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Abstract: In the standard design approach to survey sampling prior in-
formation is often used to stratify the population of interest. A good choice
of the strata can yield significant improvement in the resulting estimator.
However, if there are several possible ways to stratify the population, it
might not be clear which is best. Here we assume that before the sample is
taken a limited number of possible stratifications have been defined. We will
propose an objective Bayesian approach that allows one to consider these
several different possible stratifications simultaneously. Given the sample
the posterior distribution will assign more weight to the good stratifications
and less to the others. Empirical results suggest that the resulting estimator
will typically be almost as good as the estimator based on the best strati-
fication and better than the estimator which does not use stratification. It
will also have a sensible estimate of precision.
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1. Introduction

Stratification and post-stratification have a long history in survey sampling.
Cochran (1977) discusses both approaches. Little (1993) develops a Bayesian
model-based theory to be used with post-stratification. Elliott and Little (2000)
and Si et al. (2015) give Bayesian approaches to modifying designed based sam-
pling weights.

Often (post-)stratification is used for administrative convenience while in
other cases auxiliary information makes it possible to divide a heterogenous
population into strata which are internally homogenous with respect to a re-
sponse variable of interest y. In the latter case there may be more than one
plausible stratification available to the statistician, especially if several auxil-
iary variables are available with which to construct stratifications. For example,
the population could be partitioned based on gender, age, or race categories.
Various approaches can be used from relatively simple “binning” of population
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units based on a single auxiliary variable to more sophisticated un-supervised di-
mension reduction techniques that can be used to generate a stratification based
on several auxiliary variables (Pla (1991) used principal components analysis,
and Golder and Yeomans (1973) used cluster analysis). However, none of these
approaches are guaranteed to produce small within-stratum variability for y. All
need to assume a model that relates y to the auxiliary variables used to form
stratifications.

We are interested in the situation where the statistician has, prior to ob-
serving the sample, specified just a few possible partitions of the population.
After one has observed the sample, say ys, it is natural to want to use the ob-
served ys to select one of the partitions for making inferences. For example one
might choose the stratification that minimizes the mean squared error within
the strata. However, theory would be needed to justify this use of ys and to
derive an appropriate estimate of precision.

Here we present a method called “multiple post-stratification” which al-
lows the statistician to simultaneously consider several stratifications that have
been constructed before the sample was observed. Conceptually, multiple post-
stratification is a simple idea: it uses a finite mixture model and statistical
inference is done by averaging over the possible stratifications. We use a non-
informative Bayesian approach in order to combine the finite mixture model
concept with the objectivity of design-based estimators. We will show that the
observed ys can be useful in assessing the value of each possible stratification
and we will show that the resulting estimator comes with a sensible estimate of
precision. Although not post-stratification in the usual sense we believe it is a
useful generalization of the concept.

We will begin by assuming that the design is simple random sampling and
that there is just a small set of possible values for y and that they are known a
priori. We will then show how our approach can be extended to other sampling
designs and to a continuous y. This approach makes no model assumptions. It
only assumes that a good stratification will have more homogenous strata (with
respect to y) than a poor one.

In section 2 we introduce our multiple post-stratification approach. Our
approach depends on the selection of a set of hyperparameters for our non-
informative prior distributions. In section 3 we show how to choose these hyper-
parameters in an objective fashion. In section 4 we discuss how our estimator is
computed. In section 5 we present some simulations that demonstrate how our
approach could work in practice. Although our approach assumes that y takes
on just a few possible values, in section 6, we show how it can be adapted to
handle continuous variables and other designs. In section 7 we conclude with a
few remarks.

2. Post-stratification, a Bayesian approach

Let Y denote the finite population of interest with labels U = {1, 2, . . . , N}
indexing the population, and with the response variable of interest denoted by
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y = (y1, y2, . . . , yN ). In the exposition we will focus on the problem of estimating

the population total, T =
∑N

i=1 yi, under squared error loss given a random
sample without replacement of size n. Later we will consider other possible
sampling designs and note that our approach can be applied when estimating
other population quantities of interest. We will write the set of sample indices,
a subset of U , as

s = {i1, i2, . . . , in}
and the sampled part of y

ys = {yi1 , yi2 , . . . , yin}

We denote the unsampled set of units, i.e. U \ s, with s′, and the unsampled
part of y with ys′ .

Our primary interest is for situations where the possible values for a yi is
a categorical variable. We assume that B = {b1, b2, . . . , br}, for some positive
integer r, is the set of values which can be taken by yi for any i ∈ U . We will let
B = {0, 1, . . . , r − 1} for convenience, but an element b ∈ B could be any real
number. We also assume that r is small compared to n and that the values of
B are known before the sample is taken. As will become clear in the following
our method makes most sense when r is small. Formally this is a limitation of
our approach but later we will show how it can be extended to situations where
we have a continuous variable of interest.

Let H be a set of possible stratifications of y, and denote a generic element
of H with h. That is, h ∈ H is a N -length vector where hi = j when the
stratum membership of the ith unit is j, for i = 1, 2, . . . , N . We assume that the
statistician has defined this setH, possibly using auxiliary data that is known for
the population, but is uncertain which will provide the greatest improvement
in estimation precision. In addition, we assume that the number of possible
stratifications belonging to H is small. For simplicity, we will assume for now
that each stratification has the same number of strata, say k. For any set A,
stratification h ∈ H, and stratum j = 1, 2, . . . , k, we define Ajh as the subset of
A that lies in stratum j according to h. This use of notation allows us to easily
refer to subsets like Ujh, sjh, and s′jh, for example. We also use this subscript
pair on Njh and njh to denote the population and sample sizes associated with
stratum j as defined by h, respectively. We are assuming that all of the Njh’s
are known.

Since we will be taking a Bayesian approach we need to specify a prior dis-
tribution for our problem. We will do this in two stages. First we define a prior
over H. At the second stage we need to define the conditional distribution for y
given h ∈ H. More formally we write

Pr(y) =
∑
h∈H

Pr(h) Pr(y|h)

=
∑
h∈H

Pr(h)

kh∏
j=1

Pr(yUjh
|h)
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The first line above represents the finite mixture model approach; each possible
stratification in H contributes a model. The second line above represents (in a
Bayesian manner) the idea behind stratification: given h ∈ H, y can be split
into the independent strata yU1h

, yU2h
, . . . , yUkhh

.
Although, in some cases, a statistician may be comfortable defining the prior

Pr(h) across H based on subjective belief or past performance of the strati-
fications we acknowledge that this will not always be true. As a default, we
will assume the uniform prior distribution over H in keeping with our non-
informative Bayesian approach. Keep in mind that H should be a smallish set
of possible stratifications based on the auxiliary information at hand.

To complete the definition of Pr(y), we need to define Pr(yUjh
|h) for each

h ∈ H and j = 1, 2, . . . , kh. For ease of exposition we will restrict ourselves to
the case when r = 2. For this case we use the Beta-Binomial model.

θjh ∼ Beta(εjh, εjh) independently for h ∈ H, j = 1, 2, . . . , k

yi|θjh ∼ Bernoulli(θjh) independently for i ∈ Ujh

where εjh for h ∈ H and j = 1, 2, . . . , kh are known hyperparameters. Note each
stratification has k of these hyperparameters; one for each stratum. In section 3
we will discuss how they should be chosen so that the resulting estimators will
have good frequentist properties.

We can integrate across θjh to obtain a concise expression of Pr(yUjh
|h). For

a given vector y, a set of units A ⊆ U , and a real number b, let cy(b, A) denote
the number of units i in a set A ⊆ U where yi = b. Then,

Pr(yUjh
|h) = Γ(2εjh)Γ(εjh + cy(1,Ujh))Γ(εjh + cy(0,Ujh))

Γ(εjh)2Γ(2εjh +Njh)
(1)

Standard calculations yield a similar formula for the sample

Pr(ysjh |h) =
Γ(2εjh)Γ(εjh + cy(1, sjh))Γ(εjh + cy(0, sjh))

Γ(εjh)2Γ(2εjh + njh)
(2)

Now, we can discuss the posterior distribution Pr(ys′ |ys). Like the marginal
prior distribution of ys, Pr(ys′ |ys) also maintains the general structure of the
prior distribution. That is,

Pr(ys′ |ys) =
∑
h∈H

Pr(h|ys) Pr(ys′ |ys, h)

=
∑
h∈H

Pr(h|ys)
Pr(y|h)
Pr(ys|h)

=
∑
h∈H

Pr(h|ys)
∏kh

j=1 Pr(yUjh
|h)∏kh

j=1 Pr(ysjh |h)

=
∑
h∈H

Pr(h|ys)
kh∏
j=1

Pr(ys′jh |ysjh , h)
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We see that it is a finite mixture model where each possible stratification h ∈ H
supplies a different model for the unseen units, i.e. ys′ |ys, h. Secondly, the unseen
units from different strata are conditionally independent given some h ∈ H.

In the posterior distribution ys′ |ys, the probability Pr(h|ys) for some h ∈
H can be thought of as the mixture weight for h in a finite mixture model.
This probability is proportional to Pr(h) Pr(ys|h) where Pr(h) is a known prior
distribution, so we can see that Pr(ys|h) is how the observed data help determine
the mixture weights. That is

Pr(h|ys) ∝ Pr(h)

kh∏
j=1

Γ(2εjh)Γ(εjh + cy(1, sjh))Γ(εjh + cy(0, sjh))

Γ(εjh)2Γ(2εjh + njh)
(3)

Note that Pr(ys|h) will be large when the composition of ys within the strata de-
fined by h is relatively homogenous (when ȳsjh is close to zero or one) compared
to the composition for other stratifications. So, stratifications that separate ys
into “homogenous groups” will have relatively large mixture weights compared
to those which do not. Pr(ys|h) will also depend on the relationship between
the sample allocation of ys with respect to h and the choice of hyperparameters,
and we will discuss this in section 3.

Using Equations (1) and (2) we find that

Pr(ys′jh |ysjh , h) =
Γ(2εjh + njh)Γ(εjh + cy(1,Ujh))Γ(εjh + cy(0,Ujh))

Γ(2εjh +Njh)Γ(εjh + cy(1, sjh))Γ(εjh + cy(0, sjh))

In the same way, we can easily calculate the conditional posterior distribution
of a single unseen unit. For h ∈ H, i ∈ s′jh, and z ∈ {0, 1},

Pr(yi = z|ys, h) =
Γ(2εjh + njh)Γ(εjh + cy(z, sjh) + 1)

Γ(2εjh + njh + 1)Γ(εjh + cy(z, sjh))

=
εjh + cy(z, sj,h)

2εjh + njh

and from this one can find the posterior expectation of an unsampled unit.
The posterior distribution ys′ |ys can be used to estimate any parameter γ(y)

under a variety of loss functions, but we will just consider the squared-error loss
function (which implies that the Bayes rules will be posterior expectations).
Because every possible ys has positive probability under our prior distribution,
the Bayes rule under squared-error loss will be unique, and hence admissible.
For estimating the population total, say T (y), the Bayes rule is

E[T (y)|ys] =
∑
h∈H

Pr(h|ys)
∑
i∈U

E[yi|ys, h]

=
∑
h∈H

Pr(h|ys)
kh∑
j=1

(
njhȳsjh + (Njh − njh)

εjh + cy(1, sj,h)

2εjh + njh

)

=
∑
h∈H

Pr(h|ys)
kh∑
j=1

Njh

(
njh

Njh
ȳsjh +

Njh − njh

Njh

εjh + cy(1, sj,h)

2εjh + njh

)
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As εjh → 0 for each j = 1, 2, . . . , k and h ∈ H, this estimator will converge to
a weighted average of design-based stratified estimators of μ where the weights
are Pr(h|ys).

For the general r > 2 the story is very similar except that we will be us-
ing a Dirichlet distribution of the appropriate dimension rather than the beta
distribution. For any particular stratum within any particular stratification the
values of the units in the parameter vector defining the Dirichlet distribution
will be constant.

The model we’ve described here works fine when the set B of possible values
is known ahead of time. That is, we assume that each element of y takes a value
from the set B, and then the posterior distribution will give positive probability
to each b ∈ B. Note, however, that there is positive probability that not all the
possible values for y will appear in every sample. When this happens, as we have
seen, our Bayes model gives positive posterior probability to all the values of
B. If we are trying to be “objective” and mimic as far as possible the standard
frequentist estimator this should not happen. Our posterior distribution should
only give positive probability to the values of B which actually appeared in the
sample. This means that estimators based on such a posterior distribution will
not be a Bayes rule for any given prior distribution.

In order to justify such a posterior and the resulting estimator we need to
use the stepwise Bayes approach. Johnson (1971) presented an early special
case of this technique for use when estimating the mean of a Binomial random
variable, and Hsuan (1979) explained the stepwise Bayes idea in a more general
decision theory context. It has been used in survey sampling problems to prove
the admissibility of many of the standard frequentist estimators. Ghosh and
Meeden (1997) give several examples and show how it is related to the Bayesian
bootstrap of Rubin (1981). An early example of the type of parameter spaces
used in these proofs can be found in Hartley and Rao (1968). A proof that the
posterior defined in Section 2 has a stepwise Bayes justification and provides
admissible estimators is given in Zimmerman (2013). We should note however
that the admissibility proof does not apply for our estimator in section 6 when
y is a continuous variable.

3. Choosing hyperparameters

In the models presented above, a set of hyperparameters ε1h, ε2h, . . . , εkh is as-
sociated with each stratification h ∈ H. We will now argue that there is a
non-informative way to select them. Our recommended choice of hyperparame-
ters is based on separately considering how the choice affects the distributions
of y|(ys, h) and h|ys.

First we consider the impact of the choice of εjh on y|(ys, h). If we examine
the posterior probability Pr(ys′jh |ysjh , h) discussed in the previous section, we

can see that choosing εjh to be small for j = 1, 2, . . . , k will make inference,
conditional on a given h, agree with design-based (post)-stratification using that
same h. The relative sizes of ε1h, ε2h, . . . , εkh is not important in this regard, so
long as they are sufficiently small.
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Fig 1. Log-unnormalized posterior probability of a two-stratum stratification h given popula-
tion and sample proportions of units falling in its first stratum (p and q, respectively).

Now, we consider the relationship between hyperparameter choice and the
distribution h|ys. This relationship is more complicated. Reviewing Equation
(3), we can see that the factors influencing the behavior of Pr(h|ys) can be
separated into three categories: the prior distribution Pr(h), the within-strata
homogeneity of ys|h, and the sample allocation of ys|h (i.e. the number of units
in each sample stratum as defined by h). The prior distribution Pr(h) is not re-
lated to choice of εjh. The relationship between the within-strata homogeneity
of ys|h and Pr(h|ys) is sensible: as homogeneity increases, Pr(h|ys) increases.
Although hyperparameter choice may affect the degree to which Pr(h|ys) re-
wards within-strata homogeneity, the preference for homogeneity will always
exist. Finally, hyperparameter choice strongly affects the relationship between
the sample allocation of ys|h and Pr(h|ys). In what follows, we show that choos-
ing εjh to be proportional to Njh will make the distribution h|ys reward strati-
fications for which the sample allocation of ys|h is close to proportional. Given
these considerations, we recommend setting εjh = εNjh/N for each h ∈ H and
j = 1, 2, . . . , kh where ε is small. We will now discuss in some detail how to
select a value of ε.

First, we present an example to help orient the reader for the theoretical
analysis that will follow. Suppose that k = 2, that n = 100, that εjh = Njh/N
for some h ∈ H, and that ys consists of all distinct values so that with-stratum
homogeneity plays no role.

In this case, if we imagine varying h to achieve a variety of associated pop-
ulation and sample allocations, Pr(h|ys) can be thought of as a function of
p = N1h/N and q = n1h/n. Figure 1 presents this graphically. We can see that
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the posterior probability of h is large when the sample allocation is close to pro-
portional allocation and small when it is not. More specifically, two properties
are evident. First, for a fixed p, the posterior probability appears to be a convex
function of q that achieves its maximum at q = p. Second, letting p vary, the
posterior probability appears to be constant along the line defined by p = q. It
turns out that both of these properties hold for any pair of k and n when n is
sufficiently large (they correspond to results (i) and (ii) in the Theorem below).

Now, before stating our theorem, we will take a moment to to review how
asymptotics is usually done in a survey sampling context. We will define a
sequence of finite populations, each one associated with a response, a set of
stratifications, and a sample. The notation and general set-up we use here is
similar to that employed by Fuller (2009) when working with survey sampling
asymptotics. Let y(N) be a vector containing the first N terms from the infinite
sequence y(∞) = {yi}∞i=1 for N = 1, 2, . . . . Also, let H(∞) be a finite set of
infinite sequences that stratify y(∞) into k strata, and let H(N) be the set that
contains, for each sequence h(∞) ∈ H(∞), a vector h(N) of the first N terms from
h(∞). So, each N ∈ {1, 2, . . .} is associated with a finite population response
and a set of stratifications. Note that one or more of the k strata defined by
h(∞) ∈ H(∞) will not appear in h(N) for small enough values of N , but we
ignore this problem because, with only finitely stratifications in H(∞), we can
find an N0 large enough so that all k strata appear in each h(N) ∈ H(N) for all

N ≥ N0. Next, for h
(N) ∈ H(N), let p

(N)
jh = Njh/N , i.e. the proportion of units

from the N th population falling in the jth stratum defined by h(N) ∈ H(N), for

j = 1, 2, . . . , k. Let the hyperparameter for theN th population, ε
(N)
jh , be set equal

to εp
(N)
jh , for some ε > 0, so that it is proportional to the population stratum

sizes. Then, for some fixed f ∈ (0, 1), let s(N) be a sample of size n(N) = [fN ],

i.e. the largest integer less than fN , and set q
(N)
jh = n

(N)
jh /n(N) where n

(N)
jh is

the number of sample units that fall in the jth stratum defined by h(N) ∈ H(N),
for j = 1, 2, . . . , k. Although the stratum sample sizes for a variety of index
pairs jh will be less than two for small enough N , we ignore this problem, too,
because it will not be an issue once N reaches some finite threshold. Finally,

write p
(N)
h = (p

(N)
1h , p

(N)
2h , . . . , p

(N)
kh ) and q

(N)
h = (q

(N)
1h , q

(N)
2h , . . . , q

(N)
kh ).

Let S(k−1) be the (k − 1)-dimensional unit simplex, let S0
(k−1) denote its

interior. With this bit of additional notation we now state the theorem. Note
the proof depends on the lemma given in Appendix A.

Theorem. Assume that, for each h(∞) ∈ H(∞), there is some fixed ph, qh ∈
S0
(k−1) such that p

(N)
h → ph and q

(N)
h → qh as N → ∞. Also, assume that y(∞)

consists of distinct values, and that Pr(h(N)) is uniform across H(N) for each
N = 1, 2, . . . .

Pick an arbitrarily small η > 0. Then, for a sufficiently large N0, the following
two properties hold for all N > N0:

(i) Suppose that, for some pair h(∞), h′(∞) ∈ H(∞) and some λ ∈ (0, 1]k,
ph = ph′ and qjh′ = qjh + λj(pjh − qjh) for j = 1, 2, . . . , k. In other



Post-stratification 2523

words, the limiting population stratum allocation is the same for h and
h′, and the limiting sample allocation for h′ either lies between that of h
and proportional allocation or is equal to proportional allocation. Then,
Pr(h′(N)|ys(N)) > Pr(h(N)|ys(N)).

(ii) If, for some pair h(∞), h′(∞) ∈ H(∞), ph = qh and ph′ = qh′ , then,
|Pr(h(N)|ys(N))− Pr(h′(N)|ys(N))| < η.

Proof. First, note that the set-up and assumptions above imply that, for N =
1, 2, . . . ,

log Pr(h(N)|ys(N))

n(N)
∝ 1

n(N)

k∑
j=1

log

⎛
⎝Γ(n(N)εp

(N)
jh )Γ(εp

(N)
jh + 1)n

(N)
jh Γ(εp

(N)
jh )(n

(N)−n
(N)
jh )

Γ(εp
(N)
jh )n(N)Γ(n(N)εp

(N)
jh + n

(N)
jh )

⎞
⎠

∝ 1

n(N)

k∑
j=1

log

⎛
⎝Γ(n(N)εp

(N)
jh )(εp

(N)
jh )n

(N)
jh

Γ(n(N)εp
(N)
jh + n

(N)
jh )

⎞
⎠

∝
k∑

j=1

q
(N)
jh log(εp

(N)
jh ) +

log Γ(n(N)εp
(N)
jh )

n(N)

−
log Γ(n(N)(εp

(N)
jh + q

(N)
jh ))

n(N)

∝ fn(N)(p
(N)
h , q

(N)
h )

where fm is the function from the lemma if we choose the ε shown here to
equal the v from the lemma. So, for any pair h(∞), h′(∞) ∈ H(∞) and any
N ∈ {1, 2, . . .},

log Pr(h(N)|ys(N))− log Pr(h′(N)|ys(N))

∝ n(N)(fn(N)(p
(N)
h , q

(N)
h )− fn(N)(p

(N)
h′ , q

(N)
h′ ))

Now, let δ be the minimum non-zero value of |f(ph, qh)−f(ph′ , qh′)| for any pair
h(∞), h′(∞) ∈ H(∞). Then, since fm is continuous and converges uniformly on a
set containing {(ph, qh) : h(∞) ∈ H(∞)}, we can find N1 such that, for N > N1

and any pair h(∞), h′(∞) ∈ H(∞),

|fn(N)(p
(N)
h , q

(N)
h )− fn(N)(p

(N)
h′ , q

(N)
h′ )− (f(ph, qh)− f(ph′ , qh′))| < δ

Now, if h(∞) and h′(∞) have (ph, qh) and (ph′ , qh′) that fit the scenario described
for result (i), our lemma proves that f(ph, qh) < f(ph′ , qh′), and our choice

of N1 implies that fn(N)(p
(N)
h , q

(N)
h ) < fn(N)(p

(N)
h′ , q

(N)
h′ ) for N > N1. Hence,

Pr(h(N)|ys(N)) < Pr(h′(N)|ys(N)) for N > N1.
Next, for any pair h(∞), h′(∞) ∈ H(∞) that fit the scenario described for

result (ii),

log Pr(h(N)|ys(N))− log Pr(h′(N)|ys(N)) ∝ n(N)dn(N)(p
(N)
h , p

(N)
h′ )
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where dm is the function from the lemma. Note that dm is continuous and
uniformly has magnitude o(1/m) on a set containing {(ph, ph′ : h(∞), h′(∞) ∈
H(∞)}. Hence, we can find N2 such that, for any h(∞), h′(∞) ∈ H(∞) that fit
the scenario described in result (ii) and N > N2,

log Pr(h(N)|ys(N))− log Pr(h′(N)|ys(N)) < η

Finally, we can simply set N0 = max(N1, N2), so that both results (i) and
(ii) hold for N > N0.

This theorem essentially shows that the properties of Pr(h|ys) evident in
Figure 1 hold approximately for any k when n is large (the convergence of
Pr(h|ys) to its limiting form only depends on the size of n; we only dealt with
an increasing N because N > n must be true). Therefore, our recommendation
to define εjh = εNjh/N for a small ε and j = 1, 2, . . . , k for each h ∈ H, achieves
desirable behavior from both Pr(y|ys, h) and Pr(h|ys).

But what is a good choice for a small value of ε? Consider the again equation
(3) and the term Γ(2εjh/Γ(εjh)

2. This is an increasing function of εjh whose
limit is zero as εjh approaches zero. It takes on the value one when εjh = 1
and increases rapidly from that point. Since a stratification with k strata has
k such terms choosing a small value of ε will typically increase the posterior
probability given to stratifications with fewer strata. If all the stratifications
have about the same number of strata this will not matter much but if the
numbers of strata in the stratifications under consideration vary widely it is
not clear how to select a good choice of ε. In his discussion of stratification
in Section 5A.8 (Cochran, 1977) Cochran indicates that, typically, most of the
precision gain from stratification is obtained with six or fewer strata. We believe
that this is will often be true when a statistician is considering a small number
of possible post-stratifications. In the simulations that follow we never consider
stratifications with more than 8 strata. For such situations we have found that
choosing any value of ε between 0.1 and 1 works well and in all of our examples
the results are very robust against the particular choice in this interval.

4. Computing the estimator

Here we briefly discuss how our estimator can be computed. Let H be the
number of possible stratifications belonging to H. Given a sample, let λh be the
the posterior probability our model assigns to stratum h for h = 1, . . . , H. Then
λ = (λ1, . . . , λH) is the posterior distribution over H given the sample. This
is easily computed under our model. When estimating an arbitrary γ(y) then
one may proceed in the usual Bayesian fashion. First one selects a stratification
using the distribution λ. Given the stratification one then uses our posterior
distribution in each stratum to generate a complete set of possible values. One
then finds γ(y) for this simulated complete copy of the population. One repeats
this many times to get a large set of simulated values for γ(y). The mean of
this set will be our point estimate and an approximate 0.95 Bayesian credible
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interval is given by the interval defined by the lower 0.025 quantile and the
upper 0.975 quantile of this set.

When one is estimating the population total, T (y), there is a quicker way to
get our estimates. Under our model, for a given stratification h, we can calcu-
late directly the posterior expectation of the population total and its posterior
variance, say th and vrh. Then our point estimate of the population total is just

t =

H∑
h=1

λhth

To get the posterior variance of t we use the well known fact that a variance is
equal to the sum of the variance of a conditional expectation plus the expectation
of the conditional variance. So conditioning on a possible stratification we find
that

vr =
H∑

h=1

λh(t− th)
2 +

H∑
h=1

λhvrh

When computing our interval estimate we will assume that t is approximately
normally distributed with variance vr and use the standard design based for-
mula to get our interval. We have seen that this yields estimates which closely
approximate the more complete Bayesian analysis and they can be found more
quickly.

The only non-routine part of this calculation is finding λ the vector of pos-
terior probabilities. Some R code (R Core Team, 2017) that does this is given
in Appendix B.

5. Simulations

To see how our approach could work in practice we used the data set nhanes
which is available in R. This data set is discussed in Lumley (2010) and is a
subset of a much larger set which was the result of a cluster sample. We will
consider this set as our population and use it in our simulation studies. We will
not make any model assumptions about the variables in the population.

The set contained information on 8,591 individuals for seven different vari-
ables. For each individual we have their gender (1 = male and 2 = female), age
category in years ((0, 19], (19, 39], (39, 59] and (59, Inf]), and race (Hispanic,
non-Hispanic white, non-Hispanic black and other). In addition we know their
designated primary sampling status within a household cluster. Most of these
were either 1 or 2 with a few 3’s. We combined the 3’s with the 1’s to get the
stratification, psu.

The y variable of interest was 1 if the total cholesterol of an individual was
over 240mg/dl and 0 otherwise. We denote this variable, by HiC. Some of the
individuals had missing values primarily in the HiC category. After removing
these individuals there remained a population of size 7,846.

Stratifying on gender gives us two strata of sizes 3889 and 3957. We denote
this stratification by g. Stratifying on race gives us four strata of sizes 2532, 3450,
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1406 and 458. We combined strata 1 with 3 and 2 with 4 to get a stratification
on race with just two strata. We denote these stratifications by r4 and r2.
Stratifying on age yields four strata of sizes 2150, 1905, 1911 and 1880. Again
we constructed a two set stratification by combing the sets 1 and 2 and by
combining sets 3 and 4. These two stratifications are denoted by a4 and a2. The
sizes of the two strata in the stratification based on psu is 3906 and 3940. This
gives us five stratifications, three with two strata and two with three strata. We
constructed two more stratifications having eight strata. In the first we crossed
race (with two levels), age (with two levels) and gender. To get the second we
replaced race with psu. These stratifications are denoted by r2 × a2 × g and
psu × r2 × g.

We now have seven possible stratifications which we will order as follows: psu
× r2 × g, r2 × a2 × g, r4, r2, a4, a2 and g. The correlation of these stratifications
with the y value HiC are 0.03, 0.13, −0.02, 0.03, 0.19, 0.2 and 0.02. The only
stratifications that seem to contain some information about HiC are those that
contain the age variable.

We took 500 simple random samples of size 400 from our population. The
true population total of HiC is 787 and the average absolute error of the stan-
dard estimator, population size times the sample mean, in our simulations was
91.2. The average absolute error using the a4 stratification was 88.4 while for
the a2 stratification it was 89.4. For each sample we calculated the posterior
probability of each stratification under our model. The average posterior prob-
abilities, over the 500 samples, given to stratifications a4 and a2 were 0.500 and
0.496 respectively. The average absolute error of our method was 89.1. Another
thing one could do is just select the stratification with the largest posterior
probability. In the 500 samples our model selected stratification a4 247 times
and selected a2 502 times. The average absolute error for this procedure was
88.9. Even though there is not a lot of information about HiC in the stratifi-
cations our method preforms almost as well as knowing the best stratification.
We will not present the frequency of coverage for our intervals but they covered
about 95% of the time because they are essentially based on standard frequency
theory.

The basic assumption underlying our approach is that within each stratum,
from any stratification, the y values are roughly exchangeable. That is why we
have focused on simple random sampling as the design. Our approach can handle
missing observations as long as one is willing to assume that observations are
missing at random within each stratum. Note that given a sample our posterior
distribution over the stratifications does not explicitly depend on the design.
Implicitly it does of course, because the design can affect what y values appear
in a stratum. So our approach could be used when the design weights for the
units in the sample are unknown. To see what might happen we repeated the
simulation with two different sampling plans. In the first, individuals in the
second stratum of r2 was twice as likely to be selected as individuals in the first
stratum. In the second, individuals in the second stratum of a2 was twice as
likely to be selected as individuals in the first stratum. In each stratification
when computing the estimate we did not use the sampling weights. The results
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were very similar to those above in that our method did almost as well as
knowing the best stratification.

For a second example we used another variable in the data set nhanes called
sampling weights, say smpwt, which comes from the design. This is a continuous
variable which we converted to a 0–1 variable by setting everything above the
median equal to 1 and the rest to 0. We denote this new variable ysmpwt.
The correlations of this variable with our seven stratifications are 0.32, 0.2,
0.23, 0.53, 0.11, 0.02 and 0.02. So in this case race seems to contain the most
information about the y variable. We repeated our simulations under our three
sampling plans. Under simple random sampling the average absolute error of
the sample mean was 152.9. The average absolute error under the stratifications
r4 and r2 were 128.0 and 130.0 respectively. The average posterior probability
for r4 and r2 was 0.23 and 0.77 respectively. The average absolute error for our
procedure was 137.4. So again we are doing almost as well as knowing the best
stratification. Here the improvement over simple random sampling is a bit more
because there is more information about y in the stratification. The results for
the other two sampling plans were very similar in that we do almost as well as
knowing the best stratification.

In the results of the previous paragraph we have an example where one sees
that our approach tends to prefer stratifications with fewer sets over those with
more sets. One can dampen this effect by using an ε > 1. A good choice of an ε
will depend on the range of the numbers of strata in the possible stratifications
under consideration and a poor choice can lead to poor results when stratifica-
tions with more strata are not as good as ones with with fewer strata. This issue
needs further study and this is why we have only considered situations where
the set of possible stratifications each contain about the same number of strata.

6. Continuous populations and other designs

6.1. Continuous populations

Earlier, we stated that our method would not work when y was a continuous
variable. Technically this is correct because if all the y values are distinct there
is no “clumping” of the y values which allows us to identify the better stratifi-
cations. This is because the posterior distribution only discerns between equal
and unequal values; there is no measurement of how unequal two values are.
One way to overcome this difficulty is to map the set of distinct values in ys to
a smaller set of “bins” (i.e. intervals). We then use this set of possible “bins”
to compute our posterior distribution over the possible stratifications. But of
course we would use the actual observed values in ys values when computing
the estimator for a given stratification.

There are many ways that one could discretize the sample. Here is one simple
approach that seems to work well. Suppose for our sample of size n we want to
replace the observed sample values with r values where n = ν × r and ν and r
are integers. One way do this is to take the ν smallest values in the sample and
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assign them the value 1. We then take the next ν smallest values and assign
them the value 2. We continue in this way until the ν largest values are assigned
the value r.

At first glance this might seem somewhat arbitrary but this is not really
the case. When calculating the posterior distribution, what is important is the
frequency of each discretize value in the sample. The actual values play no role
in the calculation. Given the sample size what is important is not to pick an r
that is too small or too large. If it is too small then you will be throwing away
too much information. On the other hand if it is too large then there will not
be enough clumping in the ys to pick out the better stratifications.

As an example of a continuous variable for y we took the variable smptwt/
10,000 and used the same set of 7 possible stratifications. The correlations be-
tween this variable and our seven stratifications were 0.37, 0.25, 0.20, 0.61, 0.09,
0.08 and 0.02. Here we see that race seems to contain the most information
about y.

One thing that we need to decide is how many groups we should use. This will
depend in part on the sample size and the nature of the population. For a sample
of size 400 we first considered the case with 10 groups of size 40. We repeated our
simulation generating 500 simple random samples. The true population total is
25,535 and the average absolute error of the standard estimator of the population
total was 738.2. The average absolute errors for the first four stratifications
were 637.4, 638.3, 618.6, and 626.6. Absolute errors were considerably larger for
the remaining three stratifications. Our method selected the stratification r2,
the best one, in every sample. We repeated the simulation where the number
of groups were 40. The average absolute error for the various stratifications
was very similar to the previous case. Here stratification r2 had the largest
posterior probability in 458 of the 500 samples. Stratifications r4 and a4 had
the largest posterior probabilities 39 and 3 times respectively. We also repeated
the simulations where the number of groups were 2, 5 and 20. The results were
very similar to those just above: in all cases our method did almost as well as
knowing the best stratification. So our approach appears to be fairly robust
against the choice of the number of groups and in most cases there should be a
reasonably wide range of choices that are close to the best.

A possible concern for our approach is what happens when all the possible
stratifications are equally good or equally bad. Although we will not present
any simulations to show this, what happens is what you would expect. The
posterior distribution over the possible stratifications tends to be uniform and
there is no gain in efficiency; there is just the extra cost of computing the
posterior distribution.

6.2. Other designs

Our approach makes no explicit use of the design probabilities or related weights.
It only uses the amount of homogeneity within strata. So far we have focused on
simple random sampling because it ensures approximate proportional allocation.
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Although this is a good property it is not necessary for our method to work
well. To see what might happen under other designs we return to the y variable
defined just above which is equal to smptwt/10,000. For the set of possible
stratifications we took the set of 6 stratifications formed by crossing all possible
pairs of psu, r2, a2 and g. The correlations between y and these six stratifications,
psu × r2, psu × a2, psu × g, r2 × a2, r2 × g and a2 × g were 0.34, 0.1, 0.08,
0.56, 0.56 and 0.08. Note that the three stratifications that include r2 have the
largest correlations and they are the best stratifications. In 500 simple random
sample of size 400 the ratio of each of their average absolute errors for estimating
the population total to one of the other three average absolute errors was about
0.75.

For each of our four stratifications with two sets (psu, a2, r2 and g) we
considered the design where the inclusion probability for units in the second
stratum was twice that of those in the first. We also considered two designs
which depended on y. Let y = smptwt/10,000. The range of possible values
for y is from 0.43 to 15.81. In the first design the probability that yi appeared
in the sample was proportional to yi + 14 while in the second it was 30 − yi.
So in the first case we will oversample units with larger values of yi while in
the second the units with small value of yi will be oversampled. For each of
these designs we took 500 random samples of size 400. In all cases our posterior
distribution put all of its probability on the three stratifications that included
race. The stratification r2 × g received about two thirds of the probability and
the other two containing race each about one sixth. So our approach had no
difficulty identifying the good stratifications.

As another test of our approach we repeated the above simulations with the
same sampling designs but with just two possible stratifications. The first was
r2 × g and the second used a stratification with four equal sized strata based on
the ordered values of y. The correlation of this second stratification with y was
0.85. Clearly this second stratification is the better one and in our simulations for
every design and for every sample our approach gave it a posterior probability
of one, when the calculation was done to three significant figures.

6.3. Discussion

Stratification is a classic method for improving estimates in finite population
sampling. Often the stratification of interest is constructed using the informa-
tion in an auxiliary variable, say x. We have been interested in the situation
where there is a small set of possible stratifications, each based on a different
x and the statistician is unsure which one to use. We have been assuming that
the population values of an x is known for each unit in the population. But in
some cases this is not really necessary. If x is a categorical variable and the pop-
ulation sizes of the categories are known then one can stratify the sample after
it has been observed. If x is a continuous variable and certain of its population
quantiles are known then these can be used to define the strata.

In post-stratification it is usually assumed that there is an auxiliary variable
x which is much easier to sample than the y variable of interest. In this case
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a much larger preliminary sample of the x variable is taken. This first sample
is then stratified and a second smaller stratified sample is taken to observe
the y values. In our approach the sample can be taken without knowing the
strata membership of the units. Given the sample, our non-informative Bayesian
approach allows us to weight the good stratifications higher than the poor ones
where the weights do not depend on the sampling design. We have seen that the
resulting estimator has good frequentist properties when the sampling design is
simple random sampling as well as some other designs.

These simulations support the notion that finding a good post-stratification
need not depend on the design weights. Intuitively this makes sense, since a good
stratification needs to have homogeneity of the y values within strata. Stratifi-
cations with homogenous strata will tend to be better than those without this
property, independently of how units are weighted within strata. Even though
our method ignores the design when looking for a good stratification, at the
estimation stage, the design weights could carry some additional information.
One example would be if the design weights have been adjusted to account for
non-response. In such cases one could do the following. First find the posterior
probabilities for the stratifications ignoring the design weights. Even if the sum
of these weights is the population size they will not necessarily yield the correct
sum within each stratum. One could then renormalize the design weights in
each stratum to sum to the stratum size and then use these new weights when
calculating an estimate of the stratum total. This raises some complicated is-
sues because the same auxiliary variables that have been used to adjust the
weights to account for missing observations may have also been used to define
the stratifications. This issue merits further study.

7. Final remarks

Here we have defined a non-informative (stepwise) Bayesian model which al-
lows the statistician to consider several possible stratifications. We have shown
how to select the hyperparameters that define the model in an objective fash-
ion. Given the observed data the model yields posterior probabilities for the
stratifications. This approach maintains the objectivity usually associated with
design-based estimation. Guidance on computing and anecdotal evidence of our
method’s effective were also provided. In particular, our simulations suggest that
our approach does almost as well as knowing the best stratification even when
certain subgroups of the population were over sampled.

A possible criticism of our method is that the statistician may want to con-
sider stratifications with a large (more than ten) number of possible strata. If
all the stratifications have about the same number of strata this should not be a
problem. But as we remarked earlier, Cochran (Section 5A.8 (Cochran, 1977))
notes that, typically, most of the precision gain from stratification is obtained
with six or fewer strata. We believe that this is particularly true when a statis-
tician is considering possible post-stratifications. This is why in our simulations
we considered only a small number of stratifications with at most 8 strata.
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Another issue, as we have seen in section 5, is that our model will tend to
prefer stratifications with fewer strata over those with more strata. Zimmer-
man (2013) develops an approach that builds in a penalty term to Pr(h) that
counteracts this preference. In addition he considers other sampling plans which
increase the probability of getting proportional allocation across all stratifica-
tions.

Finally, we acknowledge that, in strict terms, we have defined an approach
that only applies to populations where the response is categorical or very dis-
cretize (i.e. takes on a small set of possible values). However, in Section 6 we
show how the statistician can obtain a posterior distribution on the set of strat-
ifications by mapping a continuous response to set of bins, but still simulate
from the posterior using the original sample of responses.

In summary, our approach can be thought of as a new kind of post-stratifica-
tion. It allows a design based statistician to use an “objective” posterior distri-
bution that lets the observed data weight a small set of pre-specified possible
the stratifications. This can result in significant gains in efficiency without in-
troducing any bias.
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Appendix A: Lemma

Here we provide a lemma needed for the Theorem presented in Section 3.

Lemma. Let v be a fixed positive real number and k be a fixed integer greater
than 1. Also, let S(k−1) be the (k−1)-dimensional unit simplex, let S0

(k−1) denote
its interior, and define

S(ζ)(k−1) = {p ∈ S(k−1) : pj ≥ ζ, j = 1, 2, . . . , k}

for some ζ ∈ (0, 1/k). Then, assume that q ∈ S0
(k−1) and that p ∈ S(ζ)(k−1).

Finally, define the function

fm(p, q) = logm+

k∑
j=1

qj log(vpj) +
log Γ(mvpj)

m
− log Γ(m(vpj + qj))

m

for m = 1, 2, . . . . Then, as m → ∞, two results hold:

(i) fm converges uniformly at a rate of 1/m to a function f on the domain
S(ζ)(k−1)×S0

(k−1) where, for a fixed p, f(p, q) is a strictly convex function
of q with achieves its maximum at q = p.

(ii) the function dm(p, p′) = fm(p, p)−fm(p′, p′) converges uniformly at a rate
faster than 1/m to zero on the domain S(ζ)2(k−1).

Proof. In order to study the limiting behavior of fm, we have to deal with the
limiting behavior of the function log Γ. Recall Stirling’s formula for the Gamma
function (Rudin, 1976, p.194) where z > 0.

lim
z→∞

Γ(z)(
z−1
e

)z−1 √
2π(z − 1)

= 1

Taking the logarithm of both sides, we can also write

log Γ(z) = (z − 1)(log(z − 1)− 1) +
log(2π) + log(z − 1))

2
+ az
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=

(
z − 1

2

)
log(z − 1) + 1− z +

log(2π)

2
+ az

where az → 0 as z → ∞. We now use this result to study the limiting behavior
of the function gm(u) = log Γ(mu)/m + u − u log(mu) for u ∈ [vζ, v + 1) as
m → ∞. In the lines below, we use “little-o” notation, where o(1/m) refers to
an error term which goes to zero more quickly than 1/m.

gm(u) = log Γ(mu)/m+ u− u log(mu)

=

(
mu− 1

2

)
log(mu− 1) + 1−mu+ 1

2 log(2π) + amu

m
+ u− u log(mu)

=
−1

2 log(mu− 1) + 1 + log(2π)
2 + amu

m
+ u log

(
mu− 1

mu

)

=
− log(mu− 1) + log(mu)− log(mu) + log(2π)

2m
+

amu

m

+
1 +mu log

(
mu−1
mu

)
m

=
log(2π)− log(mu)

2m
+

1 +mu log
(
mu−1
mu

)
m

+
− log(1− 1

mu ) + 2amu

2m

=
log(2π)− log(mu)

2m
+

1−mu log
(

mu
mu−1

)
m

+ o(1/m)

=
log(2π)− log(mu)

2m
+

1− (mu− 1) log
(

mu
mu−1

)
m

+
log

(
mu

mu−1

)
m

+ o(1/m)

=
log(2π)− log(mu)

2m
+

log(e)− log

((
1 + 1

mu−1

)mu−1
)

m
+ o(1/m)

=
log(2π)− log(mu)

2m
+ o(1/m)

At this point, we can see that gm converges to zero uniformly on [vζ, v + 1) as
m → ∞. Now, we apply this evaluation of gm in studying the limit of fm.

fm(p, q) = logm+

k∑
j=1

qj log(vpj) +
log Γ(mvpj)

m
− log Γ(m(vpj + qj))

m

= logm+

k∑
j=1

[qj log(vpj) + vpj log(mvpj)− vpj + gm(vpj) +

− (vpj + qj) log(m(vpj + qj)) + (vpj + qj)− gm(vpj + qj)]
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=

k∑
j=1

(vpj + qj)(log(vpj)− log(vpj + qj)) + gm(vpj)

− gm(vpj + qj)− qj

= − 1 +

k∑
j=1

(vpj + qj)(log(vpj)− log(vpj + qj))

+
log

(
vpj+qj
vpj

)
2m

+ o(1/m)

At this point, it is clear that limm→∞ fm exists, that fm converges to it at a
rate of 1/m or faster, and that it and is equal to

f(p, q) = −1 +

k∑
j=1

(vpj + qj)(log(vpj)− log(vpj + qj))

We can also see that convergence at a rate of 1/m is uniform on the domain
(p, q) ∈ S(ζ)(k−1) × S0

(k−1) by looking at the error between fm and f . Here,

we use “big-O” notation, where O(1/m) refers an error term that goes to zero
exactly at a rate of 1/m.

|fm(p, q)− f(p, q)| <
∣∣∣∣ k

2m
log

(
v + 1

vζ

)
+ o(1/m)

∣∣∣∣ = O(1/m)

Now, we will show that f has the property described in result (i). That
is, for a fixed p, f(p, q) is a strictly convex function of q with its maximum at
q = p. First, we fix p ∈ S(ζ)(k−1), and look at the partial derivative ∂

∂qj
f(p, q) for

j = 1, 2, . . . , k−1. Recall that, for q ∈ S0
(k−1), qk is actually just an abbreviation

for 1− (q1 + q2 + . . .+ qk−1).

∂f(p, q)

∂qj
= log

(
vpk + qk

vpk

)
− log

(
vpj + qj

vpj

)

It is clear that, when q = p, all partial derivatives will equal zero. So, we only
need to show that the (k − 1)× (k − 1)-dimensional Hessian matrix is negative
definite (q lies in an open set so there are no boundary conditions to consider).
The second partial derivative with respect to qj , i.e. the j

th diagonal element of
the Hessian matrix, is

∂2f(p, q)

∂q2j
=

−1

vpk + qk
+

−1

vpj + qj

Next, the “mixed” partial derivative f with respect to some pair qj , q
′
j where

1 ≤ j < j′ ≤ k, i.e. the j, j′ off-diagonal element of the Hessian matrix, is

∂2f(p, q)

∂qjqj′
=

−1

vpk + qk

which does not actually depend on j, j′. Now, if we let σ = 1/(vpk + qk) and
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τj = 1/(vpj + qj) for j = 1, 2, . . . , k − 1, the Hessian matrix is equal to −A
where

A =

⎛
⎜⎜⎝

σ + τ1 σ

. . .

σ σ + τk−1

⎞
⎟⎟⎠

and where σ and τj are positive for j = 1, 2, . . . , k − 1. Now, we only need to
show that A is positive definite. So, let D be the (k − 1)-dimensional diagonal
matrix with the vector (τ1, τ2, . . . , τk−1) on the diagonal, and let e be the vector
of 1’s in R

k−1. Then,

xTAx = xTDx+ (k − 1)σxTQx

≥
k−1∑
j=1

τjx
2
j

> 0

Therefore, A is positive definite, the Hessian matrix of f(p, q) is negative defi-
nite, and q = p minimizes f(p, q) for any fixed p ∈ S(ζ)(k−1). This completes the
proof of result (i). Next, we need to show that dm(p, p′) = fm(p, p)− fm(p′, p′)
converges uniformly to zero at a rate faster than 1/m on the domain S(ζ)2(k−1).

First, we study fm(p, q) when p = q.

fm(p, p) =− 1 +

k∑
j=1

(v + 1)pj log

(
v

(v + 1)

)
+

log
(

(v+1)
v

)
2m

+ o(1/m)

=− 1 + (v + 1) log

(
v

(v + 1)

)
+

k log
(

(v+1)
v

)
2m

+ o(1/m)

Now, we can see that, not only does fm(p, p) converge at rate 1/m to a constant
for p ∈ S(ζ)(k−1), but that the O(1/m) term does not depend on p. Hence,
dm(p, p′) = o(1/m) for p, p′ ∈ S(ζ)(k−1), and our proof is complete.

Appendix B: R code for computing posterior probabilities

#Here is an R function which computes the posterior probability

#of the possible stratifications. This assumes the uniform prior,

#maxy defines the possible values for y which are 1:maxy.

#y are values in the sample.

#H is column matrix defining the stratifications for y values in the sample.

#lsstrsz is a list of the strata sizes.

#eps is epsilon.

#N is the popultion size. Each member of lsstrsz should sum to N.
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findpostprob<-function(y,H,maxy,lsstrsz,eps,N)

{

K<-ncol(H)

ans1<-rep(0,K)

for(i in 1:K)

{

strsz<-lsstrsz[[i]]

nstr<-length(strsz)

cntmx<-NULL

for(j in 1:nstr){

cntmx<-rbind(cntmx,tabulate(y[H[,i]==j],nbins=maxy))

}

epsvec<-(strsz/N)*eps

for(j in 1:nstr){

num<-lgamma(maxy*epsvec[j]) +sum(lgamma(epsvec[j]+cntmx[j]))

den<-maxy*lgamma(epsvec[j]) +

lgamma(epsvec[j]*maxy + sum(cntmx[j]))

ans1[i]<-ans1[i] + num - den

}

}

fans<-rep(0,K)

for(i in 1:K){

fans[i]<-1/sum(exp(ans1-ans1[i]))

}

return(fans)

}
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