Hanning ratio is empirically very close to 1. Figure 4
also shows the Bartlett and flat top windows variance ratios are close to the
theoretical values of 1.5 and 1.875, respectively.

4.2. Vector auto-regressive model

Consider again the p-dimensional VAR(1) from Section 3.3 where we are now
interested in the accuracy of weighted BM and SV estimators. We now obtain
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Fig 3. Weighted BM and SV estimators for φ = {0.8, 0.9} where the true value of Σ is denoted
by a dashed line.

Fig 4. Variance ratios over 500 replications with n = 1e5.

50 independent replications for each combination of p ∈ {10, 20, 30} and n ∈
{1e5, 1e6, 5e6} for a given Φ0 = B/(m + 0.1) with B and m as in Section 3.3.
Finally, let Φ = k ·Φ0, where k ∈ {0.01, 0.2, 0.4, 0.6, 0.8}. It is easy to see larger k
implies stronger autocovariance and cross-correlation in the chain. These Φ are
used to generate geometrically ergodic Markov chains from which Σ is estimated.
For an estimator Σ̂, define E = Σ̂−Σ and consider mean squared error (MSE)
over the entries of E as a measurement of accuracy, i.e.

MSE =
1

p2

∑
i

∑
j

e2ij .

Figure 5 shows the averaged MSE ratio between weighted BM and SV estimators
over 500 replications. Weighted BM estimators have inflated MSE but the ratios
are below 2 across k. Ratios for the Bartlett and Tukey-Hanning lag windows
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Fig 5. MSE ratio between weighted BM and SV methods.

have a significant drop for k = 0.8 resulting from large MSEs. Flat top window
estimators show less of this trend since they are more accurate when k = 0.8.
Combining computation and accuracy information, weighted BM estimators
with flat top lag windows exhibit superior performance.

4.3. Bayesian dynamic space-time model

Consider monthly temperature data collected at 10 nearby station in north-
eastern United States in 2000, a subset of NETemp data described in R package
spBayes (Finley et al., 2007). A Bayesian dynamic model proposed by (Gelfand
et al., 2005) is fitted to the data and the model treats time as discrete and space
as continuous variable.

Suppose yt denotes the temperature observed at location s and time t for
s = 1, 2, ..., Ns and t = 1, 2, ..., Nt. Let xt(s) be a k × 1 vector of predictors and
βt be a k × 1 coefficient vector, which is a purely time component, and ut(s)
denotes a space-time component. The model is

yt(s) = xxxt(s)
Tβββt + ut(s) + εt(s), εt ∼ N(0, τ2t ),

βββt = βββt−1 + ηηηt; ηηηt ∼ Np(0,Ση),

ut(s) = ut−1(s) + wt(s); wt(s) ∼ GP (0, Ct(·, σ2
t , φt))

whereGP (0, Ct(·, σ2
t , φt)) is a spatial Gaussian process where Ct(s1, s2;σ

2
t , φt) =

σ2
t ρ(s1, s2;φt), ρ(·;φ) is an exponential correlation function with φ controlling

the correlation decay, and σ2
t represents the spatial variance components. The

Gaussian spatial process allows closer locations to have higher correlations. Time
effects for both βββt and ut(s) are characterized by transition equations, deliver-
ing a reasonable dependence structure. Priors follow defaults in the spDynlM

function of the spBayes package. We are interested in estimating posterior ex-
pectations for 185 parameters denoted θ = (βββt, ut(s), σ2

t , Ση, τ2t , φt).
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Table 2

Computation time in seconds (s) or minutes (min) for weighted BM and SV estimators in
the Bayesian dynamic space-time model.

Weighted BM
Flat top BM Tukey-Hanning

5e4 1e5 2e5 5e4 1e5 2e5 5e4 1e5 2e5
.5 s .9 s 1.9 s .3 s .6 s 1.3 s 11 s 25 s 56 s

Spectral Variance
Flat top Bartlett Tukey-Hanning

5e4 1e5 2e5 5e4 1e5 2e5 5e4 1e5 2e5
52 s 2.2 min 5.6 min 52 s 2.2 min 5.6 min 51 s 2.2 min 5.6 min

Again we consider Markov chains of length 5e4, 1e5 and 2e5 and compute
computation time ratios in Table 2. For this high-dimensional Bayesian analysis,
weighted BM estimators are much cheaper to compute for Bartlett and flat top
lag windows. Figure 6 plots estimates of the diagonal elements of Σ obtained
with weighted BM and SV methods on the log scale. Since the points are close
to the identity line it is clear both methods produce similar estimates.

Fig 6. Estimates of the diagonal elements of Σ obtained with weighted BM and SV methods
on the log scale.

4.4. Bayesian logistic regression model

Environmental data of 1000 site observations in New Zealand are considered
to study the determinants of presence or absence of the short-finned eel (An-
guilla australis) in R dismo package (see e.g. Elith et al., 2008; Hijmans et al.,
2010). Five continuous variables, SegSumT, DSDist, USNative, DSMaxSlope,
and DSSlope, along with a categorical variable Method with five levels (Elec-
tric, Spo, Trap, Net, Mixture) are chosen as in Leathwick et al. (2008) to predict
Auguilla australis presence via a Bayesian logistic regression model.

For the ith observation, suppose Yi = 1 denotes presence and Yi = 0 de-
notes absence of Anguilla australis. Let xi be a p × 1 covariate vector and
βββ = (β0, β1, ..., β9) be the p × 1 coefficient vector where p = 10. Consider the
following Bayesian logistic regression model
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Yi ∼ Bernoulli(pi) and pi ∼
exp(xT

i βββ)

1 + exp(xT
i βββ)

.

Priors for βββ are chosen to be βββ ∼ N(000, 100Ik) as in Boone et al. (2014) and
the MCMClogit function in the MCMCpack package is used to sample the Markov
chain.

Using methods from Vats et al. (2015), we construct a 90% confidence region
of the 10 dimensional parameter βββ based on the BM estimator, the SV estimator
with a flat top lag window, and the weighted BM estimator with a flat top lag
window. Coverage probabilities of these confidence regions from 1000 repeated
simulations are used to evaluate the performance of each method. Since the
true value of βββ is unknown, the average of 500 chains each of length 1e6 is used
as the “truth”. Table 3 shows the coverage probabilities for chains of length
1e4, 5e4, 1e5, and 5e5 and two different batch sizes. When b = �n1/3	, both
estimators based on a flat top window are far superior to the BM estimator.
When b = �n1/2	, the improvement remains but is less substantial.

Table 3

Observed coverage probabilities of confidence regions for the Bayesian logistic regression
model. Nominal level is 0.90 and Monte Carlo standard errors range from 0.01 to 0.016.

b = �n1/3� b = �n1/2�
1e4 5e4 1e5 5e5 1e4 5e4 1e5 5e5

Weighted BM 0.342 0.657 0.741 0.853 0.714 0.825 0.849 0.868
BM 0.168 0.400 0.506 0.705 0.643 0.806 0.835 0.868
SV 0.368 0.655 0.739 0.858 0.764 0.844 0.866 0.879

5. Discussion

This paper considers a family of weighted BM estimators and obtains conditions
for strong consistency. These estimators are fast to compute and comparable to
existing SV estimators in terms of accuracy. Within this family, we advocate
the flat top weighted BM estimator which is a computationally efficient ro-
bust estimator. Other estimators considered either require heavy computation
or yield less desirable finite sample properties. By targeting both accuracy and
computing effort, the advocated estimator is convenient to apply in modern
high-dimensionally MCMC simulations. The proposed estimator can be further
incorporated in a sequential stopping rule, where strong consistency and compu-
tational efficiency are necessary. Computational efficiency is also helpful when
calculating valid asymptotic standard errors for the generalized importance sam-
pling estimator (Roy et al., 2018; Roy and Evangelou, 2018).

Computational complexity of the flat top weighted BM estimator is O(n)
since it can be expressed as a difference between BM estimators (see e.g. Alex-
opoulos et al., 1997). Memory complexity will also be O(n) if b is allowed to to
increase by ones since the entire chain must be stored. Gong and Flegal (2016)
propose a low-cost alternative sampling plan that satisfies conditions necessary
for strong consistency. Specifically, they set b = inf

{
2k : 2k ≥ nν , k ∈ Z

+
}

so
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that b increases by doubling the batch size. It is then possible to store only
the batch means and merge every two batches when the batch size increases
twofold. Such a sampling plan reduces memory complexity to O(a). Moreover,
the estimator can be updated in O(1) computational steps using a recursive
variance calculation.

The weighted BM estimator with a Tukey-Hanning window does not reduce
computation time significantly. As mentioned earlier, the proposed estimators
are more beneficial for lag window functions with Δ2wn(k) = 0 for certain k.
Nevertheless, as dimension and chain length increases, weighted BM still save
some computing time. More efficient coding or a linear approximation could
provide additional efficiency if one prefers the Tukey-Hanning window.

All estimators in this article use the same truncation point for a fair com-
parison, which are not necessarily the best. In fact, finite sample coverage prob-
abilities should improve by choosing better truncation points as suggested by
Liu and Flegal (2018). These optimal truncation points are those that minimize
the asymptotic mean-squared error. If one wants to omit further exploration,
we suggest using the same truncation point for weighted BM estimators as the
corresponding SV estimators. Flegal and Jones (2010) provide an illustrative
example regarding optimal batch sizes for BM and overlapping BM. For flat top
windows, Politis (2003) suggests an empirical rule for the optimal truncation
point selection. However, optimal batch size is a direction of future research for
weighted BM estimators.
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Appendix A: Preliminaries for Theorem 1

We first introduce some notations and propositions. Recall B = {B(t), t ≥ 0}
is a p-dimensional standard Brownian motion. Denote B̄ = n−1B(n), B̄l(k) =
k−1[B(lk+k)−B(lk)] and Ḃl(k) = k−1[B(l+k)−B(l)]. The Brownian motion
counterpart of Σ̂w is

Σ̃w =

b∑
k=1

1

ak − 1

ak−1∑
l=0

k2Δ2wn(k)(B̄l(k)− B̄)(B̄l(k)− B̄)T

where the individual entries are denoted as Σ̃w,ij .

Recall L is the lower triangular matrix satisfying Σ = LLT and denote Σij

as the individual entries of Σ. Finally define C(t) = LB(t), C(i)(t) as the ith

component of C(t), C̄
(i)
l (k) = k−1(C(i)(l+k)−C(i)(l)), and C̄(i) = n−1C(i)(n).
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Proposition 1. (Corollary 1, Vats et al., 2018) Suppose Assumption 2 holds.
For all ε > 0 and for almost all sample paths there exists n0(ε) such that for all
n ≥ n0 and all i = 1, ..., p∣∣∣C(i)(n)

∣∣∣ < (1 + ε)(2nΣii log logn)
1/2.

Proposition 2. (Corollary 2, Vats et al., 2018) Suppose Assumption 2 holds.
For all ε > 0 and for almost all sample paths, there exists n0(ε) such that for
all n ≥ n0 and all i = 1, ..., p∣∣∣C̄(i)

l (k)
∣∣∣ ≤ 1

k
sup

0≤l≤n−b
sup

0≤s≤b
|C(i)(l + s)− C(i)(l)| < 1

k
2(1 + ε)(bΣii logn)

1/2.

Appendix B: Proof of Theorem 1

Theorem 1 follows from Lemmas 1 and 2 presented below.

Lemma 1. Suppose Assumption 2 holds. If there exists a constant c ≥ 1 such
that

∑
n(b/n)

c < ∞ and (10) holds, then Σ̃w → Ip as n → ∞ w.p.1 where Ip
is the p× p identity matrix.

Proof. First consider the diagonal elements of Σ̃w which go to 1 as n → ∞. For
i = j

Σ̃w,ii =

b∑
k=1

ak
ak − 1

(
1

ak

ak−1∑
l=0

k2Δ2wn(k)(B̄
(i)
l (k)− B̄(i))2

)

=
b∑

k=1

ak
ak − 1

(
1

ak

ak−1∑
l=0

k2Δ2wn(k)(B̄
(i)
l (k)2 + (B̄(i))2 − 2B̄

(i)
l (k)B̄(i))

)

=

b∑
k=1

ak
ak − 1

(
1

ak

ak−1∑
l=0

k2Δ2wn(k)B̄
(i)
l (k)2 +

1

ak
ak(B̄

(i))2k2Δ2wn(k)

− 2

ak
B̄(i)k2Δ2wn(k)

ak−1∑
l=0

B̄
(i)
l (k)

)

=

b∑
k=1

ak
ak − 1

(
1

ak

ak−1∑
l=0

k2Δ2wn(k)B̄
(i)
l (k)2 + (B̄(i))2k2Δ2wn(k)

− 2

ak
B̄(i)k2Δ2wn(k)

n

k
B̄(i)

)

=

b∑
k=1

ak
ak − 1

(
1

ak

ak−1∑
l=0

k2Δ2wn(k)B̄
(i)
l (k)2 − (B̄(i))2k2Δ2wn(k)

)

=

b∑
k=1

ak
ak − 1

[
kΔ2wn(k)

(
1

ak

ak−1∑
l=0

kB̄
(i)
l (k)2 − k(B̄(i))2

)]
.
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By the proof of Proposition 3.1 in Damerdji (1994) (p. 507), as n → ∞ w.p.1

1

ak

ak−1∑
l=0

kB̄
(i)
l (k)2 → 1 and k(B̄(i))2 → 0.

Therefore as n → ∞ w.p.1

Σ̃w,ii →
b∑

k=1

kΔ2wn(k)

and since (10) holds, Σ̃w,ii → 1 as n → ∞ w.p.1.

Now consider the off-diagonal elements of Σ̃w which go to 0 as n → ∞. Here
i �= j and

Σ̃w,ij =

b∑
k=1

1

ak − 1

ak−1∑
l=0

k2Δ2wn(k)(B̄
(i)
l (k)− B̄(i))(B̄

(j)
l (k)− B̄(j))

=
b∑

k=1

kΔ2wn(k)
k

ak − 1

ak−1∑
l=0

[
B̄

(i)
l (k)B̄

(j)
l (k)− B̄

(i)
l (k)B̄(j)

−B̄(i)B̄
(j)
l (k) + B̄(i)B̄(j)

]
.

By Lemma 3 in Vats et al. (2015), as n → ∞ w.p.1

k

ak − 1

ak−1∑
l=0

[B̄
(i)
l (k)B̄

(j)
l (k)− B̄

(i)
l (k)B̄(j) − B̄(i)B̄

(j)
l (k) + B̄(i)B̄(j)] → 0.

Then since (10) holds, Σ̃w,ij → 0 as n → ∞ w.p.1. Hence Σ̃w → Ip as n → ∞
w.p.1.

Lemma 2. Let Assumptions 1 and 2 hold. If as n → ∞,

bψ(n)2 log n

(
b∑

k=1

|Δ2wn(k)|
)2

→ 0, (14)

and

ψ(n)2
b∑

k=1

|Δ2wn(k)| → 0, (15)

then Σ̂w → LΣ̃wL
T as n → ∞ w.p.1.

Proof. We will show the result componentwise, i.e. that Σ̂w,ij → Λij where Λij

denotes ij entry of the matrix LΣ̃wL
T . For ease of exposition, let Yi = g(Xi)−θ

and define C̄l(k) = LB̄l(k) and C̄ = LB̄. Then
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LΣ̃wL
T =

b∑
k=1

1

ak − 1

ak−1∑
l=0

k2Δ2wn(k)L(B̄l(k)− B̄)(B̄l(k)− B̄)TLT

=

b∑
k=1

1

ak − 1

ak−1∑
l=0

k2Δ2wn(k)(C̄l(k)− C̄)(C̄l(k)− C̄)T . (16)

Define vectors

Ak = k(Ȳl(k)−C̄l(k)), Dk = B(l+k)−B(l), En,k = kB̄, and Fn,k = k(Ȳ −C̄).

Then it is easy to show

k(Ȳ
(i)
l (k)− Ȳ (i)) = k(Ȳ

(i)
l (k)− Ȳ (i) + C̄

(i)
l (k)− C̄

(i)
l (k) + C̄(i) − C̄(i))

= k(Ȳ
(i)
l (k)− C̄

(i)
l (k)) + (kC̄

(i)
l (k)− kC̄(i))− k(Ȳ (i) − C̄(i))

= A
(i)
k + (LDk)

(i) − (LEn,k)
(i) − F

(i)
n,k. (17)

Using the definition of Σ̂w at (8) with (16) and (17), we have

Σ̂w,ij − Λij

=

b∑
k=1

1

ak − 1

n−k∑
l−0

k2Δ2wk

[
(Ȳ

(i)
l (k)− Ȳ (i))(Ȳ

(j)
l (k)− Ȳ (j))

−(C̄
(i)
l (k)− C̄(i))(C̄

(j)
l (k)− C̄(j))

]

=

b∑
k=1

1

ak − 1

n−k∑
l−0

Δ2wk

[
k(Ȳ

(i)
l (k)− Ȳ (i))k(Ȳ

(j)
l (k)− Ȳ (j))

−k(C̄
(i)
l (k)− C̄(i))k(C̄

(j)
l (k)− C̄(j))

]

=

b∑
k=1

1

ak − 1

n−k∑
l−0

Δ2wk

[(
A

(i)
k + (LDk)

(i) − (LEn,k)
(i) − F

(i)
n,k

)
(
A

(j)
k + (LDk)

(j) − (LEn,k)
(j) − F

(j)
n,k

)
−
(
(LDk)

(i) − (LEn,k)
(i)
)(

(LDk)
(j) − (LEn,k)

(j)
)]

=

b∑
k=1

1

ak − 1

n−k∑
l=0

Δ2wk

[
A

(i)
k A

(j)
k +A

(i)
k (LDk)

(j) −A
(i)
k (LEn,k)

(j) −A
(i)
k F

(j)
n,k

+ (LDk)
(i)A

(j)
k − (LDk)

(i)F
(j)
n,k − (LEn,k)

(i)A
(j)
k + (LEn,k)

(i)F
(j)
n,k

−F
(i)
n,kA

(j)
k − F

(i)
n,k(LDk)

(j) + F
(i)
n,k(LEn,k)

(j) + F
(i)
n,kF

(j)
n,k

]

=

b∑
k=1

1

ak − 1

n−k∑
l=0

Δ2wk

[
A

(i)
k A

(j)
k + F

(i)
n,kF

(j)
n,k

+
(
A

(i)
k (LDk)

(j) + (LDk)
(i)A

(j)
k

)
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−
(
A

(i)
k (LEn,k)

(j) + (LEn,k)
(i)A

(j)
k

)
−
(
A

(i)
k F

(j)
n,k + F

(i)
n,kA

(j)
k

)
(18)

−
(
(LDk)

(i)F
(j)
n,k + F

(i)
n,k(LDk)

(j)
)
+
(
(LEn,k)

(i)F
(j)
n,k + F

(i)
n,k(LEn,k)

(j)
)]

.

Taking absolute value of (18)∣∣∣Σ̂w,ij − Λij

∣∣∣ ≤
b∑

k=1

1

ak − 1

n−k∑
l=0

|Δ2wk|
[∣∣∣A(i)

k A
(j)
k

∣∣∣+ ∣∣∣F (i)
n,kF

(j)
n,k

∣∣∣+ ∣∣∣A(i)
k (LDk)

(j) + (LDk)
(i)A

(j)
k

∣∣∣
+
∣∣∣A(i)

k (LEn,k)
(j) + (LEn,k)

(i)A
(j)
k

∣∣∣+ ∣∣∣A(i)
k F

(j)
n,k + F

(i)
n,kA

(j)
k

∣∣∣ (19)

+
∣∣∣(LDk)

(i)F
(j)
n,k + F

(i)
n,k(LDk)

(j)
∣∣∣+ ∣∣∣(LEn,k)

(i)F
(j)
n,k + F

(i)
n,k(LEn,k)

(j)
∣∣∣] .

We will show each of the seven terms in (19) goes to 0 as n → ∞ w.p.1. First
we establish the following useful inequality. From (9) in Assumption 1, for any
component i and sufficiently large n,∣∣∣∣∣

n∑
t=1

Y
(i)
t − C(i)(n)

∣∣∣∣∣ ≤ Dψ(n). (20)

1. For any component i, we have∣∣∣A(i)
k

∣∣∣ = k[Ȳ
(i)
l (k)− C̄

(i)
l (k)]

= k

[
k−1

k∑
t=1

Y
(i)
lk+t − k−1(C(i)(lk + k)− C(i)(lk))

]

=

⎡
⎣(lk+k)∑

t=1

Y
(i)
t −

lk∑
t=1

Y
(i)
t

⎤
⎦− [C(i)(lk + k)− C(i)(lk)]

=

[
lk+k∑
t=1

Y
(i)
t − C(i)(lk + k)

]
−
[

lk∑
t=1

Y
(i)
t − C(i)(lk)

]

≤ 2Dψ(n), (21)

where the inequality is from (20) since lk < lk + k ≤ n. Then using (15)
and (21) as n → ∞ w.p.1

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣A(i)

k A
(j)
k

∣∣∣
≤ 4D2ψ2(n)

b∑
k=1

ak
ak − 1

|Δ2wn(k)| → 0.
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2. For any component i,∣∣∣F (i)
n,k

∣∣∣ = ∣∣k(Ȳ − C̄)
∣∣

=
k

n

∣∣∣∣∣
n∑

t=1

Y
(i)
t − C(i)(n)

∣∣∣∣∣
≤ k

n
Dψ(n), (22)

where the inequality is from (20). Using (15), (22), and Assumption 2, as
n → ∞ w.p.1

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣F (i)

n,kF
(j)
n,k

∣∣∣
≤ b2

n2
D2ψ2(n)

b∑
k=1

ak
ak − 1

|Δ2wn(k)| → 0.

3. For any component i, using Proposition 2∣∣∣(LDk)
(i)
∣∣∣ = ∣∣∣(LB(l + k))(i) − (LB(l))(i)

∣∣∣
=
∣∣∣C(i)(l + k)− C(i)(l)

∣∣∣
≤ sup

0≤l≤n−b
sup

0≤s≤b

∣∣∣C(i)(l + s)− C(i)(l)
∣∣∣

≤ 2(1 + ε)(bΣii logn)
1/2. (23)

Then (21) and (23) imply

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣A(i)

k (LDk)
(j) + (LDk)

(i)A
(j)
k

∣∣∣
≤ 2
[
2(1 + ε)(bΣii logn)

1/2
]
[2Dψ(n)]

b∑
k=1

ak
ak − 1

|Δ2wn(k)|,

which tends to 0 as n → ∞ w.p.1 by (14).
4. For any component i, using Proposition 1∣∣∣(LEn,k)

(i)
∣∣∣ = k

n

∣∣∣C(i)(n)
∣∣∣

≤ k

n
(1 + ε)(2nΣii log logn)

1/2. (24)

Then using (21) and (24)

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣A(i)

k (LEn,k)
(j) + (LEn,k)

(i)A
(j)
k

∣∣∣
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≤ 2

[
b

n
(1 + ε)(2nΣii log logn)

1/2

]
[2Dψ(n)]

b∑
k=1

ak
ak − 1

|Δ2wn(k)|

≤ 8DΣ
1/2
ii (1 + ε)n−1/2bψ(n) logn

b∑
k=1

ak
ak − 1

|Δ2wn(k)|,

which tends to 0 as n → ∞ w.p.1 by (14).
5. By (21) and (22)

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣A(i)

k F
(j)
n,k + F

(i)
n,kA

(j)
k

∣∣∣
≤ 2 [2Dψ(n)]

[
b

n
Dψ(n)

] b∑
k=1

ak
ak − 1

|Δ2wn(k)|

= 4D2 b

n
ψ(n)2

b∑
k=1

ak
ak − 1

|Δ2wn(k)|,

which tends to 0 as n → ∞ w.p.1 by (14).
6. By (22) and (23)

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣(LDk)

(i)F
(j)
n,k + F

(i)
n,k(LDk)

(j)
∣∣∣

≤ 2

[
b

n
Dψ(n)

] [
2(1 + ε)(bΣii log n)

1/2
] b∑
k=1

ak
ak − 1

|Δ2wn(k)|

= 4DΣ
1/2
ii (1 + ε)

b

n
(b logn)1/2ψ(n)

b∑
k=1

ak
ak − 1

|Δ2wn(k)|,

which tends to 0 as n → ∞ w.p.1 by (14).
7. By (22) and (24)

b∑
k=1

1

ak − 1

ak−1∑
l=0

|Δ2wn(k)|
∣∣∣(LEn,k)

(i)F
(j)
n,k + F

(i)
n,k(LEn,k)

(j)
∣∣∣

≤ 2

[
b

n
Dψ(n)

] [
b

n
(1 + ε)(2nΣii log logn)

1/2

] b∑
k=1

ak
ak − 1

|Δ2wn(k)|

≤ 4DΣ
1/2
ii (1 + ε)

b3/2

n3/2
(b logn)1/2ψ(n)

b∑
k=1

ak
ak − 1

|Δ2wn(k)|,

which tends to 0 as n → ∞ w.p.1 by (14).

Since each of the seven terms in (19) goes to 0 as n → ∞ w.p.1, Σ̂w → LΣ̃wL
T

as n → ∞ w.p.1.
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Appendix C: Preliminaries for Theorem 3

The proof of Theorem 3 uses the results in Corollary 3, Lemma 4 and Lemma 5.
Consider the general family of Bartlett flat top SV estimators introduced by

Politis and Romano (1995, 1996) defined as

σ̂2
ft =

1

1− c

b

n

n−b∑
l=0

(Ẏl(b)− Ȳ )2 − c

1− c

cb

n

n−cb∑
l=0

(Ẏl(cb)− Ȳ )2,

where 0 ≤ c ≤ 1. When c = 1/2, the resulting estimator is the SV estimator
based on lag window at (6) denoted previously σ̂2

f . Further define the Brownian

motion expression of σ̂2
ft as

σ̃2
ft =

1

1− c

b

n

n−b∑
l=0

(Ḃl(b)− B̄)2 − c

1− c

cb

n

n−cb∑
l=0

(Ḃl(cb)− B̄)2

whose variance is given by Lemma 3. Denote limn→∞ f(n)/g(n) = 0 by f(n) =
o(g(n)).

Lemma 3. Under Assumption 2,

n

b
V ar[σ̃2

ft] =

(
8

3
c+

4

3

)
+ o(1).

Proof. Note V ar[σ̃2
ft] = E[σ̃4

ft]− (E[σ̃2
ft])

2 and first consider

E[σ̃4
ft] = E

[( 1

1− c

b

n

n−b∑
l=0

(Ḃl(b)− B̄)2 − c

1− c

cb

n

n−cb∑
l=0

(Ḃl(cb)− B̄)2
)2]

= E

[( 1

1− c

)2 b2
n2

( n−b∑
l=0

(Ḃl(b)− B̄)2
)2

+
( c

1− c

)2 (cb)2
n2

( n−cb∑
l=0

(Ḃl(cb)− B̄)2
)2

− 2c2

(1− c)2
b2

n2

( n−b∑
l=0

(Ḃl(b)− B̄)2
)( n−cb∑

l=0

(Ḃl(cb)− B̄)2
)]

= A1 +A2 +A3 (25)

where

A1 = E

[( 1

1− c

)2 b2
n2

( n−b∑
l=0

(Ḃl(b)− B̄)2
)2]

, (26)

A2 = E

[( c

1− c

)2 (cb)2
n2

( n−cb∑
l=0

(Ḃl(cb)− B̄)2
)2]

, and (27)
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A3 = E

[
− 2c2

(1− c)2
b2

n2

( n−b∑
l=0

(Ḃl(b)− B̄)2
)( n−cb∑

l=0

(Ḃl(cb)− B̄)2
)]

. (28)

Denote

a1 =

n−b∑
l=0

(Ḃl(b)− B̄)4, (29)

a2 =

b−1∑
s=1

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+s(b)− B̄)2, and (30)

a3 =

n−b∑
s=b

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+s(b)− B̄)2. (31)

Then A1 can be expressed as

A1 =
1

(1− c)2
b2

n2
E

[
n−b∑
l=0

(Ḃl(b)− B̄)4

+ 2

b−1∑
s=1

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+s(b)− B̄)2

+ 2

n−b∑
s=b

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+s(b)− B̄)2

]

=
1

(1− c)2
b2

n2
E[a1 + 2a2 + 2a3]. (32)

To calculate E[a1] at (29), consider E[(Ḃl(b)− B̄)4]. Let Ut = B(t)− B(t− 1)
where t = 1, 2, ..., n and note Ut are i.i.d. N(0, 1). Then for l = 0, ..., (n− b),

Ḃl(b)− B̄ =
(n− b)

nb

l+b∑
t=l+1

Ut −
1

n

l∑
t=1

Ut −
1

n

n∑
t=l+b+1

Ut.

Notice
Ḃl(b)− B̄ ∼ N(0, (n− b)/bn)

since
E
[
Ḃl(b)− B̄

]
= 0

and

V ar[Ḃl(b)− B̄] =
(n− b

nb

)2
b+

n− b

n2
=

n− b

bn
.

Then
bn/(n− b)(Ḃl(b)− B̄)2 ∼ χ2

(1)

with

E

[
bn

n− b
(Ḃl(b)− B̄)2

]
= 1 (33)
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and

V ar

[
bn

n− b
(Ḃl(b)− B̄)2

]
= 2.

Therefore

E[(Ḃl(b)− B̄)4] = (E[(Ḃl(b)− B̄)2])2 + V ar[(Ḃl(b)− B̄)2] = 3
(n− b

bn

)2
. (34)

By (29),

E[a1] =

n−b∑
l=0

E[(Ḃl(b)− B̄)4] = 3(n− b+ 1)

(
n− b

bn

)2

. (35)

Define Z1 = (Ḃl(b) − B̄) and Z2 = (Ḃl+s(b) − B̄) for l = 0, ..., (n − b − s) and
s = 1, ..., (b− 1). Then (30) can be approached by

E[a2] =

b−1∑
s=1

n−b−s∑
l=0

E[Z2
1Z

2
2 ].

We will obtain E[Z2
1Z

2
2 ] through the joint distribution of Z = (Z1, Z2)

T . Since
Z1 and Z2 are linear combinations of i.i.d. standard normal variables, denote
U = (U1, . . . , Un)

T , then Z = V U where

V =

⎡
⎢⎣−

1

n
· · · − 1

n

n− b

bn
· · · n− b

bn
− 1

n
· · · · · · − 1

n

− 1

n
· · · · · · − 1

n

n− b

bn
· · · n− b

bn
− 1

n
· · · − 1

n

⎤
⎥⎦ .

The joint distribution of Z is

[
Z1

Z2

]
∼ N

⎛
⎜⎝[00

]
,

⎡
⎢⎣

n− b

bn

nb− ns− b2

nb2
nb− ns− b2

nb2
n− b

bn

⎤
⎥⎦
⎞
⎟⎠ .

Recall if [
Y1

Y2

]
∼ N

([
μ1

μ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

and Σ22 is non-singular, then the conditional distribution of Y1|Y2 is

Y1|Y2 ∼ N(μ1 +Σ12Σ
−1
22 (Y2 − μ2), Σ11 − Σ12Σ

−1
22 Σ21).

In our case,

Z1|Z2 ∼ N

(
b(n− b)− ns

b(n− b)
Z2,

2bs(n− b)− ns2

b3(n− b)

)
and

Z2 ∼ N

(
0,

n− b

bn

)
.
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Using iterated expectations

E[Z2
1Z

2
2 ] = EZ2 [EZ1|Z2

[Z2
1Z

2
2 |Z2]]

= EZ2 [Z
2
2EZ1|Z2

[Z2
1 |Z2]]

= EZ2

[
Z2
2

((
b(n− b)− ns

b(n− b)
Z2

)2

+
2bs(n− b)− ns2

b3(n− b)

)]

=

(
b(n− b)− ns

b(n− b)

)2

EZ2 [Z
4
2 ] +

2bs(n− b)− ns2

b3(n− b)
EZ2 [Z

2
2 ]

=

(
b(n− b)− ns

b(n− b)

)2

3

(
n− b

bn

)2

+
2bs(n− b)− ns2

b3(n− b)

(
n− b

bn

)

=
3(b(n− b)− ns)2 + 2nbs(n− b)− n2s2

b4n2

=
1

b4n2
(3b2(n− b)2 + 3n2s2 − 6nbs(n− b) + 2nbs(n− b)− n2s2)

=
2

b4
s2 +

(
4

nb2
− 4

b3

)
s+

(
3

n2
+

3

b2
− 6

nb

)
.

Notice that
n−b∑
s=1

s =
b(b− 1)

2
=

b2

2
− b

2
,

n−b∑
s=1

s2 =
(b− 1)b(2b− 1)

6
=

b3

3
− b2

2
+

b

6
, and

n−b∑
s=1

s3 =
(b− 1)2b2

4
=

b2

4
− b3

2
+

b2

4
.

Plugging into (30) yields

E[a2] =

b−1∑
s=1

n−b−s∑
l=0

[
2

b4
s2 +

(
4

nb2
− 4

b3

)
s+

(
3

n2
+

3

b2
− 6

nb

)]

=

b−1∑
s=1

[
2

b4
s2 +

(
4

nb2
− 4

b3

)
s+

(
3

n2
+

3

b2
− 6

nb

)]
[n− b+ 1− s]

=
b−1∑
s=1

[
− 2

b4
s3 +

(
2n

b4
+

2

b3
+

2

b4
− 4

nb2

)
s2

+

(
5

b2
− 4n

b3
+

2

bn
+

4

nb2
− 4

b3
− 3

n2

)
s

+

(
9

n
+

3n

b2
− 9

b
− 3b

n2
+

3

n2
+

3

b2
− 6

nb

)]

= − 2

b4

(
b4

4
− b3

2
+

b2

4

)
+

(
2n

b4
+

2

b3
+

2

b4
− 4

nb2

)(
b3

3
− b2

2
+

b

6

)
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+

(
5

b2
− 4n

b3
+

2

bn
+

4

nb2
− 4

b3
− 3

n2

)(
b2

2
− b

2

)

+

(
9

n
+

3n

b2
− 9

b
− 3b

n2
+

3

n2
+

3

b2
− 6

nb

)
(b− 1)

=
2n

b4
· b

3

3
− 4n

b3
· b

2

2
+

3n

b2
· b+ o

(n
b

)
=

5

3

n

b
+ o
(n
b

)
. (36)

Similarly as a2, we will calculate E[a3] at (31) by first calculating E[Z2
1Z

2
2 ] where

Z1 = (Ḃl(b)−B̄), Z2 = (Ḃl+s(b)−B̄) for l = 0, ..., (n−b−s) and s = b, ...(n−b).
The joint distribution of Z1 and Z2 is

[
Z1

Z2

]
∼ N

⎛
⎜⎝[0

0

]
,

⎡
⎢⎣
n− b

bn
− 1

n

− 1

n

n− b

bn

⎤
⎥⎦
⎞
⎟⎠ ,

resulting in

Z1|Z2 ∼ N

(
−b

n− b
Z2,

[
n− b

bn
− bn

n2(n− b)

])
and

Z2 ∼ N

(
0,

n− b

bn

)
.

Then

E[Z2
1Z

2
2 ] = EZ2 [EZ1|Z2

[Z2
1Z

2
2 |Z2]]

= EZ2 [Z
2
2EZ1|Z2

[Z2
1 |Z2]]

= EZ2

[
Z2
2

[(
−b

n− b
Z2

)2

+

(
n− b

bn
− bn

n2(n− b)

)]]

=

(
−b

n− b

)2

EZ2 [Z
4
2 ] +

(
n− b

bn
− bn

n2(n− b)

)
EZ2 [Z

2
2 ]

=

(
−b

n− b
Z2

)2

3

(
n− b

bn

)2

+

(
n− b

bn
− bn

n2(n− b)

)(
n− b

bn

)

=
2

n2
+

(
n− b

bn

)2

=
3

n2
+

1

b2
− 2

bn
. (37)

Plugging into (31), we have

E[a3] =

n−b∑
s=b

n−b−s∑
l=0

(
3

n2
+

1

b2
− 2

bn

)

=

n−b∑
s=b

(
3

n2
+

1

b2
− 2

bn

)
(n− b+ 1− s)
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=

n−b∑
s=b

−
(

3

n2
+

1

b2
− 2

bn

)
s

+

(
n

b2
− 3

b
+

5

n
− 3b2

n2
+

3

n2
+

1

b2
− 2

bn

)

= −
(

3

n2
+

1

b2
− 2

bn

)(
n2

2
− bn+

n

2

)

+

(
n

b2
− 3

b
+

5

n
− 3b2

n2
+

3

n2
+

1

b2
− 2

bn

)
(n− 2b+ 1)

= −
(

1

b2
· n

2

2
− 1

b2
· (bn)− 2

bn

n2

2

)
+

(
n

b2
· n− n

b2
· (2b)− 3

b
· n
)
+ o
(n
b

)

=
n2

2b2
− 3n

b
+ o
(n
b

)
. (38)

Combine (35), (36) and (38), (32) can be calculated by

A1 =
1

(1− c)2
b2

n2
(E[a1 + 2a2 + 2a3]) =

1

(1− c)2

(
1− 8

3

b

n

)
+ o

(
b

n

)
. (39)

Similarly, we can obtain A2 at (27) by

A2 =

(
c

1− c

)2(
1− 8

3

cb

n

)
+ o

(
b

n

)
. (40)

To calculate A3 at (28), let OL = [(Ḃp(b) − B̄)2(Ḃq(cb) − B̄)2] for p and q
satisfying q ≥ p and q + cb ≤ p+ b, denote

a4 =

cb−1∑
s=1

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2, (41)

and

a5 =

n−b∑
s=cb

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2. (42)

Then A3 has the following expression:

A3 = − 2c2

(1− c)2
b2

n2
E

[
n−b∑
l=0

(Ḃl(b)− B̄)2

][
n−cb∑
l=0

(Ḃl(cb)− B̄)2

]

= − 2c2

(1− c)2
b2

n2
E[((1− c)b+ 1)(n− b+ 1) ·OL

+ 2

cb−1∑
s=1

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2

+ 2

n−b∑
s=cb

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2]
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= − 2c2

(1− c)2
b2

n2
E[((1− c)b+ 1)(n− b+ 1) ·OL+ 2a4 + 2a5] (43)

First consider E[OL]. Denote Z1 = (Ḃp(b) − B̄) and Z2 = (Ḃq(cb) − B̄) for p
and q satisfying q ≥ p and q + cb ≤ p+ b, then

[
Z1

Z2

]
∼ N

⎛
⎜⎝[00

]
,

⎡
⎢⎣
n− b

bn

n− b

bn
n− b

bn

n− cb

cbn

⎤
⎥⎦
⎞
⎟⎠ ,

resulting in

Z1|Z2 ∼ N

(
c(n− b)

n− cb
Z2,

(1− c)n+ (c− 1)b

b(n− cb)

)
and

Z2 ∼ N

(
0,

n− cb

cbn

)
.

Then

E[Z2
1Z

2
2 ] = EZ2 [EZ1|Z2

[Z2
1Z

2
2 |Z2]]

= EZ2 [Z
2
2EZ1|Z2

[Z2
1 |Z2]]

= EZ2

[
Z2
2

[(
c(n− b)

n− cb
Z2

)2

+
(1− c)n+ (c− 1)b

b(n− cb)

]]

=

(
c(n− b)

n− cb
Z2

)2

EZ2 [Z
4
2 ] +

(1− c)n+ (c− 1)b

b(n− cb)
EZ2 [Z

2
2 ]

=

(
c(n− b)

n− cb
Z2

)2

3

(
n− cb

cbn

)2

+
(1− c)n+ (c− 1)b

b(n− cb)

(
n− cb

cbn

)

=
2c+ 1

c

1

b2
+

3

n2
− 5c+ 1

c

1

bn
, (44)

thus

E[((1− c)b+ 1)(n− b+ 1) ·OL]

= ((1− c)b+ 1)(n− b+ 1)

(
2c+ 1

c

1

b2
+

3

n2
− 5c+ 1

c

1

bn

)

= (1− c)bn
2c+ 1

c

1

b2
+ o(n/b)

=
(2c+ 1)(1− c)

c

n

b
+ o(n/b). (45)

To calculate E[a4] at (41), define Z1 = (Ḃl(b)− B̄), Z2 = (Ḃl+(1−c)b+s(cb)− B̄).
For l = 0, ..., (n− b− s) and s = 1, ...(cb− 1)

[
Z1

Z2

]
∼ N

⎛
⎜⎝[0

0

]
,

⎡
⎢⎣

n− b

bn

cbn− cb2 − sn

cb2n
cbn− cb2 − sn

cb2n

n− cb

cbn

⎤
⎥⎦
⎞
⎟⎠ ,
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resulting in

Z1|Z2 ∼ N

(
cbn− cb2 − sn

b(n− cb)
Z2,

(c− c2)b2(n− b)− s2n+ 2cb(n− b)s

cb3(n− cb)

)
and

Z2 ∼ N

(
0,

n− cb

cbn

)
.

Therefore

E[Z2
1Z

2
2 ]

=

(
cbn− cb2 − sn

b(n− cb)

)2

EZ2 [Z
4
2 ] +

(c− c2)b2(n− b)− s2n+ 2cb(n− b)s

cb3(n− cb)
EZ2 [Z

2
2 ]

=

(
cbn− cb2 − sn

b(n− cb)

)2

3

(
n− cb

cbn

)2

+
(c− c2)b2(n− b)− s2n+ 2cb(n− b)s

cb3(n− cb)

(
n− cb

cbn

)

=
2

c2b4
s2 +

(
4

cb2n
− 4

cb3

)
s+

(
1 + 2c

cb2
+

3

n2
− 1 + 5c

cbn

)
.

Notice

cb−1∑
s=1

s =
c2b2

2
− cb

2
,

cb−1∑
s=1

s2 =
1

6
(cb− 1)(cb)(2cb− 1) =

c3b3

3
− c2b2

2
+

cb

6
,

cb−1∑
s=1

s3 =
(cb)2(cb− 1)2

4
=

c4b4

4
− c3b3

2
+

c2b2

4
.

Then E[a4] at (41) can be approached by

E[a4] = E

[
cb−1∑
s=1

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2

]

=

cb−1∑
s=1

n−b−s∑
l=0

[
2

c2b4
s2 +

(
4

cb2n
− 4

cb3

)
s+

(
1 + 2c

cb2
+

3

n
− 1 + 5c

cbn

)]

=

cb−1∑
s=1

[
− 2

c2b4
s3 +

(
2(n− b+ 1)

c2b4
− 4

cb2n
+

4

cb3

)
s2

+

((
4

cb2n
− 4

cb3

)
(n− b+ 1)−

(
1 + 2c

cb2
+

3

n2
− 1 + 5c

cbn

))
s

+

(
1 + 2c

cb2
+

3

n2
− 1 + 5c

cbn

)
(n− b+ 1)

]
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= − 2

c2b4

(
c4b4

4
− c3b3

2
+

c2b2

4

)

+

(
2(n− b+ 1)

c2b4
− 4

cb2n
+

4

cb3

)(
c3b3

3
− c2b2

2
+

cb

6

)

+

((
4

cb2n
− 4

cb3

)
(n− b+ 1)−

(
1 + 2c

cb2
+

3

n2
− 1 + 5c

cbn

))

×
(
c2b2

2
− cb

2

)

+

((
1 + 2c

cb2
+

3

n2
− 1 + 5c

cbn

)
(n− b+ 1)(cb− 1)

)

=

[
2n

c2b4
· c

3b3

3
− 4n

cb3
· c

2b2

2
+

(1 + 2c)n

cb2
(cb)

]
+ o
(n
b

)

=

(
2c

3
+ 1

)
n

b
+ o
(n
b

)
. (46)

Next calculate E[a5] at (42). First consider the joint distribution of Z1 =
(Ḃl(b) − B̄) and Z2 = (Ḃl+(1−c)b+s(cb) − B̄) for l = 0, ..., (n − b − s) and
s = cb, ...(n− cb).

[
Z1

Z2

]
∼ N

⎛
⎜⎝[0

0

]
,

⎡
⎢⎣
n− b

bn
− 1

n

− 1

n

n− cb

cbn

⎤
⎥⎦
⎞
⎟⎠ ,

resulting in

Z1|Z2 ∼ N

(
cb

cb− n
Z2,

(
n− b

bn
− cb

n(n− cb)

))
and

Z2 ∼ N

(
0,

n− cb

cbn

)
.

Then

E[Z2
1Z

2
2 ]

=

(
cb

cb− n

)2

EZ2 [Z
4
2 ] +

(
n− b

bn
− cb

n(n− cb)

)
EZ2 [Z

2
2 ]

=

(
cb

cb− n

)2

3

(
n− cb

cbn

)2

+

(
n− b

bn
− cb

n(n− cb)

)(
n− cb

cbn

)

=
3

n2
+

1

cb2
− c+ 1

c

1

bn
. (47)

Plug in (42),

E[a5] = E

[
n−b∑
s=cb

n−b−s∑
l=0

(Ḃl(b)− B̄)2(Ḃl+(1−c)b+s(cb)− B̄)2

]
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=

n−b∑
s=cb

n−b−s∑
l=0

(
3

n2
+

1

cb2
− c+ 1

c

1

bn

)

=

n−b∑
s=cb

(
3

n2
+

1

cb2
− c+ 1

c

1

bn

)
(n− b+ 1− s)

=

n−b∑
s=cb

[(
3

n2
+

1

cb2
− c+ 1

c

1

bn

)
(n− b+ 1)−

(
3

n2
+

1

cb2
− c+ 1

c

1

bn

)
s

]

=

(
3

n2
+

1

cb2
− c+ 1

c

1

bn

)
(n− b+ 1)(n− (1 + c)b+ 1)

−
(

3

n2
+

1

cb2
− c+ 1

c

1

bn

)(
n2

2
− bn

)

=

(
3

n
+

n

cb2
− c+ 2

c

1

b
− 3b

n2
+

c+ 1

c

1

n
+

3

n2
+

1

cb2
− c+ 1

c

1

bn

)
× (n− (1 + c)b+ 1)

−
(

3

n2
+

1

cb2
− c+ 1

c

1

bn

)(
n2

2
− bn

)

=

(
−c+ 2

c

1

b
· n+

n

cb2
· n− n

cb2
· (1 + c)b

)

−
(

1

cb2
· n

2

2
− 1

cb2
· bn− c+ 1

c

1

bn
· n

2

2

)
+ o
(n
b

)

=
1

2c

n2

b2
−
(
3

2
+

3

2c

)
n

b
+ o
(n
b

)
. (48)

Combine (45), (46) and (48), then A3 at (43) can be calculated by

A3 = − 2c2

(1− c)2
b2

n2
(E[((1− c)b+ 1)(n− b+ 1) ·OL] + 2ED + 2EG)

= − 2c2

(1− c)2
b2

n2

[
(2c+ 1)(1− c)

c

n

b
+

(
4c

3
+ 2

)
n

b
−
(
3 +

3

c

)
n

b
+

1

c

n2

b2

]

+ o

(
b

n

)

= − 2c2

(1− c)2

(
1

c
− 2c2 + 6

3c

b

n

)
+ o

(
b

n

)
. (49)

From A1, A2, A3 at (39), (40), (49), E[σ̃4
ft] at (25) becomes

E[σ̃4
ft] = A1 +A2 +A3

=
1

(1− c)2

(
1− 8

3

b

n

)
+

c2

(1− c)2

(
1− 8c

3

b

n

)

− 2c2

(1− c)2

(
1

c
− 2c2 + 6

3c

b

n

)
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= 1 +
−4c3 + 12c− 8

3(1− c)2
b

n
+ o

(
b

n

)
. (50)

We also need (E[σ̃2
ft])

2 to calculate V ar[σ̃2
ft]. By (33),

E

[
bn

n− b
(Ḃl(b)− B̄)2

]
= 1.

Therefore

E

[
n−b∑
l=0

(Ḃl(b)− B̄)2

]
=

(n− b)(n− b+ 1)

bn

and

E

[
n−cb∑
l=0

(Ḃl(cb)− B̄)2

]
=

(n− cb)(n− cb+ 1)

cbn
.

Then

(E[σ̃2
ft])

2 =

(
E

[
1

1− c

b

n

n−b∑
l=0

(Ḃl(b)− B̄)2 − c

1− c

cb

n

n−cb∑
l=0

(Ḃl(cb)− B̄)2

])2

=

[
1

1− c

b

n

(n− b)(n− b+ 1)

bn
− c

1− c

cb

n

(n− cb)(n− cb+ 1)

cbn

]2

=

[
(n− b)(n− b+ 1)

(1− c)n2
− c(n− cb)(n− cb+ 1)

(1− c)n2

]2

=
1

(1− c)2n4
[(n2 + b2 − 2bn)(n2 + b2 − 2bn+ 1 + 2n− 2b)]

+
c2

(1− c)2n4
[(n2 + c2b2 − 2cbn)(n2 + c2b2 − 2cbn+ 1 + 2n− 2cb)]

− 2c

(1− c)2n4
[(n2 + b2 − 2bn+ n− b)(n2 + c2b2 − 2cbn+ n− cb)]

=
1

(1− c)2n4
[n4 − 4bn3] +

c2

(1− c)2n4
[n4 − 4cbn3]

− 2c

(1− c)2n4
[n4 − 2cbn3 − 2bn3] + o

(
b

n

)

=
1

(1− c)2n4
[(1− c)2n4 + (4c2 + 4c− 4c3 − 4)bn3] + o

(
b

n

)

= 1 +
4c2 + 4c− 4c3 − 4

(1− c)2
b

n
+ o

(
b

n

)
. (51)

Combine (50) and (51) to get

V ar[σ̃2
ft] = E[σ̃4

ft]− (E[σ̃2
ft])

2

=

(
1 +

−4c3 + 12c− 8

3(1− c)2
b

n

)
−
(
1 +

4c2 + 4c− 4c3 − 4

(1− c)2
b

n

)
+ o

(
b

n

)
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=
8c3 − 12c2 + 4

3(1− c)2
b

n
+ o

(
b

n

)

=
8c[(1− c)2 +

1

2c
(c− 1)2]

3(1− c)2
+ o

(
b

n

)

=

(
8

3
c+

4

3

)
b

n
+ o

(
b

n

)
.

Let σ̃2
f be the Brownian motion expression of σ̂2

f . Corollary 3 below follows
Lemma 3 by letting c = 1/2.

Corollary 3. Under Assumption 2,

n

b
V ar[σ̃2

f ] =
8

3
+ o(1).

Recall σ̂2
w denotes the univariate weighted BM estimator with the Bartlett

flat top lag window at (6). Suppose n = ab, then consider the corresponding
Brownian motion expression

σ̃2
w =

2b

a− 1

a−1∑
l=0

(B̄l(b)− B̄)2 − b/2

2a− 1

2a−1∑
l=0

(B̄l(b/2)− B̄)2.

Lemma 4. Under Assumption 2

n

b
V ar[σ̃2

w] = 5 + o(1).

Proof. Since V ar[σ̃2
w] = E[σ̃4

w]− (E[σ̃2
w])

2, first consider E[σ̃4
w].

E[σ̃4
w] = E

[( 2b

a− 1

a−1∑
l=0

(B̄l(b)− B̄)2 − b/2

2a− 1

2a−1∑
l=0

(B̄l(b/2)− B̄)2
)2]

= E

[( 2b

a− 1

)2( a−1∑
l=0

(B̄l(b)− B̄)2
)2

+
( b

4a− 2

)2( 2a−1∑
l=0

(B̄l(b/2)− B̄)2
)2

− 4b2

(a− 1)(4a− 2)

( a−1∑
l=0

(B̄l(b)− B̄)2
)( 2a−1∑

l=0

(B̄l(b/2)− B̄)2
)]

= A1 +A2 +A3 (52)

where

A1 = E

[( 2b

a− 1

)2( a−1∑
l=0

(B̄l(b)− B̄)2
)2]

, (53)

A2 = E

[( b

4a− 2

)2( 2a−1∑
l=0

(B̄l(b/2)− B̄)2
)2]

, and (54)
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A3 = E

[
− 4b2

(a− 1)(4a− 2)

( a−1∑
l=0

(B̄l(b)− B̄)2
)( 2a−1∑

l=0

(B̄l(b/2)− B̄)2
)]

. (55)

Denote

a1 =

a−1∑
l=0

(B̄l(b)− B̄)4

and

a2 =

a−1∑
s=1

a−1−s∑
l=0

(B̄l(b)− B̄)2(B̄l+s(b)− B̄)2.

Then (53) can be expressed as

A1 =
( 2b

a− 1

)2
E

[
a−1∑
l=0

(B̄l(b)− B̄)4 + 2

a−1∑
s=1

a−1−s∑
l=0

(B̄l(b)− B̄)2(B̄l+s(b)− B̄)2

]

=
( 2b

a− 1

)2
E[a1 + 2a2]. (56)

First consider E[a1]. By (34),

E[(B̄l(b)− B̄)4] = 3
(n− b

bn

)2
,

hence

E[a1] = E

[
a−1∑
l=0

(B̄l(b)− B̄)4

]

= 3a

(
n− b

bn

)2

= 3a

(
1

b2
+

1

n2
− 2

bn

)

= 3a

(
1

b2
+

1

a2b2
− 2

ab2

)

=
3a

b2
+ o
( a

b2

)
. (57)

From (37),

E[(B̄l(b)− B̄)2(B̄l+s(b)− B̄)2] =
3

n2
+

1

b2
− 2

bn

and therefore

E[a2] = E

[
a−1∑
s=1

a−1−s∑
l=0

(B̄l(b)− B̄)2(B̄l+s(b)− B̄)2

]

=

(
3

n2
+

1

b2
− 2

bn

) a−1∑
s=1

a−1−s∑
l=0

1
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=

(
3

n2
+

1

b2
− 2

bn

)
a(a− 1)

2

=
1

2

(
a2

b2
− 3a

b2

)
+ o
( a

b2

)
. (58)

Plug E[a1], E[a2] at (57) and (58) in (56), we have

A1 =

(
2b

a− 1

)2

(EA+ 2EB)

=
4b2

(a− 1)2

[
3a

b2
+

a2

b2
− 3a

b2
+ o
( a

b2

)]

=
4a2

(a− 1)2
+ o

(
1

a

)
. (59)

Next consider A2 at (54). Denote

a3 =

2a−1∑
l=0

(B̄l(b/2)− B̄)4

and

a4 =

2a−1∑
s=1

2a−1−s∑
l=0

(B̄l(b/2)− B̄)2(B̄l+s(b/2)− B̄)2,

then

A2 =
b2

(4a− 2)2
E

[
2a−1∑
l=0

(
B̄l(b/2)− B̄

)4

+2

2a−1∑
s=1

2a−1−s∑
l=0

(
B̄l(b/2)− B̄

)2 (
B̄l+s(b/2)− B̄

)2]

=
b2

(4a− 2)2
E[a3 + 2a4.] (60)

By (34)

E[(B̄l(b/2)− B̄)4] = 3
(2n− b

bn

)2
,

hence

E[a3] = E

[
2a−1∑
l=0

(B̄l(b/2)− B̄)4

]

= 6a

(
2n− b

bn

)2

= 6a

(
4

b2
+

1

n2
− 4

bn

)
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= 6a

(
4

b2
+

1

a2b2
− 4

ab2

)

=
24a

b2
+ o
( a

b2

)
. (61)

To calculate E[a4], define Z1 = (B̄l(b/2) − B̄) and Z2 = (B̄l+s(b/2) − B̄) for
l = 0, ..., (2a − 1 − s) and s = 1, ..., (2a − 1). Consider the joint distribution of
Z = (Z1, Z2)

T . Denote U = (U1, ...Un)
T , Z1 and Z2 are linear combinations of

i.i.d. standard normal variables, then Z = V U where

V =

⎡
⎢⎣ − 1

n
· · · − 1

n

2n− b

bn

2n− b

bn
− 1

n
· · · · · · − 1

n
2n− b

bn
· · · 2n− b

bn
− 1

n
· · · · · · · · · · · · − 1

n

⎤
⎥⎦ .

The joint distribution of Z is

[
Z1

Z2

]
∼ N

⎛
⎜⎝[00

]
,

⎡
⎢⎣
2n− b

bn
− 1

n

− 1

n

2n− b

bn

⎤
⎥⎦
⎞
⎟⎠ .

The conditional distribution of Z1|Z2 and the marginal distribution of Z2 are

Z1|Z2 ∼ N

(
b

b− 2n
Z2,

4n− 4b

2bn− b2

)
and

Z2 ∼ N

(
0,

2n− b

bn

)
.

Now we have the expectation

E[Z2
1Z

2
2 ] = EZ2 [EZ1|Z2

[Z2
1Z

2
2 |Z2]]

= EZ2 [Z
2
2EZ1|Z2

[Z2
1 |Z2]]

= EZ2

[
Z2
2

((
b

b− 2n
Z2

)2

+
4n− 4b

2bn− b2

)]

=

(
b

b− 2n

)2

EZ2 [Z
4
2 ] +

4n− 4b

2bn− b2
EZ2 [Z

2
2 ]

=

(
b

b− 2n

)2

3

(
2n− b

bn

)2

+
4n− 4b

2bn− b2

(
2n− b

bn

)

=
3

n2
+

4(n− b)

b2n

=
3

n2
+

4

b2
− 4

bn
.

Then

E[a4] =

(
3

n2
+

4

b2
− 4

bn

) 2a−1∑
s=1

2a−1−s∑
l=0

1
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=

(
3

n2
+

4

b2
− 4

bn

)
2a(2a− 1)

2

=
8a2

b2
− 12a

b2
+ o
( a

b2

)
. (62)

Plug E[a3], E[a4] at (61), (62) in (60),

A2 =
b2

(4a− 2)2
E[a3 + 2a4]

=
b2

(4a− 2)2

[
24a

b2
+

16a2

b2
− 24a

b2
+ o
( a

b2

)]

=
16a2

(4a− 2)2
+ o

(
1

a

)
. (63)

To calculate A3 at (55), consider p = 0, ...(a − 1). For q = 2p and q = 2p + 1,
let c = 1/2 in (44)

OL = E[(B̄p(b)− B̄)2(B̄q(b/2)− B̄)2]

=
4

b2
+

3

n2
− 7

bn
.

For q �= 2p and q �= 2p+ 1, let c = 1/2 in (47).

NOL = E[(B̄p(b)− B̄)2(B̄q(b/2)− B̄)2]

=
2

b2
+

3

n2
− 3

bn
.

Then A3 at (55) equals to

A3 =
−2b2

(a− 1)(2a− 1)
a · [2OL+ (2a− 2)NOL)]

=
−4ab2

(a− 1)(2a− 1)

[(
4

b2
+

3

n2
− 7

bn

)
+ (a− 1)

(
3

n2
+

2

b2
− 3

bn

)]

=
−4ab2

(a− 1)(2a− 1)

[
2a

b2
− 1

b2
+ o

(
1

b2

)]

=
4a

1− a
+ o

(
1

a

)
. (64)

Combine A1 A2 A3 at (59),(63) and (64), we can approach E[σ̃4
w] at (52) by

E[σ̃4
w] = A1 +A2 +A3

=
4a2

(a− 1)2
+

16a2

(4a− 2)2
− 4a

a− 1
+ o

(
1

a

)

=
4a4 + 8a3 − 12a2 + 4a

(a− 1)2(2a− 1)2
+ o

(
1

a

)
.
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Next consider

E[σ̃2
w] = E

[
2b

a− 1

a−1∑
l=0

(B̄l(b)− B̄)2 − b

4a− 2

2a−1∑
l=0

(B̄l(b/2)− B̄)2

]

= a · 2b

a− 1

n− b

bn
− 2a · b

4a− 2

2n− b

bn
= 1.

Therefore

Var[σ̃2
w] = E[σ̃4

w]− (E[σ̃2
w])

2

=
4a4 + 8a3 − 12a2 + 4a− (a− 1)2(2a− 1)2

(a− 1)2(2a− 1)2

=
20a3 + o(a3)

4a4

=
5b

n
+ o

(
b

n

)
.

Lemma 5. Let σ̂2
n be either σ̂2

w or σ̂2
f . Assume Assumption 2 holds. Further

suppose Assumption 1 holds with ED4 < ∞, EF g
4 < ∞ and as n → ∞,

ψ2(n)b−1 logn → 0. (65)

Then
E[(σ̂2

n − σ2σ̃2
n)

2] → 0 as n → ∞. (66)

Proof. Lemma B.4 of Jones et al. (2006) shows

|σ̂2
bm − σ2σ̃2

bm| → 0 a.s as n → ∞ (67)

under a slightly different condition from (65) and geometric ergodicity. Following
the same argument, it can be shown that each component of |σ̂2

bm−σ2σ̃2
bm| goes

to 0 under Assumption 1 and (65). Hence (67) also holds under conditions of
Lemma 5. It then follows from Lemmas 12, 13 and 14 of Flegal and Jones (2010)
that

E[(σ̂2
bm − σ2σ̃2

bm)2] → 0 as n → ∞, (68)

and
E[(σ̂2

obm − σ2σ̃2
obm)2] → 0 as n → ∞. (69)

From (7), σ̂2
f can be expressed by a linear combination of two Bartlett SV esti-

mators which are asymptotically equivalent to σ̂2
obm, and σ̂2

w can be expressed as
a linear combination of two BM estimators, (68) and (69) result in Lemma 5.

Appendix D: Proof of Theorem 3

Corollary 3 and Lemma 4 show

Var[σ̃2
f ] =

8b

3n
+ o

(
b

n

)
,
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and

Var[σ̃2
w] =

5b

n
+ o

(
b

n

)
.

To derive Var[σ̂2
w]/Var[σ̂

2
f ], we use Lemma 5 to show

n

b
Var[σ̂2

f ] =
8

3
σ4 + o(1),

and
n

b
Var[σ̂2

w] = 5σ4 + o(1).

We only show results for Var[σ̂2
w] as Var[σ̂

2
f ] follows a similar proof. Define

η = V ar[σ̂2
w − σ2σ̃2

w] + 2σ2 · E[(σ̂2
w − σ2σ̃2

w)(σ̃
2
w − Eσ̃2

w)].

As in Flegal and Jones (2010), we show that η → 0 as n → ∞ using Cauchy-
Schwarz inequality, V ar[X] ≤ EX2 and (66). Specifically, we have

|η| = |V ar[σ̂2
w − σ2σ̃2

w] + 2σ2 · E[(σ̂2
w − σ2σ̃2

w)(σ̃
2
w − Eσ̃2

w)]|
≤ E[(σ̂2

w − σ2σ̃2
w)

2] + 2σ2 ·
√
E[(σ̂2

w − σ2σ̃2
w)

2] · E[(σ̃2
w − Eσ̃2

w)
2]

= E[(σ̂2
w − σ2σ̃2

w)
2] + 2σ2 · (E[(σ̂2

w − σ2σ̃2
w)

2])1/2 · (E[(σ̃2
w − Eσ̃2

w)
2])1/2

= E[(σ̂2
w − σ2σ̃2

w)
2] + 2σ2 · (E[(σ̂2

w − σ2σ̃2
w)

2])1/2 · (Var[σ̃2
w])

1/2.

Since E[(σ̂2
w − σ2σ̃2

w)
2] = o(1) from Lemma 5,

|η| ≤ E[(σ̂2
w − σ2σ̃2

w)
2] + 2σ2 · (E[(σ̂2

w − σ2σ̃2
w)

2])1/2 · (Var[σ̃2
w])

1/2

= o(1) + 2σ2[o(1)]1/2
(
b

n

)1/2

(5 + o(1))1/2

= o(1) + 2σ2

(
b

n

)1/2

(o(1)(5 + o(1)))1/2

= o(1),

since b/n → 0 as n → ∞. Then

V ar[σ̂2
w] = E[σ̂2

w − Eσ̂2
w]

2

= E[σ̂2
w − σ2σ̃2

w + σ2σ̃2
w − σ2Eσ̃2

w − Eσ̂2
w + σ2Eσ̃2

w]
2

= E[(σ̂2
w − σ2σ̃2

w) + σ2(σ̃2
w − Eσ̃2

w)− (Eσ̂2
w − σ2Eσ̃2

w)]
2

= E[((σ̂2
w − σ2σ̃2

w)− E[σ̂2
w − σ2σ̃2

w]) + σ2(σ̃2
w − Eσ̃2

w)]
2

= E[(σ̂2
w − σ2σ̃2

w)− E[σ̂2
w − σ2σ̃2

w]]
2 + E[σ2(σ̃2

w − Eσ̃2
w)]

2

+ 2σ2 · E[((σ̂2
w − σ2σ̃2

w)− E[σ̂2
w − σ2σ̃2

w]) · (σ̃2
w − Eσ̃2

w)]

= E[(σ̂2
w − σ2σ̃2

w)− E[σ̂2
w − σ2σ̃2

w]]
2

+ 2σ2 · E[(σ̂2
w − σ2σ̃2

w) · (σ̃2
w − Eσ̃2

w)]
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+ σ4V ar(σ̃2
w)− 2σ2E[(E[σ̂2

w − σ2σ̃2
w])(σ̃

2
w − Eσ̃2

w)]

= η + σ4V ar(σ̃2
w)

= 5σ4 · b
n
+ o

(
b

n

)
.

Similarly we can show

Var[σ̂2
f ] =

8

3
σ4 · b

n
+ o

(
b

n

)
.

Therefore
Var[σ̂2

w]/Var[σ̂
2
f ] = 1.875.

Appendix E: Tukey-Hanning calculation

To show the Tukey-Hanning window at (5) satisfies (10), first consider

b−2∑
k=1

kΔ2wn(k) =

b−2∑
k=1

k

2

[
cos

(
π(k − 1)

b

)
+ cos

(
π(k + 1)

b

)
− 2 cos

(
πk

b

)]

=
1

2

[
b−3∑
k=0

(k + 1) cos

(
πk

b

)
+

b−1∑
k=2

(k − 1) cos

(
πk

b

)
− 2

b−2∑
k=1

k cos

(
πk

b

)]

=
1

2

[
b−3∑
k=0

(k + 1) cos

(
πk

b

)
−

b−2∑
k=1

k cos

(
πk

b

)]

+
1

2

[
b−1∑
k=2

(k − 1) cos

(
πk

b

)
−

b−2∑
k=1

k cos

(
πk

b

)]

=
1

2

[
1 +

b−3∑
k=1

(k + 1) cos

(
πk

b

)
−

b−3∑
k=1

k cos

(
πk

b

)
− (b− 2) cos

(
π(b− 2)

b

)]

+
1

2

[
(b− 2) cos

(
π(b− 1)

b

)
+

b−2∑
k=2

(k − 1) cos

(
πk

b

)

− cos
(π
b

)
−

b−2∑
k=2

k cos

(
πk

b

)]

=
1

2

[
1 +

b−3∑
k=1

cos

(
πk

b

)
− (b− 2) cos

π(b− 2)

b

]

+
1

2

[
(b− 2) cos

(
π(b− 1)

b

)
− cos

(π
b

)
−

b−2∑
k=2

cos

(
πk

b

)]

=
1

2

[
1 + cos

(π
b

)
− (b− 2) cos

(
π(b− 2)

b

)]
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+
1

2

[
(b− 2) cos

(
π(b− 1)

b

)
− cos

(π
b

)
− cos

(
π(b− 2)

b

)]

=
1

2

[
1− (b− 1) cos

(
π(b− 2)

b

)
+ (b− 2) cos

(
π(b− 1)

b

)]
.

Therefore

b∑
k=1

kΔ2wn(k) = (b− 1)Δ2wth(b− 1) + bΔ2wth(b) +

b−2∑
k=1

kΔ2wth(k)

= (b− 1)

[
1

2
cos

(
π(b− 2)

b

)
− cos

(
π(b− 1)

b

)
− 1

2

]

+ b

[
1

2
+

1

2
cos

(
π(b− 1)

b

)]
+

b−2∑
k=1

kΔ2wth(k)

=

[
b− 1

2
cos

(
π(b− 2)

b

)
+

1

2
− b− 2

2
cos

(
π(b− 1)

b

)]

+

[
1

2
− b− 1

2
cos

(
π(b− 2)

b

)
+

b− 2

2
cos

(
π(b− 1)

b

)]
= 1.
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