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Abstract: We consider the problem of Bayesian inference for changepoints
where the number and position of the changepoints are both unknown. In
particular, we consider product partition models where it is possible to
integrate out model parameters for the regime between each changepoint,
leaving a posterior distribution over a latent vector indicating the presence
or not of a changepoint at each observation. The same problem setting has
been considered by Fearnhead (2006) where one can use filtering recursions
to make exact inference. However, the complexity of this filtering recursions
algorithm is quadratic in the number of observations. Our approach relies on
an adaptive Markov Chain Monte Carlo (MCMC) method for finite discrete
state spaces. We develop an adaptive algorithm which can learn from the
past states of the Markov chain in order to build proposal distributions
which can quickly discover where changepoint are likely to be located. We
prove that our algorithm leaves the posterior distribution ergodic. Crucially,
we demonstrate that our adaptive MCMC algorithm is viable for large
datasets for which the filtering recursions approach is not. Moreover, we
show that inference is possible in a reasonable time thus making Bayesian
changepoint detection computationally efficient.
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1. Introduction

Changepoint problems arise in many practical instances in statistics, for ex-
ample, signal processing, financial economics, process monitoring control and
DNA sequence analysis. Here we consider chronologically ordered data over a
period of time where it is suspected that there may have been some change(s)
in the underlying generating process. For changepoints in parametric models,
a parameter value (e.g. Gaussian mean or Gaussian precision) applicable to a
certain time period may not extend well to another time period. Some examples
include the rate of occurrences of coal mining disasters during the 18th and 19th
century [15], gene expression sequences [9] and financial time series [3]. In this
paper it is shown that analysis of multiple changepoint problems is feasible for
larger datasets in a Bayesian setting using adaptive MCMC.

Markov Chain Monte Carlo methods (MCMC) can be used to estimate
changepoint locations conditional on a fixed number of changepoints, Stephens
[18] presents an MCMC method for this problem. When the number of change-
points is unknown, inference is more challenging. This is the problem which we
address in this paper. A common approach for state-space dimension traversing
is the reversible jump algorithm of Green [6] which performs trans-dimensional
MCMC over a set of models, each incorporating a different number of change-
points. A drawback of this algorithm is that it can be difficult to design proposals
so that the chain mixes well within and well between all available models. An
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alternative approach due to Chib [4] compares models with different numbers
of changepoints using approximate Bayes Factors from the MCMC output in a
post-processing step. The latter method requires MCMC model output for each
number of changepoints under consideration.

Fearnhead [5] developed a clever forward-backward algorithm, filtering re-
cursions, which allows one to sample exactly from the posterior distribution of
changepoints. The filtering recursions share some similarity to product partition
models [1]. The overwhelming advantage of this method is that once the filtering
recursions have been calculated, it allows one to draw samples from the poste-
rior using Carpenter’s algorithm [2] that exploits the exponentially distributed
spacing of order statistics in a uniform distribution.

However, a drawback of filtering recursions is that the algorithm requires a
precomputation step to compute the recursions which has a time complexity that
is quadratic in the number of observations and thus restricts the amount of data
that can be used to perform efficient inference in a reasonable time. Fearnhead
[5] offers a solution to this problem that lowers the precision of the recursions in
order to make their calculation time approximately linear in the number of ob-
servations and the price to pay is it results in an approximate algorithm thereby.

Adaptive Markov Chain Monte Carlo Methods (AMCMC) have recently
emerged in an attempt to improve the efficiency of MCMC algorithms. Typ-
ically adaptive MCMC uses on-the-fly refinement of the proposal distribution,
taking information from the past history of the MCMC chain to yield a better
mixing algorithm. The adaptive Metropolis algorithm of Haario et al. [8] was
one of the earliest adaptive MCMC algorithms using a random walk Metropolis
algorithm with an adapted covariance matrix. It is limited to continuous state
spaces and to target distributions where a Gaussian proposal is suitable.

Adaptive MCMC methods on discrete state spaces have not yet been widely
studied, yet these are very well suited to this methodology. This is because
the design of adaptable proposals on discrete state spaces has the advantage
that discrete state spaces carry the property of smallness, outlined in Meyn and
Tweedie [14], so that simultaneous uniform ergodicity of the proposal kernels
is guaranteed, provided that the state space is irreducible and the transition
kernel is aperiodic. The second condition necessary for ergodicity of adaptive
MCMC, diminishing adaptation, can be satisfied in many ways on a discrete
state space leading to widely applicable methods in problems such as variable
selection and Bayesian optimisation [12]. Griffin et al. [7] presents an adaptive
MCMC algorithm on a discrete state space to carry out variable selection in a
model choice setting.

In recent years, the emergence of big data across a vast range of models
in statistics and machine learning has lead to the need for methods that can
scale well to large datasets. We highlight how our adaptive changepoint ap-
proach scales well with an increasing number of observations and an increasing
number of changepoints. The size of large datasets can present challenges for
non-adaptive MCMC due to the presence of many local modes in the posterior
distribution. We show empirically how our algorithm learns to move away from
local modes which hinder MCMC.
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The remainder of the paper is organised as follows. Section 2 describes multi-
ple changepoint models in a Bayesian framework, Section 4 describes our adap-
tive changepoint sampler and introduces some advanced adaptation techniques
which improve efficiency. We present a brief review in Section 3 of filtering recur-
sions [5]. Section 5 provide a proof of our algorithm and results for three datasets
are presented in Section 6 along with comparisons to filtering recursions.

All methods in this paper have been implemented in C using the Intel C
compiler running on an Intel i7 3.40GhZ equipped machine with 16GB of RAM.
Code is available on request from the authors.

2. Multiple changepoint models

Consider observed data y = (y1, y2, . . . , yn), where observation yi is observed
before observation yj , for i < j. We model y such that each observation yi arises
independently from a likelihood model depending on a parameter θi ∈ Θ whose
value may or may not change from one observation to the next. The points at
which θi does change are called changepoints.

Consider the possibility of an unknown k < n changepoints in y occurring
at positions τ = {τ1, τ2, . . . , τk}. These changepoints partition y into k + 1
contiguous non-overlapping segments

{(y1, yτ1), (yτ1+1, yτ2), . . . , (yτk+1, yn)} . (2.1)

This partitioning of y can be represented by a fixed length latent changepoint
indicator vector z = {z1, z2, . . . , zn−1} with zt = 1 for each t ∈ τ and zt = 0 for

each t /∈ τ , with the number of changepoints satisfying k =
∑n−1

i=1 zi. Within
segment j, the likelihood has a constant parameter θj , 1 ≤ j ≤ k + 1. The full
likelihood across all segments can be expressed as a product of k + 1 segment
likelihoods

f(y|θ1, θ2, . . . , θk+1, z) =
k+1∏
j=1

τj∏
i=τj−1+1

f(yi|θj) (2.2)

where τ0 = 0, τk+1 = n and where f(yi|θj) denotes the likelihood of observa-
tion yi in a segment with parameter θj . In a Bayesian formulation the joint
posterior distribution for the latent changepoint indicator vector z and segment
parameters θ = {θ1, . . . , θk+1} can be written as a product of the full segment
likelihood (2.2) and the priors for z and θ,

π(z,θ|y) ∝ f(y|θ, z)π(θ|z)π(z)

=

⎛⎝k+1∏
j=1

τj∏
i=τj−1+1

f(yi|θj)

⎞⎠⎛⎝k+1∏
j=1

π(θj)

⎞⎠π(z).
(2.3)

The dependence of θ on z is only through the prior multiplicity of θ (k + 1)
which sets the dimension of the prior term π(θ|z). This shares some similarity
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to the hierarchical changepoint model used in Green [6] except that it does not
condition on the number of changepoints and so this varies over the support of z.

The prior for z specifies how the changepoint positions should be distributed
prior to the data being observed. A convenient form that captures the gap
lengths between changepoints is,

π(z) = π(τ1, . . . τk) = g0(τ1)

⎛⎝ k∏
j=2

g(τj − τj−1)

⎞⎠ (1−G(n− τk)) ,

where g0(·) is the distribution of the distance to the first changepoint, g(·) is the
gap distribution for the distance between successive changepoints and G(·) is
the cumulative distribution function for g(·). The choice for g can be a negative
binomial or its special case, a geometric distribution

g(t) =

(
t− 1

k − 1

)
pk(1− p)t−k, g0(t) = p(1− p)t−1.

A more complex prior that minimises the a priori clustering of changepoints [6],
is specified by the distribution of even order statistics of a draw of size 2k+1 from
(1, . . . , n−1) without replacement. This prior prevents changepoints occurring at
adjacent observations which minimises outliers (degenerate changepoints) being
classified as true changepoints.

The priors for θj can be chosen to be conjugate to the likelihood, however
this is not a requirement. The next section details the collapsing of the joint
posterior (2.3) when the prior is conjugate but if it is possible to collapse the
joint posterior using another method (e.g. quadrature) this is also feasible for
use in our algorithm.

2.1. Collapsing multiple changepoints models

We assume that it is possible to integrate (collapse) out θ = {θ1, θ2, . . . , θk+1}
parameters from the posterior (2.3) to leave a discrete state space of changepoint
positions. This is also the approach taken by Fearnhead [5]. With an appropriate
conjugate prior for θ, the resulting posterior for z is

π(z|y) ∝
∫
θ

f(y|θ, z)π(θ)π(z) dθ

= π(z)

k+1∏
j=1

(∫
θj

∏τj

i=τj−1+1
f(yi|θj)π(θj) dθj

)

= π(z)

k+1∏
j=1

P(τj−1 + 1, τj),

(2.4)

where P(τj−1+1, τj) =
∫
θj

∏τj
i=τj−1+1 f(yi|θj)π(θj) dθj denotes the evidence for

segment (yτj−1+1, yτj ). The evidence (marginal likelihood) is the probability of
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the data observed in that segment after the dependence on the parameter θj
has been integrated out with respect to its prior. The dependence of θ on z has
been removed; the position of changepoints and the within segment parameter
are assumed independent.

2.1.1. A simple example of collapsing – Poisson Gamma

Consider the case where the data in segment j can be modelled by a Poisson
distribution with parameter θj > 0. Placing a Gamma(α, β) prior on each θj
and integrating out θj for j ∈ {1, . . . , k+1}, the marginal likelihood for segment
(ya, yb) is,

P(a, b) =

∫ ∞

0

βα

Γ(α)
θα−1
j e−αθj

b∏
i=a

θyi

j

yi!
e−θj dθj

=
βα

Γ(α)

1

Fa:b

Γ(Sa:b + α)

(b− a+ 1 + β)
Sa:b+α

,

(2.5)

where

Fa:b =
∏b

i=a
yi! and Sa:b =

∑b

i=a
yi.

Precomputation of F1:t and S1:t for 1 ≤ t ≤ n and using the following recursions

Fa:b =
F1:b

F1:a−1
and Sa:b = S1:b − S1:a−1,

negates the need to store each individual yi for computation of the marginal like-
lihood (2.5) which is required to be computed many times in filtering recursions
and in our algorithm. Similar precomputations are available for other likelihood
models, see Appendix B for the Gaussian distribution mean and precision.

3. Change point inference using filtering recursions

Fearnhead [5] provides a filtering recursions approach to inferring changepoint
positions. Barry and Hartigan [1] have also used these type of recursive meth-
ods for analysis of changepoint problems. We give a brief recap of the filtering
recursions method and we will use the method as a comparison to our adaptive
changepoint sampler. Some drawbacks of the filtering recursions will also be
discussed.

Define for t = 2, . . . , n

Q(t) = P(yt, . . . yn|changepoint at t− 1)

and Q(1) = P(y1, . . . yn). Fearnhead [5] provides a backward recursion for Q(t)
as follows, using the marginal likelihood P(a, b) in (2.4),

Q(t) =

(
n−1∑
i=t

g(i− t+ 1)P(t, i)Q(i+ 1)

)
+ P(t, n)(1−G(n− t)).
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The function g(·) is the gap length distribution between changepoints (for ex-
ample, geometric) and G(·) is its cumulative distribution function.

Once the Q(t) values have been calculated (normally on the log scale) it is
possible to draw samples of size N from the posterior distribution of positions
as follows:

1. Initialise all N samples to have a changepoint at t = 0, i.e. τ0 = 0
2. For t = 0, . . . , n− 2,

(a) Find nt, the number of samples for which the last changepoint was
at time t.

(b) If nt > 0, compute the probability distribution for the next change-
point

P(τj |τj−1) = P(τj−1+1, τj)Q(τj+1)g(τj−τj−1)/Q(τj−1+1). (3.1)

(c) Sample nt times, using Carpenter’s algorithm (see Appendix D for
details), from P(τj |τj−1) and update the nt samples using a random
permutation of the nt samples.

The filtering recursions approach has the advantage that the design of the
method allows one to draw independently from the posterior distribution. More-
over Carpenter’s algorithm for sampling the changepoints is fast. This method
however has some drawbacks which arise as the dataset increases in size. Firstly,
the calculation of the Q(t) values is O(n2) as the recursion for each possible or-
dered pair of points (i < j) must be computed before perfect simulation can
begin. This calculation time can be reduced by truncating the Q(t) sums once
they fail to grow by a certain amount, Fearnhead [5] suggests 10 × 10−10 and
we compare various truncation levels in the results section. The price to pay for
this reduced run time is that the truncation introduces an approximation to the
recursion algorithm. Secondly, hyperparameters must remain fixed throughout
the algorithm as a change in hyperparameters or indeed the inclusion of a hyper-
prior would require complete recalculation of Q(t). Thirdly, for larger datasets
(300 000 observations for the largest example considered in this paper) the tran-
sition probabilities in (3.1) have the potential to become numerically unstable,
as we outline in Section 6.4.1. We suggest using the exact algorithm, where pos-
sible. However for larger (> 100 000 observations) datasets we advocate the use
of our adaptive changepoint sampler as it is much more stable, by comparison.

4. Adaptive MCMC changepoint sampler

We now introduce our adaptive MCMC changepoint sampler to sample from
the posterior distribution of changepoints (2.4). Wyse and Friel [21] developed
an MCMC scheme based on adding and deleting changepoints using samplers
similar to those used by Lavielle and Lebarbier [11]. The algorithm of Wyse
and Friel [21] turns out to be a special case of our adaptive algorithm when
no adaptation occurs and as we shall see, the adaptive MCMC algorithm we
develop offers an improvement in efficiency, by comparison.
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Sampling over z is a challenging problem as the size of the space scales expo-
nentially with n, leaving brute force enumeration of all z intractable. However,
for datasets with few changepoints (k � n) the realised z vectors will be quite
sparse. The design of our algorithm motivates searching element-wise through z
identifying which elements (positions) are likely changepoints and those which
are not. Positions which are deemed unlikely to be changepoints will tend not to
be proposed as changepoint locations and conversely locations which are identi-
fied as being locations of changepoints will tend to be proposed more frequently.
In this way, our algorithm will facilitate proposed moves to centre around ar-
eas of high changepoint activity and move away from areas of low changepoint
activity. As we will shortly see, this adaptive algorithm where proposed change-
point locations change over time will by design preserve the ergodicity of the
adaptive Markov chain.

We now describe the adaptive algorithm in detail and defer a proof of ergod-
icity to Section 5.

4.1. Detailed description

At iteration t denote the current state of changepoint locations as z(t). Our
algorithm consists of three proposal moves to update the vector z(t). The three
proposal moves involve adding a new changepoint to z(t) (add move) and delet-
ing a changepoint from z(t) (delete move). At each iteration t, one of either the
add move or the delete move is selected with probability p and 1−p, respectively.

The space of all realisable z vectors is large, having 2n−1 elements. It is im-
portant therefore to add changepoints in locations of high posterior changepoint
probability and delete changepoints in areas of low posterior changepoint prob-
ability. Adaptively learning these areas on-the-fly provides a route to a scalable
inferential framework for large datasets, as we now illustrate.

We associate with z(t) two iteration dependent selection weight vectors a(t) =

{a(t)1 . . . , a
(t)
n−1} and d(t) = {d(t)1 . . . , d

(t)
n−1}. We remark that these weights corre-

spond to how often the algorithm should pick a particular point. This is differ-
ent to the approach of Griffin et al. [7] where the vectors are used as inclusion
probabilities for variable selection. If a changepoint is proposed to be added, a

position i (having z
(t)
i = 0) will be selected as the add position with probability

a
(t)
i /

∑
{j,zj=0} a

(t)
j . If a changepoint is proposed to be deleted, some position

i (having z
(t)
i = 1) will be selected as the deletion position with probability

d
(t)
i /

∑
{j,zj=1} d

(t)
j . If the relevant add or delete move is accepted then the se-

lected element i of z(t+1) will be toggled, otherwise z(t+1) does not change from
z(t).

The probability of accepting or rejecting the moves described above will de-
pend on the relative change in the marginal likelihood of the segment added
or deleted around position i. Let a be the changepoint immediately before i
and b the changepoint immediately after i. The addition of a changepoint at
position i would cause the segment that contains position i to be split into two
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new segments (ya+1, yi) and (yi+1, yb). The deletion of a changepoint at posi-
tion i would cause the two segments created by the changepoint at i to merge
into one segment (ya+1, yb). All other segments remain the same. The marginal
likelihood ratios are thus

Add Move → P(a+ 1, i)P(i+ 1, b)

P(a+ 1, b)
Delete Move → P(a+ 1, b)

P(a+ 1, i)P(i+ 1, b)
.

(4.1)
The two moves are summarised clearly in Figure 1.

Move 4.1: Add a Changepoint

1 Calculate a
(t)
+ =

∑
{j,zj=0} a

(t)
j and

d
(t)
+ =

∑
{j,zj=1} d

(t)
j .

2 Select i with zi = 0 with prob. a
(t)
i /a

(t)
+ .

3 Accept to toggle zi = 1− zi with probability
min(1, αadd), where

αadd =
π(z′)
π(z)

P(a+1,i)P(i+1,b)
P(a+1,b)

1−p
p

d
(t)
i /(d

(t)
i +d

(t)
+ )

a
(t)
i /a

(t)
+

.

Move 4.2: Delete a Changepoint

1 Calculate d
(t)
+ =

∑
{j,zj=1} dj and

a
(t)
+ =

∑
{j,zj=0} a

(t)
j .

2 Select i with zi = 1 with prob. d
(t)
i /d

(t)
+ .

3 Accept to toggle zi = 1− zi with probability
min(1, αdel), where

αdel =
π(z′)
π(z)

P(a+1,b)
P(a+1,i)P(i+1,b)

p
1−p

a
(t)
i /(a

(t)
i +a

(t)
+ )

d
(t)
i /d

(t)
+

.

Fig 1. Adaptive MCMC changepoint sampler moves, the add move is performed with proba-
bility p and the delete move with probability 1− p.

This is the basis of our changepoint sampler. We are now left to describe the
adaptation scheme used to update the a(t) and d(t) vectors during the algorithm,
using the past history of the add and selected moves. This is a crucial part of the
algorithm as these parameters decide where to place changepoints and remove
changepoints in an efficient manner. This is described in the following section.

4.2. Adaptation of the selection weights a(t) and d(t)

The MCMC algorithm of Wyse and Friel [21] selects positions i for addition and
deletion uniformly at random from all the valid n−1 positions. This is equivalent
to having constant vectors a(t) and d(t) which do not vary with iteration t. The
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adaptive method we use, proposes to update a(t) and d(t) using information
from previously accepted add and delete moves. The scheme for adaptation is
given in Figure 2. The strategy is to target the acceptance rate of the add and
delete moves to an overall target acceptance rate αtarget by updating the a(t)

and d(t) at each iteration. The updates are performed on the log scale to ensure
that the weights remain positive.

Adaptation Scheme
At iteration t:

1. If an add move at point i has been accepted then update only the a
(t)
i parameter as

follows

log(a
(t+1)
i ) = log(a

(t)
i ) +

h

t/n
(αadd − αtarget) .

2. If a delete move at point i has been accepted then update only the d
(t)
i parameter as

follows

log(d
(t+1)
i ) = log(d

(t)
i ) +

h

t/n
(αdel − αtarget) .

Parameters
h - Initial Adaptation (h > 0)
t/n - Monte Carlo time, iterations (t) per number of datapoints (n)

Fig 2. Adaptation scheme to update the vectors a(t) and d(t).

This adaptation scheme is different from Griffin et al. [7] in that there is no
restriction on 0 < ai < 1 or 0 < di < 1 as these are unnormalised selection
weights and not probabilities. The parameter h controls the initial intensity of
the adaptation, we find values << 1 work well.

4.2.1. A note on non uniform sampling for selection weights

The a(t) and d(t) weights, once normalised appropriately using a
(t)
+ and d

(t)
+

(see Figure 1), must be sampled from to propose elements of z(t) for toggling.
Discrete random variate generation for non-uniform probability vectors presents
an extra level of complexity. In the case of Wyse and Friel [21] with no adap-
tation, selection of elements for toggling is O(1) and is extremely efficient. To
take advantage of the adaptive proposals the algorithm requires an efficient
non-uniform sampler.

A näıve implementation of non-uniform sampling from the a(t) and d(t) vec-
tors involves building a cumulative distribution of the values, O(n) time, and
then sampling from this by binary lookup, O(log2 n) time. This is significantly
slower and may even detriment the use of the adaptive algorithm in the first
instance. A method due to Walker [20] overcomes this problem by precomput-
ing lookup tables called alias tables in O(n) time and then sampling in O(1)
time. A numerically stable implementation of Walker’s method that overcomes
numerical errors is due to Vose [19]. A discussion of the alias method is given
in Appendix C.
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Using alias tables we can get quite close to uniform sampling efficiency. Note
that Matias et al. [13] allows updating alias tables in less than O(n) time,
however this imposes restrictions on the magnitude of the change in weights at
each adaptation step.

4.3. Advanced adaptation techniques

In this section some advanced techniques are presented to improve the efficiency
of the adaptive method. It is possible to implement thresholding of the a(t)

values so that only some of the values use alias tables. Dual adaptation is used by
Griffin et al. [7] to simultaneously update a(t) and d(t) after an accepted move.
We modify this to our adaptation scheme. These advanced techniques allow the
algorithm to be computationally efficient while performing the adaptive updates.
Many issues with adaptive MCMC can arise due to adapting too quickly. These
issues are discussed in �Latuszyński and Rosenthal [10].

4.3.1. Advanced adaptation 1: Thresholding of non-changepoints

Many of the ai values won’t significantly change in magnitude over the course of
the algorithm. This is due to the update of the ai values only being performed
on acceptance of a changepoint and for points far away from changepoints the
ai will rarely change. Computational time is still spent embedding these small
ai in the rebuilding of alias tables each time any ai changes. This problem is
not as pronounced for the di values as we assume that there are many more
non-changepoints than changepoints in a dataset.

To take advantage of the low number of changepoints, we propose to split
the points that are not changepoints into two groups, one with high posterior
probability of being added, Gactive, and the other with a low posterior prob-
ability of being added, Ginactive. The membership of each group is mutually
exclusive and is determined by a threshold parameter acutoff. All points begin
in Ginactive and as the ai values are adapted, points with ai > acutoff move
to Gactive. The other points remain in Ginactive and are assumed to have a flat
weight of ainactive < acutoff which means they can be sampled without the use
of alias tables (equivalent to uniform sampling within Ginactive). Each element
of Ginactive will retain its true underlying ai value but this will only be used
for sampling if and when it moves into Gactive. The thresholding will modify
the algorithm slightly and the modifications to the acceptance probabilities are
shown in Figure 3.

4.3.2. Advanced adaptation 2: Dual adaptation

As can be seen in the description of the moves, knowledge of αadd allows one to
also calculate αdel quite easily. Griffin et al. [7] uses this idea to perform a double
or dual adaptation of both a(t) and d(t) at each acceptance in the algorithm
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Move 4.3: Add (with threshold)

1 Calculate a
(t)
active =

∑
{j|zj=0,j∈Gactive} a

(t)
j and

d
(t)
+ =

∑
{j,zj=1} d

(t)
j

2 Select i with zi = 0 with prob. a
(t)
i /a

(t)
+

3 Accept to toggle zi = 1− zi with probability
αadd = min(1, α̂add)

α̂add =
π(z′)
π(z)

P(a+1,i)P(i+1,b)
P(a+1,b)

1−p
p

× d
(t)
i /(d

(t)
i +d

(t)
+ )

â
(t)
i /(a

(t)
active+ainactive|Ginactive|)

where â
(t)
i = a

(t)
i if i ∈ Gactive or

â
(t)
i = ainactive otherwise.

Move 4.4: Delete (with threshold)

1 Calculate d
(t)
+ =

∑
{j,zj=1} d

(t)
j and

a
(t)
active =

∑
{j|zj=0,j∈Gactive} a

(t)
j

2 Select i with zi = 1 with prob. d
(t)
i /d

(t)
+

3 Accept to toggle zi = 1− zi with probability
αadd = min(1, α̂add)

αdel =
π(z′)
π(z)

P(a+1,b)
P(a+1,i)P(i+1,b)

p
1−p

× â
(t)
i /(â

(t)
i +a

(t)
active+ainactive|Ginactive|)
d
(t)
i /(d

(t)
+ )

where â
(t)
i = a

(t)
i if i ∈ Gactive or

â
(t)
i = ainactive otherwise.

Fig 3. Adjusted moves for use with thresholding of ai values. Note that |Ginactive| denotes
the cardinality of the inactive set.

rather than updating only one of these vectors. The dual adaptation approach
is applied without thresholding to the updates in Figure 2 and is described in
Appendix E.

5. Proof of ergodicity for the adaptive MCMC algorithm

There are two parts to proving ergodicity for an adaptive MCMC algorithm on
a discrete state space X . The first establishes the notion of simultaneous uni-
form ergodicity and the second establishes diminishing adaptation. An adaptive
MCMC algorithm which satisfies both of these conditions is ergodic by Theorem
1 of Rosenthal and Roberts [16].
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5.1. Simultaneous uniform ergodicity

We first recap the definition of uniform ergodicity for a Markov chain, the equiv-
alent Doeblin’s condition and simultaneous uniform ergodicity for transition
kernels on a state space X .

Definition 5.1. (Uniform ergodicity) A Markov chain on a state space X with
a transition kernel P (x, ·) is called uniformly ergodic if

sup
x∈X

‖Pn(x, ·)− π()‖TV → 0 as n → ∞.

where ‖·‖TV is the total variation norm.

An equivalent definition by Theorem 16.0.2 [14] states that there exists some
r > 1 and R < ∞ such that ∀x ∈ X

‖Pn(x, ·)− π()‖TV ≤ Rr−n.

This implies that the convergence takes place at a geometric rate independent
of the starting point x0 ∈ X of the algorithm.

Uniform ergodicity is generally difficult to prove directly using Definition
5.1. Instead uniform ergodicity can be more easily checked by equivalence to
Doeblin’s condition on X . This equivalence is shown in Theorem 16.0.2 of Meyn
and Tweedie [14] and is repeated here.

Theorem 5.1. (Doeblin’s Condition) Suppose that Doeblin’s Condition holds
(as defined in Meyn and Tweedie [14, p 396]) so that there exists a probability
measure φ on the measurable space (X , σ{X}) with the property that for some
m, some constant measure ρ < 1, some β > 0 and for a set A ∈ σ{X}

φ(A) > ρ =⇒ Pm(x,A) > β

then the chain under transition kernel Pm(x, ·) is uniformly ergodic.

Proof. See Theorem 16.2.3 of Meyn and Tweedie [14] and relevant lemmas.

Finally [16] define the notion of simultaneous uniform ergodicity for a collec-
tion of transition kernels indexed by γ ∈ Γ. This definition is repeated here.

Definition 5.2. (Simultaneous Uniform Ergodicity) A collection of transition
kernels indexed by γ ∈ Γ exhibit simultaneous uniform ergodicity if ∀ γ ∈ Γ and
∀x ∈ X∥∥Pn

γ (x, ·)− π()
∥∥
TV

≤ Rγr
−n
γ , where Rγ < ∞ and rγ > 1 for all γ ∈ Γ

where ‖·‖TV is the total variation norm.

Remarks. The uniform ergodicity parameters Rγ and rγ for each kernel may
depend on γ but not on the states x ∈ X as otherwise uniform ergodicity would
not hold.
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Verifying multiple Doeblin’s Conditions is equivalent to verifying uniform
ergodicity for all kernels Pn

γ (x, ·), γ ∈ Γ. This in turn guarantees simultaneous
uniform ergodicity. We will now prove simultaneous uniform ergodicity for the
adaptive changepoint sampler.

Theorem 5.2. (Simultaneous uniform ergodicity of the adaptive changepoint
sampler) Let Γ(t) = (a(t),d(t)) be the set of adaptive weights at iteration t and
let z(t) be the current state of the chain. Then for all t the transition kernel
using the weights Γ(t), PΓ(t)(z(t), ·) is uniformly ergodic.

Proof. As we are working over a finite discrete state space, Z, the transition
kernel of our changepoint sampler, PΓ(t)(z(t), z′), can be viewed as a 1-step
transition probability from state z(t) to z′. Take the measure φ(z) in Doeblin’s
Condition to be the posterior distribution over z ∈ Z, π(z|y). The measure φ(z)
is always positive since the prior for z allows for all 2n−1 values of z to occur
with non-zero probability. Doeblin’s condition on a finite state space amounts
to showing that for some m, the mth power of the transition probability matrix
Pm
Γ(t)(z

(t), z′) has all positive entries for all states z(t), z′ ∈ Z, i.e. that it is
possible to transition, with non-zero probability, to any state from any other
state in m moves. This is equivalent to showing that the Markov chain over Z
is both irreducible and aperiodic, which we now establish.

Denote the overall minimum value of any element of a(t) or d(t) by ε > 0.
The existence of a minimum follows from the adaptation scheme in Figure 2,
where it is not possible for any a(t) or d(t) to reach 0 when started from a
positive value. Define a distance function dH(z(t), z′) which counts the number
of positions at which z(t) and z′ differ, e.g. dH(z(t), z′) = 1 for the case of a
proposed add/delete move.

The 1-step transition probability of our algorithm from state z(t) to z′ using
the add/delete proposal distribution q

Γ(t)(z
(t), z′) is written,

P 1
Γ(t)(z

(t), z′) = qΓ(t)(z
(t), z′)αΓ(t)(z

(t), z′)

+ δz(t) (z′)

⎛⎝1−
∑

z∗ �=z(t)

qΓ(t)(z
(t), z∗)αΓ(t)(z

(t), z∗)

⎞⎠ . (5.1)

The proposal distribution q
Γ(t)(z

(t), z′) is positive if and only if dH(z(t), z′) = 1.
To establish irreducibility and aperiodicity across the entire state space, we must
consider 3 possible cases for z′. These are dH(z(t), z′) = 1, dH(z(t), z′) > 1 and
dH(z(t), z′) = 0, where the first two cases will establish irreducibility and the
final case establishes aperiodicity.

For dH(z(t), z′) = 1, the proposal distribution of add/delete moves,

q
Γ(t)(z

(t), z′), is lower bounded by
ε

ω(t)
> 0, where ω(t) normalises the a(t)

or d(t) weights depending on which of the add or delete move is taking place.
This implies that the 1-step transition probability also has a lower bound since



Adaptive MCMC for multiple changepoints 3379

P 1
Γ(t)(z

(t), z′) ≥ ε

ω(t)
αΓ(t)(z

(t), z′)

=
ε

ω(t)
min

{
1,

π(z′|y)q
Γ(t)(z

′, z(t))

π(z(t)|y)q
Γ(t)(z(t), z′)

}

=
ε

ω(t)
π(z′|y)qΓ(t)(z

′, z(t))

×min

{
1

π(z′|y)q
Γ(t)(z′, z(t))

,
1

π(z(t)|y)q
Γ(t)(z(t), z′)

}

≥ ε

ω(t)
π(z′|y)qΓ(t)(z

′, z(t)).

This inequality holds since π(z(t)|y)q
Γ(t)(z

(t), z′) < 1 and π(z′|y)q
Γ(t)(z

′, z(t)) <
1. Finally

P 1
Γ(t)(z

(t), z′) ≥ ε

ω(t)
min
z

π(z|y)
( ε

ω(t)

)
=

( ε

ω(t)

)2

min
z

π(z|y) > 0.

Therefore the 1-step transition probability is positive for states z(t) and z′ when
dH(z(t), z′) = 1.

For dH(z(t), z′) > 1, the 1-step transition probability P 1
Γ(t)(z

(t), ·) must be

iterated dH(z(t), z′) times to ensure P
dH(z(t),z′)
Γ(t) (z(t), z′) > 0. The maximum

distance between any two states in Z is dH(z(t), z′) = n− 1 which occurs when
a transition between z(t), the vector with all entries set to 0, and z′, the vector
with all entries set to 1, takes place. Thus iterating the kernel at least n − 1
times ensures irreducibility of the Markov chain on Z.

The final case to consider is when dH(z(t), z′) = 0, i.e. a transition from
z(t) to itself. If P 1

Γ(t)(z
(t), z(t)) > 0 then the state z(t) is said to be aperiodic.

Any irreducible Markov chain on a finite state space is aperiodic provided there
exists at least one aperiodic state. We now show that at least one aperiodic state
exists in Z. Consider the 1-step transition probability from z(t) to itself which
from (5.1) is,

P 1
Γ(t)(z

(t), z(t)) =

⎛⎝1−
∑

z∗ �=z(t)

qΓ(t)(z
(t), z∗)αΓ(t)(z

(t), z∗)

⎞⎠ .

P 1
Γ(t)(z

(t), z(t)) will be strictly positive provided we can find some state z∗

such that qΓ(t)(z(t), z∗) > 0 and α
Γ(t)(z

(t), z∗) < 1. If all z∗ ∈ Z, with

qΓ(t)(z(t), z∗) > 0, have α
Γ(t)(z

(t), z′) = 1, we simply consider some other

starting state z′′ �= z(t) until an aperiodic state is found. The possibility of
α
Γ(t)(z

′′, z∗) = 1 for all pairs of states z′′, z∗ ∈ Z with q
Γ(t)(z

′′, z∗) > 0 would
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imply that no aperiodic state exists but this leads to a contradiction as we now
show. A global acceptance probability of exactly 1 for all states implies that
any z∗ proposed from qΓ(t)(z′′, z∗) is always accepted and never rejected i.e
that qΓ(t)(z′′, z∗) is the full conditional distribution for the particular compo-
nent z′′

i of z′′ being updated. This is not the case however since our proposal
distribution of add/delete moves is not a full conditional distribution. We con-
clude therefore that some aperiodic state exists in Z.

Thus the Markov chain is irreducible and aperiodic and P k
Γ(t)(z

(t), ·) has all
positive entries for some k ≥ n−1, thus satisfying Doeblin’s condition and from
this uniform ergodicity for each Γ(t).

5.2. Diminishing adaptation

The second part of the proof is to verify diminishing adaptation for PΓ(t)(z, ·),
∀t. Recall the definition of diminishing adaptation [16]

Definition 5.3. (Diminishing adaptation) A series of transition kernels indexed
by t, PΓ(t)(z, ·), are said to obey diminishing adaptation if

lim
t→∞

sup
z

‖PΓ(t+1)(z, ·)− PΓ(t)(z, ·)‖ = 0.

For this section of the proof, the two other definitions needed are the concept
of Lipschitz and bi-Lipschitz continuity of a real-valued function.

Definition 5.4. (Lipschitz continuity) A function f is Lipschitz if there exists
K > 0 such that

|f(x1)− f(x2)| ≤ K|x1 − x2|.

By the Mean Value Theorem this is equivalent to the function f having a
bounded first derivative.

Definition 5.5. (bi-Lipschitz continuity) A function f is bi-Lipschitz if f and
its inverse f−1 are both Lipschitz and thus one has

1

K
|x1 − x2| ≤ |f(x1)− f(x2)| ≤ K|x1 − x2|.

where K > 0 is the Lipschitz constant of f and the inverse constant of f−1.

Theorem 5.3. The adaptive changepoint sampler satisfies diminishing adapta-
tion.

Proof. For a 1-step transition from z to z′, define Δ(t) to be the absolute dif-
ference in the transition kernels between iteration t and t+ 1.

Δ(t) = |PΓ(t+1)(z, z′)− PΓ(t)(z, z′)| (5.2)

There are two cases to consider. Firstly when z �= z′ (Case 1) and secondly
when z = z′ (Case 2).
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Case 1: For z �= z′

Δ(t) =
∣∣qΓ(t+1)(z, z

′)αΓ(t+1)(z, z
′)− qΓ(t)(z, z

′)αΓ(t)(z, z
′)
∣∣

=

∣∣∣∣qΓ(t+1)(z, z
′)min

{
1,

π(z′|y)q
Γ(t+1)(z

′, z)

π(z|y)q
Γ(t+1)(z, z′)

}
− qΓ(t)(z, z

′)min

{
1,

π(z′|y)q
Γ(t)(z

′, z)

π(z|y)q
Γ(t)(z, z′)

} ∣∣∣∣
=

∣∣∣∣min

{
qΓ(t+1)(z, z

′),
π(z′|y)q

Γ(t+1)(z
′, z)

π(z|y)

}
−min

{
qΓ(t)(z, z

′),
π(z′|y)q

Γ(t)(z
′, z)

π(z|y)

} ∣∣∣∣. (5.3)

It can be checked by simple algebra that the absolute difference of two minimum
operators has the following upper bound,

|min{A,B} −min{C,D}| ≤ |A− C|+ |B −D| . (5.4)

Applying this upper bound directly to (5.3) leaves

Δ(t) ≤
∣∣qΓ(t+1)(z, z

′)− qΓ(t)(z, z
′)
∣∣+ π(z′|y)

π(z|y)
∣∣qΓ(t+1)(z

′, z)− qΓ(t)(z
′, z)

∣∣
Case 2: For z = z′

Δ(t) =

∣∣∣∣∣∣
∑
z∗ �=z

(
qΓ(t)(z, z

∗)αΓ(t)(z, z
∗)− qΓ(t+1)(z, z

∗)αΓ(t+1)(z, z
∗)
)∣∣∣∣∣∣ ,

applying the triangle inequality and multiplying by |−1| leaves

Δ(t) ≤
∑
z∗ �=z

∣∣qΓ(t+1)(z, z
∗)αΓ(t+1)(z, z

∗)− qΓ(t)(z, z
∗)αΓ(t)(z, z

∗)
∣∣ (5.5)

and applying (5.4) to each term of (5.5) leaves

Δ(t) ≤
∑
z∗ �=z

∣∣qΓ(t+1)(z, z
∗)− qΓ(t)(z, z

∗)
∣∣

+
∑
z∗ �=z

π(z∗|y)
π(z|y)

∣∣qΓ(t+1)(z
∗, z)− qΓ(t)(z

∗, z)
∣∣ (5.6)

In both Case 1 and Case 2, diminishing adaptation requires that Δ(t) → 0 as
t → ∞ which is true if

|qΓ(t+1)(z, z
′)−qΓ(t)(z, z

′)| → 0 and |qΓ(t+1)(z
′, z)−qΓ(t)(z

′, z)| → 0, as t → ∞
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This amounts to showing that |a(t+1)
i − a

(t)
i | → 0 for all a

(t)
i ∈ a(t) (or equiva-

lently |d(t+1)
i −d

(t)
i | → 0 for all d

(t)
i ∈ d(t)), as t → ∞. Without loss of generality

consider only the a
(t)
i adaptive weight. The general form of the update scheme

for a
(t)
i is

log(a
(t+1)
i ) = log(a

(t)
i ) +

h

t/n
(αadd − αtarget)

and as t → ∞, with h < ∞ and 0 < αtarget < 1∣∣∣log(a(t+1)
i )− log(a

(t)
i )

∣∣∣ → 0. (5.7)

To prove (5.7) implies |a(t+1)
i −a

(t)
i | → 0, we must prove that the log function is

bi-Lipschitz. Since log(x) and its inverse, exp (x), have a bounded first derivative
and provided 0 < x < ∞ which will be satisfied by the existence of ε > 0, log is
bi-Lipschitz (Definition (5.5)). Therefore

|a(t+1)
i − a

(t)
i | ≤ K

∣∣∣log(a(t+1)
i )− log(a

(t)
i )

∣∣∣ → 0, (5.8)

and so diminishing adaptation for PΓ(t)(z, ·) is established.

6. Results

We will now demonstrate our adaptive algorithm on a number of datasets,
varying in size from a small to a large number of observations.

1. Well Log Drilling data - a small dataset to demonstrate the equivalence
of filtering recursions and the adaptive changepoint sampler.

2. Channel Noise data - a moderately sized simulated dataset that takes
minutes of precomputation for the filtering recursions, but seconds for our
algorithm.

3. Simulated large data - a large data set with 300 000 observations, where
it is not possible to use filtering recursions due to the presence of numerical
error.

For each of the datasets above, we compare our adaptive MCMC algorithm
to the filtering recursions approach of Fearnhead [5]. We first take a long run
of the filtering recursions at full precision and the posterior distribution from
this long run is taken as the ground truth. Our adaptive MCMC algorithm is
then compared to this ground truth by examining an approximate version of
the Kullback-Leibler divergence in the posterior distribution of the number of
changepoints over time. We define this measure of divergence as follows. Let Q
be the posterior distribution for the number of changepoints based on the ground
truth (filtering recursions) and P be the posterior distribution for the number
of changepoints based on our adaptive MCMC algorithm. The divergence is
defined as

Dδ(P |Q) =

n−1∑
k=0

[
(1− δ)P (i) + δ

1

n

]
log

(1− δ)P (i) + δ 1
n

(1− δ)Q(i) + δ 1
n

. (6.1)
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The correction parameter δ is necessary to ensure that the support of P and
Q overlap and is chosen small (< 1 × 10−10). Note that the Kullback-Leibler
divergence results when δ = 0.

6.1. Tuning of the results

We now give some guidelines about how to tune the input parameters of the
adaptive algorithm. In general, the input parameter αtarget depends on k, the
number of inferred changepoints. The smaller k is relative to n then the lower
αtarget should be, since in this instance we would expect that many changepoints
which are proposed would not be accepted. However in practice the performance
of the algorithm is not very sensitive to the choice of αtarget and we have found
that αtarget ∈ [0.01, 0.2] works well in practice. In terms of tuning αtarget, our
approach has been to run a short pilot run of the non-adaptive MCMC algo-
rithm and to set αtarget to the estimated acceptance rate. Finally, in terms of
tuning h our approach has been to set h = 1/n and experimentation has shown
that this has yielded good performance. In fact, in further experimentation not
reported here, we have found that the performance of the algorithm is rela-
tively insensitive to the choice of h, provided h is not too large as to adapt too
quickly. The choice of h = 1/n reflects the structure of the MCMC algorithm,
more specifically the length of the vector z. The number of iterations required
to update each element of z is at least n − 1 and thus the adaptive algorithm
should respect this waiting time and tune the algorithm proportional to 1/n.

6.2. Dataset 1 – Gaussian mean changepoint – Well Log Drilling
Data

The problem of detecting changepoints in well log drilling data has been studied
numerous times in the changepoint literature [5, 17]. The well log drilling dataset
originates from Ruanaidh and Fitzgerald [17] and consists of 4050 probe mea-
surements of the nuclear-magnetic response of underground rocks. The data
was obtained by lowering the detection probe into a pilot drilled hole in the
rock and recording the nuclear-magnetic response at discrete depth intervals. A
changepoint is thought to occur when the rock type changes and such a change
in signal is observed in the dataset. The data is shown in Figure 4 with out-
liers removed as in Fearnhead [5]. These data have previously been analysed
using filtering recursions to compute the posterior distribution of the number
and position of changepoints. We will show that our algorithm reaches the same
stationary distribution as the filtering recursions approach in the same time.
The approximate filtering recursions using a lower level of precision will be also
compared to our algorithm.

6.2.1. Well log drilling – model

We follow the approach of Fearnhead [5] by considering a Geometric (p = 0.013)
prior on the gap length between successive changepoints. The observations be-



3384 A. Benson and N. Friel

Fig 4. Well Log data - The data consists of 3979 observations after outliers have been
removed. Visually there are many changepoints in the data, prior to analysis.

tween changepoints are modelled as N (μi, σ
2), where μi is the mean parameter

for the ith segment and σ is fixed to 2,500. Independent N (115,000, τ2σ2) priors
are placed on each μi with τ2 set fixed to 16. Using the methods of Section 2.1
the segment marginal likelihood can be shown (Appendix B) to be

P(a, b) = (2πσ2)−k/2(kτ2 + 1)−1/2

× exp

(
− 1

2σ2

[(
s2 −

s21
k

)
+

k

kτ2 + 1

(
m− s1

k

)2
])

. (6.2)

The quantities s1 and s2 are the sum and the sum of squares of the data
{ya, . . . yb}, respectively.

6.2.2. Well Log Drilling – results & algorithm comparison

The results for the Well Log Drilling data run across adaptive MCMC, non-
adaptive MCMC and filtering recursions are shown in Figure 5. The filtering
recursions were run at 3 different levels of precision (full precision, 1e-6, 1e-4)
to give 5 sets of results. The adaptive MCMC changepoint sampler was run
for 5 seconds (16 000 000 iterations) with adaptive parameter h = 0.00119 and
a target acceptance rate of 15%. The non-adaptive MCMC sampler was run
for 5 seconds (20 000 000 iterations). The results in the right panel of Figure 5
illustrate that the modal number of changepoints is estimated as 51 for all al-
gorithms. All algorithms capture the same posterior distribution of the number
of changepoints and changepoint positions. Additionally, the left panel of Fig-
ure 5 displays the posterior position of changepoints from the adaptive MCMC
run which (although not presented here) was very similar to the non-adaptive
MCMC and filtering recursion algorithms. The acceptance rates for the adaptive
and non-adaptive MCMC algorithms were 15.31% and 15.10%, respectively and
both the adaptive and non-adaptive MCMC algorithms were started from the
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Fig 5. Well log data - The left panel presents the estimated posterior probability of a change-
point at each observation based on the adaptive MCMC algorithm. The right panel presents
the estimated posterior probability of the number of changepoints for each of the adaptive
MCMC, non-adaptive MCMC and filtering recursions algorithms. This illustrates that each
algorithm converges to the same stationary distribution.

same changepoint configuration, 40 changepoints randomly distributed through-
out the data.

To compare the results of the adaptive MCMC changepoint sampler against
filtering recursions, we compare the divergence of the adaptive and non-adaptive
MCMC changepoint samplers to the output of filtering recursions run at full
precision for 100 million chains (≈ 1 hour) from Carpenter’s algorithm. For
the 2 lower levels of precision (1e-6, 1e-4) in Figure 6, the filtering recursions
algorithm fails to target the correct posterior once the precision level of the
recursions equals 1× 10−4. The adaptive MCMC changepoint sampler appears
to converge marginally quicker to the target distribution, in the sense of reaching
a low divergence, than the non-adaptive and filtering recursions algorithms.
However we would overall recommend the use of filtering recursions for datasets
of this size and smaller since the computational time is reasonable in these
instances. The adaptive algorithm is marginally faster than the non-adaptive
version and with a higher acceptance rate (15.31% ). This outlines that the
Adaptive MCMC is competitive not only to the filtering recursions but also to
the non-adaptive algorithm.

6.3. Dataset 2 – Gaussian precision changepoint – channel noise
data

Variations in a signal can be detected by considering the change in variance
around a fixed mean. For example a web server may exhibit rapid variations in
traffic across a period of time or a failing component of a machine may lose its
precision as it fails. If we assume a constant mean for each of the segments and
allow there to be a change in precision λ = 1

σ2 at a changepoint we can model
a process such as shown in Figure 7.
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Fig 6. Well log data - Divergence, Dδ, between a precise estimate of the posterior distribution
of the number of change points based on a long run of the filtering recursion algorithm to the
adaptive and non-adaptive MCMC algorithm. This plot shows the convergence to the ground
truth. All chains converge to the ground truth except for the low precision recursions. The
adaptive algorithm is the most competitive of the MCMC algorithms.

Fig 7. Channel Noise data - A simulated dataset of 50,000 observations where the vari-
ance is assumed to change over time around a fixed mean. The data was simulated with 25
changepoints.

The likelihood for each observation yi is N (μ, λ−1) for a fixed μ. Assuming
a prior on the precision, λ ∼ Gamma(α0, β0), allows one to integrate over 0 <
λ < ∞, leaving a marginal likelihood
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Fig 8. Channel Noise data - The estimated posterior probability of a changepoint at each
observation based on the adaptive MCMC algorithm is shown (left panel). The right panel
presents the estimated posterior probability of the number of changepoints for each of the
adaptive MCMC, non-adaptive MCMC and filtering recursions algorithms. This illustrates
that each algorithm converges to the same stationary distribution.

P(a, b) =
(2π)−n/2Γ(k/2 + α0)(

β0 +
b∑

i=a

(xi − μ)2/2

)α0+k/2
, where k = b− a+ 1. (6.3)

For this data the hyperparameters were set to α0 = 12.0, β0 = 4.8 and μ = 0.
The parameter μ can be set to 0 prior to analysis provided the data is shifted us-
ing its known mean. A geometric gap prior was placed on z with p = 0.0006. The
results for the channel noise data are shown in Figure 8 for filtering recursions,
the adaptive MCMC changepoint sampler and the non-adaptive MCMC change-
point sampler. The adaptive MCMC changepoint sampler was run with a target
acceptance rate of 10.5% and with h set to 0.00008. All 3 algorithms give a modal
18 number of changepoints in the data and each algorithm captures the full
posterior distribution for both the positions and number of changepoints. The
adaptive MCMC and non-adaptive MCMC algorithms were each run for 300 sec-
onds, 60 000 000 iterations and 67 000 000 iterations respectively. The filtering
recursions were run for the necessary precomputation time of 572 seconds and
then a further 8500 seconds using Carpenter’s algorithm (100 000 000 chains).
Extra runs of the filtering recursions were run at precision levels (1e-12, 1e-10
and 1e-8) for comparison.

For this example, it is possible to compare the convergence properties of
the adaptive MCMC, non-adaptive MCMC and filtering recursions. Due to the
extended precomputation time required for the filtering recursions for datasets of
this size, we can only compare the two algorithms after the precomputation has
completed. We compare the algorithms by examining the time to converge to a
certain level of divergence, Dδ. In Figure 9 we mark an approximate convergence
point at 53 seconds for the adaptive changepoint sampler with a divergence of
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Fig 9. Channel Noise data - Divergence, Dδ, between a precise estimate of the posterior
distribution of the number of change points based on a long run of the filtering recursion
algorithm to the adaptive and non-adaptive MCMC algorithm. The adaptive MCMC algorithm
outperforms non-adaptive MCMC and filtering recursions for all precision levels. We mark a
convergence point for the adaptive MCMC of 53 seconds with divergence 1.43× 10−6 nats in
the posterior distribution of the number of changepoints. The non-adaptive MCMC algorithm
takes 150 seconds to reach this level of divergence. Note that (although not shown on the plot)
the full-precision filtering takes 1738 seconds to reach this same level of divergence.

1.43 × 10−6 nats. The filtering recursions is then run at full precision until it
reaches this level of divergence or below, which takes 1738 seconds. The results
of this analysis are show in Figure 9 and Table 1, with Table 1 showing the
relative speed of each algorithm. There is a vast in improvement using the
adaptive MCMC algorithm.

Table 1

Channel Noise data - Relative speed and acceptance rates of each (MCMC) algorithm are
shown.

Adaptive Non-Adaptive Filtering Recursions
Relative Speed 1.0 (53 seconds) 2.83 (150 seconds) 32.8 (1738.64 seconds)
Acceptance Rate 12.1% 10.9% -

6.4. Dataset 3 – Gaussian mean changepoint – large data example

For large datasets it is much slower to use filtering recursions due to the quadratic
complexity of computing the recursions. For significantly large datasets, the
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quadratic complexity becomes prohibitive and numerical error in computing the
recursions is also an issue. The large data we analyse consists of 300 000 obser-
vations and is displayed in Figure 10. The data was simulated from a Gaussian
distribution with 40 changepoints assumed on the mean as in the Well log data
of Section 6.2.2. We assume a Geometric prior for the changepoint positions with
parameter p = 40/299999 ≈ 1.33 × 10−4. The likelihood is taken as N (μj , σ

2)
and the prior for μj is N (115,000, τ2σ2) with σ = 2,500 and τ = 4.

Fig 10. Large dataset - 300 000 observations simulated from a Gaussian distribution with a
changepoint on the mean. The data was simulated with 40 changepoints. The parameters for
the mean were the same as in the Well log example of Section 6.2.2.

6.4.1. Difficulty with filtering recursions for large data

For a dataset of this size the numerical stability of the filtering recursions can
cause problems. In the calculation of the transition probabilities (3.1), which
are needed to sample from the recursions using the Carpenter’s algorithm [2],
there is potential to encounter numerical errors arising from building the for-
ward proposal distribution of the next changepoint. For this dataset, considering
every possible changepoint location j ∈ {1, . . . n− 1}, there will be a maximum(
300,000

2

)
≈ 4.50× 1010 transition probabilities P(τj |τj−1) to calculate, see equa-

tion (3.1). Many of the P(τr|τj−1) terms will be very small with values less
than subnormal machine precision even when computed on the log scale. Nu-
merically, transition probabilities close to 0 are regarded as having negligible
contribution to proposing changepoints and will not be sampled. However for
datasets where changepoints are far apart i.e. τr � τj−1, the calculation of the
cumulative distribution which is needed to propose the next changepoint,

P(τ ≤ τr|τj−1) = log
(
eP(τr|τj−1) + e

∑r−1
i=1 P(τi|τj−1)

)
, (6.4)
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Fig 11. Large data - The top figure shows the posterior distribution of changepoint positions
captured by the adaptive algorithm. The bottom figure shows the posterior distribution of the
number of changepoints for the adaptive algorithm and the non-adaptive algorithm with a
mode of 41 changepoints. The true number of changepoints is also shown.

will not correctly accumulate all of these small probabilities. Since the num-
ber of small probabilities is significantly large, this leads to those probabilities
greater than subnormal machine probabilities to be artificially inflated relative
to the magnitude they would normally appear had the small probabilities being
accumulated to infinite precision. The effect of this is that these points will be
chosen as changepoints more frequently than they should be and points with
small probabilities never to be chosen even though taken together they consume
non-negligible mass of the transition distribution. This agrees empirically with
our analysis for this dataset and other even larger datasets.

6.4.2. Results for the adaptive algorithm

The adaptive algorithm was run for 1 000 000 000 iterations with 100 000 itera-
tions removed by burn-in. The adaptive parameter h was set to 4× 10−6, while
a target acceptance rate of 2.0% was chosen to tune the adaptive scheme. The
acceptance rate is quite low, however the number of simualted changepoints (40)
relative to the size of the dataset indicates that many moves may be rejected.
The algorithm took 400 seconds on an Intel i7 3.40GHz and the achieved accep-
tance rate was 2.19%. The adaptive changepoint sampler and the non-adaptive
sampler both detect a mode of 41 changepoints.



Adaptive MCMC for multiple changepoints 3391

Fig 12. Large data - Comparison between the trajectory of the log unnnormalised posterior
for the adaptive and non-adaptive algorithms. The adaptive algorithm climbs to an area of
high posterior probability many times faster than the non-adaptive algorithm. The adaptive
algorithm locates a maximum posterior region after 12.3 seconds and the non-adaptive after
133.26 seconds.

6.4.3. Algorithm comparison - adaptive and non-adaptive MCMC

It is not possible to run the filtering recursions for this data due to issues dis-
cussed in Section 6.4.1. In particular, and in contrast with the two previous
examples, it is not possible to assess how well each algorithm converges to the
target posterior distribution. However we can still provide a good indication of
the convergence of each of the adaptive and non-adaptive MCMC algorithms
by exploring the trajectory of the state of each chain towards the maximum a
posteriori of the target distribution. We performed a run of both the adaptive
and non-adaptive algorithms for over 1 000 000 000 iterations and monitored the
maximum unnormalised a posteriori (MAP) estimate achieved. The results are
shown in Figure 12. In Figure 12, the adaptive algorithm reaches a high area
of the posterior after about 1 second and continues to find a higher area of
posterior mass until 12.3 seconds. In constrast the non-adaptive version is much
slower to climb to this area taking 133.26 seconds to achieve the same level as
the adaptive algorithm. Figure 12 also shows the mixing of the chain for both
algorithms indicating that both algorithms are mixing well. The maximum un-
normalised posterior gives some indication that the adaptive MCMC algorithm
is better able to reach the high-posterior density regions than the non-adaptive
MCMC algorithm. We therefore conclude for datasets of this size, that the adap-
tive algorithm is many times more competitive than the non-adaptive algorithm
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and due to filtering recursion being unavailable is an ideal algorithm for big data
changepoint problems.

7. Conclusion & discussion

This paper introduces an adaptive changepoint sampling algorithm for multiple
changepoint problems. We have described how our algorithm is be designed to
learn on-the-fly where changepoints are likely to be located in a dataset. We
prove that the adaptive MCMC scheme which we develop leaves the posterior
distribution ergodic. Moreover the adaptive MCMC algorithm scales to large
datasets in contrast to the filtering recursions of Fearnhead [5] which is unreli-
able and prone to numerical instability in this case. Three datasets increasing
in size from 4000 observations to 300 000 observations have been illustrated in
this paper. The latter and largest dataset is unable to be analysed using filter-
ing recursions and we show that our algorithm works well here to detect the
number and location of changepoints in a reasonable computational time. We
recommend using the filtering recursions for smaller datasets (e.g. up to size
100 000 observations) and where computational time is not an issue. However
for datasets with more than 100 000 observations we advocate using the adap-
tive changepoint sampler.

Further work will involve extending this adaptive MCMC approach to other
posterior distributions on discrete state spaces. For example, the likelihood of
the data in this paper assumes independent observations within a segment be-
tween two changepoints. This could be replaced with a dependence within seg-
ment likelihood as in the work of Wyse et al. [22] where the marginal segment
likelihood is replaced with integrated nested Laplace approximations.

The diminishing adaptation condition we have proved in this paper is just
one method of automatically tuning adaptive proposals. Our adaptation condi-
tion takes the form of a stochastic approximation algorithm but more involved
adaptation schemes may be designed using the theory developed in this paper
and this is a focus of future work. To conclude, we feel that there is much wider
scope for the implementation of adaptive MCMC in practice and we hope that
this article will encourage more work in this direction.
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Appendices

Appendix B: Normal marginal likelihood calculation

The marginal likelihood for a changepoint in the mean parameter for normally
distributed data with known variance (σ2) and with a N (μ, τ2σ2) prior on μ
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can be expressed with k = b−a+1 as the integral of the product of two normal
densities

P(a, b) =

∫ ∞

0

(2πσ2)−(k+1)/2

τ

×
b∏

i=a

exp

(
− 1

2σ2

[(
k +

1

τ2

)
μ2 − 2

(
s1 +

m

τ2

)
μ+

(
s2 +

μ2

τ2

)])
dμ

(B.1)

where s1 =
∑b

i=a yi and s2 =
∑b

i=a y
2
i . Completing the square and rearranging

= (2πσ2)−k/2(kτ2 + 1)−1/2 exp

(
− 1

2σ2

[(
s2 +

μ2

τ2

)
− τ2

kτ2 + 1

(
s1 +

μ

τ2

)2
])

(B.2)
completing the square again with the term inside the square brackets gives

= (2πσ2)−k/2(kτ2 + 1)−1/2 exp

(
− 1

2σ2

[(
s2 −

s21
k

)
+

k

kτ2 + 1

(
m− s1

k

)2
])

(B.3)

This is a more numerically stable version than (B.2) as s2 − s21
k is the sum

of squared deviations from the segment sample mean which can be calculated
recursively and m − s1

k is the distance of the segment sample mean from the
prior which will cause no numerical issues.

Appendix C: Walker’s Alias Method with Vose’s correction

The Alias Method is due to Walker [20] and the numerical safe approach to
constructing Alias tables, which are needed for this method, is due to Vose [19].
The algorithm is a very simple approach to simulating from a general categorical
distribution with k categories each having a (possibly unnormalised) weight wk.

The weights are first normalised and then two tables are constructed, a prob-
ability table and an Alias table. Some of the normalised weights will be greater
than the average probability 1

k and are known as Big Points, and some will be
less than or equal to it, the Small Points. The method works by moving some of
the probability mass from the Big Points to the Small Points. All Small Points
will eventually be associated with at most one of the Big Points (its alias).

Once the Alias table has been constructed they can be sampled from in
O(1) time. Simply select a Small Point uniformly at random and then use a
biased coin flip to choose either that point or its Alias point. This method is
extremely efficient and is currently the best of all methods for sampling from
finite categorical distributions however if wk changes for any k the entire tables
must be reconstructed in O(n) more steps. Another method with a similar
computational efficiency is the Gumbel Max Method [23]
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Appendix D: Carpenter’s Algorithm

Carpenter’s Algorithm [2] is a method of sampling from a discrete probability
distribution similar to the Alias method but without the need for precomputed
probability tables. It works by exploiting the fact that the spacing in the uniform
distribution on [0,1) is exponential with rate 1. To sample n values from x =
{1, . . .M} with P (X = i) = pi

1. Simulate e1, . . . , en+1 ∼ expλ = 1

2. Create the step function (CDF) uj =
∑ j

i=1 ei∑n+1
i=1 ei

for j = 1, . . . n+ 1

3. Set Q = 0, U = u1, j = 1, i = 1
4. If U < Q+P (X = j) output j and set U = ui+1 and i = i+1. Otherwise

set Q = P (X = j) and j = j + 1. Repeat until i = n+ 1.

Appendix E: Dual adaptation

Only one of the adaptive parameters for a point i (ai / di) are updated when
either an add or delete move at this point has been accepted. Griffin et al. [7]
has suggested that information can still be gained for both ai and di regardless
of which move has been performed.

Dual adaptation involves using the M-H ratio calculated for the current move,
denoted αF (z, z

′) for the forward move, and its reverse move, denoted αR(z
′, z).

Calculation of αR is trivial once αF is available. Griffin et al. [7] shows how to
modify the adaptation scheme so that it continues to target M . The average a
posteriori mutation rate of the algorithm is

M =

∫
C(z, z′)α(z, z′)q(z, z′)π(z|y) dz dz′

where q(z, z′) depends on the move (add / delete) and C(z, z′) = 0 if zi = z′i ∀i.
If we wish to continue targeting this mutation rate under Dual adaptation

we need to define a second chain to preserve detailed balance.

(δ, δ′) =

⎧⎨⎩(z′, z), with probability α(z, z′),

(z, z′), with probability 1− α(z, z′).

Now

Mδ =

∫
C(δ, δ′)α(δ, δ′)q(δ, δ′)π(δ|y) dδ dδ′

= E[C(δ, δ′)α(δ, δ′)]

= α(z, z′)E(C(z′, z)α(z′, z)) + (1− α(z, z′))E(C(z, z′)α(z, z′))

and weighting this with the original mutation rate we get

wα(z, z′)E(C(z′, z)α(z′, z)) + (1− wα(z, z′))E(C(z, z′)α(z, z′))

note C(z′, z) = C(z, z′)
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The new adaptive scheme becomes
If an add move has just been accepted:

Update ai log(a
(t+1)
i ) = log(a

(t)
i )+

(
h

t/n

)
(α(z, z′)−αtarget) (1−wα(z, z′)).

Update di log(d
(t+1)
i ) = log(d

(t)
i ) +

(
h

t/n

)
(α(z′, z)− αtarget)α(z, z

′).

If a delete move has just been accepted:

Update ai log(a
(t+1)
i ) = log(a

(t)
i ) +

(
h

t/n

)
(α(z′, z)− αtarget)α(z, z

′).

Update di log(d
(t+1)
i ) = log(d

(t)
i )+

(
h

t/n

)
(α(z, z′)−αtarget) (1−wα(z, z′)).

The choice of w is recommended as 0.5 by Griffin et al. [7].
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