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Abstract: Boosting is a powerful machine learning tool with attractive
theoretical properties. In recent years, boosting algorithms have been ex-
tended to many statistical estimation problems. For data contaminated
with outliers, however, development of boosting algorithms is very lim-
ited. In this paper, innovative robust boosting algorithms utilizing the
majorization-minimization (MM) principle are developed for binary and
multi-category classification problems. Based on truncated loss functions,
the robust boosting algorithms share a unified framework for linear and
nonlinear effects models. The proposed methods can reduce the heavy in-
fluence from a small number of outliers which could otherwise distort the re-
sults. In addition, adaptive boosting for the truncated loss functions are de-
veloped to construct more sparse predictive models. We present convergence
guarantees for smooth surrogate loss functions with both iteration-varying
and constant step-sizes. We conducted empirical studies using data from
simulations, a pediatric database developed for the US Healthcare Cost
and Utilization Project, and breast cancer gene expression data. Compared
with non-robust boosting, robust boosting improves classification accuracy
and variable selection.
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1. Introduction

Boosting algorithms are one of the most influential methodological approaches
for data analysis developed in the last two decades. Initially boosting was a
powerful machine learning algorithm to predict binary outcomes [9]. The ba-
sic idea is to iteratively construct simple or weak classifiers and to combine
their solutions to obtain a more accurate prediction. For instance, decision trees
have been widely used in many classification problems, partly due to their in-
terpretability. However, tree based classification has a mixed track-record of
predictive performance. In boosting, single decision-tree models are combined
to an arbitrary depth and shape, adjusted to optimize the resulting model’s
classification performance. The ensemble decision-trees perform substantially
better than single-tree models. Boosting can be interpreted as a method for fit-
ting regression models in a stagewise fashion when optimizing well defined loss
functions [12]. This gradient descent view of boosting has led to considerable
development in different settings for both linear and non-linear effects models
[3, 19].

Variable selection is an important issue in data analysis. Among a large num-
ber of candidate predictors, predictive models are expected to select a subset
of risk factors for improved accuracy and parsimonious interpretation. In recent
years, statistical methods to conduct variable selection have been actively de-
veloped. Among them, boosting is one of the most attractive methods by simply
choosing appropriate base learners [12, 3, 19].

Boosting algorithms for classification include AdaBoost, LogitBoost and
HingeBoost [12, 3, 31]. These algorithms were developed to minimize expo-
nential, logistic and hinge loss, respectively. Note that the three loss functions
are convex. The convexity property can make optimization in some sense “eas-
ier” than the general case - for example, any local minimum must be a global
minimum. A convex loss function, however, suffers from the negative impact of
outliers. The above boosting algorithms therefore tend to be sensitive to noisy
training data. When there exist points far away from their own classes, the
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classifiers are strongly influenced by such points because of the underlying loss
functions used in these boosting algorithms.

To this end, robust boosting algorithms based on nonconvex loss functions
have been proposed. For instance, BrownBoost and RobustBoost have shown
resistant to outliers [6, 7]. A nonconvex loss can be conveniently obtained by
truncating a popular loss function, leading to more robust prediction accuracy
[35, 24, 14]. However, there is a lack of gradient decent boosting algorithms for
truncated loss functions. In this paper, we aim to fill the gap. Because the trun-
cated loss functions are nonconvex, a key computational trick is the difference
of convex (DC) algorithm [29, 35, 24, 14]. The idea is to work with a series of
simpler but well defined surrogate functions instead of the original loss function.
As a result, the DC algorithm substitutes a series of simple optimization prob-
lems for a difficult optimization problem. Most notably, the DC algorithm has
been linked with the majorize-minimize (MM) algorithm [15]. Another popu-
lar MM algorithm, the so-called EM (expectation-maximization) algorithm has
been extensively studied for missing data among many other applications [5, 21].
The major contribution of this paper is to combine the gradient descent boosting
and the DC algorithm for a suite of truncated loss functions. These DC-boosting
algorithms are more robust to data contaminated with outliers than their coun-
terparts based on standard loss functions. We conduct convergence analysis of
the proposed algorithms as well as the standard functional gradient boosting al-
gorithms. We provide implementations of these algorithms through the publicly
available R package, bst (available at http://cran.r-project.org).

Methods for robust boosting have applications in many scientific fields, in-
cluding healthcare research and gene expression analysis. In this article we ap-
ply the robust boosting methods to classify healthcare costs using the KID
healthcare database (available at www.hcup-us.ahrq.gov). Healthcare cost is a
tremendous burden of public expenditure, and high-cost patients are typically
related to severe disease diagnosis. Early identification of high-cost patients can
help design targeted interventions that can defer or even avoid adverse outcomes
[22]. Administrative healthcare databases have different sources of variability in-
cluding outliers. Research examining inpatient expenditures can be distorted by
a small number of extremely high or low charges that have undue influence
on the results. This is not desirable because these charges could reflect mea-
surement errors that distort the goodness of fit of statistical models. Suspicious
charges are potential data entry errors and represent discharges that are out-
liers in terms of the average charge per day of stay [10]. Another challenge is
that administrative data have voluminous amount of patient records including
patient demographics, payment information, disease severity, comorbidities, di-
agnostic and procedure information and hospital characteristics. For instance,
there are hundreds of diagnosis categories as potential predictors. Therefore it
is crucial to identify a small number of risk factors for healthcare costs strat-
ification. Likewise, gene expression data may be mislabelled and also contain
many predictors.

In Section 2 we describe robust truncated loss functions for binary classifi-
cation problems. We show how to implement the DC technique to a truncated

http://cran.r-project.org
www.hcup-us.ahrq.gov
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loss. In Section 3 we present DC boosting algorithm (DCBA) to minimize trun-
cated loss functions. To further reduce risk factors, adaptive robust boosting is
presented. We generalize robust boosting to multi-class problems in Section 4.
Theoretical analyses of the boosting algorithms are presented in Section 5. The
performance of the proposed algorithms is investigated in Section 6 via simulated
data. In Section 7, the proposed algorithms are applied to classify healthcare
costs and clinical status from breast cancer patients. Proofs of the theoretical
results are in the Appendix.

2. Robust loss functions

Assume that we have observations (xi, yi), where xi is a p-dimensional predictor
variable for i = 1, 2, ..., n. For a binary outcome y taking values +1 and −1,
with prediction f and margin u = yf , consider a margin based loss function
�(u). Table 1 lists three widely used loss functions: logistic, exponential and
hinge loss [12, 3, 30]. In particular, support vector machines utilize the hinge
loss [30]. These loss functions are sensitive to outliers because the loss values
are unbounded and can go to infinity with outliers, see Figure 1. Therefore
classification rules based on these loss functions can suffer from outliers. A simple
remedy is to truncate the unbounded loss functions [1, 36, 24]. A truncated loss
at a constant location s is

L(u, s) = min(s, �(u)). (1)

Because truncation reduces the impact of misclassified outliers, the resulting
classifiers are more robust and accurate than the standard classifiers. Table 1
and Figure 1 compare standard loss functions �(u) and truncated counterparts
[35, 24, 14, 1, 36]. The truncated logistic loss shows that L(u, s) increases as
u decreases, but once u is less than s, the truncated loss becomes a constant.
This implies that the truncated loss becomes larger up to an upperbound as an
observation deviates further away from the classification boundary. For outliers
located further away from the boundary satisfying u ≤ s, the truncated loss
maintains a constant value �(s) so that the outliers cannot further influence the
classification boundary. In contrast, as can be seen in Figure 1, the standard
logistic loss has no boundary and the impact of outliers grows to infinity. The
interpretations of truncated exponential and hinge loss functions are similar.
One exception is the difference logistic loss. As u decreases, the difference logistic
loss increases at a smaller rate compared to logistic loss, and converges to a
constant limit value.

Theoretical properties of truncated logistic, exponential and hinge loss have
been established [35, 24]. In particular, Fisher consistency provides justifications
for these truncated loss functions when used in classification. In the statistical
literature, Fisher consistency originally means that the estimation procedure
using the entire population will produce the true value of the estimation. For
instance, the maximum likelihood estimation is typically Fisher consistent. In
decision theory, a loss function is Fisher consistent if the population minimizer of
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Table 1

Loss functions. z+ = max(0, z), s > 0 for difference logistic, and s ≤ 0 otherwise.

Truncated loss L(u, s) Standard loss �(u)

Truncated logistic min
(
log(1 + exp(−u)), logistic log(1 + exp(−u))

log(1 + exp(−s))
)

Difference logistic log(1 + exp(−u))− logistic log(1 + exp(−u))
log(1 + exp(−u− s))

Truncated exponential min
(
exp(−u), exp(−s)

)
exponential exp(−u)

Truncated hinge (1− u)+ − (s− u)+ hinge (1− u)+

Fig 1. Loss functions
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the risk leads to the Bayes optimal decision rule given by f(x) = sign(p(x)− 1
2 ),

where p(x) = P (Y = +1|x) for any x in the predictor space [17]. Minimiz-
ing an empirical risk 1

n

∑n
i=1 L(yif(xi), s), a classification procedure effectively

approximates the optimal decision rule if the risk is Fisher consistent. For the
difference logistic loss [14], we have the following properties.

Proposition 1. The difference logistic loss LDL(u, s) and the truncated logistic
loss LTL(u, s) are asymptotically equivalent. Specifically,

lim
u→−∞ or u→∞

{LDL (u, log(1 + exp(−s)))− LTL(u, s)} = 0.

Proposition 2. The minimizer f∗ of E (LDL(Y f(X), s)) has the same sign as
p(x)− 1/2.

Proposition 1 recognizes the relationship between the difference logistic and
truncated logistic loss, and Proposition 2 establishes Fisher consistency of the
former loss.

In general, we may write a nonconvex loss function L(u, s) as a difference of
convex loss between �(u) and −�s(u):

L(u, s) = �(u) + �s(u). (2)

For instance, Equation (1) may be converted to (2) where

�s(u) = −max(0, �(u)− s).

Many robust truncated loss functions in the literature can be written in this for-
mat, as demonstrated in Table 2 [14, 35, 24]. Note, the nonconvex loss functions
may be nonsmooth, such as the truncated hinge loss.

Table 2

Truncated loss function L(u, s) = �(u) + �s(u)

Truncated loss �(u) �s(u)

Truncated logistic log(1 + exp(−u)) −
(
log(1 + exp(−u))− log(1 + exp(−s))

)
+

Difference logistic log(1 + exp(−u)) − log(1 + exp(−u− s))
Truncated exponential exp(−u) −max

(
0, exp(−u)− exp(−s)

)
Truncated hinge (1− u)+ −(s− u)+

An important issue is how to minimize the nonconvex truncated loss func-
tion L(u, s). Since �s(·) in (2) is a concave function, we can utilize the DC or
majorize-minimize (MM) scheme. In the sequel we use notation L(f, s) instead
of L(u, s) after replacing u = yf . Even if suppressed in the notation, it should
be understood that the loss function L(f, s) depends on the classification out-
come y. The DC algorithm is an iterative process. Given the current estimate
f (k−1) in the (k− 1)-th iteration, we apply a linear majorization to the concave
function �s(f) in (2):

�s(f) ≤ �s(f
(k−1)) +

∂�s(f)

∂f
|f=f(k−1)(f − f (k−1))

� hk(f).

(3)
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Let Hk(f) denote the surrogate loss given by

Hk(f) = �(f) + hk(f). (4)

We have the following relationship regarding the objective loss function L(f, s):

L(f, s) ≤ Hk(f) for all f, L(f (k−1), s) = Hk(f
(k−1)). (5)

Since �(f) is a convex function and hk(f) is a linear function, Hk(f) = �(f) +
hk(f) is convex. Therefore Hk(f) can be readily minimized or reduced to obtain
a new estimate f (k). Together with (5), the following statement holds:

L(f (k), s) ≤ Hk(f
(k)) ≤ Hk(f

(k−1)) = L(f (k−1), s). (6)

The descent property (6) makes the DC algorithm numerically stable. Since
the algorithm only requires decreasing Hk(f), the gradient descent boosting
algorithm is a simple yet powerful tool to accomplish this task. Let LDCF (f, s)
denote all terms related to f in Hk(f):

LDCF (f, s) = �(f) +
∂�s(f)

∂f
|f=f(k−1)f.

We then obtain

Hk(f) = LDCF (f, s) + �s(f
(k))− ∂�s(f)

∂f
|f=f(k−1)f (k−1).

After eliminating constant terms in Hk(f), minimizing Hk(f) is equivalent to
minimizing its simplified version LDCF (f, s). For truncated loss functions in
Table 2, the corresponding surrogate loss functions LDCF (f, s) are presented
in Table 3. We have two remarks on the subscript DCF. First, the two letters
DC highlight the linear majorization trick (3) that is often referred to the DC
algorithm. Second, the letter F emphasizes that the DC algorithm in this pa-
per applies to function estimation problems which are different from parameter
estimation problems typically found in the literature [1, 14, 35, 36, 24].

Table 3

Truncated nonconvex loss and surrogate convex loss at the (k + 1)-th iteration. I(·) is the
indicator function.

Truncated loss Surrogate loss LDCF (f, s)

Truncated logistic log(1 + exp(−yf)) + yf
exp(−yf(k))

1+exp(−yf(k))
I
(
yf (k) < s

)
Difference logistic log(1 + exp(−yf)) + yf

exp(−yf(k)−s)

1+exp(−yf(k)−s)

Truncated exponential exp(−yf) + yf exp(−yf (k))I
(
yf (k) < s

)
Truncated hinge (1− yf)+ + yfI(s− yf (k) > 0)
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3. Boosting nonconvex loss functions

The truncated loss (2) is minimized through the empirical loss:

1

n

n∑
i=1

�(yi, f(xi)) + �s(yi, f(xi)). (7)

We propose difference of convex boosting algorithm (DCBA) in Section 3.1 and
adaptive DCBA in Section 3.2. To solve the nonconvex minimization problem
(7), these algorithms minimize a sequence of surrogate convex problems given
the current estimate f(xi)

(k−1):

1

n

n∑
i=1

LDCF (yi, f(xi), s), (8)

where

LDCF (yi, f(xi), s) = �(yi, f(xi)) +
∂�s(yi, f)

∂f
|f=f(xi)(k−1)f(xi).

3.1. Difference of convex boosting algorithm

The DCBA (Algorithm 1) has a sequence of nested loops. The outer loop is to
update the surrogate convex function (8) using the current estimate f (k−1). At
the inner loop, the gradient decent boosting algorithm minimizes the convex loss
(8). When implemented in a computer program, we choose a constant step-size
wm+1 = ν for 0 < ν ≤ 1 in this and subsequent boosting algorithms throughout
the paper. Algorithm 1 can be utilized to fit a variety of models with differ-
ent base learners, including componentwise linear least squares, componentwise
smoothing splines and regression trees [3]. These base learners are presented in
greater detail in Section 5.1 when a convergence analysis is concerned.

As will be clear in Section 5.4, Algorithm 1 monotonically decreases the loss
function (7) under certain conditions although there is no guarantee that the
algorithm can locate the global minimizer for the nonconvex loss. However, with
a suitable starting point, the DC algorithm converges quite often to a global one.
See Tao and An [29] and the references therein. In practice, different starting
points can be explored for an optimal solution. This would add computing bur-
den to Algorithm 1 which already has two layers of iterations. Note, the initial
value in line 3 is updated with the estimate in line 10. This can be named as a
warm start. To partially alleviate the starting point issue, a practical strategy
is to begin with a cold start. For instance, the developed computer program
has an option to change line 3 from f0(x) = f (k−1) to a constant vector such
that every element is 1

n

∑n
i=1 Ui or 0. As a result, the loss values still monoton-

ically decrease from line 3 to 9 under certain conditions. However, the initial
loss value in the (k+1)-th DC outer loop (line 3 of Algorithm 1) may be larger
than the last loss value in the k-th loop (line 10 of Algorithm 1). In practice, a
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Algorithm 1 Difference of Convex Boosting Algorithm (DCBA)

1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count K,M , parameter s, start-
ing point f (0).

2: for k = 1 to K do
3: Initialization: f0(x) = f (k−1).
4: Construct the surrogate convex loss LDCF (yi, f, s) majorizing the objective function

L at f (k−1) via (8).
5: for m = 1 to M do
6: Compute the residuals, defined as negative gradient of loss function (see Table 4),

Ui = −∂LDCF (yi, f, s)

∂f
|f=fm−1(xi)

= −∂�(yi, f)

∂f
|f=fm−1(xi)

− ∂�s(yi, f)

∂f
|f=f(k−1) .

7: Fit a base learner gm to the residuals Ui with predictors xi, for i = 1, 2, ..., n.
8: Update the estimated function with a selected step-size wm,

fm = fm−1 + wmgm.

9: end for
10: Update the current estimate f (k) = fM (x).
11: end for
12: Output: the classifier sign(f (K)).

general observation is that the last loss values decrease for k = 1, 2, ...,K, albeit
at a slower convergence rate. With high-dimensional data as in this paper, this
strategy avoids overfitting, generates better prediction and provides more parsi-
monious models. The numerical results in Section 6 and 7 support such a choice.
Indeed, the aforementioned cold start approach follows the general consensus of
early stopping of boosting before convergence of a loss function [3].

Prediction accuracy of robust boosting is greatly impacted by two tuning
parameters. One is the location of truncation, which is often considered as
hyper-parameter [35, 24]. For instance, consider the truncated logistic loss. If
the truncation parameter s is too small towards −∞, then the loss becomes
similar to the standard logistic loss, which is sensitive to outliers. On the other

Table 4

Pseudo residuals in robust boosting algorithms at line 6 in Algoirithm 1.

Truncated loss DCBA Residual Ui,m

Truncated logistic TLogitBoost yi
exp(−yifm−1(xi))

1+exp(−yifm−1(xi))
−

yi
exp(−yif

(k−1))

1+exp(−yif
(k−1))

I
(
yif

(k−1) < s
)

Difference logistic DLogitBoost yi
exp(−yifm−1(xi))

1+exp(−yifm−1(xi))
−

yi
exp(−yif

(k−1)−s)

1+exp(−yif
(k−1)−s)

Truncated exponential TAdaBoost yi exp(−yifm−1(xi))−
yi exp(−yif

(k−1))I
(
yif

(k−1) < s
)

Truncated hinge THingeBoost yiI(1− yifm−1(xi) > 0)−
yiI(s− yif

(k−1) > 0)
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hand, if s is too close to 0, the properties of the logistic loss can be difficult
to maintain for the data. Therefore a good choice of s should be as effective
as the standard logistic loss and also robust to outliers. We select s from sev-
eral candidate values as in Wu and Liu [35], Park and Liu [24]. Another tuning
parameter is the boosting iteration. A larger number implies better fitting for
the training data and possibly more predictors in the model, which may suggest
overfitting with deteriorated prediction accuracy from the test data. In prac-
tice, an optimal boosting iteration can be chosen by a data driven method, such
as a cross-validation scheme or a modified Bayesian information criterion (BIC)
[25]. Alternatively, we may have disjointed training/tuning data sets and use the
training data for model building and tuning data for tuning parameter selection.

3.2. Adaptive difference of convex boosting algorithm

We consider boosting as a sequential algorithm that iteratively fits a base learner
with selected predictors, in particular, a single predictor variable. How to choose
a particular variable in each iteration is a paramount important issue in vari-
able selection with high-dimensional data. A simple approach to reducing non-
effective predictor variables is adaptive boosting. Proposed by Bühlmann and
Hothorn [4], twin boosting is a generic adaptive boosting procedure with two
steps: the first step is the usual boosting, and the second step is constructed
to resemble the first boosting round. As a result, if a variable has not been
selected in the first round of boosting, it will not be included in the second.
In addition, depending on the estimates of variables selected in the first round
of boosting, variables are selected with different weights in the second round
of boosting. Twin boosting has much better variable selection results than the
corresponding boosting algorithm and can also improve prediction accuracy [4].
Here we implement adaptive boosting (Algorithm 2) to minimize the truncated
nonconvex loss function (7).

Algorithm 2 Adaptive DCBA
1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count K,M , parameter s, start-

ing point f (0).
2: Run first round of the DCBA (Algorithm 1) to obtain the initial function estimates

finit and select effective predictors. For simplicity, assume the selected predictors are
x(1), x(2), ..., x(d) where d ≤ p.

3: Run a modified DCBA among the remaining predictors to obtain the final function esti-

mates f̂final. Specifically, denote g(j) =
(
g(x

(j)
1 ), g(x

(j)
2 ), ..., g(x

(j)
n )

)
and modify line 7

in Algorithm 1 as below:
Fit a base learner gm to the residuals Ui with the l̂-th predictor, where l̂ is given by

l̂ = argmax
1≤j≤d

Ĉj
2
(2〈Ui, g

(j)〉 − ‖g(j)‖2),

where Ĉj = 〈f̂init − f̂init, g
(j)〉/‖g(j)‖, f̂init = 1/n

∑n
i=1 f̂init(xi), 〈·〉 and ‖ · ‖ are the

inner product and norm, respectively.
4: Output: the classifier sign(f̂final).
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4. Robust multi-class boosting

There is limited research on robust multi-class boosting algorithm. See McDon-
ald et al. [20] for an extension of BrownBoost in this setting. We now generalize
the DCBA to multi-class problems using truncated loss functions [34, 35]. We
focus on robust multi-class hinge loss while the methodology can be extended to
other truncated loss functions. Denote �(u) = (u+ 1)+ and �s(u) = −(u− s)+,
the truncated hinge loss �(u) + �s(u) and non-robust hinge loss �(u) = (u+1)+
are displayed in Figure 2. As we can see from the figure, the truncated loss be-
comes a constant if u ≥ s. This loss function has been utilized to develop robust
multi-class classification rules. For a J-class problem with a response belonging
to {1, ..., J}, denote f = (f1, ..., fJ) a J-tuple of functions. We first consider to
minimize a standard hinge loss [34]:

L(f(x)) =
1

n

n∑
i=1

J∑
j=1

I(yi �= j)(fj(xi) + 1)+, (9)

subject to
f1(xi) + ...+ fJ(xi) = 0. (10)

The constraint (10) is used for uniqueness of function estimators. The classifi-
cation rule is argmaxj fj , which shares the Bayes decision rule. For a slightly
different form from (9), Wang [32] developed a boosting algorithm as well as
adaptive boosting algorithm.

The robust boosting aims to minimize the objective function

L(f(x), s) =
1

n

n∑
i=1

J∑
j=1

I(yi �= j)
{
(fj(xi) + 1)+ − (fj(xi)− s)+

}
(11)

with constraint (10). This truncated multi-class loss is a generalization of the
truncated binary hinge loss in Table 1 and holds Fisher consistency for s ≥ 0.
Different from a binary classification problem in Section 2, there are total of J

differences of convex functions in (11). Given the current estimates f
(k−1)
j , the

concave functions − (fj(xi)− s)+ in (11) can be linearly majorized, thus the

objective is majorized at f
(k−1)
j :

L(f(x), s) ≤ 1

n

n∑
i=1

J∑
j=1

I(yi �= j)
{
(fj(xi) + 1)+ −

(
fj(xi)

(k−1) − s
)
+

− (fj(xi)− fj(xi)
(k−1))I(fj(xi)

(k−1) ≥ s)
}
.

(12)

In an iterative process with given f
(k−1)
j , estimation of fj , j = 1, ..., J can be

achieved by minimizing the right hand side of (12), or equivalently

1

n

n∑
i=1

LDCF (yi, f(xi), s), (13)
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Fig 2. Multi-class hinge loss

where

LDCF (yi, f(xi), s) =

J∑
j=1

I(yi �= j)
{
(fj(xi) + 1)+ − fj(xi)I(fj(xi)

(k−1) ≥ s)
}
.

Since (fj(xi) + 1)+ is a convex function and fj(xi)I(fj(xi)
(k−1) ≥ s) is a lin-

ear function, the difference between these two functions is thus convex. As a
result, LDCF (yi, f(xi), s) is convex, hence we can use the boosting technol-
ogy. For the truncated hinge loss, we present a multi-class DCBA, Algorithm 3
(mTHingeBoost). To circumvent overfitting as in Algorithm 1, we may change
line 3 and instead begin with some constant, for instance, 0. In conjunction with
Algorithm 2, we can develop an adaptive robust multi-class DCBA, AmTHinge-
Boost. Without the outer loop in Algorithm 3, i.e., without lines 2-4, 15 and
16, and changing line 7 such that Uij = −I(yi �= j)I(fj(xi) + 1 > 0), then the
modified algorithm amounts to minimizing the standard loss (9). We call this
reduced algorithm mHingeBoost. This algorithm can be conveniently extended
for adaptive boosting, which is referred to AmHingeBoost.

5. Convergence analysis

Convergence of functional gradient boosting has been investigated by Mason
et al. [18], Grubb and Bagnell [13] among others. In this section, we provide
new convergence results. We first review three commonly utilized base learners
in the literature including this paper. The properties of these base learners are
building blocks of the analysis. We then develop new convergence results of
the functional gradient boosting algorithm. Next, we extend the results to a
universal MM boosting algorithm, and evaluate Algorithm 1 as a special case.
It is worth noting that we omit convergence analysis of the adaptive DCBA,
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Algorithm 3 Multi-class DCBA for Truncated Hinge Loss
1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count K,M , parameter s, start-

ing points f
(0)
j for j = 1, ..., J , learning rate 0 < ν ≤ 1.

2: for k = 1 to K do
3: Initialization fj(xi) = f

(k−1)
j for j = 1, ..., J .

4: Construct the surrogate convex loss LDCF (yi, f, s) majorizing the objective loss (11)
at fj(xi) via (13).

5: for m = 1 to M do
6: for class j = 1 to J do
7: Compute Uij the negative gradient with respect to fj :

Uij = −∂LDCF (yi, f, s)

∂fj
|f=fj(xi)

= −I(yi �= j)
{
I(fj(xi) + 1 > 0)− I(fj(xi)

(k−1) ≥ s)
}
.

8: Fit a predict model gmj for pseudo response variable Uij with predictor variable
xi.

9: end for
10: for class j = 1 to J do
11: Set gmj ← J−1

J
(gmj − 1

J

∑J
q=1 gmq).

12: Set fj(xi) ← fj(xi) + νgmj .
13: end for
14: end for
15: Update the current estimate f

(k)
j = fj(xi), j = 1, ..., J .

16: end for
17: Output: the classifier argmax

1≤j≤J
f
(K)
j .

Algorithm 2. This algorithm has two rounds of Algorithm 1 while the second
round has a different variable selection. As will be clear in the sequel, variable
selection doesn’t contribute to the convergence analysis. Hence the convergence
results for the DCBA also hold for the adaptive DCBA.

5.1. Base learners in boosting

Suppose we have data (x1, U1), ..., (xn, Un) where Ui ∈ R and xi = (xi1, ..., xip)
ᵀ

∈ R
p. The design matrix X is a n×p matrix given by X = (xᵀ

1 , x
ᵀ
2 , ..., x

ᵀ
n)

ᵀ, and
the response vector is given by U = (U1, U2, ..., Un)

ᵀ. A regression technique
is to construct an estimator Û of U with the predictors xi, i = 1, ..., n. Many
regression procedures are a linear smoother given by:

Û = SU, (14)

where S is a n×n smoothing matrix whose i-th row assigns weights given to each
Ui in building the estimate Ûi. Note, the entries of S are related to the predictors
xi but do not contain the observations U . Popular linear smoothers used as base
learners in the boosting literature are reviewed. We pay special attention to their
properties, which are building blocks in the subsequent convergence analysis.
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5.1.1. Linear least squares

Let Z be a n × q matrix and a subset of X, such that 1 ≤ q ≤ min{n, p}. In
addition, assume that Z is full column rank. In practice, componentwise least
squares, i.e., q = 1 is typically employed in boosting. The smoothing or hat
matrix S is given by S = Z(ZᵀZ)−1Zᵀ. The least squares prediction is given by
Û = SU . It is well-known that the eigenvalues of the projection matrix S are
either zero or one, and the number of nonzero eigenvalues is equal to the rank
of the matrix. Furthermore, the hat matrix is symmetric idempotent.

5.1.2. Componentwise smoothing spline

Without loss of generality, suppose the r-th predictor xir, 1 ≤ r ≤ p, is chosen by
the base learner. We drop the subscript r. For observations (xi, Ui), i = 1, ..., n,
a smoothing spline Û = g(xi) minimizes the penalized residual sum of squares
among all functions with two continuous derivatives:

n∑
i=1

(Ui − g(xi))
2 + λ

∫
(g′′(x))2dx,

where λ is a pre-specified smoothing parameter. A smoothing spline is a linear
operator such that Û = SU [33]. The smoothing matrix S has two eigenvalues
equal to 1, and the other eigenvalues are all strictly between zero and one. In
addition to being positive definite, S is also symmetric but not idempotent.

5.1.3. Regression trees

We start with a bin smoother for a single predictor, also known as a regressogram
[33]. As in section 5.1.2, suppose the r-th predictor xir, 1 ≤ r ≤ p, is chosen
by the base learner. We drop the subscript r again. Consider the observations
(xi, Ui), i = 1, ..., n. We define J bins with cutpoints a1 < ... < aJ+1 where
a1 = −∞, aJ+1 = ∞:

Rj = {i : aj ≤ xi < aj+1}; j = 1, ..., J.

An estimate Û can be obtained by averaging the Uis over each bin:

Û(x) =
1

nj

∑
i:xi∈Rj

Ui, for x ∈ Rj , (15)

where nj is the number of observations in Rj . For x ∈ Rj define si(x) = 1/nj if

xi ∈ Rj and si(x) = 0 otherwise. Thus Û(x) =
∑n

i=1 si(x)Ui. Denote a vector
s(x) = (s1(x), s2(x), ..., sn(x))

ᵀ. Therefore we have

s(x)ᵀ = (0, 0, . . . ,
1

nj
,
1

nj
, . . . ,

1

nj
, 0, . . . , 0).
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Define the vector of fitted values Û = (Û(x1), ..., Û(xn))
ᵀ. It then follows that

Û = SU , where S is a n × n diagonal block matrix with i-th row s(xi)
ᵀ, i.e.,

Sij = sj(xi), i, j = 1, ..., n. Denote Aj a nj × nj sub-matrix whose every entry
is 1/nj . In this case the matrix S is a symmetric block matrix whose diagonal
blocks are Aj , and the off-diagonal blocks are matrices of zeros:

S =

⎛
⎜⎜⎜⎝
A1

A2

. . .

AJ

⎞
⎟⎟⎟⎠ . (16)

We have the following properties regarding the regressogram.

Proposition 3. Linear smoothing matrix S of a regressogram defined by (16) is
symmetric idempotent thus positive semidefinite. Furthermore, S has the eigen-
values 1 and 0, with multiplicities J and n− J , respectively.

A regression tree with p predictor variables follows the same idea like the bin
smoother, although the splitting variables and cut points are optimally chosen. A
regression tree splits the whole predictor space into disjoint hyper-rectangles Rj

with sides parallel to the coordinate axes. The regression tree has the estimates
in the same form as (15). Consequently, a regression tree is a linear operator
with smoothing matrix S given by (16). Like the regressogram, we have the
following results:

Proposition 4. Linear smoothing matrix S of a regression tree defined by
(16) is symmetric idempotent thus positive semidefinite. Furthermore, S has
the eigenvalues 1 and 0, with multiplicities J and n− J , respectively.

5.2. Square integrable space

Before we evaluate the functional gradient boosting, we first review the relevant
Hilbert space [13]. Given a measurable predictor set X , a complete vector space
V of response, and measure μ over X , the square integrable function space
L2(X ,V , μ) is the set of all equivalence classes of functions φ : X → V such that
the Lebesgue integral

∫
X ‖φ(x)‖2Vdμ is finite. This Hilbert space has a natural

inner product and norm:

〈φ, ψ〉μ =

∫
X
〈φ(x), ψ(x)〉Vdμ,

‖φ‖2μ = 〈φ, φ〉μ =

∫
X
‖φ(x)‖2Vdμ.

(17)

For an observed set of points xi, i = 1, ..., n, the empirical inner product and
norm can be correspondingly defined as the vector space operations defined by
(17) reduce to the empirical versions.
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We need to compute the gradient of functionals over the Hilbert space L2(X ,
V , μ). Let � : L2(X ,V , μ) → R be a functional, its Fréchet derivative ∇� is a
linear operator satisfying

lim
ψ→0

‖�(f + ψ)− �(f)− 〈∇�(f), ψ〉‖
‖ψ‖ = 0.

5.3. Convergence of functional gradient boosting algorithms

Given a set of observations (xi, yi), i = 1, ..., n where yi ∈ R and xi = (xi1, ...,
xip)

ᵀ ∈ R
p, denote Ω ⊂ L2(X ,V , μ) the hypothesis space generated by a base

learner. We aim to minimize an empirical loss function

argmin
f∈Ω

1

n

n∑
i=1

�(yi, f(xi)) (18)

for a functional � : L2(X ,V , μ) → R. Mason et al. [18] frame the boosting as a
functional gradient descent method. The Fréchet derivative ∇� implies

�(f + ψ) = �(f) + 〈∇�(f), ψ〉+ o(‖ψ‖).

Define U = −∇�(f) and let ψ = δg. We then have:

�(f + δg) = �(f)− δ〈U, g〉+ o(‖g‖). (19)

Hence to first order in δ > 0, (19) implies

�(f + δg) = �(f)− δ〈U, g〉.

For the greatest reduction in loss values, we should seek the g which maximizes
〈U, g〉. Now,

2〈U, g〉 = ‖U‖2 + ‖g‖2 − ‖U − g‖2

≥ −‖U − g‖2,

where the last equality holds only for the trivial case ‖U‖ = ‖g‖ = 0. Therefore
seeking the solution argmax−‖U−g‖2, or argmin‖U−g‖2, might be sub-optimal
for greatest loss reduction, compared to directly seeking argmax〈U, g〉. However,
the former strategy brings in numerous regression type base learners as presented
in Section 5.1. In addition, if the solution g∗ = argmin‖U − g‖2 results in
〈U, g∗〉 > 0, the loss � is thus reduced. Some base learners including linear least
squares and regression trees, indeed provide the greatest loss reduction. See
Proposition 5 for details. The above discussion is closely related to the concept
of edge that quantifies the performance of any given set of base learners [13]. If
∀∇�(f) ∈ Ω, there exists a function h ∈ Ω such that

〈∇�(f), h〉 ≥ γ‖∇�(f)‖‖h‖. (20)
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Then the hypothesis space Ω is defined to have an edge γ ∈ [0, 1]. If Ω is closed
under scalar multiplication, letting U = −∇�(f), g = −h, then (20) becomes

〈U, g〉 ≥ γ‖U‖‖g‖. (21)

The base learners in this paper are all generated from regression techniques, Ω
is thus closed under scalar multiplication. Hence we can also claim that (21)
holds for every negative gradient U if Ω has an edge γ.

In the literature, edge is related to weak learnability assumption when base
learners are binary classifiers [8]. Roughly speaking, if Ω is a space of binary
classifier that is more accurate than a random guess, then edge γ > 0. The
relationship between the edge and base learners discussed in Section 5.1.2 can
be summarized in the following results:

Proposition 5. For a linear smoother g = SU , where S is a linear smoothing
matrix and U = −∇�(f), the following results hold:

(i) If S is positive semidefinite, then 〈U, g〉 ≥ 0. Furthermore, the hypothesis
space Ω has an edge γ for every U .

(ii) In particular, if S is symmetric idempotent, then the following holds:

argmax〈U, g〉 = argmin‖U − g‖2.

Furthermore, the hypothesis space Ω has an edge γ for every U . Finally,
for a constant ζ �= 0, the following equality holds:

〈U, g〉
ζ‖g‖2 =

1

ζ
. (22)

The equality (22) will be handy in the subsequent analysis. All three base
learners described in Section 5.1.2 are linear smoothers with smoothing matrices
positive semidefinite. According to Proposition 5, therefore, the hypothesis space
Ω has an edge γ for every negative gradient −∇�(f). Bühlmann and Hothorn
[3] observed that seeking argmax〈U, g〉 [18] and seeking argmin‖U − g‖2 [11]
coincide for the componentwise linear least squares base learner. This instance
is generalized by Proposition 5 to contain more base learners, for instance, re-
gression trees (cf. Proposition 4).

The functional gradient boosting algorithm, Algorithm 4, aims to find a solu-
tion of (18) [18, 11]. Different choices of step-size in line 5 have been proposed,
including an iteration-varying number by a line search [11] and a small constant
[3]. From Proposition 5, if the base learner is a linear smoother whose smoothing
matrix is symmetric idempotent, then maximizing 〈U, g〉 is essentially the same
as minimizing ‖U −g‖2 in line 4 of Algorithm 4. However, if the componentwise
smoothing spline is used as the base learner, the two methods don’t necessarily
match since the smoothing matrix S is not idempotent.

In theoretical analysis of algorithms, it is common to assume some conditions
on the loss functions. A functional � is ζ-strongly smooth if ∀φ, ψ ∈ Ω, for some
ζ > 0, the following inequality holds:

�(φ)− �(ψ) ≤ 〈∇�(ψ), φ− ψ〉+ ζ

2
‖φ− ψ‖2.
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Let f∗ = argminf∈Ω �(f). We first have a convergence result with an iteration-
varying step-size.

Theorem 1. Let �(f) be a ζ-strongly smooth functional bounded below over
L2(X ,V , μ). Assume that Ω ⊂ L2(X ,V, μ) has an edge γ ∈ (0, 1] for every
negative gradient −∇�(f). Suppose a step-size in the (m+1)-th boosting iteration
is given by

wm+1 =
〈−∇�(fm), gm+1〉

ζ‖gm+1‖2
, (23)

then Algorithm 4 converges to some value, in which case

‖∇�(fm)‖ → 0 as m → ∞.

Furthermore, after M iterations, the following convergence rate is obtained:

min
0≤m≤M−1

‖∇�(fm)‖ ≤ 1√
M

(
2ζ

γ2
(�(f0)− �(f∗))

)1/2

.

The results in Theorem 1 are different from Theorem 12.3 in Mason et al.
[18] in that we have adopted the concept of edge. In addition, there are at least
two other differences: the base learner here is not restricted to a classifier and
may be a regression type base learner; and we may minimize the least squares
‖−∇�(fm) − gm+1‖2 rather than maximizing 〈−∇�(fm), gm+1〉. Notice if the
boosting base learner is a linear operator gm+1 = S(−∇�(fm)), and the associ-
ated linear smoothing matrix S is symmetric idempotent, then (23) reduces to
a constant wm+1 = 1

ζ based on Proposition 5. Finally, Theorem 1 yields very
similar results as to a gradient method in function estimation. See, for instance,
Nesterov [23].

For a gradient method in function estimation, a constant step-size and it-
eration-varying step-size can be unified in the convergence analysis [23]. For a
functional gradient method, however, the properties of a constant step-size in
Algorithm 4 have not been well addressed [3]. The following theorem fills the
gap. The results may be applied to linear smoother base learners including linear
least squares and regression trees.

Algorithm 4 Functional Gradient Boosting Algorithm (FGB)

1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count M , starting point f0(x).
2: for m = 1 to M do
3: Compute the residuals, defined as negative gradient of loss function,

Ui = −∂�(yi, f)

∂f
|f=fm−1(xi)

4: Fit a base learner gm to the residuals Ui with predictors xi, for i = 1, 2, ..., n.
5: Update the estimated function with a selected step-size wm,

fm = fm−1 + wmgm.

6: end for
7: Output: fM .
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Theorem 2. Let �(f) be a ζ-strongly smooth functional bounded below over
L2(X ,V , μ). Assume that Ω has an edge γ ∈ (0, 1]. Assume that at the (m+1)-
th iteration the boosting base learner is a linear operator, and the associated
linear smoothing matrix Sm+1 is symmetric idempotent. Given a constant step-
size, then Algorithm 4 converges to some value, in which case

‖Sm+1∇�(fm)‖ → 0 as m → ∞.

Furthermore, after M iterations, the following convergence rate is obtained:

min
0≤m≤M

‖Sm+1∇�(fm)‖ ≤ 1√
M

(
2ζ

γ2
(�(f0)− �(f∗))

)1/2

.

5.4. Convergence of MM boosting algorithms

Given a set of observations (xi, yi), i = 1, ..., n, where yi ∈ R and xi = (xi1, ...,
xip)

ᵀ ∈ R
p, denote Ω the hypothesis space generated by a base learner. We seek

the solution of the problem

argmin
f∈Ω

1

n

n∑
i=1

L(yi, f(xi)) (24)

for a functional L : L2(X ,V , μ) → R. From now on, we suppress y in the loss
functions. We consider a general MM algorithm. Suppose the objective L(f) is
majorized by a surrogate loss Hk(f) at the majorization point f (k−1) in the k-th
outer MM loop, k = 1, 2, ..., such that

L(f) ≤ Hk(f) for all f ∈ Ω, L(f (k−1)) = Hk(f
(k−1)). (25)

Note, Hk(f) depends on f (k−1) by the design. The surrogate loss Hk(f) can be
minimized or reduced to obtain a new estimate f (k). Therefore the DC surrogate
function characterized by (5) is a special case of (25). Denote �k(f) the error
between the surrogate loss and the objective given by �k(f) = Hk(f) − L(f).
The descent property of the MM framework is described below:

Proposition 6. Suppose a loss functional L is bounded below, and a surro-
gate functional Hk is defined by (25), then L(f (k)) and Hk(f

(k)) monotonically
decrease and converge to the same value. Furthermore, �k(f

(k)) → 0 as k → ∞.

We consider an implementation of the boosting algorithm in the MM frame-
work, Algorithm 5, which is a generalization of Algorithm 1. We begin with

some preliminary results concerning the convergence analysis. Denote f
(k)
m the

estimate at the m-th inner boosting iteration within the k-th outer MM loop,

for k = 1, 2, ...,m = 0, 1, 2, ...,M . Note f
(0)
m is not defined in Algorithm 5. For

notational convenience, however, denote

f
(0)
M � f (0). (26)
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Algorithm 5 MM Boosting Algorithm (MMBA)

1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count K,M , starting point f (0).

2: for k = 1 to K do
3: Initialization: f0(x) = f (k−1).
4: Construct the surrogate convex loss Hk(f) majorizing L at f0(x).
5: for m = 1 to M do
6: Compute the residuals, defined as negative gradient of loss function

Ui = −∂Hk(f)

∂f
|f=fm−1(xi)

7: Fit a base learner gm to the residuals Ui with predictors xi, for i = 1, 2, ..., n.
8: Update the estimated function with a selected step-size wm,

fm = fm−1 + wmgm.

9: end for
10: Update the current estimate f (k) = fM (x).
11: end for
12: Output: f (K).

Notice that f
(k)
0 is the initial boosting estimate at the k-th MM outer loop. The

equality at the majorization points between the surrogate and the objective is
stated in the next lemma.

Lemma 3. For a loss functional L and surrogate loss functional Hk defined by
(25), the following results hold for Algorithm 5:

Hk(f
(k)
0 ) = Hk(f

(k−1)
M ) = L(f

(k−1)
M ). (27)

As a consequence, (27) also holds for Algorithm 1 which is a special case of
Algorithm 5.

A concept of strongly convex functional is often needed in the convergence
analysis. A functional � over L2(X ,V , μ) is η-strongly convex if ∀φ, ψ ∈ Ω, for
some η > 0, the following inequality holds:

�(φ)− �(ψ) ≥ 〈∇�(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2. (28)

For the sum of convex loss and concave loss functions (2), utilizing the special
form of the surrogate loss (4), the following lemma suggests that we may only
need to focus on the convex loss concerning the properties of the surrogate loss.

Lemma 4. Suppose a loss functional L(f) = �(f) + �s(f) over L2(X ,V , μ) is
linearly majorized by a surrogate loss Hk(f) at f (k−1), where Hk(f) = �(f) +
hk(f) and hk(f) is given by (3). Then the following results hold:

(i) If �(f) is ζ-strongly smooth, then Hk(f) is ζ-strongly smooth.
(ii) If �(f) is η-strongly convex, then Hk(f) is η-strongly convex.

Let f∗ = argminf∈Ω L(f). We first have a convergence result of Algorithm 5
with an iteration-varying step-size.
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Theorem 5. Consider a loss functional L(f) bounded below over L2(X ,V , μ).
Assume that L(f) is majorized by a surrogate loss Hk(f) at f (k−1). Assume
that Hk(f) is a ζ-strongly smooth functional over L2(X ,V , μ). Assume that
Ω ⊂ L2(X ,V , μ) has an edge γ ∈ (0, 1] for every negative gradient −∇Hk(f).
Given a starting point f (0) and suppose a step-size wm+1 in the (m + 1)-th
boosting iteration within the k-th outer MM loop is given by

wm+1 =
〈−∇Hk(f

(k)
m ), gm+1〉

ζ‖gm+1‖2
, (29)

then Algorithm 5 converges to some value, in which case:

‖∇Hk(f
(k)
m )‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, the following convergence rate is obtained:

min
0≤m≤M−1,1≤k≤K

‖∇Hk(f
(k)
m )‖ ≤ 1√

MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.

Notice if the boosting base learner is a linear operator, and the associated
linear smoothing matrix is symmetric idempotent, then the step-size (29) re-
duces to a constant wm+1 = 1

ζ based on Proposition 5. With Theorem 5, the
following results for the DC framework directly follow from Lemma 4.

Corollary 5.1. Suppose a loss functional L(f) = �(f) + �s(f) bounded be-
low over L2(X ,V , μ) is majorized by a surrogate loss Hk(f) at f (k−1), where
Hk(f) = �(f) + hk(f), and hk(f) is given by (3). Assume that �(f) is a ζ-
strongly smooth functional over L2(X ,V , μ). Assume that Ω ⊂ L2(X ,V , μ) has
an edge γ ∈ (0, 1] for every negative gradient −∇Hk(f). Given a starting point
f (0) and suppose a step-size wm+1 in the (m+1)-th boosting iteration within the
k-th outer DC loop is given by (29), then Algorithm 1 converges to some value,
in which case:

‖∇Hk(f
(k)
m )‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, the following convergence rate is obtained:

min
0≤m≤M−1,1≤k≤K

‖∇Hk(f
(k)
m )‖ ≤ 1√

MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.

For a constant step-size, we have the following results which may be applied
to linear smoother base learners including linear least squares and regression
trees.

Theorem 6. Suppose a loss functional L(f) bounded below over L2(X ,V , μ)
is majorized by a surrogate loss Hk(f) at f (k−1). Assume that Hk(f) is a ζ-
strongly smooth functional over L2(X ,V , μ). Assume that Ω ⊂ L2(X ,V , μ) has
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an edge γ ∈ (0, 1] for every negative gradient −∇Hk(f). Suppose that at the
(m + 1)-th boosting iteration within the k-th outer MM loop, the boosting base

learner is a linear operator, and the associated linear smoothing matrix S
(k)
m+1

is symmetric idempotent. Given a starting point f (0) and a constant step-size,
then Algorithm 5 converges to some value, in which case:

‖S(k)
m+1∇Hk(f

(k)
m )‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, the following convergence rate is obtained:

min
0≤m≤M,1≤k≤K

‖S(k)
m+1∇Hk(f

(k)
m )‖ ≤ 1√

MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.

With Theorem 6, the following results for the DC framework directly follow
from Lemma 4.

Corollary 6.1. Suppose a loss functional L(f) = �(f) + �s(f) bounded below
L2(X ,V , μ) is majorized by a surrogate loss Hk(f) at f (k−1), where Hk(f) =
�(f)+hk(f), and hk(f) is given by (3). Assume that �(f) is a ζ-strongly smooth
functional over L2(X ,V , μ). Assume that Ω ⊂ L2(X ,V , μ) has an edge γ ∈ (0, 1]
for every negative gradient −∇Hk(f). Suppose that at the (m + 1)-th boosting
iteration within the k-th outer DC loop, the boosting base learner is a linear

operator, and the associated linear smoothing matrix S
(k)
m+1 is symmetric idem-

potent. Given a starting point f (0) and a constant step-size, then Algorithm 1
converges to some value, in which case:

‖S(k)
m+1∇Hk(f

(k)
m )‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, the following convergence rate is obtained:

min
0≤m≤M,1≤k≤K

‖S(k)
m+1∇Hk(f

(k)
m )‖ ≤ 1√

MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.

In Proposition 6, if we choose f
(k)
† = argminf∈Ω Hk(f), Proposition 6 implies

that L(f
(k)
† ) and Hk(f

(k)
† ) monotonically decrease and converge to some value,

say L(f‡). In general and in particular if L is nonconvex, there is no guarantee
that L(f‡) = L(f∗). Nevertheless, we can explore how Algorithm 5 performs
when L(f‡) = L(f∗). For convenience of analysis we study Algorithm 6. Unlike
Algorithm 5 with two layers of loops, Algorithm 6 is a simplified version with
only one loop. This follows the same strategy as Krause and Singer [14]. We first
prepare some results before the convergence analysis is conducted. In particular,
we generalize strong convexity to the following condition, which will be useful
in a constant step-size analysis:
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Algorithm 6 Simple MM Boosting Algorithm (SMMBA)

1: Input: training samples {(x1, y1), ..., (xn, yn)}, iteration count K, starting point f (0).
2: for k = 1 to K do
3: Construct the surrogate convex loss Hk(f) majorizing the objective function L at

f (k−1).
4: Compute the residuals, defined as negative gradient of loss function

Ui = −∂Hk(f)

∂f
|f=f(k−1)

5: Fit a base learner gk to the residuals Ui with predictors xi, for i = 1, 2, ..., n.
6: Update the estimated function with a selected step-size wk,

f (k) = f (k−1) + wkgk.

7: end for
8: Output: f (K).

Condition 1. For a loss functional � over L2(X ,V , μ) and ∀φ, ψ ∈ Ω,

�(φ)− �(ψ) ≥ 〈S∇�(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2 (30)

holds for a symmetric idempotent matrix S and some constant η > 0.

Clearly, if (28) holds, then (30) holds, in which case S is the identity matrix.
However, Condition 1 doesn’t necessarily imply strongly convex. The following
conclusion is analogous to that of a strongly convex functional:

Proposition 7. If Condition 1 holds for a functional �, ∀ψ ∈ Ω, the following
inequality holds:

∇�(ψ)ᵀS∇�(ψ) ≥ 2η (�(ψ)− �(ψ∗)) , (31)

where ψ∗ is a minimization point of �.

Replacing S with the identity matrix, (31) simplifies to a standard result for
strongly convex � (cf. p. 460 in Boyd and Vandenberghe [2]):

‖∇�(ψ)‖2 ≥ 2η (�(ψ)− �(ψ∗)) . (32)

The next theorem describes the performance of Algorithm 6.

Theorem 7. Suppose a loss functional L(f) bounded below over L2(X ,V , μ)
is majorized by a surrogate loss Hk(f) at f (k−1). Furthermore, Hk(f) is a ζ-
strongly smooth functional over L2(X ,V , μ). Assume that Ω ⊂ L2(X ,V , μ) has
an edge γ ∈ (0, 1] for every negative gradient −∇Hk(f). Given a starting point
f (0), consider two cases below:

(i) Assume that Hk(f) is a η-strongly convex functional, and a step-size wk+1

is given by

wk+1 =
〈−∇Hk+1(f

k), gk+1〉
ζ‖gk+1‖2

. (33)
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(ii) Assume that functional Hk+1 satisfies Condition 1, and a constant step-
size is given.

After K iterations of Algorithm 6, the bound on L(f (K))− L(f∗) is given by

L(f (K))− L(f∗) ≤ (1− γ2η

ζ
)K

(
L(f (0))− L(f∗)

)

+
γ2η

ζ

K∑
k=1

(1− γ2η

ζ
)K−k

(
Hk(f

(k)
† )− L(f∗)

)
.

(34)

Furthermore, utilizing Proposition 6 to assume that the errors between the sur-
rogate and objective are bounded by

Hk(f
(k)
† )− L(f∗) ≤ β(1− γ2η

ζ
)k, (35)

where β > 0 is a constant, then the following convergence rate is obtained:

L(f (K))− L(f∗) ≤ (1− γ2η

ζ
)K

(
L(f (0))− L(f∗) +Kβ

γ2η

ζ

)
. (36)

Notice if the boosting base learner is a linear operator, and the associated
linear smoothing matrix is symmetric idempotent, then the step-size (33) re-
duces to a constant wk+1 = 1

ζ based on Proposition 5. Grubb and Bagnell [13]
developed a convergence result on strongly smooth and strongly convex loss
functions for Algorithm 4. Compared with Theorem 3 in Grubb and Bagnell
[13], the right hand side of (34) has an additional second error term that is a
bound characterizing the errors between the surrogate loss and the objective
introduced at each iteration. Regardless whether L is nonconvex, a convergence

rate of O(K(1 − γ2η
ζ )K is obtained when Hk(f

(k)
† ) converges to L(f∗) at the

rate of O((1 − γ2η
ζ )K) for K iterations. The latter rate is the same as boost-

ing convergence rate for minimizing a ζ-strongly smooth and η-strongly convex
functional [13]. While the assumption (35) seems difficult to verify, it suggests
that the convergence rate of Algorithm 6 and hence Algorithm 5 relies on how
tight a surrogate loss approximates the objective. Intuitively we should seek
surrogate loss functions as close as possible to the original objective, yet easier
to minimize than the latter.

With Theorem 7, the following results concerning an iteration-varying step-
size for the DC framework can be developed, again with the aid of Lemma 4.

Corollary 7.1. Suppose a loss functional L(f) = �(f) + �s(f) bounded be-
low over L2(X ,V , μ) is majorized by a surrogate loss Hk(f) at f (k−1), where
Hk(f) = �(f) + hk(f), and hk(f) is given by (3). Assume that �(f) is a ζ-
strongly smooth and η-strongly convex functional over L2(X ,V , μ). Assume that
Ω ⊂ L2(X ,V , μ) has an edge γ ∈ (0, 1] for every negative gradient −∇Hk(f).
Given a starting point f (0) and suppose a step-size wk+1 is provided by (33),
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after K iterations of Algorithm 6, the bound on L(f (K))− L(f∗) is given by

L(f (K))− L(f∗) ≤ (1− γ2η

ζ
)K

(
L(f (0))− L(f∗)

)

+
γ2η

ζ

K∑
k=1

(1− γ2η

ζ
)K−k

(
Hk(f

(k)
† )− L(f∗)

)
.

Furthermore, utilizing Proposition 6 to assume that the errors between the sur-
rogate and objective are bounded by

Hk(f
(k)
† )− L(f∗) ≤ β(1− γ2η

ζ
)k,

where β > 0 is a constant, then the following convergence rate is obtained:

L(f (K))− L(f∗) ≤ (1− γ2η

ζ
)K

(
L(f (0))− L(f∗) +Kβ

γ2η

ζ

)
.

5.5. Examples

In the previous sections, general convergence theories are provided for boosting
algorithms including FGB, MMBA, DCBA and SMMBA. In this section, we
apply these theories to some standard and robust loss functions in Table 1.
Recall y = {+1,−1}.

5.5.1. Logistic loss

We first consider the logistic loss �(y, f) given by

�(y, f) = log(1 + exp(−yf)). (37)

The partial second derivative is given by

∂2�(y, f)

∂f2
=

exp(yf)

(1 + exp(yf))
2

=
1

1/ exp(yf) + 2 + exp(yf)

≤ 1

4
.

(38)

The last inequality is trivially obtained by substituting a =
√
1/ exp(yf), b =√

exp(yf) in the following inequality:

a2 + b2 ≥ 2ab.

It is straightforward to argue that the logistic loss is 1
4 -strongly smooth (cf. pp.

460-461 in Boyd and Vandenberghe [2]). This, together with other assumptions
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in the theorems, Theorem 1 and 2 thus hold for Algorithm 4 when applying to
the logistic loss.

Consider the truncated logistic loss or difference logistic loss (cf. Table 2)
L(f, s) = �(f) + �s(f), where �(f) is given by (37) and �s(f) = −

(
log(1 +

exp(−u))− log(1 + exp(−s))
)
+
or �s(f) = − log(1 + exp(−u− s)) with u = yf .

Since �(f) is 1
4 -strongly smooth, along with other assumptions in the corollaries,

Corollary 5.1 and 6.1 hold for Algorithm 1 when applying to the truncated
logistic loss and difference logistic loss.

Note, for fixed y, (38) implies

lim
f→∞

∂2�(y, f)

∂f2
→ 0.

Hence the strongly convex condition in Corollary 7.1 is not satisfied for the
logistic loss. However, some minor modifications shown below can restrict the
support to a compact set, which in turn can force the logistic loss strongly
convex. To maintain numerical stability, it has been suggested to clap the range
of f such that f ∈ [−τ, τ ] for some constant τ > 0 [12]. Therefore we have
yf ∈ [−τ, τ ] since y ∈ {−1, 1}, which leads to

∂2�(y, f)

∂f2
=

1

1/ exp(yf) + 2 + exp(yf)

≥ 1

2 + 2 exp(τ)
.

The last inequality is obtained from 1/ exp(yf) ≤ exp(τ), exp(yf) ≤ exp(τ).
Hence �(y, f) is 1

2+2 exp(τ) -strongly convex. This, in conjunction with other as-

sumptions in the corollary, Corollary 7.1 holds for Algorithm 6 when applying
to the truncated logistic loss and difference logistic loss.

5.5.2. Exponential loss

Consider the exponential loss �(y, f) given by

�(y, f) = exp(−yf). (39)

The second derivative is given by ∂2�(y,f)
∂f2 = exp(−yf). Therefore �(y, f) is

smooth and convex, but neither strongly smooth nor strongly convex. Again,
we can clap the range of f , such that f ∈ [−τ, τ ] for some constant τ > 0.
Therefore we have yf ∈ [−τ, τ ] as before, which leads to

exp(−τ) ≤ ∂2�(y, f)

∂f2
≤ exp(τ).

With the restricted range f ∈ [−τ, τ ], �(y, f) is thus strongly smooth and
strongly convex. Combining with other assumptions, Theorem 1 and 2 hold
for Algorithm 4 when applying to the restricted exponential loss.



Robust boosting 625

Consider the truncated exponential loss L(f, s) = �(f) + �s(f), where �(f) is
given by (39) and �s(f) = −max

(
0, exp(−u) − exp(−s)

)
, u = yf, f ∈ [−τ, τ ].

As above, combining with other assumptions, Corollary 5.1 and 6.1 thus hold
for Algorithm 1 when applying to the truncated exponential loss. Similarly,
combining with other assumptions, Corollary 7.1 holds for Algorithm 6 when
applying to the truncated exponential loss.

6. A simulation study

In the simulated examples, we study performance of the proposed robust boost-
ing algorithms and compare with the standard non-robust boosting methods
and existing robust boosting algorithms. Random data generations are similar
to those in Wu and Liu [35], Park and Liu [24]. Example 1 and 2 are binary
classification problems while example 3 is a multi-class problem. These examples
include both linear and nonlinear classifiers.

1. In example 1, predictor variables (x1, x2) are uniformly sampled from a
unit disk x2

1 + x2
2 ≤ 1 and y = 1 if x1 ≥ x2 and -1 otherwise.

2. In example 2, predictor variables (x1, x2) are uniformly sampled from a
unit disk x2

1+x2
2 ≤ 1 and y = 1 if (x1−x2)(x1+x2) < 0 and -1 otherwise.

3. In example 3, we consider a 3-class problem. Predictor variables (x1, x2)
are uniformly sampled from a unit disk x2

1+x2
2 ≤ 1. For a J-class problem,

the class label y =
⌊
Jθ
2π

⌋
, where �·� is the integer part function, and θ is

the radian phase angle measured counter-clockwisely.

In each example, we also generate another 18 noise variables from uniform[-1, 1].
Different level of outliers are introduced to the data. We randomly select v per-
cent of the date and switch their class labels for binary problems; or switch their
class labels to other classes with equal probabilities in example 3. We consider
v=0, 5, 10 and 20. We generated random samples of training/tuning/test sam-
ples. Training data were used for model estimation, tuning samples were used to
select optimal boosting iteration in the DCBA, and test data were used to eval-
uate classification accuracy. For the binary classification problems, RobustBoost
requires choosing two parameters, the error goal and margin goal. The error goal
is the proportion of the outlier observations, which can be easy to set up in the
simulated data [7]. The margin goal was chosen based on the tuning data. For
example 3, we also evaluated the multi-class BrownBoost and pre-specified the
tuning parameter following McDonald et al. [20]. With the simulated data, the
performance of an algorithm can be compared with the optimal Bayes errors. In
example 1 and 2, the training/tuning/test sample sizes are n = 200/200/10, 000
from 100 random samples. In example 3, the training/tuning/test sample sizes
are 100/1, 000/10, 000 from 50 random samples.

The DCBA in Table 4 was evaluated. For example 1 and 3, component-
wise linear least squares were base learner, while componentwise smoothing
splines were base learner in example 2. The following candidate values of the
truncation location s were investigated. For truncated exponential loss, s =
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0,− log 2,− log 3; for truncated hinge loss, s = 0,−1,−2; for truncated logis-
tic loss, s = 0,− log 3,− log 7; for logistic difference loss, s = log 2, log 4, log 8
except for s = log 16 for example 2 and v=0 and 5. For truncated multi-class
hinge loss, s = 0, 0.5, 1, 1.5, 2. With candidate values of s described above, we
only report the results from which the best prediction was obtained. The results
are summarized in Tables 5 to 10. With no contamination, each DCBA and
its corresponding non-robust boosting algorithm perform similarly. With data
contaminated with outliers, the DCBA is more accurate than its non-robust
counterpart in prediction and variable selection. Overall, the DCBA provides
smaller misclassification errors and eliminate more noise variables. Compared
to existing robust boosting algorithms, the DCBA outperforms RobustBoost in
example 1. This is also the case in example 2 except for THingeBoost which has
slightly poorer accuracy than RobustBoost but maintains more parsimonious
variable selection. In example 3, the robust multi-class HingeBoost performs
better than BrownBoost with smaller errors and number of selected variables.
To further understand the dynamics of robust boosting with contaminated data,
the DCBA is compared with non-robust counterparts in Figure 3 to 6. For each
DCBA, we plot the evolutions of misclassification error on the test data as well
as the number of variables selected, versus the boosting iteration. Clearly, the
DCBA performs better than their non-robust counterparts. While we illustrate
the patterns using data generated in example 1 with 20% contamination, sim-
ilar conclusions hold for other examples as well as other data contamination
scenarios (figures not shown).

We also evaluate the performance of the adaptive DCBA. We only illustrate
selected results. For example 2, we focus on variations of HingeBoost. The re-
sults are summarized in Table 7, Table 8 and Figure 7. The adaptive DCBA
(ATHingeBoost) performs better than its robust cousin: THingeBoost. It also
outperforms the adaptive non-robust cousin: AHingeBoost. AThingeBoost gen-
erated more accurate classification and variable selection than the two com-
petitors. For example 3, the results from the adaptive multi-class DCBA are
summarized in Table 9 and 10. The adaptive robust boosting (AmHingeBoost)

Table 5

Misclassification error in Example 1

Method v=0 v=5 v=10 v=20
Bayes

0 0.05 0.1 0.2
Nonrobust
LogitBoost 0.0293(0.0114) 0.0806(0.0151) 0.1335(0.0137) 0.2449(0.0172)
AdaBoost 0.0224(0.0103) 0.0793(0.0159) 0.1344(0.0149) 0.2451(0.0176)
HingeBoost 0.0161(0.0144) 0.0658(0.0152) 0.1206(0.0145) 0.2275(0.0177)

Robust
TLogitBoost 0.0292(0.0114) 0.0774(0.0140) 0.1275(0.0135) 0.2311(0.0170)
DLogitBoost 0.0320(0.0128) 0.0809(0.0149) 0.1328(0.0152) 0.2376(0.0160)
TAdaBoost 0.0222(0.0102) 0.0652(0.0091) 0.1162(0.0092) 0.2252(0.0140)
THingeBoost 0.0163(0.0145) 0.0643(0.0139) 0.1172(0.0144) 0.2196(0.0153)
RobustBoost 0.0391(0.0156) 0.0893(0.0169) 0.1419(0.0169) 0.243(0.0212)
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Table 6

Number of selected variables in Example 1

Method v=0 v=5 v=10 v=20
Nonrobust
LogitBoost 2(0) 2(0.2) 2.5(0.7) 3.7(1.6)
AdaBoost 2(0) 2.7(1.2) 3.1(1.4) 4.0(2.0)
HingeBoost 2.1(0.4) 2.2(0.6) 2.7(1.2) 3.4(1.6)

Robust
TLogitBoost 2(0) 2(0) 2.1(0.3) 2.4(1.1)
DLogitBoost 2(0) 2(0) 2(0.1) 2.5(0.8)
TAdaBoost 2(0) 3.1(1.4) 3.8(1.9) 5.0(2.0)
THingeBoost 2.1(0.4) 2.2(0.5) 2.4(0.8) 2.8(1.4)
RobustBoost 7.6(5.1) 7.1(4.7) 8.7(5.6) 9.6(6.0)

Table 7

Misclassification error in Example 2

Method v=0 v=5 v=10 v=20
Bayes

0 0.05 0.1 0.2
Nonrobust
LogitBoost 0.0482(0.0228) 0.1041(0.0207) 0.1595(0.0209) 0.2737(0.0230)
AdaBoost 0.0543(0.0241) 0.1076(0.0225) 0.1622(0.0224) 0.2741(0.0237)
HingeBoost 0.0673(0.0271) 0.1238(0.0299) 0.1802(0.0267) 0.2884(0.0252)
AHingeBoost 0.0579(0.0268) 0.1132(0.0254) 0.1670(0.0229) 0.2765(0.0235)

Robust
TLogitBoost 0.0486(0.0234) 0.0981(0.021) 0.1497(0.0194) 0.2637(0.0219)
DLogitBoost 0.0505(0.0230) 0.1024(0.0208) 0.1553(0.021) 0.2661(0.0238)
TAdaBoost 0.0543(0.0244) 0.1044(0.0210) 0.1542(0.0207) 0.2680(0.0223)
THingeBoost 0.0673(0.0272) 0.1191(0.0272) 0.1712(0.0252) 0.2797(0.0239)
ATHingeBoost 0.0579(0.0269) 0.1083(0.0247) 0.1607(0.0238) 0.2642(0.0227)
RobustBoost 0.0610(0.0189) 0.1180(0.0200) 0.1709(0.0215) 0.2716(0.0250)

Table 8

Number of selected variables in Example 2

Method v=0 v=5 v=10 v=20
Nonrobust
LogitBoost 2.1(0.3) 3.0(1.2) 3.9(1.9) 4.5(2.6)
AdaBoost 2.0(0.1) 2.6(0.9) 3.1(1.3) 4.1(2.1)
HingeBoost 3.9(2) 4.7(2.5) 5.9(3.1) 6.2(3.4)
AHingeBoost 2(0.1) 2(0.2) 2.2(0.5) 3.6(1.5)

Robust
TLogitBoost 2.1(0.3) 2.3(0.6) 2.7(1.2) 4.0(2.1)
DLogitBoost 2.0(0.1) 2.4(0.7) 2.5(0.8) 3.5(1.7)
TAdaBoost 2(0.1) 2.3(0.7) 2.8(1.4) 3.9(1.9)
THingeBoost 3.9(2) 4.2(2.2) 5.3(2.5) 5.9(2.9)
ATHingeBoost 2(0.1) 2(0.2) 2(0.2) 2.6(0.9)
RobustBoost 8.3(5.2) 9.6(5.1) 8.7(5.4) 10.0(6.1)
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Table 9

Misclassification error in Example 3

Method v=0 v=5 v=10 v=20
Bayes

0 0.05 0.1 0.2
Nonrobust
mHingeBoost 0.0604(0.046) 0.1146(0.0508) 0.1731(0.0556) 0.315(0.0664)
AmHingeBoost 0.0486(0.0619) 0.1063(0.0633) 0.1641(0.0669) 0.315(0.088)

Robust
mTHingeBoost 0.0558(0.0447) 0.1101(0.0497) 0.1678(0.0541) 0.2949(0.065)
AmTHingeBoost 0.0431(0.0426) 0.095(0.0457) 0.1546(0.0563) 0.2854(0.0808)
BrownBoost 0.0751(0.0141) 0.1360(0.0135) 0.1949(0.0169) 0.3132(0.0233)

Table 10

Number of selected variables in Example 3

Method v=0 v=5 v=10 v=20
Nonrobust
mHingeBoost 4.1(2.6) 4.2(2.5) 4.7(2.4) 6(3.1)
AmHingeBoost 2.5(1.1) 2.5(1) 2.8(1.2) 2.8(1)

Robust
mTHingeBoost 4.3(2.8) 4.1(2.2) 4.8(2.6) 5.1(2.8)
AmTHingeBoost 2.6(1.2) 2.4(0.7) 2.7(1.1) 2.5(0.7)
BrownBoost 19.9(0.2) 18.3(1.4) 17.1(1.7) 14.3(2.1)

performs better than either robust boosting (mTHingeBoost) or adaptive non-
robust boosting (AmThingeBoost).

7. Data applications

7.1. Analysis of healthcare costs

The Kids’ Inpatient Database (KID) is part of a family of databases developed
for the US Healthcare Cost and Utilization Project. The KID contains a sample
of pediatric discharges from more than 4,100 U.S. community hospitals in 44
states, sampling from 10% of uncomplicated in-hospital births and 80% of other
pediatric cases. Acute kidney injury (AKI) is a common hospital complication
with a rising incidence and a strong association with mortality and overall mor-
bidity outcomes, especially in critically ill children. We predict inpatient costs
for children with AKI who where ≤ 18 years old in the 2009 KID. Inclusion and
exclusion criteria follow Sutherland et al. [28]. There are total of n = 10, 322
AKI cases. The cost of AKI inpatient care for a discharge can be estimated
by multiplying total hospital charge by the group average all-payer inpatient
cost/charge ratio. Although healthcare costs prediction if often considered a
regression like problem, there are some merits to be treated as a classification
problem. For instance, one can evaluate whether a risk factor improves classifi-
cation accuracy. In this paper, hospital charges are dichotomized at a threshold
of $50,000. Potential risk factors include patient demographics, characteristics of
admission and hospitals, payer information, discharge status and more than 260
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Fig 3. Misclassification errors and variable selection for LogitBoost (solid blue box plots) and
truncated LogitBoost (dashed red box plots) for boosting iterations for example 1, n=200, 20%
contamination.

diagnostic codes classified by Clinical Classification Software. There are p = 282
potential predictors which do not contain procedural codes and hospital length
of stay.

The four DCBA in Table 4 were applied to the data. Two thirds of the
data were randomly selected as training data, and the remaining test data were
used to evaluate prediction accuracy. We used trees (stumps) as base learner
in boosting algorithms. Different truncation locations were evaluated, and we
only illustrate selected results. For truncated LogitBoost, s = −2, for difference
LogitBoost, s = 3.3, for truncated AdaBoost, s = −1, and for truncated Hinge-
Boost, s = −1.05. For the DCBA and its non-robust counterpart, Figure 8 to
11 plot the evolution of the misclassification error on the test data versus the
iteration counter, as the algorithms proceed while working on the test set. These
figures also plot the evolution of the number of variables selected versus the iter-
ation counter, as the boosting algorithms proceed while working on the training
set. When boosting iterations were selected by five-fold cross validation with the
training data, the derived models generated results in Table 11. The best predic-
tion accuracy of 86% was obtained with the truncated AdaBoost (TAdaBoost).
The truncated LogitBoost (TLogitBoost) was better than its non-robust coun-
terpart LogitBoost, the difference LogitBoost (DLogitBoost) was comparable to
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Fig 4. Misclassification errors and variable selection for LogitBoost (solid blue box plots) and
difference LogitBoost (dashed red box plots) for boosting iterations for example 1, n=200, 20%
contamination.

LogitBoost, and truncated Hingeboost (THingeBoost) was slightly better than
HingeBoost. In addition, the DCBA provided more sparse variable selection
than their non-robust counterparts. For instance, while more accurate in clas-
sification, TAdaBoost selected 84 risk factors compared to 127 with AdaBoost.
With truncated loss functions, the advantage of DCBA on variable selection is
clearly demonstrated in Figure 8 to 11. We used one data realization to illus-
trate the difference between DCBA and boosting, particularly in Figure 8 to 11.
Multiple random data realizations showed similar conclusions, and the results
are not presented here. We also performed RobustBoost on the data. We consid-
ered different error goals and chose the optimal margin goal based on five-fold
cross validation. The best test error and the associated variable selection are
presented in Table 11. Except for truncated HingeBoost, the DCBA is more
accurate than RobustBoost. In general, RobustBoost selected more risk factors
in the predictive model.

7.2. Classifying breast cancer clinical status

The data contains 278 breast cancer samples with 164 estrogen receptor pos-
itive cases [27]. Following Zhang et al. [37], Li and Bradic [16], we conducted
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Fig 5. Misclassification errors and variable selection for AdaBoost (solid blue box plots) and
truncated AdaBoost (dashed red box plots) for boosting iterations for example 1, n=200, 20%
contamination.

a pre-screening procedure to reduce computation demand. From 22,283 genes,
the dataset was reduced to 3000 genes with the largest absolute values of the
two-sample t-statistics. The remaining genes were then standardized. We ran-
domly split the data to training and test data. The training data consists 50/50
positive/negative estrogen receptor status, and the rest was the test data. The
positive/negative outcome status in the training data was randomly exchanged
with percentage v=0, 5, 10, 15. We used componentwise linear least squares as
base learner in boosting algorithms. While different truncation location param-
eters were evaluated, we only report results from selected truncation parame-
ters due to space limitation. For TLogitBoost, DLogitBoost, TAdaBoost and
THingeBoost, truncation location s = −0.2, 0.8,−0.2,−0.5, respectively. A five-
fold cross-validation was implemented to select the optimal boosting iterations
with the training data. The above data generation and analysis were repeated
100 times. The results are summarized in Table 12 and 13. For comparison, the
test errors of RobustBoost in Li and Bradic [16] are also reproduced in Table 12.
Note, variable selection results of RobustBoost were not presented in that paper.
For non-contaminated data, all methods show similar prediction while hinge loss
based boosting algorithms select more variables. The same dataset was studied
in Zhang et al. [37], Li and Bradic [16] where the best test error in ten methods
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Fig 6. Misclassification errors and variable selection for HingeBoost (solid blue box plots) and
truncated HingeBoost (dashed red box plots) for boosting iterations for example 1, n=200, 20%
contamination.

was 0.0945, which is larger than six methods in Table 12 with v=0. For contam-
inated data with outliers, the truncated loss functions improve prediction accu-
racy. The DCBA has better test error than its non-robust boosting counterpart.
For instance, with 15% outliers, THingeBoost has test error 0.1197 compared to
0.1379 with HingeBoost. As the level of outlier increases, classification is more
difficult, and more variables are selected. The robust methods in Li and Bradic
[16] found the best test errors 0.1116 (v=5), 0.1217 (v=10) and 0.1329 (v=15),
respectively. Clearly, the proposed TLogitBoost and THingeBoost have better
classification accuracy.

8. Discussion

The results from the simulation studies and data example considered in this
paper strongly suggest that robust gradient boosting is an important alternative
to the traditional boosting in many applications. In particular, the numerical
results suggest that robust boosting can provide more accurate classification
and variable selection.

In this paper, the convergence analysis is centered on smooth loss functions.
However, the hinge loss and truncated hinge loss are both nonsmooth functions.
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Fig 7. Misclassification errors and variable selection for adaptive HingeBoost (solid blue box
plots) and adaptive truncated HingeBoost (dashed red box plots) for boosting iterations for
example 2, n=200, 20% contamination.

Fig 8. Misclassification errors and variable selection for LogitBoost (solid black) and trun-
cated LogitBoost (dashed red) for boosting iterations for AKI data.
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Fig 9. Misclassification errors and variable selection for LogitBoost (solid black) and differ-
ence LogitBoost (dashed red) for boosting iterations for AKI data.

Fig 10. Misclassification errors and variable selection for AdaBoost (solid black) and trun-
cated AdaBoost (dashed red) for boosting iterations for AKI data.
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Fig 11. Misclassification errors and variable selection for HingeBoost (solid black) and trun-
cated HingeBoost (dashed red) for boosting iterations for AKI data.

Table 11

Classification of AKI Costs

Method Misclassification Error No. Variables
Nonrobust
LogitBoost 0.1455 64
AdaBoost 0.1508 127
HingeBoost 0.1550 104

Robust
TLogitBoost 0.1431 59
DLogitBoost 0.1455 57
TAdaBoost 0.1407 84
THingeBoost 0.1532 88
RobustBoost 0.1521 119

There is a lack of convergence analysis on such loss functions for functional
gradient algorithm, or Algorithm 4. Indeed, Algorithm 4 may break down for
nonsmooth loss functions [13]. Further analysis of the proposed DCBA on non-
smooth loss functions is needed to be done.

Asymptotic theories of various boosting algorithms have been elaborated in
the literature, for instance, see an early review Bühlmann and Hothorn [3].
However, there are only limited asymptotic theories developed for Algorithm 4
despite its wide applications particularly in the statistical community [3, 19].
Much of the previous results have focused on special loss functions such as the
least squares loss [3], or special algorithms like AdaBoost. As an extension of
Algorithm 4, asymptotic consistency of Algorithm 1 and 5 remains a future
research topic. Theorem 7 provides convergence rate analysis for Algorithm 6.
It is also interesting to investigate the convergence speed of Algorithm 1 and 5.

The gradient descent view of boosting with the aid of difference of convex
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Table 12

Misclassification error in breast cancer data

Method v=0 v=5 v=10 v=15
Nonrobust
LogitBoost 0.0907(0.0145) 0.1027(0.0218) 0.1341(0.0444) 0.1735(0.0703)
AdaBoost 0.0923(0.0156) 0.1072(0.0237) 0.1333(0.0407) 0.1585(0.0473)
HingeBoost 0.0931(0.0158) 0.0996(0.0230) 0.1165(0.0414) 0.1379(0.0492)

Robust
TLogitBoost 0.0884(0.0131) 0.0920(0.0182) 0.1125(0.0453) 0.1326(0.0646)
DLogitBoost 0.0898(0.0163) 0.0997(0.0265) 0.1316(0.0562) 0.1708(0.0787)
TAdaBoost 0.0978(0.0198) 0.1097(0.0269) 0.1289(0.0344) 0.1511(0.0425)
THingeBoost 0.0937(0.0149) 0.0957(0.0173) 0.1076(0.0295) 0.1197(0.0411)
RobustBoost 0.1024(0.0210) 0.1182(0.0295) 0.1222(0.0304) 0.1329(0.0313)

Table 13

Number of selected variables in breast cancer data

Method v=0 v=5 v=10 v=15
Nonrobust
LogitBoost 2.5(1.8) 3.6(2.2) 5.3(2.9) 6.9(3.6)
AdaBoost 4.1(3.8) 6.6(5.6) 8.6(6.0) 11.7(7.0)
HingeBoost 6.6(7.8) 8.9(9.1) 8.8(8.4) 12.4(9.8)

Robust
TLogitBoost 1.8(1.1) 1.8(1.0) 2.1(1.3) 2.4(1.5)
DLogitBoost 1.4(0.8) 1.7(0.9) 2.5(1.5) 2.9(1.4)
TAdaBoost 4.5(3.7) 7.6(5.4) 8.8(5.7) 8.7(6.2)
THingeBoost 8.4(9.0) 9.4(9.5) 9.6(8.7) 11.2(9.0)

allow us to design boosting algorithms for a variety of robust loss functions.
This new approach can be extended to other nonconvex loss functions including
but not limited to truncated loss. We anticipate that more innovative boosting
algorithms will be developed coupling with other MM algorithms in addition to
the difference of convex algorithm.

Appendix A: Proofs

Proof of Proposition 1: Let ŝ = log(1+exp(−s)). We first consider u → −∞.
For the difference logistic loss we have

lim
u→−∞

{LDL(u, ŝ)} = lim
u→−∞

{log(1 + exp(−u))− log(1 + exp(−u− ŝ))}

= lim
u→−∞

{
log

1 + exp(−u)

1 + exp(−u− ŝ)

}

= log
1

exp(−ŝ)

= ŝ

= log(1 + exp(−s)).
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For the truncated logistic loss we have

lim
u→−∞

{LTL(u, s)} = lim
u→−∞

{min(log(1 + exp(−u)), log(1 + exp(−s)))}

= log(1 + exp(−s)).

Therefore we have

lim
u→−∞

{LDL (u, log(1 + exp(−s)))− LTL(u, s)} = 0.

For the case u → ∞ we have

lim
u→∞

{LDL(u, ŝ)} = lim
u→∞

{log(1 + exp(−u))− log(1 + exp(−u− ŝ))}

= 0,

lim
u→∞

{LTL(u, s)} = lim
u→∞

{min(log(1 + exp(−u)), log(1 + exp(−s)))}

= 0.

Therefore we have

lim
u→∞

{LDL (u, log(1 + exp(−s)))− LTL(u, s)} = 0.

Proof of Proposition 2: Since E(LDL(Y f(X), s)) = E[E(LDL(Y f(X),
s)|X = x)], to minimize E(LDL(Y f(X), s)), we can instead minimize
E(LDL(Y f(X), s)|X = x) for every x. For any fixed x,

E(LDL(Y f(X), s)|X = x) = p(x)LDL(f(x), s) + (1− p(x))LDL(−f(x), s),

where p(x) is the conditional probability of class +1 given x. Without loss
of generality, we only consider p(x) > 1/2. Note if p(x) > 1/2, we have the
minimizer f∗(x) ≥ 0. Otherwise, suppose f∗(x) < 0, we then have f∗(x) <
−f∗(x), leading to

(2p(x)− 1)
(
LDL(f

∗(x), s)− LDL(−f∗(x), s)
)
> 0,

since LDL(f(x), s) is a decreasing function of f(x). Equivalently, we obtain

p(x)LDL (f∗(x), s) + (1− p(x))LDL (−f∗(x), s) > p(x)LDL (−f∗(x), s)

+ (1− p(x))LDL (f∗(x), s) ,

which is contradictory to that f∗(x) is the minimizer. Hence f∗(x) ≥ 0. For any
s > 0 we have

d

df(x)

{
p(x)LDL(f(x), s) + (1− p(x))LDL(−f(x), s)

}
|f(x)=0 =

exp(−s)− 1

2(1 + exp(−s))

< 0.

Hence f∗(x) can’t be 0. Therefore it must be f∗(x) > 0. In conclusion, f∗(x)
has the same sign as p(x)− 1/2.
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Proof of Proposition 3: For the diagonal block matrix S defined by (16), S
is a symmetric block matrix whose diagonal blocks are Aj , and the off-diagonal
blocks are matrices of zeros. In addition, each Aj is a nj ×nj sub-matrix whose
every entry is 1/nj . Therefore each Aj is symmetric. The above arguments imply
that S is symmetric. Furthermore, we have

S2 =

⎛
⎜⎜⎜⎝
A2

1

A2
2

. . .

A2
J

⎞
⎟⎟⎟⎠ .

It can be easily shown that Aj , j = 1, ..., J , are idempotent (cf. Searle [26], p.
322). Thus S2 = S, i.e., S is idempotent.

Denote I the identity matrix. Since S is a diagonal block matrix, the eigen-
values can be computed as below:

det(S − λI) = det(A1 − λI) det(A2 − λI)... det(AJ − λI).

The eigenvalues of S are thus just the list of eigenvalues of each Aj . For each
Aj , the eigenvalues are 1 and 0, with multiplicities 1 and nj−1, respectively (cf.
Searle [26], p. 322). Therefore the eigenvalues of S are 1 and 0, with multiplicities

J and
∑J

j=1(nj − 1) = n− J , respectively.
Proof of Proposition 4 is the same as for Proposition 3.
Proof of Proposition 5:

(i) Since g = SU and S is positive semidefinite, we have

〈U, g〉 = 〈U, SU〉
= UᵀSU

≥ 0.

Furthermore, if γ = 0, then (21) holds. Thus Ω has an edge γ ∈ [0, 1] for
every negative gradient U = −∇�(f).

(ii) Since g = SU , we have

‖U − g‖2 = ‖U − SU‖2

= ‖U‖2 − UᵀSU − UᵀSᵀU + UᵀSᵀSU

= ‖U‖2 − UᵀSU

= ‖U‖2 − 〈U, g〉.

The third equality is obtained since Sᵀ = S and S2 = S. Furthermore,
since ‖U‖2 is a constant,

argmin‖U − g‖2 = argmin−〈U, g〉
= argmax〈U, g〉.
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Since S is symmetric idempotent, S is positive semidefinite. Thus as in (i),
Ω has an edge γ ∈ [0, 1] for every U . Finally, for the S defined above, it is
simple to prove the following equality:

〈U, g〉
ζ‖g‖2 =

1

ζ
. (40)

Proof of Theorem 1: The proof is an adaptation of the corresponding proof of
the convergence of standard gradient method for minimizing a smooth function
[23]. We analyze boosting iterations on minimizing the loss �. By the assumption
that � is strongly smooth, we have:

�(fm+1) ≤ �(fm) + 〈∇�(fm), fm+1 − fm〉+ ζ

2
‖fm+1 − fm‖2.

Let fm+1 = fm+wm+1gm+1 and consider wm+1 given by wm+1=
〈−∇�(fm),gm+1〉

ζ‖gm+1‖2 .

We then have

�(fm+1) ≤ �(fm)− 1

2ζ

〈−∇�(fm), gm+1〉2
‖gm+1‖2

.

With the edge requirement γ > 0, we have

〈−∇�(fm), gm+1〉 ≥ γ‖∇�(fm)‖‖gm+1‖.

Therefore we have

�(fm+1) ≤ �(fm)− γ2

2ζ
‖∇�(fm)‖2. (41)

Since �(fm) monotonically decreases form = 0, 1, ...,M , and � is bounded below,
�(fm) converges. Summing up these inequalities (41) for m = 0, ...,M − 1 , we
obtain

γ2

2ζ

M−1∑
m=0

‖∇�(fm)‖2 ≤ �(f0)− �(fM ) ≤ �(f0)− �(f∗), (42)

where f∗ = argmin �(f). From (42), we know

‖∇�(fm)‖ → 0 as m → ∞.

Furthermore, denote
αM = min

0≤m≤M−1
‖∇�(fm)‖.

Then, using (42) we have

αM ≤ 1√
M

(
2ζ

γ2
(�(f0)− �(f∗))

)1/2

.

Proof of Theorem 2: Again we adapt the convergence analysis in Nesterov
[23] for the proof. We analyze boosting iterations on minimizing the loss �. By
the assumption that � is strongly smooth, we have

�(fm+1) ≤ �(fm) + 〈∇�(fm), fm+1 − fm〉+ ζ

2
‖fm+1 − fm‖2.
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Let fm+1 = fm + wgm+1, Um = −∇�(fm). By the assumption that line 4 of
Algorithm 4 returns gm+1 = Sm+1Um, where Sm+1 is symmetric idempotent,
we have

�(fm+1) ≤ �(fm)− wUᵀ
mSm+1Um +

w2ζ

2
‖Sm+1Um‖2

= �(fm)− wUᵀ
mSᵀ

m+1Sm+1Um +
w2ζ

2
‖Sm+1Um‖2

= �(fm) + (−w +
w2ζ

2
)‖Sm+1Um‖2.

Consider minimizing the following function:

Δ(w) = −w +
w2ζ

2
.

Computing the derivative of this function, we obtain the optimal step-size sat-
isfying Δ′(w) = ζw − 1 = 0. Therefore w∗ = 1

ζ is a minimum of Δ(w) since

Δ′′(w) = ζ > 0. Note γ ∈ (0, 1], hence the one step of the boosting decreases
the value of loss at least as follows:

�(fm+1) ≤ �(fm)− 1

2ζ
‖Sm+1Um‖2

≤ �(fm)− γ2

2ζ
‖Sm+1Um‖2.

(43)

Since �(fm) monotonically decreases form = 0, 1, ...,M , and � is bounded below,
�(fm) converges. Summing up these inequalities (43) for m = 0, ...,M − 1, we
obtain

γ2

2ζ

M−1∑
m=0

‖Sm+1Um‖2 ≤ �(f0)− �(fM ) ≤ �(f0)− �(f∗). (44)

Hence (44) leads to

‖Sm+1∇�(fm)‖ = ‖Sm+1Um‖ → 0 as m → ∞.

Furthermore, denote

θM = min
0≤m≤M

‖Sm+1∇�(fm)‖.

Then, using (44) we have

θM ≤ 1√
M

(
2ζ

γ2
(�(f0)− �(f∗))

)1/2

.

Proof of Proposition 6: Given f (k−1), f (k) is obtained such that the surrogate
loss Hk(f) is reduced. Together with (25), we have

L(f (k)) ≤ Hk(f
(k)) ≤ Hk(f

(k−1)) = L(f (k−1)). (45)
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Therefore L(f (k)) monotonically decreases for k = 1, 2, .... Because L is bounded
below, L(f (k)) converges to some value L(f‡). It also holds that

�k(f
(k)) = Hk(f

(k))− L(f (k)) ≥ 0.

Similarly we have

L(f (k+1)) ≤ Hk+1(f
(k+1)) ≤ Hk+1(f

(k)) = L(f (k)). (46)

Combining (45) and (46), we have

L(f (k+1)) ≤ Hk+1(f
(k+1)) ≤ Hk(f

(k)) ≤ L(f (k−1)).

Hence Hk(f
(k)) monotonically decreases for k = 1, 2, .... By the Squeeze Theo-

rem for Convergence Sequences, we have Hk(f
(k)) → L(f‡), or

�k(f
(k)) = Hk(f

(k))− L(f (k)) → 0

as k → ∞.
Proof of Lemma 3: We first show that

f
(k)
0 = f

(k−1)
M (47)

for k = 1, 2, .... Denote f (0) the starting point as before. Consider two cases. If

k = 1, with (26), then f
(0)
M = f (0) holds for the initial point, and f

(k)
0 = f (0) by

line 3 in Algorithm 5. Together, for k = 1, we have f
(k)
0 = f

(k−1)
M . If k > 1, then

the initial point f
(k)
0 in the k-th outer MM loop is the value f

(k−1)
M obtained in

the last (i.e. M -th) boosting inner iteration within the (k−1)-th outer MM loop.

To summarize, we have shown (47) holds. In addition, f
(k−1)
M or equivalently,

f
(k)
0 , for k = 1, ...,K, are majorization points by design in line 4 in Algorithm 5.
Combining (47) and (25), we have

Hk(f
(k)
0 ) = Hk(f

(k−1)
M ) = L(f

(k−1)
M ).

Proof of Lemma 4: Consider Hk(f) = �(f) + hk(f), where hk(f) is given by
(3). Denote

∇�s(f
(k−1)) � ∂�s(f)

∂f
|f=f(k−1) .

We then have

Hk(f) = �(f) + hk(f)

= �(f) + �s(f
(k−1)) + 〈∇�s(f

(k−1)), f − f (k−1)〉.
(48)

Taking derivative on both sides of the last equation, we have

∇Hk(f) = ∇�(f) +∇�s(f
(k−1)). (49)
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From (48) and (49) we have

Hk(φ) = �(φ) + �s(f
(k−1)) + 〈∇�s(f

(k−1)), φ− f (k−1)〉,

Hk(ψ) = �(ψ) + �s(f
(k−1)) + 〈∇�s(f

(k−1)), ψ − f (k−1)〉,
∇Hk(ψ) = ∇�(ψ) +∇�s(f

(k−1)).

With the last three equalities, it is a simple substitution to show that

Hk(φ)−Hk(ψ)− 〈∇Hk(ψ), φ− ψ〉
= �(φ) + 〈∇�s(f

(k−1)), φ〉 − �(ψ)− 〈∇�s(f
(k−1)), ψ〉

− 〈∇�(ψ) +∇�s(f
(k−1)), φ− ψ〉

= �(φ)− �(ψ)− 〈∇�(ψ), φ− ψ〉.

(50)

We are ready to prove the two conclusions in the lemma:

(i) Suppose functional � is ζ-strongly smooth, we then have

�(φ)− �(ψ) ≤ 〈∇�(ψ), φ− ψ〉+ ζ

2
‖φ− ψ‖2. (51)

Combining (50) and (51), we obtain

Hk(φ)−Hk(ψ) ≤ 〈∇Hk(ψ), φ− ψ〉+ ζ

2
‖φ− ψ‖2.

This completes the proof that Hk is ζ-strongly smooth.
(ii) Now suppose functional � is η-strongly convex:

�(φ)− �(ψ) ≥ 〈∇�(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2. (52)

Combining (50) and (52), we have

Hk(φ)−Hk(ψ) ≥ 〈∇Hk(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2.

Thus Hk is η-strongly convex. Indeed, it can be shown more generally, if
�(f) is η-strongly convex, and h(f) is convex, then �(f)+h(f) is η-strongly
convex.

Proof of Theorem 5: We analyze boosting iterations on minimizing the sur-

rogate loss Hk. Denote f
(k)
m the m-th inner boosting iteration within the k-th

outer MM loop, for k = 1, 2, ...,m = 0, 1, 2, .... By the assumption that Hk is
strongly smooth, we have

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m ) + 〈∇Hk(f

(k)
m ), f

(k)
m+1 − f (k)

m 〉+ ζ

2
‖f (k)

m+1 − f (k)
m ‖2.

Let f
(k)
m+1 = f

(k)
m + wm+1gm+1 and consider wm+1 given by

wm+1 =
〈−∇Hk(f

(k)
m ), gm+1〉

ζ‖gm+1‖2
.
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We have

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m )− 1

2ζ

〈∇Hk(f
(k)
m ), gm+1〉2

‖gm+1‖2
.

With the edge requirement γ > 0, we have

〈−∇Hk(f
(k)
m ), gm+1〉 ≥ γ‖∇Hk(f

(k)
m )‖‖gm+1‖.

We have

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m )− γ2

2ζ
‖∇Hk(f

(k)
m )‖2. (53)

Summing up these inequalities (53) for m = 0, ...,M − 1, we have

Hk(f
(k)
M ) ≤ Hk(f

(k)
0 )− γ2

2ζ

M−1∑
m=0

‖∇Hk(f
(k)
m )‖2. (54)

By (25), we have

L(f
(k)
M ) ≤ Hk(f

(k)
M ). (55)

Combining Lemma 3 and (54)-(55), we have

L(f
(k)
M ) ≤ L(f

(k−1)
M )− γ2

2ζ

M−1∑
m=0

‖∇Hk(f
(k)
m )‖2. (56)

Since L(f
(k)
M ) monotonically decreases for k = 1, 2, ...∀M , and L is bounded

below, L(f
(k)
M ) converges. Summing up these inequalities (56) for k = 1, ...,K

and using (26) , we obtain

γ2

2ζ

K∑
k=1

M−1∑
m=0

‖∇Hk(f
(k)
m )‖2 ≤ L(f

(0)
M )− L(f

(K)
M ) ≤ L(f (0))− L(f∗), (57)

where f∗ = argminL(f). Since L is bounded below, together with (57), the

sum
∑K

k=1

∑M−1
m=0 ‖∇Hk(f

(k)
m )‖2 is absolutely convergent. So the terms can be

rearranged in basically any reasonable way without altering the sum. Obviously
as the sum converges, the individual terms must go to zero as m → ∞, k → ∞
in those various ways. As far as Algorithm 5 is concerned, we have

‖∇Hk(f
(k)
m )‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, denote

αM,K = min
0≤m≤M−1,1≤k≤K

‖∇Hk(f
(k)
m )‖.

Then, using (57) we have

αM,K ≤ 1√
MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.
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Proof of Corollary 5.1: Suppose a loss functional L(f) = �(f) + �s(f) is
majorized by a surrogate loss Hk(f) at f (k−1), where Hk(f) = �(f) + hk(f),
and hk(f) is given by (3). Assume that �(f) is a ζ-strongly smooth functional,
from Lemma 4, Hk(f) is thus ζ-strongly smooth. Additionally, Algorithm 1 is a
special case of Algorithm 5. Together with other assumptions, all conditions in
Theorem 5 are satisfied. Thus the same conclusions of Theorem 5 are obtained
and restated in the corollary.
Proof of Theorem 6: We analyze boosting iterations on minimizing the sur-

rogate loss Hk. Denote f
(k)
m the estimate at the m-th inner boosting iteration

within the k-th outer MM loop, for k = 1, 2, ...,m = 0, 1, 2, .... By the assump-
tion that Hk is strongly smooth, we have

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m ) + 〈∇Hk(f

(k)
m ), f

(k)
m+1 − f (k)

m 〉+ ζ

2
‖f (k)

m+1 − f (k)
m ‖2.

Let f
(k)
m+1 = f

(k)
m + wgm+1, U

(k)
m = −∇Hk(f

(k)
m ). By the assumption that line

7 of Algorithm 5 returns a linear smoother gm+1 such that gm+1 = S
(k)
m+1U

(k)
m ,

and S
(k)
m+1 is symmetric idempotent, we have

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m )− wU (k)ᵀ

m S
(k)
m+1U

(k)
m +

w2ζ

2
‖S(k)

m+1U
(k)
m ‖2

= Hk(f
(k)
m )− wU (k)ᵀ

m S
(k)ᵀ
m+1S

(k)
m+1U

(k)
m +

w2ζ

2
‖S(k)

m+1U
(k)
m ‖2

= Hk(f
(k)
m ) + (−w +

w2ζ

2
)‖S(k)

m+1U
(k)
m ‖2.

Using the same technique for Theorem 2 and noting γ ∈ (0, 1], the one step of
the boosting decreases the value of surrogate loss at least as follows:

Hk(f
(k)
m+1) ≤ Hk(f

(k)
m )− 1

2ζ
‖S(k)

m+1U
(k)
m ‖2

≤ Hk(f
(k)
m )− γ2

2ζ
‖S(k)

m+1U
(k)
m ‖2.

(58)

Summing up these inequalities (58) for m = 0, ...,M − 1, we obtain

Hk(f
(k)
M ) ≤ Hk(f

(k)
0 )− γ2

2ζ

M−1∑
m=0

‖S(k)
m+1U

(k)
m ‖2.

With the same arguments as in the proof of Theorem 5, in particular, the
construction of inequality (56), we have

L(f
(k)
M ) ≤ L(f

(k−1)
M )− γ2

2ζ

M−1∑
m=0

‖S(k)
m+1U

(k)
m ‖2. (59)

Since L(f
(k)
M ) monotonically decreases for k = 1, 2, ...∀M , and L is bounded

below, L(f
(k)
M ) converges. Summing up these inequalities (59) for k = 1, ...,K
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and using (26) , we obtain

γ2

2ζ

K∑
k=1

M−1∑
m=0

‖S(k)
m+1U

(k)
m ‖2 ≤ L(f

(0)
M )− L(f

(K)
M ) ≤ L(f (0))− L(f∗), (60)

where f∗ = argminL(f). With (60) we have

‖S(k)
m+1∇Hk(f

(k)
m )‖ = ‖S(k)

m+1U
(k)
m ‖ → 0 as

{
k → ∞, ∀m
m → ∞, ∀k.

Furthermore, denote

θM,K = min
0≤m≤M,1≤k≤K

‖S(k)
m+1∇Hk(f

(k)
m )‖.

Then using (60) we have

θM,K ≤ 1√
MK

(
2ζ

γ2

(
L(f (0))− L(f∗)

))1/2

.

Proof of Corollary 6.1: Suppose a loss functional L(f) = �(f) + �s(f) is
majorized by a surrogate loss Hk(f) at f (k−1), where Hk(f) = �(f) + hk(f),
and hk(f) is given by (3). Assume that �(f) is a ζ-strongly smooth functional,
from Lemma 4, Hk(f) is thus ζ-strongly smooth. Moreover, Algorithm 1 is a
special case of Algorithm 5. Together with other assumptions, all conditions in
Theorem 6 are satisfied. Thus the same conclusions of Theorem 6 are obtained
and restated in the corollary.
Proof of Proposition 7: Suppose a functional � satisfies Condition 1, i.e,
∀φ, ψ ∈ Ω, assume that

�(φ)− �(ψ) ≥ 〈S∇�(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2. (61)

The right hand side of (61) is a convex quadratic function of φ (for fixed ψ).

Setting the gradient with respect to φ equal to zero, we find that φ̂ = ψ −
1
ηS∇�(ψ) minimizes the right hand side of (61). Therefore we have

�(φ)− �(ψ) ≥ 〈S∇�(ψ), φ− ψ〉+ η

2
‖φ− ψ‖2

≥ 〈S∇�(ψ), φ̂− ψ〉+ η

2
‖φ̂− ψ‖2

= − 1

2η
‖S∇�(ψ)‖2

= − 1

2η
∇�(ψ)ᵀSᵀS∇�(ψ)

= − 1

2η
∇�(ψ)ᵀS∇�(ψ).

(62)
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The lase equality holds due to that S is a symmetric idempotent matrix. Since
(62) holds for any φ ∈ Ω, we have

∇�(ψ)ᵀS∇�(ψ) ≥ 2η (�(ψ)− �(ψ∗)) ,

where ψ∗ is a minimization point of �.
Proof of Theorem 7: Since the surrogate loss functional Hk+1 is strongly
smooth by assumption, we have:

Hk+1(f
(k+1)) ≤ Hk+1(f

(k))+ 〈∇Hk+1(f
(k)), f (k+1)−f (k)〉+ ζ

2
‖f (k+1)−f (k)‖2.

(63)
We consider two cases:

(i) Let f (k+1) = f (k)+wk+1gk+1 with wk+1 = 〈−∇Hk+1(f
k),gk+1〉

ζ‖gk+1‖2 . Substituting

f (k+1) in (63), we have

Hk+1(f
(k+1)) ≤ Hk+1(f

(k))− 1

2ζ

〈∇Hk+1(f
(k)), gk+1〉2

‖gk+1‖2
.

With the edge requirement γ > 0, we have

〈−∇Hk+1(f
(k)), gk+1〉 ≥ γ‖∇Hk+1(f

(k))‖‖gk+1‖.

We then have

Hk+1(f
(k+1)) ≤ Hk+1(f

(k))− γ2

2ζ
‖∇Hk+1(f

(k))‖2.

Assume that functionalHk+1 is η-strongly convex. Therefore applying (32)
leads to

‖∇Hk+1(f
(k))‖2 ≥ 2η

(
Hk+1(f

(k))−Hk+1(f
(k+1)
† )

)
,

where f
(k+1)
† is the minimum point of surrogate loss Hk+1. Therefore we

have

Hk+1(f
(k+1)) ≤ Hk+1(f

(k))− γ2η

ζ

(
Hk+1(f

(k))−Hk+1(f
(k+1)
† )

)
. (64)

(ii) Let f (k+1) = f (k) + wgk+1, U
(k) = −∇Hk(f

(k)). By the assumption that
line 5 of Algorithm 6 returns a linear smoother gk+1 such that gk+1 =
Sk+1Uk, and Sk+1 is symmetric idempotent, substituting f (k+1) in (63),
we have

Hk(f
(k)) ≤ Hk(f

(k))− wU (k)ᵀ
S(k)U (k) +

w2ζ

2
‖S(k)U (k)‖2

= Hk(f
(k))− wU (k)ᵀS(k)ᵀS(k)U (k) +

w2ζ

2
‖S(k)U (k)‖2

= Hk(f
(k)) + (−w +

w2ζ

2
)‖S(k)U (k)‖2.
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Using the same technique for Theorem 2 and noting γ ∈ (0, 1], the one step
of the boosting decreases the value of surrogate loss at least as follows:

Hk(f
(k+1)) ≤ Hk(f

(k))− 1

2ζ
‖S(k)U (k)‖2

≤ Hk(f
(k))− γ2

2ζ
‖S(k)U (k)‖2.

Assume that functional Hk+1 satisfies Condition 1. Now using Proposi-
tion 7, we have

‖S(k)U (k)‖2 ≥ 2η
(
Hk+1(f

(k))−Hk+1(f
(k+1)
† )

)
.

Therefore again we have

Hk+1(f
(k+1)) ≤ Hk+1(f

(k))− γ2η

ζ

(
Hk+1(f

(k))−Hk+1(f
(k+1)
† )

)
. (65)

To summarize, inequalities (64) and (65) are the same despite the two different
assumptions. Using (25), we know

L(f (k+1)) ≤ Hk+1(f
(k+1)), Hk+1(f

(k)) = L(f (k)).

Combining with (65), hence the following holds:

L(f (k+1)) ≤ L(f (k))− γ2η

ζ

(
L(f (k))−Hk+1(f

(k+1)
† )

)
.

Subtracting the optimal value from both sides we get

L(f (k+1))− L(f∗) ≤ L(f (k))− L(f∗)− γ2η

ζ

(
L(f (k))−Hk+1(f

(k+1)
† )

)
= L(f (k))− L(f∗)

− γ2η

ζ

(
L(f (k))− L(f∗) + L(f∗)−Hk+1(f

(k+1)
† )

)

= (1− γ2η

ζ
)
(
L(f (k))− L(f∗)

)

+
γ2η

ζ

(
Hk+1(f

(k+1)
† )− L(f∗)

)
.

(66)

Recursively applying the bound in (66) starting at k = 0 gives the bound on
L(f (K))− L(f∗) after K iterations:

L(f (K))− L(f∗) ≤ (1− γ2η

ζ
)K

(
L(f (0))− L(f∗)

)

+
γ2η

ζ

K∑
k=1

(1− γ2η

ζ
)K−k

(
Hk(f

(k)
† )− L(f∗)

)
.

(67)
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Furthermore, assume that for β > 0 the following holds:

Hk(f
(k)
† )− L(f∗) ≤ β(1− γ2η

ζ
)k. (68)

Plugging the inequality (68) into (67), we arrive the desired result (36).

Proof of Corollary 7.1: Suppose a loss functional L(f) = �(f) + �s(f) is
majorized by a surrogate loss Hk(f) at f (k−1), where Hk(f) = �(f) + hk(f),
and hk(f) is given by (3). Assume that �(f) is a ζ-strongly smooth and η-
strongly convex functional, from Lemma 4, Hk(f) is then ζ-strongly smooth and
η-strongly convex. Together with other assumptions, all conditions in Theorem 7
are satisfied. Thus the same conclusions of Theorem 7 are obtained and restated
in the corollary.
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