Electronic Journal of Statistics Vol. 12 (2018) 1779–1781 ISSN: 1935-7524 https://doi.org/10.1214/18-EJS1422

Corrigendum to "Classification with asymmetric label noise: Consistency and maximal denoising"*

Gilles Blanchard

Institut für Mathematik Universität Potsdam e-mail: gilles.blanchard@math.uni-potsdam.de

Clayton Scott

Electrical and Computer Engineering University of Michigan, Ann Arbor e-mail: clayscot@umich.edu

Abstract: We point out a flaw in Lemma 15 of [1]. We also indicate how the main results of that section are still valid using a modified argument.

Received March 2018.

The proof of Lemma 15 in [1] is invalid because it uses that the distribution of Y given \tilde{Y} is independent of X. Unfortunately, this is not true even if \tilde{Y} given Y is independent of X, as can easily be verified using Bayes rule.

Fortunately, the other results [1] that depend on Lemma 15 can still be proved, using an analogue to Lemma 15 for the label flipping model [2, 3]. We state this alternate lemma and offer a concise proof, using the notation of [1].

Lemma 1. Let (X, Y, \tilde{Y}) be jointly distributed. Assume \tilde{Y} given Y is independent of X, denote $\rho_i = \Pr(\tilde{Y} \neq i | Y = i)$ and assume $\rho_0 + \rho_1 < 1$. Then for any f,

$$(1 - \rho_0 - \rho_1)(R_P(f) - R_P^*) = R_{\tilde{P},\alpha}(f) - R_{\tilde{P},\alpha}^*$$

where

$$\alpha = \frac{1}{2} + \frac{1}{2}(\rho_0 - \rho_1).$$

Proof. We have

$$\begin{split} \tilde{\eta}(x) &= \Pr(\tilde{Y} = 1 | X = x) \\ &= \Pr(\tilde{Y} = 1 | Y = 1, X = x) \Pr(Y = 1 | X = x) \\ &+ \Pr(\tilde{Y} = 1 | Y = 0, X = x) \Pr(Y = 0 | X = x) \\ &= (1 - \rho_1) \eta(x) + \rho_0 (1 - \eta(x)) \\ &= (1 - \rho_0 - \rho_1) \eta(x) + \rho_0. \end{split}$$

*Main article 10.1214/16-EJS1193.

G. Blanchard and C. Scott

It follows that

$$\eta(x) - \frac{1}{2} = \frac{\tilde{\eta}(x) - \alpha}{1 - \rho_0 - \rho_1}$$

where

$$\alpha = \frac{1}{2} + \frac{1}{2}(\rho_0 - \rho_1),$$

and therefore

$$(1 - \rho_0 - \rho_1)(R_P(f) - R_P^*) = (1 - \rho_0 - \rho_1)\mathbb{E}_X[|\eta(X) - \frac{1}{2}|\mathbf{1}_{\{u(f(X))\neq u(\eta(X) - \frac{1}{2})\}}]$$

= $\mathbb{E}_X[|\tilde{\eta}(X) - \alpha|\mathbf{1}_{\{u(f(X))\neq u(\tilde{\eta}(X) - \alpha)\}}]$
= $R_{\tilde{P},\alpha}(f) - R_{\tilde{P},\alpha}^*$

where we have used Eqns. (20) and (21) from [1] (Note that the left-hand side of Eqn. (21) should be $R_{P,\alpha}(f) - R_{P,\alpha}^*$).

Remark 1. $\pi_0 + \pi_1 < 1$ is equivalent to $\rho_0 + \rho_1 < 1$ provide $q := \Pr(Y = 1)$ and $\tilde{q} := \Pr(\tilde{Y} = 1)$ satisfy $0 < q, \tilde{q} < 1$. To see this, suppose $\rho_0 + \rho_1 < 1$. Bayes' rule gives

$$\pi_0 = \frac{\rho_1 q}{\rho_1 q + (1 - \rho_0)(1 - q)}$$

and

$$\pi_1 = \frac{\rho_0(1-q)}{\rho_0(1-q) + (1-\rho_1)q}$$

and algebra leads to

$$1 - \pi_0 - \pi_1 = (1 - \rho_0 - \rho_1) \frac{q(1 - q)}{[\rho_1 q + (1 - \rho_0)(1 - q)][\rho_0 (1 - q) + (1 - \rho_1)q]}.$$

The ratio on the right is positive provided 0 < q < 1, and thus $\pi_0 + \pi_1 < 1$. The reverse implication uses identical reasoning, and establishes that if $\pi_0 + \pi_1 < 1$, then

$$\rho_0 = \frac{\pi_1 \tilde{q}}{\pi_1 \tilde{q} + (1 - \pi_0)(1 - \tilde{q})}$$

and

$$\rho_1 = \frac{\pi_0(1-\tilde{q})}{\pi_0(1-\tilde{q}) + (1-\pi_1)\hat{q}}$$

and $\rho_0 + \rho_1 < 1$. In light of this remark, it should be stipulated that $0 < q, \tilde{q} < 1$ throughout Section 7.

Remark 2. The remainder of the arguments in Section 7 now carry forward with this new α . The only difference is that a different estimator for $\alpha = \frac{1}{2} + \frac{1}{2}(\rho_0 - \rho_1)$ is needed. Such an estimator is obtained from the formulas for ρ_0 and ρ_1 in terms of π_0, π_1 , and \tilde{q} in the previous remark. Since \tilde{q} can be estimated easily from the noisy training data, and π_0 and π_1 can be estimated in the same way as described in the paper, we still get a consistent estimator for α , and this estimator will still satisfy Proposition 17 (the rate of convergence of $\hat{\alpha}$ to α) under (C'). Thus, the proofs of the main consistency results still hold.

1780

Corrigendum

Remark 3. The alternate lemma described above actually allows us to drop the condition (A') in the consistency results, and return to the weaker condition (A).

Remark 4. In light of Remark 1 above, the assumption in the co-training theorem of Section 8 can be replaced by the equivalent condition that the sum of the false positive and false negative rates of h is less than 1. In light of Remark 3, the last sentence of Section 8 should be modified so that assuming (A') is no longer required.

References

- G. Blanchard, M. Flaska, G. Handy, S. Pozzi, and C. Scott. Classification with asymmetric label noise: Consistency and maximal denoising. *Elec*tronic Journal of Statistics, 10:2780–2824, 2016. MR3549019
- [2] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari. Learning with noisy labels. In Advances in Neural Information Processing Systems 26, 2013.
- [3] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari. Cost-sensitive learning with noisy labels. *Journal of Machine Learning Research*, 18 (155):1-33, 2018. URL http://jmlr.org/papers/v18/15-226.html.