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José R. Zubizarreta

Department of Health Care Policy, Harvard Medical School
Department of Statistics, Harvard University

180 Longwood Avenue Boston, Massachusetts, U.S.A
e-mail: zubizarreta@hcp.med.harvard.edu; url:
https://scholar.harvard.edu/zubizarreta

Abstract: We propose an approach for conducting inference for linear un-
biased estimators applied to dependent outcomes given constraints on their
independence relations, in the form of a dependency graph. We establish
the consistency of an oracle variance estimator when a dependency graph
is known, along with an associated central limit theorem. We derive an in-
teger linear program for finding an upper bound for the estimated variance
when a dependency graph is unknown, but topological or degree-based con-
straints are available on one such graph. We develop alternative bounds,
including a closed-form bound, under an additional homoskedasticity as-
sumption. We establish a basis for Wald-type confidence intervals that are
guaranteed to have asymptotically conservative coverage.
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1. Introduction

Researchers often encounter dependent data, where the exact nature of that
dependence is unknown, and they wish to make inferences about a feature of
the outcome distribution. When the observed data consist of many independent
clusters, with possibly dependent outcomes within clusters, standard approaches
often remain unbiased and consistent or can be adapted to yield consistent
estimators [e.g. 14]. When many independent clusters are not available, current
methods typically assume either independence of unit outcomes, or that the
dependency structure is known or directly estimable [7, 24, 5, 22, 19]. In many
cases, however, researchers may only have limited information about the nature
of dependence between units, or perhaps only the number of other units on
which a given unit’s outcome depends.

Dependency graphs [3] represent a set of non-independence relationships in a
set of variables [see also bidirected graphical models [21] and marginal indepen-
dence models [9]]. Vertices represent individual units and edges represent the
possibility of probabilistic dependence. Dependency graphs are useful because
they imply marginal non-independence relations in a set of variables, and the
class of joint distributions compatible with any dependency graph is flexible.
When researchers have partial knowledge of independence relations for a set
of variables, it is often easier to incorporate that knowledge into a topological
constraint on a dependency graph than to impose restrictions on the space of
joint distributions for the variables directly.

In this paper, we study the class of linear estimators that remain unbiased
even when outcomes are neither independent nor identically distributed, in-
cluding the case of ordinary least squares regression coefficients. We develop a
framework for constructing confidence intervals for such linear estimators when
applied to dependent outcomes, where independence relationships are unknown
or partially known, but subject to topological constraints on their dependency
graph. We seek an upper bound for the estimated variance of the sum using up-
per bounds for the degrees of each unit in a dependency graph and a local depen-
dence assumption. We show that this optimization problem can be expressed as
an integer linear program for the elements of the adjacency matrix correspond-
ing to a dependency graph. We show that this approach yields asymptotically
conservative Wald-type confidence intervals under a normal approximation. We
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also derive computationally simple bounds, including a closed-form bound, when
the random variables are assumed to be homoskedastic.

2. Setting

Consider a simple graph G = (V , E) with no parallel edges or self-loops. Let
|V| = N . Associated with each vertex i ∈ V is a random variable Yi, and G
characterizes probabilistic dependencies in the outcomes [e.g., 3].

Definition 1 (Dependency graph). G is a dependency graph if for all disjoint
sets V1,V2 ⊂ V with no edge in E connecting a vertex in V1 to a vertex in V2,
the set {Yi : i ∈ V1} is independent from the set {Yj : j ∈ V2}.

Suppose G is a dependency graph and we observe a subset VS ⊆ V , where
|VS | = n. Label these observed vertices 1, . . . , n, and label the unobserved ver-
tices in V \ VS arbitrarily by n + 1, . . . , N . For each i ∈ VS , we observe the
outcomes Y1, . . . , Yn, a fixed vector of coefficients θ = θ1, . . . , θn, and the de-
grees di = |{j : {i, j} ∈ E}| for each i ∈ VS .

Definition 2 (Induced subgraph). For a set of vertices VS ⊆ V, the induced sub-
graph in G is GS = (VS , ES), where ES = {{i, j} : i ∈ VS , j ∈ VS , and {i, j} ∈
E}.

Let GS = (VS , ES) be the induced subgraph of the observed vertices VS . It
follows that GS is also a dependency graph. Let GR = (VS , ER) be a subgraph
of GS , consisting of all the observed vertices in VS , and a subset of the edges in
ES .

Assumption 1 (Observed data). We observe the random outcomes Y1, . . . , Yn,
the fixed degrees d1, . . . , dn, the fixed coefficients θ1, . . . , θn, and the fixed recruit-
ment graph GR.

Let Y = (Y1, . . . , Yn), d = (d1, . . . , dn), and denote the observed data as
Z = (Y, d, θ,GR).

Definition 3 (Linear unbiased estimator (LUE)). An estimator β̂ is a linear
unbiased estimator (LUE) of β if

β̂ =
1

n

∑
i∈VS

θiYi

where E[β̂] = β.

Many familiar linear estimators are unbiased in settings with outcomes that
are neither independent nor identically distributed. For example, consider the
linear regression model E[Yi] =

∑p
j=1 xijβj for i = 1, . . . , n [e.g., 10, Ch. 1],

where xi and β have dimension p × 1, with the coefficients β estimated by
ordinary least squares. Let X be the n × p matrix of covariates, and let Y be
the n× 1 vector of outcomes. The estimated coefficients are β̂ = (X ′X)−1X ′Y .
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Define the p×n matrix Θ = n(X ′X)−1X ′. Then for j = 1, . . . , p we can express

the vector coefficient estimates as β̂ = n−1ΘY , or individually as

β̂j =
1

n

n∑
i=1

Θjiyi,

as in Definition 3. Additional examples include Horvitz-Thompson-type estima-
tors for a finite population total [11, 20], and the difference-in-means estimator
under random assignment of a treatment [18].

In what follows, we wish to conduct inference on β given Z. We proceed by
constructing conservative estimators of

var(β̂) =
1

n2

n∑
i∈VS

n∑
j∈VS

θiθjcov(Yi, Yj).

We may use the square roots of these estimates as standard error estimators in
order to construct Wald-type confidence intervals that are guaranteed to have
asymptotic coverage for β at greater than or equal to nominal levels.

3. Variance estimation

The observed subgraph GR may not reveal all the edges in GS that connect
observed vertices. We consider a class of variance estimators that depend on
knowledge of GS , whose structure is represented by an n× n binary symmetric
zero-diagonal adjacency matrix in which rows and columns are ordered by the
indices 1, . . . , n of the vertices in VS . We now define some key concepts.

Definition 4 (Compatibility). The n × n binary symmetric adjacency matrix
A is compatible with the observed data Z if for each {i, j} ∈ ER, Aij = Aji = 1,
and for each i ∈ VS,

∑
j∈VS

Aij ≤ di.

The last condition in Definition 4 requires that the degree of i in the subgraph
GS not be greater than its degree in the full graph G. Let AO = {AO

ij} be the

true n × n adjacency matrix of GS , where AO
ij = 1 if {i, j} ∈ ES for i, j ∈ VS

and 0 otherwise. Let A(Z) = {A : A is compatible with Z} in the sense of
Definition 4; it is clear that AO ∈ A(Z).

Definition 5 (Oracle estimator). For a family of variance estimators V̂ (A;Z)

defined for A ∈ A(Z), the oracle estimator is V̂ (AO;Z).

For a variance estimator V̂ (A;Z), define the set Am = {A ∈ A(Z) : V̂ (A;Z) is
maximized}.
Definition 6 (Maximal compatible estimator). Let Am ∈ Am. The maximal

compatible estimator is V̂ (Am;Z).

The maximal compatible estimator provides a sharp upper bound for the
oracle estimator because V̂ (AO;Z) ≤ V̂ (Am;Z), with equality when AO ∈ Am.
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We now describe an asymptotic scaling, along with boundedness conditions for
outcome values and unit degrees. We will primarily rely on restrictions on a
dependency graph to obtain root-n consistency, a central limit theorem, and
convergence of the variance estimator. To this end, we describe an asymptotic
regime in which the number of units (vertices in G) is increasing, but the max-
imal dependence between their outcomes is bounded.

Assumption 2 (Asymptotic scaling). Consider the sequence (G, Z)n of nested
graphs G and observed data Z = (GR, Y, d), where GR = (VS , ER), |VS | = n, and
|V| = Nn ≥ n. Assume there exist finite, positive constants c1, c2 such that for
every element (G, Z)n, Pr(|θiYi−β| > c1) = 0, ∀i ∈ VS (bounded outcome values)
and

∑
j∈VS

AO
ij ≤ c2, ∀i ∈ VS (bounded degrees in dependency graph). Further

assume there exists a finite, positive constant c3 such that limn→∞ nvar(β̂) = c3
(nondegenerate limiting variance). Finally, assume c4 is a finite positive con-
stant such that |θi| < c4.

We will proceed by deriving oracle estimators under two sets of nested as-
sumptions. We establish their asymptotic properties, then derive feasible esti-
mators that dominate the oracle estimators.

3.1. General case

We first consider the case where we impose no distributional assumptions on
the outcomes beyond the boundedness conditions of Assumption 2. Define the
plug-in sample variance σ̂2

θ = n−1
∑

i∈VS
(θiYi − β̂)2, and the estimator

V̂1(A;Z) =
1

n2

⎡⎣nσ̂2
θ +

∑
i∈VS

∑
j∈VS

Aij(θiYi − β̂)(θjYj − β̂)

⎤⎦ . (3.1)

The corresponding oracle estimator V̂1(A
O;Z) is consistent.

Proposition 1. Under Assumption 2, for any ε > 0,

lim
n→∞

Pr(|nV̂1(A
O;Z)− nvar(β̂)| > ε) = 0.

Proof. We follow the general proof strategy of Aronow and Samii [1] to show
that when the true dependency structure AO is known and degrees in the de-
pendency graph are bounded, the sum of covariances of outcomes does not
grow too quickly as n → ∞. We will establish mean square convergence of
nV̂1(A

O;Z) to nvar(β̂), allowing us to invoke Chebyshev’s inequality to prove

the proposition. Decompose σ̂2
θ = n−1

∑n
i=1 θ

2
i Y

2
i − n−2 (

∑n
i=1 θiYi)

2
. Linearity

of expectations implies E[β̂] = β and E[n−1
∑n

i=1 θ
2
i Y

2
i ] = n−1

∑n
i=1 θ

2
iE[Y

2
i ].

Since Assumption 2 guarantees bounded outcomes, and the number of nonzero
elements in the covariance matrix of outcome values is O(n), var(β̂) = O(n−1)
and var(n−1

∑n
i=1 θ

2
i Y

2
i ) = O(n−1), yielding convergence of σ̂2

θ .
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Next we address convergence of the second term n−1
∑

i∈VS

∑
j∈VS

AO
ij(θiYi−

β̂)(θjYj−β̂). Asymptotic unbiasedness follows directly from linearity of expecta-

tions and var(β̂) = O(n−1). To establish mean square convergence, we consider
the variance

var

⎛⎝ 1

n

∑
i∈VS

∑
j∈VS

AO
ij(θiYi − β̂)(θjYj − β̂)

⎞⎠
=

1

n2

∑
i,j,k,l∈VS

cov
(
AO

ij(θiYi − β̂)(θjYj − β̂), AO
kl(θkYk − β̂)(θlYl − β̂)

)
=

1

n2

∑
i,j,k,l∈VS

AO
ijA

O
klcov

(
(θiYi − β̂)(θjYj − β̂), (θkYk − β̂)(θlYl − β̂)

)
(3.2)

where the last line follows from bilinearity of covariance. Letting

ξijkl = cov
(
(θiYi − β̂)(θjYj − β̂), (θkYk − β̂)(θlYl − β̂)

)
,

we now examine the conditions under which ξijkl 
= 0. Expanding the covari-
ance,

ξijkl = cov
(
(θiYi − β̂)(θjYj − β̂), (θkYk − β̂)(θlYl − β̂)

)
= E

[
(θiYi − β̂)(Yj − β̂)(θkYk − β̂)(θlYl − β̂)

]
− E

[
(θiYi − β̂)(θjYj − β̂)

]
E
[
(θkYk − β̂)(θlYl − β̂)

]
= θiθjθkθlE[YiYjYkYl]− θiθjθkE[YiYjYkβ̂]− θiθjθlE[YiYjYlβ̂]

− θiθkθlE[YiYkYlβ̂]− θjθkθlE[YjYkYlβ̂] + θiθjE[YiYj β̂
2]

+ θiθkE[YiYkβ̂
2] + θiθlE[YiYlβ̂

2] + θjθkE[YjYkβ̂
2] + θjθlE[YjYlβ̂

2]

+ θkθlE[YkYlβ̂
2]− θiE[Yiβ̂

3]− θjE[Yj β̂
3]− θkE[Ykβ̂

3]− θlE[Ylβ̂
3]

+ E[β̂4]− θiθjθkθl
[
E[YiYj ]E[YkYl]− θiθjθkE[YiYj ]E[Ykβ̂]

− θiθjθlE[YiYj ]E[Ylβ̂] + θiθjE[YiYj ]E[β̂
2]− θkθlE[Yiβ̂]E[YkYl]

+ θiθlE[Yiβ̂]E[Ylβ̂] + θiθkE[Yiβ̂]E[Ykβ̂]− θiE[Yiβ̂]E[β̂
2]

− θjθkθlE[Yj β̂]E[YkYl] + θjθlE[Yj β̂]E[Ylβ̂] + θjθkE[Yj β̂]E[Ykβ̂]

− θjE[Yj β̂]E[β̂
2] + θkθlE[β̂

2]E[YkYl]− θkE[β̂
2]E[Ykβ̂]− θlE[β̂

2]E[Ylβ̂]

+ E[β̂2]E[β̂2]
]

(3.3)

Then by root-n consistency of means and Slutsky’s Theorem, as n → ∞ expec-
tations involving β̂ factorize, yielding, e.g. θiE(Yiβ̂) = θiE(Yi)β + O(n−1). We
therefore combine terms and rewrite (3.3) as

ξijkl = θiθjθkθlcov(YiYj , YkYl)

− β
(
cov(θiYiθjYj , θkYk) + cov(θiYiθjYj , θlYl)
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+ cov(θiYi, θkYkθlYl) + cov(θjYj , θkYkθlYl)
)

+ β2
(
cov(θiYi, θkYk) + cov(θiYi, θlYl)

+ cov(θjYj , θkYk) + cov(θjYj , θlYl)
)
+O(n−1)

= ξ′ijkl +O(n−1), (3.4)

where the limiting covariance is denoted ξ′ijkl. This can only be nonzero if at
least one of the covariance terms in (3.4) is nonzero. Since GS is a dependency
graph, this condition is only met when there exists at least one edge between a
vertex in the set {i, j} and a vertex in the set {k, l}. Therefore AO

ijA
O
klξ

′
ijkl can

only be nonzero if

{AO
ij = AO

kl = 1} and
(
{AO

ik = 1} or {AO
il = 1} or {AO

jk = 1} or {AO
jl = 1}

)
.

By Assumption 2, the degree of each vertex in VS is bounded by c2, so the
condition is satisfied by at most 4nc32 terms in the summation in (3.2). In ad-
dition, we may compute the remainder term

∑
i,j,k,l∈VS

AO
ijA

O
kl(ξijkl − ξ′ijkl) =∑

i,j,k,l∈VS
AO

ijA
O
klO(n−1) = O(n), thus both terms are O(n) before dividing

by n2. Therefore var
(
n−1

∑
i∈VS

∑
j∈VS

AO
ij(θiYi − β̂)(θjYj − β̂)

)
= O(n−1)

and the result follows.

Proposition 1 is applicable to problems where a dependency graph is known,
as it provides a basis for consistent variance estimation, generalizing results for
special cases [7, 2]. We now address the case where the true subgraph GS is not
known, but constraints on the graph are available.

Let Am
1 = {A ∈ A(Z) : V̂1(A;Z) is maximized} be the set of compatible

adjacency matrices that maximize V̂1(A;Z). Let Θ = diag(θ) be the n × n
matrix with Θii = θi and Θij = 0 for i 
= j. We can find an element Am of Am

1

by solving the 0-1 integer linear program

maximize
A

(ΘY − β̂)′A(ΘY − β̂)

subject to A1 � d, A � AR,
(3.5)

where AR is the adjacency matrix of GR and � denotes the element-wise “less-
than” relation.

Since A is an adjacency matrix, we can reduce the program and maximize over
the decision variables that correspond to the upper or lower triangular elements
of A only. Let v̂ij be the ijth element of the sample covariance matrix with
i = 1, ..., n and j = 1, ..., n. Since the sample covariance matrix is symmetric,
we can focus on its upper triangular part and use the decision variable aij = 1
if v̂ij 
= 0, and 0 otherwise, for each i < j. Based on these decision variables,
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the integer linear program (3.5) can be written as

maximize
a

n∑
i=1

n∑
j=i+1

v̂ijaij

subject to

i−1∑
j=1

aji +

n∑
j=i+1

aij ≤ di, i = 1, ..., n,

aij ∈ {0, 1}, i = 1, ..., n, j = 1, ..., n, i < j,

(3.6)

where di is the degree, and further simplified with the constraints A � AR

that make some of the decision variables aij automatically equal to one. The
resulting program has at most n(n− 1)/2 decision variables and in general it is
a multidimensional knapsack problem [12]. See chapter 9 of Kellerer et al 13 for
an overview of the multidimensional knapsack problem.

This program (3.5) is NP-hard, but it admits a polynomial time approxima-
tion scheme (PTAS). Typical PTAS depend heavily on the size of the problem
and their running time can be very high (see, e.g., section 9.4.2 of Kellerer et al
12). In spite of this, in standard practice, for example with 1000 observations
or less, problem (3.5) can be solved in a few seconds with modern optimization
solvers such as Gurobi. To obtain a solution within a provably small optimality
gap, these solvers use a variety of techniques, including: linear programming
and branch-and-bound procedures to reduce the set of feasible solutions; pre-
solve routines applied prior to the branch-and-bound procedures to reduce the
size of the problem; cutting planes methods to remove fractional solutions and
tighten the formulation; and a collection of heuristics to find good incumbent
solutions in the branch-and-bound [4, 15, 17].

While the true adjacency matrix AO is not known, an element Am ∈ Am
1

produces a variance estimate V̂1(A
m, Z) that is at least as large as the oracle

estimator V̂1(A
O;Z). As n grows large, the variance estimate V̂1(A

m, Z) is con-

servative: the probability that nV̂1(A
m) underestimates nvar(β̂) by more than

ε > 0 tends to zero.

Corollary 1. Given Assumption 2, limn→∞ Pr(nvar(β̂)−nV̂1(A
m;Z) > ε) = 0

for any ε > 0.

Proof is given in the Appendix. Corollary 1 does not imply consistency of
V̂1(A

m;Z) as an estimator of var(β̂), nor does it imply that the estimator con-
verges to any particular limiting value. Rather we have established that, for
large n, its distribution will tend to be at least as large as the true variance.

3.2. Alternative bounds under homoskedasticity

When all variances are equal, we can obtain an alternative closed-form bound
that is computationally simpler and less sensitive to between-sample variability
in the empirical variance-covariance matrix. This estimator essentially only de-
pends on the estimated variance of unit outcomes and the maximum number of
edges in a dependency graph.



2246 P. M. Aronow et al.

Assumption 3 (Homoskedasticity). var(θiYi) = var(θjYj), ∀i, j ∈ V.

Under homoskedasticity, the general estimator V̂1(A
m, Z) developed in Sec-

tion 3.1 provides a conservative variance estimate. A bound that is relatively
computationally simple to compute can be derived by noting that when var(θiYi)
= σ2

θ , cov(θiYi, θjYj) ≤ σ2
θA

O
ij . Define the estimator

V̂2(A;Z) =
σ̂2
θ

n

⎡⎣1 + 1

n

∑
i∈VS

∑
j∈VS

Aij

⎤⎦ . (3.7)

The oracle estimator V̂2(A
O, Z) need not be consistent, though it is asymptoti-

cally conservative.

Proposition 2. Given Assumptions 2 and 3, limn→∞ Pr(nvar(β̂)−nV̂2(A
O;Z)

> ε) = 0 for any ε > 0.

Proof. We first define an alternative oracle estimator which presumes knowledge
of the correlations ρi,

V̂ ∗
2 (A

O;Z) =
σ̂2
θ

n

⎡⎣1 + 1

n

∑
i∈VS

∑
j∈VS

AO
ijρi

⎤⎦ .

Multiplying by n, nV̂ ∗
2 (A

O;Z) = σ̂2
θ

[
1 + 1

n

∑
i∈VS

∑
j∈VS

AO
ijρi

]
. As in the proof

of Proposition 1, σ̂2
θ converges in mean square. By Assumption 2, 1 ≤ 1 +

1
n

∑
i∈VS

∑
j∈VS

AO
ij ≤ 1 + c2, allowing us to invoke Slutsky’s Theorem and

Chebyshev’s Inequality to show limn→∞ Pr(|nV̂ ∗
2 (A

O;Z) − nvar(β̂)| < ε) = 0.

The Cauchy-Schwarz Inequality (i.e., all ρi ≤ 1) implies V̂ ∗
2 (A

O;Z) ≤ V̂2(A
O;Z)

across all sample realizations. The result follows directly.

As before, we can maximize the estimator V̂2(A;Z) over the family of com-

patible dependency graphs. Define Am
2 = {A ∈ A(Z) : V̂2(A;Z) is maximized},

and let Am ∈ Am
2 . To find an element of Am

2 , we solve the 0-1 integer linear
program

maximize
A

1′A1

subject to A1 � d, A � AR,
(3.8)

where again A is an arbitrary 0-1 adjacency matrix and AR is the adjacency
matrix of GR. In order to solve the program (3.8), let v̂ij = 1 for every i = 1, ..., n
and j = 1, ..., n in (3.6). Note that finding the solution to this problem does
not depend on the empirical variance-covariance matrix; the variability of the
estimator V̂2(A

m;Z) is purely attributable to estimation error in σ̂2
θ .

Since V̂2(A;Z) relies only on the number of positive entries in A, we can
derive a looser closed-form upper bound by considering the maximum number
of edges that can be in ES . For i ∈ VS , let d

′
i = min{di, n− 1} be the degree of
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i in G, truncated at n− 1. Let

V̂ ′
2(Z) =

σ̂2
θ

n

[
1 +

1

n

∑
i∈VS

d′i

]
. (3.9)

The estimator (3.9) does not depend on any particular compatible adjacency
matrix.

Lemma 1. Let Am ∈ Am. Then V̂2(A
O, Z) ≤ V̂2(A

m;Z) ≤ V̂ ′
2(Z), with

V̂2(A
m;Z) = V̂ ′

2(Z) when d′i =
∑

j∈VS
Am

ij for each i ∈ VS.

Proof is given in the Appendix. The upper bound estimators under homoskedas-
ticity are asymptotically conservative.

Corollary 2. Given Assumptions 2 and 3, then for any ε > 0,

lim
n→∞

Pr(nvar(β̂)− nV̂2(A
m;Z) > ε) = 0,

lim
n→∞

Pr(nvar(β̂)− nV̂ ′
2(Z) > ε) = 0.

The proof follows from Lemma 1 and the same reasoning employed in the proof
of Corollary 1.

4. Wald-type confidence intervals

We now prove that our variance estimates can be used to form valid Wald-type
confidence intervals about β. First, we establish a central limit theorem for β̂
given our asymptotic scaling.

Lemma 2. Given Assumption 2,
(
β̂ − β

)/√
var(β̂) →d N(0, 1).

Lemma 2, a standard result in applying Stein’s method to the setting of local
dependence, has been proven by, e.g., Theorem 2.7 of Chen et al [6]. Similarly,
we reiterate the well-known basis for Wald-type confidence intervals.

Lemma 3. Given Assumption 2, if a variance estimator V̂ (A;Z) satisfies

lim
n→∞

Pr(|nV̂ (A;Z)− nvar(β̂)| > ε) = 0,

then confidence intervals formed as β̂± z1−α/2

√
V̂ (A;Z) will have 100(1−α)%

coverage for β in large n.

Lemma 3 follows directly from Lemma 2 and Slutsky’s Theorem. We now
establish the validity of confidence intervals constructed via Lemma 3.

Proposition 3. Given Assumption 2, if a variance estimator V̂ (A;Z) satisfies

lim
n→∞

Pr(nvar(β̂)− nV̂ (A;Z) > ε) = 0,
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then confidence intervals formed as β̂ ± z1−α/2

√
V̂ (A;Z) will have at least

100(1− α)% coverage for β in large n.

Proof. Define a random variable U such that U = V̂ (A;Z) if V̂ (A;Z) ≤ var(β̂)

and var(β̂) otherwise. Then limn→∞ Pr(|nU − nvar(β̂)| > ε) = 0, and by
Lemma 3 Wald-type confidence intervals formed with U as a variance estimate
will have at least proper coverage. Across every sample realization, V̂ (A;Z) ≥ U ,

and thus the coverage of Wald-type confidence intervals using V̂ (A;Z) will be
also be at least proper levels.

It follows that Wald-type confidence intervals constructed using the conser-
vative variance estimators derived in Section 3 yield conservative asymptotic
coverage.

Corollary 3. Given Assumption 2, confidence intervals formed as β̂ ± z1−α/2√
V̂1(Am) have at least 100(1− α)% coverage for β in large n.

Corollary 4. Given Assumptions 2 and 3, confidence intervals formed as β̂ ±
z1−α/2

√
V̂2(Am;Z) or β̂ ± z1−α/2

√
V̂ ′
2(Z) have at least 100(1 − α)% coverage

for β in large n.

Proofs for Corollaries 3 and 4 follow directly from Corollaries 1 and 2 and
Proposition 3. Upper bounds for the variance estimates can be obtained by
solving a relaxed form of the programs (3.5) and (3.8). By Proposition 3, using
such upper bounds as a basis for conservative inference will also yield valid
confidence intervals. In practice, the results obtained by modern optimization
solvers will be tighter with a provably small optimality gap and thus in problems
of moderate size will typically be preferable.

5. Discussion

We have developed conservative estimators for the variance of a linear unbiased
estimator under partial observation of a dependency graph and assumptions
about the variance of individual outcomes. The variance estimation setting we
address here can accommodate a wide variety of dependency and observation
assumptions. For example, Assumption 1, which states that we observe Z =
(Y, d,GR), can be weakened when GR is completely unknown. In this case the
constraint in the integer linear programs (3.5) and (3.8) becomes A � 0 where 0
is the n×nmatrix of all zeros; this constraint is met for all adjacency matrices A,
so it becomes superfluous. Alternatively, we may not have full knowledge of the
degrees d = (d1, . . . , dn), and instead have only an upper bound d∗i for each di,
or a global upper bound di ≤ d∗ for all i = 1, . . . , n. Conservative variance
estimation in both of these cases can be achieved (by substituting d∗i or d∗ for
di) with no change to the programs (3.5) and (3.8) or to the asymptotic results
given here. When no information about GR or the degrees d is available, setting
every di = d∗ = n− 1 delivers a maximally conservative upper bound.
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We note here three extensions. First, it is likely possible to extend our results
to obtain confidence intervals more generally for asymptotically linear estima-
tors using an empirical analogue of the variance of the influence function as the
objective function. Second, a generalization of our results may facilitate con-
servative inference for causal estimands under interference between units [e.g.,
23, 16], given interference that can be characterized by a constrained dependency
graph. Finally, the general logic of our approach — maximizing an estimator
over a space of graphical structural relations [e.g. 8] — may be profitably be
used to obtain conservative interval (or region) estimates for network function-
als, including with alternative representations of constraints on the dependency
structure (e.g., restrictions compatible with Markov random field-type assump-
tions). Furthermore, extensions of our approach may not require that constraints
involving the adjacency matrix A be linear. More generally, if the constraint is
of the form f(A) ≤ 0, and the system can be solved, it is straightforward to con-
ceptualize a broader class of inferential procedures involving network-topological
constraints beyond maximum degree, e.g. triangles, diameter, or clustering.
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Appendix A: Proofs

Proof of 1. Across all sample realizations, V̂1(A
m;Z) ≥ V̂1(A

O;Z). Then by
Proposition 1,

lim
n→∞

Pr(nvar(β̂)− nV̂1(A
m;Z) > ε)

≤ lim
n→∞

Pr(nvar(β̂)− nV̂1(A
m;Z) + nV̂1(A

m;Z)− nV̂1(A
O;Z) > ε)

= lim
n→∞

Pr(nvar(β̂)− nV̂1(A
O;Z) > ε)

= 0,

(A.1)

as claimed.

Proof of Lemma 1. By definition, V̂2(A;Z) ≤ V̂2(A
m;Z) for every A ∈ A. Since

AO ∈ A, it follows that V̂2(A
O, Z) ≤ V̂2(A

m;Z). Now let dmi =
∑

j∈VS
Am

ij be
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the degree of i in the adjacency matrix Am, and note that for every i ∈ VS ,
dmi ≤ d′i. Then

V̂2(A
m;Z) =

σ̂2
θ

n

⎡⎣1 + 1

n

∑
i∈VS

∑
j∈VS

Am
ij

⎤⎦
=

σ̂2
θ

n

[
1 +

1

n

∑
i∈VS

dmi

]

≤ σ̂2
θ

n

[
1 +

1

n

∑
i∈VS

d′i

]
= V̂ ′

2(Z)

as claimed. Now consider Am ∈ Am with the property that
∑

j∈VS
Am

ij = d′i =

min{di, n− 1} for all i ∈ VS . Then V̂2(A
m;Z) = V̂ ′

2(Z), as claimed.

Appendix B: Statistical software implementation

We implement this approach in the new statistical software package depinf

for R. depinf includes two basic functions: depgraph, for finding an adjacency
matrix that maximizes the estimated variance of β̂ given general constraints
on the degree of dependence of the observations (these are problems (3.5) and
(3.8) above), and depvar for calculating the variance estimates (3.1) and (3.7).
In both depgraph and depinf, we give the option to find an exact solution to
(3.5) and (3.8) via integer programming, or an approximate solution to the re-
laxations of (3.5) and (3.8) via linear programming. Naturally, the running time
of the approximate solution is lower, but it provides a more conservative variance
estimate. In order to solve (3.5) and (3.8), depgraph can use three different opti-
mization solvers: CPLEX, GLPK and Gurobi. By default, depgraph uses GLPK,
which can be downloaded from the R repository CRAN. To solve large instances
of the problem exactly, we strongly recommend using either CPLEX or Gurobi,
which are much faster but require a license and special installation. The depinf
package can be obtained at https://github.com/jrzubizarreta/depinf.
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