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Abstract

We propose in this paper a construction of a diffusion process on the space P2(R) of
probability measures with a second-order moment. This process was introduced in
several papers by Konarovskyi (see e.g. [12]) and consists of the limit as N tends to +∞
of a system of N coalescing and mass-carrying particles. It has properties analogous to
those of a standard Euclidean Brownian motion, in a sense that we will precise in this
paper. We also compare it to the Wasserstein diffusion on P2(R) constructed by von
Renesse and Sturm in [22]. We obtain that process by the construction of a system of
particles having short-range interactions and by letting the range of interactions tend
to zero. This construction can be seen as an approximation of the singular process of
Konarovskyi by a sequence of smoother processes.
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1 Introduction

This paper introduces a new approach to construct the stochastic diffusion process
studied by Konarovskyi (see [10, 11, 12, 13]). It is a close relative to the Wasserstein
diffusion, introduced by von Renesse and Sturm [22]. Our interest is to construct an
analogous process to the Euclidean Brownian motion taking values on the Wasserstein
space P2(R), defined as the set of probability measures on R having a second-order
moment.

In [22], von Renesse and Sturm construct a strong Markov process called Wasserstein
diffusion on P2(M), for M equal either to the interval [0, 1] or to the circle S1. Two major
features of that process illustrate the analogy with the standard Brownian motion on a
Euclidean space. First, the energy of the martingale part of the Wasserstein diffusion
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has the same form as that of a k-dimensional standard Brownian motion, up to replacing
the Euclidean norm on Rk by the L2-Wasserstein distance:

dW (µ, ν) = inf E
[
|X − Y |2

]1/2
,

where the infimum is taken over all couplings of two random variables X and Y such
that X (resp. Y ) has law µ (resp. ν). It should be noticed that the geometry of P2(M),
equipped with the Wasserstein distance, for M a Euclidean space, was the subject of
fundamental studies conducted by Ambrosio, Gigli, Savare, Villani, Lions and many
others (see [1, 5, 15, 20, 21]), which led to important improvements in optimal transport
theory. Second, the transition costs of the Wasserstein diffusion are given by a Varadhan
formula (see [22], Corollary 7.19). The formula is identical to the Euclidean case, up to
the replacement of the Euclidean norm by dW .

Although the existence of a Wasserstein diffusion was initially proven by von Renesse
and Sturm using Dirichlet processes and the theory of Dirichlet forms (see [8]), it can also
be obtained as a limit of finite-dimensional systems of interacting particles, see [2, 19].
Nevertheless, we will focus in this paper on a construction of a system of particles which
seems more natural and simpler and which is due to Konarovskyi in [10, 12].

1.1 Konarovskyi’s model

In [12], Konarovskyi studies a simple system of N interacting and coalescing particles
and proves its convergence to an infinite-dimensional process which has the features of
a diffusion on the L2-Wasserstein space of probability measures (see also [10, 11, 13]).
However, even if it has common properties with the diffusion of von Renesse and
Sturm, there are also important differences between the two processes. An outstanding
property of Konarovskyi’s process is the fact that, for a large family of initial measures,
it takes values in the set of measures with finite support for each time t > 0 (see [11]),
whereas the values of the Wasserstein diffusion of von Renesse and Sturm are probability
measures on [0, 1] with no absolutely continuous part and no discrete part.

The model introduced by Konarovskyi is a modification of the Arratia flow, also called
Coalescing Brownian flow, introduced by Arratia [3] and subject of many interest, among
others in [7, 14, 16, 17]. It consists of Brownian particles starting at discrete points
of the real line and moving independently until they meet another particle: when they
meet, they stick together to form a single Brownian particle.

In his model (see [12]), Konarovskyi adds a mass to every particle: at time t = 0,
N particles, denoted by (xk(t))k∈{1,...,N}, start from N points regularly distributed on
the unit interval [0, 1], and each particle has a mass equal to 1

N . When two particles stick
together, they form as in the standard Arratia flow a unique particle, but with a mass
equal to the sum of the two incident particles. Furthermore, the quadratic variation
process of each particle is assumed to be inversely proportional to its mass. In other
words, the heavier a particle is, the smaller its fluctuations are.

Konarovskyi constructs an associated process (yN (u, t))u∈[0,1],t∈[0,T ] inD([0, 1], C[0, T ]),
the set of càdlàg functions on [0, 1] taking values in C[0, T ], by defining:

yN (u, t) :=

N∑
k=1

xk(t)1{u∈[ k−1
N , kN )} + xN (t)1{u=1}.

In other words, yN (·, t) is the quantile function associated to the empirical measure
1
N

∑N
k=1 δxk(t). Konarovskyi showed in [12] that the sequence (yN )N>1 is tight in

D([0, 1], C[0, T ]). Hence, by passing to the limit upon a subsequence, there exists a
process (y(u, t))u∈[0,1],t∈[0,T ] belonging to D([0, 1], C[0, T ]) and satisfying the following
four properties:
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(i0) for all u ∈ [0, 1], y(u, 0) = u;

(ii) for all u 6 v, for all t ∈ [0, T ], y(u, t) 6 y(v, t);

(iii) for all u ∈ [0, 1], y(u, ·) is a square integrable continuous martingale relatively to
the filtration (Ft)t∈[0,T ] := (σ(y(v, s), v ∈ [0, 1], s 6 t))t∈[0,T ];

(iv) for all u, u′ ∈ [0, 1],

〈y(u, ·), y(u′, ·)〉t =

∫ t

0

1{τu,u′6s}

m(u, s)
ds,

where m(u, t) :=
∫ 1

0
1{∃s6t: y(u,s)=y(v,s)}dv ; τu,u′ := inf{t > 0 : y(u, t) = y(u′, t)} ∧ T .

By transporting the Lebesgue measure on [0, 1] by the map y(·, t), we obtain a measure-
valued process (µt)t∈[0,T ] defined by: µt := Leb |[0,1] ◦ y(·, t)−1. In other words, u 7→ y(u, t)

is the quantile function associated to µt. An important feature of this process is that for
each positive t, µt is an atomic measure with a finite number of atoms, or in other words
that y(·, t) is a step function.

More generally, Konarovskyi proves in [11] that this construction also holds for a
greater family of initial measures µ0. He constructs a process yg in D([0, 1], C[0, T ])

satisfying (ii)− (iv) and:

(i) for all u ∈ [0, 1], yg(u, 0) = g(u),

for every non-decreasing càdlàg function g from [0, 1] into R such that there exists
p > 2 satisfying

∫ 1

0
|g(u)|pdu < ∞. In other words, he generalizes the construction of

a diffusion starting from any probability measure µ0 satisfying
∫
R
|x|pdµ0(x) <∞ for a

certain p > 2, where µ0 = Leb |[0,1] ◦ g−1, which means that g is the quantile function of
the initial measure. The property that yg(·, t) is a step function for each t > 0 remains
true for this larger class of functions g.

The process yg is said to be coalescent : almost surely, for every u, v ∈ [0, 1] and for
every t ∈ (τu,v, T ], we have yg(u, t) = yg(v, t) (recall that τu,v = inf{t > 0 : yg(u, t) =

yg(v, t)} ∧ T ). This property is a consequence of (ii), (iii) and of the fact that for each
t > 0, yg(·, t) is a step function (see [13, p.11]). Therefore, we can rewrite the formula
for the mass as follows:

mg(u, t) =

∫ 1

0

1{∃s6t: yg(u,s)=yg(v,s)}dv =

∫ 1

0

1{yg(u,t)=yg(v,t)}dv.

Moreover, we can compare the diffusive properties of the process (µt)t∈[0,T ] in the
Wasserstein space P2(R) with the Wasserstein diffusion of von Renesse and Sturm.
To that extent and thanks to Lions’ differential calculus on P2(R) ([15, 5]), we give
in Appendix A an Itô formula on P2(R) for the process (µt)t∈[0,T ] in order to describe
the energy of the martingale part of this diffusion. Appendix A also contains a small
introduction to the differentiability on P2(R) in the sense of Lions.

1.2 Approximation of a Wasserstein diffusion

In this paper, we propose a new method to construct a process y satisfying properties
(i)-(iv), by approaching y by a sequence of smooth processes. Finding smooth approxi-
mations of processes having singularities has already led to interesting results, typically
in the case of the Arratia flow. Piterbarg [17] shows that the Coalescing Brownian flow is
the weak limit of isotropic homeomorphic flows in some space of discontinuous functions,
and deduces from the properties of the limit process a careful description of contraction
and expansion regions of homeomorphic flows. Dorogovtsev’s approximation [7] is based
on a representation of the Arratia flow with a Brownian sheet.
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We propose an adaptation of Dorogovtsev’s idea in the case of Wasserstein diffusions.
First, we show that a process y satisfying (i)-(iv) admits a representation in terms of a
Brownian sheet; we refer to the lectures of Walsh [23] for a complete introduction to
Brownian sheet and to Section 2 for the characterization of Brownian sheet which we
use in this paper.

Theorem 1.1. Let g : [0, 1]→ R be a non-decreasing and càdlàg function such that there
exists p > 2 satisfying

∫ 1

0
|g(u)|pdu < +∞. Let y be a process in L2([0, 1], C[0, T ]) that

satisfies conditions (i), (ii), (iii) and (iv). There exists a Brownian sheet w on [0, 1]× [0, T ]

such that for all u ∈ [0, 1] and t ∈ [0, T ]:

y(u, t) = g(u) +

∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)
dw(u′, s), (1.1)

where m(u, s) =

∫ 1

0

1{y(u,s)=y(v,s)}dv.

Remark 1.2. We refer to Appendix A to justify the use of the term "Wasserstein diffusion"
for a process satisfying equation (1.1). Indeed, we can write an Itô formula for this
process for a smooth function u : P2(R)→ R. As in the case of the standard Euclidean
Brownian motion, the quadratic variation of the martingale term is proportional to the
square of the gradient of u, in the sense of Lions’ differential calculus on P2(R), which is
the same as the differential calculus on the Wasserstein space (see [6, Section 5.4]).

The aim of this paper is to construct a sequence of smooth processes approaching y
in the space L2([0, 1], C[0, T ]). Therefore, we use the representation (1.1) in terms of a
Brownian sheet of y and, given a positive parameter σ, we replace in the latter represen-
tation the indicator functions by a smooth function ϕσ equal to 1 in the neighbourhood
of 0 and whose support is included in the interval

[
−σ2 ,

σ
2

]
of small diameter σ. Fix σ > 0

and ε > 0. Given a Brownian sheet w on [0, 1]× [0, T ], we prove the existence of a process
yσ,ε satisfying:

yσ,ε(u, t) = g(u) +

∫ t

0

∫ 1

0

ϕσ(yσ,ε(u, s)− yσ,ε(u′, s))
ε+mσ,ε(u, s)

dw(u′, s), (1.2)

where mσ,ε(u, s) :=
∫ 1

0
ϕ2
σ(yσ,ε(u, s)−yσ,ε(v, s))dv can be seen as a kind of mass of particle

yσ,ε(u) at time s. Remark that, due to the fact that the support of ϕσ is small, only the
particles located at a distance lower than σ

2 of particle u at time s are taken into account
in the computation of the mass mσ,ε(u, s).

The smooth process (yσ,ε(u, t))u∈[0,1],t∈[0,T ] offers several advantages. First, we are
able to construct a strong solution (yσ,ε, w) to equation (1.2), whereas in equation (1.1),
we do not know if, given a Brownian sheet w, there exists an adapted solution y. Second,
in Konarovskyi’s process, the question of uniqueness of a solution to (1), even in the
weak sense, or equivalently the question of uniqueness of a process in L2([0, 1], C[0, T ])

satisfying conditions (i)-(iv), remains open. Here, pathwise uniqueness holds for equa-
tion (1.2). Moreover, the measure-valued process (µσ,εt )t∈[0,T ] associated to the process
of quantile functions (yσ,ε(·, t))t∈[0,T ] does generally no longer consist of atomic measures.
For example, if g(u) = u, (µσ,εt )t∈[0,T ] is a process of absolutely continuous measures with
respect to the Lebesgue measure.

Let L2[0, 1] be the usual space of square integrable functions from [0, 1] to R, and
(·, ·)L2 the usual scalar product. We denote by L↑2[0, 1] the set of functions f ∈ L2[0, 1]

such that there exists a non-decreasing and therefore càdlàg (i.e. right-continuous with
left limits everywhere) element in the equivalence class of f . Let D((0, 1), C[0, T ]) be
the space of right-continuous C[0, T ]-valued functions with left limits, equipped with the
Skorohod metric.
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We follow the definition given in [9, p.21]:

Definition 1.3. An (Ft)t∈[0,T ]-adapted process M is called an L↑2[0, 1]-valued (Ft)t∈[0,T ]-

martingale if Mt belongs to L↑2[0, 1] for each t ∈ [0, T ], if E [‖Mt‖L2
] <∞ and if for each

h ∈ L2[0, 1], (Mt, h)L2
is a real-valued (Ft)t∈[0,T ]-martingale. The martingale is said to be

square integrable if for each t ∈ [0, T ], E
[
‖Mt‖2L2

]
< +∞, and continuous if the process

t 7→Mt is a continuous function from [0, T ] to L2[0, 1].

Let us denote byR := R∪{−∞,+∞} and by L↑2+[0, 1] the set of all non-decreasing and

càdlàg functions g : [0, 1]→ R such that there exists p > 2 for which
∫ 1

0
|g(u)|pdu < +∞.

Let Q+ = Q ∩ [0, 1]. The following Theorem states the convergence of the mollified
sequence (yσ,ε)σ>0,ε>0 to a limit process satisfying properties (i) − (iv). It uses the
framework introduced by Konarovskyi in [11]:

Theorem 1.4. Let g ∈ L↑2+[0, 1]. For each positive σ and ε, there exists a solution yσ,ε
to equation (1.2) such that (yσ,ε(u, t))u∈[0,1],t∈[0,T ] belongs to L2([0, 1], C[0, T ]) and almost

surely, for each t ∈ [0, T ], yσ,ε(·, t) ∈ L↑2[0, 1].
Furthermore, up to extracting a subsequence, the sequence (yσ,ε)ε>0 converges in

distribution in L2([0, 1], C[0, T ]) for every σ ∈ Q+ as ε tends to 0 to a limit yσ and the
sequence (yσ)σ∈Q+

converges in distribution in L2([0, 1], C[0, T ]) as σ tends to 0 to a

limit y. Let Y (t) := y(·, t). Then (Y (t))t∈[0,T ] is a L↑2[0, 1]-valued process such that:

(C1) Y (0) = g;
(C2) (Y (t))t∈[0,T ] is a square integrable continuous L↑2[0, 1]-valued (Ft)t∈[0,T ]-martingale,

where Ft := σ(Y (s), s 6 t);
(C3) almost surely, for every t > 0, Y (t) is a step function, i.e. there exist n > 1,

0 = a1 < a2 < · · · < an < an+1 = 1 and z1 < z2 < · · · < zn such that for all u ∈ [0, 1]

Y (t)(u) = y(u, t) =

n∑
k=1

zk1{u∈[ak,ak+1)} + zn1{u=1};

(C4) y belongs to D((0, 1), C[0, T ]) and for every u ∈ (0, 1), y(u, ·) is a square integrable
and continuous (Ft)t∈[0,T ]-martingale and

P [∀u, v ∈ (0, 1),∀s ∈ [0, T ], y(u, s) = y(v, s) implies ∀t > s, y(u, t) = y(v, t)] = 1;

(C5) for each u and u′ in (0, 1),

〈y(u, ·), y(u′, ·)〉t =

∫ t

0

1{τu,u′6s}

m(u, s)
ds,

where m(u, s) =

∫ 1

0

1{y(u,s)=y(v,s)}dv and τu,u′ = inf{t > 0 : y(u, t) = y(u′, t)} ∧ T .

Remark 1.5. More precisely, the filtration (Ft)t∈[0,T ] is given by:

Ft = σ((Y (s), h)L2
, s 6 t, h ∈ L2[0, 1]).

Remark 1.6. By property (C4), the limit process y is said to be coalescent: if for a
certain time t0, two particles y(u, t0) and y(v, t0) coincide, then they move together
forever, i.e. y(u, t) = y(v, t) for every t > t0.

It is interesting to wonder how the coalescence property of the process y translates to
its smooth approximation yσ,ε: two paths (yσ,ε(u, t))t∈[0,T ] and (yσ,ε(v, t))t∈[0,T ], starting
from two distinct points g(u) and g(v), do not meet, which means that yσ,ε(·, t) is non-
decreasing for each fixed t. If yσ,ε(u, ·) and yσ,ε(v, ·) get close enough, at distance
smaller than σ, they begin to interact and to move together, whereas as long as they
remain at distance greater than σ, they move "independently": more precisely, the
covariation 〈yσ,ε(u, ·), yσ,ε(v, ·)〉t is equal to zero for every time t 6 τσu,v := inf{s > 0 :

|yσ,ε(u, s)− yσ,ε(v, s)| 6 σ} (see figure 1).
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Figure 1: Two simulations, based on the same underlying Brownian sheet, for the limit process (µt)t∈[0,T ]

(on top) and for the process (µσ,εt )t∈[0,T ] with positive σ and ε (on bottom). The horizontal axis represents
time. On the vertical axis, we put the position of the particles (initially, we took five particles on [0, 1]).

Organisation of the article

We begin in Section 2 by proving Theorem 1.1, which states that a process y satisfying
properties (i)-(iv) admits a representation in terms of a Brownian sheet. In Section 3,
given a two-dimensional Brownian sheet, we prove the existence of a smooth process
in the space L2([0, 1], C[0, T ]) intended to approach Konarovskyi’s process of coalescing
particles. This smooth process can be seen as a cloud of point-particles interacting with
all the particles at a distance smaller than σ, and in which two particles have independent
trajectories conditionally to the fact that the distance between them is greater than σ.
When the distance becomes smaller than σ, both trajectories are correlated, mimicking
the coalescence property.

Section 4 is devoted to the proof of convergence when the parameter ε and the range
of interaction σ tend to zero, using a tightness criterion in L2([0, 1], C[0, T ]). In Section 5,
we study the stochastic properties of the limit process, including the convergence of
the mass process. The aim of this final part is to prove that the limit process y satisfies
properties (C1)-(C5) of Theorem 1.4, in other words that our sequence of short-range
interaction processes converges in distribution to the process of coalescing particles.

In Appendix A, we give an Itô formula in the Wasserstein space for the limit process y,
after having recalled some basic definitions and properties of Lions’ differential calculus
on P2(R).
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2 Singular representation of the process y

Let (Ω,F ,P) be a probability space. Let us consider on (Ω,F ,P) a random process
y ∈ L2((0, 1), C[0, T ]) satisfying properties (i)-(iv). We refer to [11] for a comprehensive
construction of y. We will give another one later in this paper.

The aim of this Paragraph is to prove Theorem 1.1. Before that, we recall the
definition of a Brownian sheet given by Walsh in [23, p.269]. Let (E, E , ν) be a Euclidean
space equipped with Lebesgue measure. A white noise based on ν is a random set
function W on the sets A ∈ E of finite ν-measure such that

• W (A) is a N (0, ν(A)) random variable,

• if A∩B = ∅, then W (A) and W (B) are independent and W (A∩B) = W (A)+W (B).

Let T > 0. Consider E = [0, 1] × [0, T ] and ν the associated Lebesgue measure. The
Brownian sheet w on [0, 1] × [0, T ] associated to the white noise W is the process
(w(u, t))u∈[0,1]×[0,T ] defined by w(u, t) := W ((0, u]× (0, t]).

Define the filtration (Gt)t∈[0,T ] by Gt := σ(w(u, s), u ∈ [0, 1], s 6 t). Then in particular,

(i) for each (Gt)t∈[0,T ]-progressively measurable function f defined on [0, 1]×[0, T ] such

that
∫ T
0

∫ 1

0
f2(u, s)duds < +∞ almost surely, the process

(∫ t
0

∫ 1

0
f(u, s)dw(u, s)

)
t∈[0,T ]

is a local martingale (we often write dw(u, s) instead of w(du,ds));

(ii) for each f1 and f2 satisfying the same conditions as f ,

〈
∫ ·
0

∫ 1

0

f1(u, s)dw(u, s),

∫ ·
0

∫ 1

0

f2(u, s)dw(u, s)〉t =

∫ t

0

∫ 1

0

f1(u, s)f2(u, s)duds.

By Lévy’s characterization of the Brownian motion, a process w satisfying (i) and (ii) is
a Brownian sheet. Let us now prove Theorem 1.1.

Proof (Theorem 1.1). We take a Brownian sheet η on [0, 1] × [0, T ] independent of the
process y, constructed by possibly extending the probability space (Ω,F ,P). Then, we
define (w(u, t))u∈[0,1],t∈[0,T ] by w(0, ·) ≡ 0, w(·, 0) ≡ 0 and:

w(du,dt) = η(du,dt) + y(u,dt)du− 1

m(u, t)

∫ 1

0

1{y(u,t)=y(u′,t)}η(du′,dt)du.

We denote by Ht the filtration σ((y(u, s))u∈[0,1],s6t, (η(u, s))u∈[0,1],s6t).
In order to prove that w is an (Ht)t∈[0,T ]-Brownian sheet on [0, 1] × [0, T ], let us

consider two (Ht)t∈[0,T ]-progressively measurable functions f1 and f2 and compute,
using independence of η and y:

〈
∫ ·
0

∫ 1

0

f1(u, s)dw(u, s),

∫ ·
0

∫ 1

0

f2(v, s)dw(v, s)〉t = V1 + V2 − V3 − V4 + V5,

where

V1 := 〈
∫ ·
0

∫ 1

0

f1(u, s)dη(u, s),

∫ ·
0

∫ 1

0

f2(v, s)dη(v, s)〉t =

∫ t

0

∫ 1

0

f1(u, s)f2(u, s)duds,

since η is an (Ht)t∈[0,T ]-Brownian sheet;

V2 := 〈
∫ ·
0

∫ 1

0

f1(u, s)dy(u, s)du,

∫ ·
0

∫ 1

0

f2(v, s)dy(v, s)dv〉t

=

∫ t

0

∫ 1

0

∫ 1

0

f1(u, s)f2(v, s)
1{y(u,s)=y(v,s)}

m(u, s)
dudvds,
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using property (iv) of process y;

V3 := 〈
∫ ·
0

∫ 1

0

f1(u, s)dη(u, s),

∫ ·
0

∫ 1

0

f2(v, s)

m(v, s)

∫ 1

0

1{y(v,s)=y(v′,s)}dη(v′, s)dv〉t

=

∫ t

0

∫ 1

0

∫ 1

0

f1(u, s)f2(v, s)

m(v, s)
1{y(v,s)=y(u,s)}dudvds = V2,

since m(u, s) = m(v, s) whenever y(u, s) is equal to y(v, s). By similar computations,

V4 := 〈
∫ ·
0

∫ 1

0

f1(u, s)

m(u, s)

∫ 1

0

1{y(u,s)=y(u′,s)}dη(u′, s)du,

∫ ·
0

∫ 1

0

f2(v, s)dη(v, s)〉t = V2,

and

V5 : = 〈
∫ ·
0

∫ 1

0

f1(u, s)

m(u, s)

∫ 1

0

1{y(u,s)=y(u′,s)}dη(u′, s)du,∫ ·
0

∫ 1

0

f2(v, s)

m(v, s)

∫ 1

0

1{y(v,s)=y(v′,s)}dη(v′, s)dv〉t

=

∫ t

0

∫ 1

0

∫ 1

0

∫ 1

0

f1(u, s)f2(v, s)

m(u, s)m(v, s)
1{y(u,s)=y(u′,s)}1{y(v,s)=y(u′,s)}du

′dudvds

=

∫ t

0

∫ 1

0

∫ 1

0

f1(u, s)f2(v, s)

m(u, s)2

(∫ 1

0

1{y(u,s)=y(u′,s)}du
′
)
1{y(u,s)=y(v,s)}dudvds

=

∫ t

0

∫ 1

0

∫ 1

0

f1(u, s)f2(v, s)

m(u, s)
1{y(u,s)=y(v,s)}dudvds = V2.

To sum up,

〈
∫ ·
0

∫ 1

0

f1(u, s)dw(u, s),

∫ ·
0

∫ 1

0

f2(v, s)dw(v, s)〉t = V1 =

∫ t

0

∫ 1

0

f1(u, s)f2(u, s)duds,

whence w is an (Ht)t∈[0,T ]-Brownian sheet. Finally, we show that (y, w) satisfies equa-
tion (1.1):∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)
dw(u′, s) =

∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)
dη(u′, s) (=: W1)

+

∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)
dy(u′, s)du′ (=: W2)

−
∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)

∫ 1

0

1{y(u′,s)=y(v,s)}

m(u′, s)
dη(v, s)du′.

(=: W3)

The result follows from the two below equalities:

W2 =

∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)
dy(u, s)du′ =

∫ t

0

dy(u, s) = y(u, t)− y(u, 0) = y(u, t)− g(u);

W3 =

∫ t

0

∫ 1

0

1{y(u,s)=y(u′,s)}

m(u, s)

∫ 1

0

1{y(u′,s)=y(v,s)}

m(v, s)
dη(v, s)du′

=

∫ t

0

∫ 1

0

1{y(u,s)=y(v,s)}

m(u, s)m(v, s)

(∫ 1

0

1{y(u′,s)=y(v,s)}du
′
)

dη(v, s)

=

∫ t

0

∫ 1

0

1{y(u,s)=y(v,s)}

m(u, s)
dη(v, s),

which implies that W3 = W1 and consequently equation (1.1).

Therefore, every solution of the martingale problem (i)-(iv) has a representation in
terms of a Brownian sheet. In the next Section, we will construct, given a Brownian
sheet, an approximation of the process y.
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3 Construction of a process with short-range interactions

Let (Ω,F ,P) be a probability space, on which we define a Brownian sheet w on
[0, 1]× [0, T ]. We associate to that process the filtration Gt := σ(w(u, s), u ∈ [0, 1], s 6 t).
Up to completing the filtration, we assume that G0 contains all the P-null sets of F and
that the filtration (Gt)t∈[0,T ] is right-continuous.

Fix σ > 0 and ε > 0. Let ϕσ denote a smooth and even function, bounded by 1,
equal to 1 on [0, σ3 ] and equal to 0 on [σ2 ,+∞). Recall that L↑2+[0, 1] represents the
set of non-decreasing and càdlàg functions g : [0, 1] → R such that there exists p > 2

satisfying
∫ 1

0
|g(u)|pdu < +∞. The aim of this Section is to construct, for each initial

quantile function g ∈ L↑2+[0, 1], a square integrable random variable ygσ,ε taking values in
L2([0, 1], C[0, T ]) such that almost surely, for every t ∈ [0, T ], the following equality holds
in L2[0, 1]:

ygσ,ε(·, t) = g +

∫ t

0

∫ 1

0

ϕσ(ygσ,ε(·, s)− ygσ,ε(u′, s))
ε+

∫ 1

0
ϕ2
σ(ygσ,ε(·, s)− ygσ,ε(v, s))dv

dw(u′, s). (3.1)

Remark 3.1. We add the parameter ε to the denominator in order to ensure that it
is bounded by below. We also point out that relation (3.1) has to be compared with
equation (1.1), where x 7→ 1{x=0} is replaced by the function ϕσ.

More precisely, we will prove the following Proposition. Recall that L↑2[0, 1] represents
the set of functions f ∈ L2[0, 1] such that there is a non-decreasing and càdlàg element
in the equivalence class of f .

Proposition 3.2. Let g ∈ L↑2+[0, 1]. There is an L↑2[0, 1]-valued process (Y gσ,ε(t))t∈[0,T ] =

(ygσ,ε(·, t))t∈[0,T ] such that:

(A1) Y gσ,ε(0) = g;

(A2) Y gσ,ε is a square integrable continuous L↑2[0, 1]-valued (Fσ,εt )t∈[0,T ]-martingale, where
Fσ,εt := σ(Y gσ,ε(s), s 6 t);

(A3) for every h, k ∈ L2[0, 1],

〈(Y gσ,ε, h)L2
, (Y gσ,ε, k)L2

〉t =

∫ t

0

∫ 1

0

∫ 1

0

h(u)k(u′)
mg
σ,ε(u, u

′, s)

(ε+mg
σ,ε(u, s))(ε+mg

σ,ε(u′, s))
dudu′ds,

where mg
σ,ε(u, u

′, s) =
∫ 1

0
ϕσ(ygσ,ε(u, s) − ygσ,ε(v, s))ϕσ(ygσ,ε(u

′, s) − ygσ,ε(v, s))dv and

mg
σ,ε(u, s) =

∫ 1

0
ϕ2
σ(ygσ,ε(u, s)− ygσ,ε(v, s))dv.

3.1 Existence of an approximate solution

Denote by M the set of random variables z ∈ L2(Ω, C([0, T ], L2(0, 1))) such that
(z(ω, ·, t))t∈[0,T ] is a (Gt)t∈[0,T ]-progressively measurable process with values in L2(0, 1).
We consider the following norm onM:

‖z‖M = E

[
sup
t6T

∫ 1

0

|z(u, t)|2du

]1/2
.

Throughout this Section, σ and ε are two fixed positive numbers. To begin, we want
to prove that the map ψ : M → M, defined below, admits a unique fixed point. Fix
g ∈ L↑2+[0, 1] an initial quantile function. For all z ∈M, define:

ψ(z)(ω, u, t) := g(u) +

∫ t

0

∫ 1

0

ϕσ(z(ω, u, s)− z(ω, u′, s))
ε+mσ(ω, u, s)

dw(ω, u′, s), (3.2)

where mσ(ω, u, s) =
∫ 1

0
ϕ2
σ(z(ω, u, s) − z(ω, v, s))dv. We start by making sure that ψ is

well-defined.
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Proposition 3.3. For all z ∈M, ψ(z) belongs toM. Furthermore, (ψ(z)(·, t))t∈[0,T ] is an
L2(0, 1)-valued continuous (Gt)t∈[0,T ]-martingale.

Remark 3.4. The definition of an L↑2[0, 1]-valued martingale was given in Definition 1.3.
Up to replacing L↑2 by L2, the definition of an L2(0, 1)-valued martingale is exactly the
same.

Proof. We want to prove that (ψ(z)(·, t))t∈[0,T ] is an L2(0, 1)-valued (Gt)t∈[0,T ]-martingale.
Since z belongs toM, the process (z(·, t))t∈[0,T ] is (Gt)t∈[0,T ]-progressively measurable.
Therefore (mσ(·, t))t∈[0,T ] is also (Gt)t∈[0,T ]-progressively measurable and we deduce that
(ψ(z)(·, t))t∈[0,T ] is (Gt)t∈[0,T ]-progressively measurable.

Then, we check that for each t ∈ [0, T ], ψ(z)(·, t) ∈ L2(0, 1) and E [‖ψ(z)(·, t)‖L2
] <∞.

We deduce this statement by recalling that ‖g‖L2
< +∞, because g ∈ L↑2+[0, 1], and by

computing:

E

[∥∥∥∥∫ t

0

∫ 1

0

ϕσ(z(·, s)− z(u′, s))
ε+mσ(·, s)

dw(u′, s)

∥∥∥∥
L2

]2

6 E

[∥∥∥∥∫ t

0

∫ 1

0

ϕσ(z(·, s)− z(u′, s))
ε+mσ(·, s)

dw(u′, s)

∥∥∥∥2
L2

]

= E

[∫ 1

0

∣∣∣∣∫ t

0

∫ 1

0

ϕσ(z(u, s)− z(u′, s))
ε+mσ(u, s)

dw(u′, s)

∣∣∣∣2 du

]

=

∫ 1

0

E

[∣∣∣∣∫ t

0

∫ 1

0

ϕσ(z(u, s)− z(u′, s))
ε+mσ(u, s)

dw(u′, s)

∣∣∣∣2
]

du

=

∫ 1

0

E

[ ∫ t

0

∫ 1

0

(
ϕσ(z(u, s)− z(u′, s))

ε+mσ(u, s)

)2

du′ds

]
du

6
‖ϕσ‖2∞t
ε2

=
t

ε2
< +∞.

(3.3)

Furthermore, for each h ∈ L2[0, 1],

(ψ(z)(·, t), h)L2
= (g, h)L2

+

∫ t

0

∫ 1

0

∫ 1

0

h(u)
ϕσ(z(u, s)− z(u′, s))

ε+mσ(u, s)
dudw(u′, s)

is a (Gt)t∈[0,T ]-local martingale. Then, we compute the quadratic variation:

E [〈(ψ(z), h)L2
, (ψ(z), h)L2

〉t]

=

∫ t

0

∫ 1

0

∫ 1

0

∫ 1

0

h(u1)h(u2)
ϕσ(z(u1, s)− z(u′, s))ϕσ(z(u2, s)− z(u′, s))

(ε+mσ(u1, s))(ε+mσ(u2, s))
du1du2du′ds

6
t

ε2
‖h‖2L2

.

Since it is finite, the local martingale is actually a martingale.
Moreover, by Doob’s inequality (see Theorem 2.2 in [9, p.22])

‖ψ(z)‖M = E

[
sup
t6T

∫ 1

0

|ψ(z)(u, t)|2du

]1/2

6 ‖g‖L2 + E

[
sup
t6T

∫ 1

0

∣∣∣∣∫ t

0

∫ 1

0

ϕσ(z(u, s)− z(u′, s))
ε+mσ(u, s)

dw(u′, s)

∣∣∣∣2 du

]1/2

6 ‖g‖L2
+ 2E

∫ 1

0

∣∣∣∣∣
∫ T

0

∫ 1

0

ϕσ(z(u, s)− z(u′, s))
ε+mσ(u, s)

dw(u′, s)

∣∣∣∣∣
2

du

1/2

.
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The last term is finite by (3.3). Thus ‖ψ(z)‖M is finite and ψ(z) belongs to M, which
concludes the proof.

Let us now prove that ψ has a unique fixed point:

Proposition 3.5. Let σ > 0 and ε > 0. Then the map ψ :M→M defined by (3.2) has a
unique fixed point inM, denoted by ygσ,ε.

Proof. For all n ∈ N, denote by ψn the n-fold composition of ψ, where ψ0 denotes the
identity function ofM. We want to prove that ψn is a contraction for n large enough.

Let z1 and z2 be two elements ofM. We define

hn(t) := E

[
sup
s6t

∫ 1

0

|ψn(z1)(u, s)− ψn(z2)(u, s)|2du

]
.

Let us remark that hn(T ) = ‖ψn(z1) − ψn(z2)‖2M and recall that, by Proposition 3.3,
(ψ(z1)(·, t)− ψ(z2)(·, t))t∈[0,T ] is a (Gt)t∈[0,T ]-martingale. We denote by mσ,1 and mσ,2 the
masses associated respectively to z1 and z2. By Doob’s inequality, we have:

h1(t) = E

[
sup
s6t

∫ 1

0

|ψ(z1)(u, s)− ψ(z2)(u, s)|2du

]
= E

[
sup
s6t

∫ 1

0

∣∣∣∣∫ s

0

∫ 1

0

(
ϕσ(z1(u, r)− z1(u′, r))

ε+mσ,1(u, r)
− ϕσ(z2(u, r)− z2(u′, r))

ε+mσ,2(u, r)

)
dw(u′, r)

∣∣∣∣2du
]

6 4E

[∫ 1

0

∫ t

0

∫ 1

0

∣∣∣∣ϕσ(z1(u, s)− z1(u′, s))

ε+mσ,1(u, s)
− ϕσ(z2(u, s)− z2(u′, s))

ε+mσ,2(u, s)

∣∣∣∣2 du′dsdu

]
.

Furthermore, we compute:∣∣∣∣ϕσ(z1(u, s)− z1(u′, s))

ε+mσ,1(u, s)
− ϕσ(z2(u, s)− z2(u′, s))

ε+mσ,2(u, s)

∣∣∣∣2
6 2

( ∣∣∣∣ϕσ(z1(u, s)− z1(u′, s))− ϕσ(z2(u, s)− z2(u′, s))

ε+mσ,1(u, s)

∣∣∣∣2
+

∣∣∣∣ ϕσ(z2(u, s)− z2(u′, s))

(ε+mσ,1(u, s))(ε+mσ,2(u, s))
(mσ,1(u, s)−mσ,2(u, s))

∣∣∣∣2).
Moreover, we have:

|mσ,1(u, s)−mσ,2(u, s)| 6
∫ 1

0

|ϕ2
σ(z1(u, s)− z1(v, s))− ϕ2

σ(z2(u, s)− z2(v, s))|dv

6 Lip(ϕ2
σ)

∫ 1

0

|(z1(u, s)− z1(v, s))− (z2(u, s)− z2(v, s))|dv

6 Lip(ϕ2
σ)

(
|z1(u, s)− z2(u, s)|+

∫ 1

0

|z1(v, s)− z2(v, s)|dv
)
.

We obtain the following upper bound:∣∣∣∣ϕσ(z1(u, s)− z1(u′, s))

ε+mσ,1(u, s)
− ϕσ(z2(u, s)− z2(u′, s))

ε+mσ,2(u, s)

∣∣∣∣2
6

(
4

(
Lipϕσ
ε

)2

+ 4

(
Lip(ϕ2

σ)

ε2

)2
)(
|z1(u, s)− z2(u, s)|2

+ |z1(u′, s)− z2(u′, s)|2 +

∫ 1

0

|z1(v, s)− z2(v, s)|2dv

)
.
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Finally, we deduce that there is a constant Cσ,ε depending only on σ and ε such that

h1(t) 6 Cσ,εE

[∫ t

0

∫ 1

0

|z1(u, s)− z2(u, s)|2duds

]
6 Cσ,ε

∫ t

0

E

[
sup
r6s

∫ 1

0

|z1(u, r)− z2(u, r)|2du

]
ds = Cσ,ε

∫ t

0

h0(s)ds.

Applied to ψn(z1) and ψn(z2) instead of z1 and z2, those computations show that for every
t ∈ [0, T ], hn+1(t) 6 Cσ,ε

∫ t
0
hn(s)ds. Using the fact that h0 is non-decreasing with respect

to t, it follows that hn(T ) 6 (Cσ,εT )n

n! h0(T ), whence we have:

‖ψn(z1)− ψn(z2)‖2M 6
(Cσ,εT )n

n!
‖z1 − z2‖2M.

Thus, for n large enough, the map ψn is a contraction. By completeness ofM under the
norm ‖ · ‖M (remark thatM is a closed subset of L2(Ω, C([0, T ], L2(0, 1))), it follows that
ψ has a unique fixed point inM.

We denote by ygσ,ε the unique fixed point of ψ. Remark that by construction it satisfies
equation (3.1) almost surely and for every t ∈ [0, T ].

3.2 Non-decreasing property

Define, for each t ∈ [0, T ], Y gσ,ε(t) := ygσ,ε(·, t). So far, by Proposition 3.5, we have
established that (Y gσ,ε(t))t∈[0,T ] is an L2[0, 1]-valued process, satisfying property (A1) of
Proposition 3.2. Since Y gσ,ε belongs to M, and by Proposition 3.3, (Y gσ,ε(t))t∈[0,T ] is a
square integrable continuous L2[0, 1]-valued martingale, with respect to the filtration
(Gt)t∈[0,T ]. Therefore, it is also an (Fσ,εt )t∈[0,T ]-martingale, where Fσ,εt := σ(Y gσ,ε(s), s 6 t).

In order to obtain property (A2), it remains to prove the following statement:

Proposition 3.6. (Y gσ,ε(t))t∈[0,T ] is an L↑2[0, 1]-valued process.

We will start by proving three Lemmas and then we will conclude the proof of
Proposition 3.6. For every x ∈ R, we consider the following stochastic differential
equation:

z(x, t) = x+

∫ t

0

∫ 1

0

ϕσ(z(x, s)− ygσ,ε(u′, s))
ε+

∫ 1

0
ϕ2
σ(z(x, s)− ygσ,ε(v, s))dv

dw(u′, s), (3.4)

where ygσ,ε is the unique solution of equation (3.1).

Lemma 3.7. Let x ∈ R. For almost every ω ∈ Ω, equation (3.4) has a unique solution in
C[0, T ], denoted by (z(ω, x, t))t∈[0,T ]. Moreover, (z(x, t))t∈[0,T ] is a real-valued (Gt)t∈[0,T ]-
martingale.

Proof. We get existence and uniqueness of the solution by applying a fixed-point argu-
ment. The proof is the same as the proof of Proposition 3.5. We obtain the martingale
property by the same argument as in Proposition 3.3.

Then, take x1, x2 ∈ R. After some computations similar to those of the proof of
Proposition 3.5, we have for every t ∈ [0, T ]:

E

[
sup
s6t
|z(x1, s)− z(x2, s)|2

]
6 2|x1 − x2|2 + Cσ,ε

∫ t

0

E

[
sup
r6s
|z(x1, r)− z(x2, r)|2

]
ds.

By Gronwall’s Lemma, we deduce that:

E

[
sup
t6T
|z(x1, t)− z(x2, t)|2

]
6 Cσ,ε|x1 − x2|2.
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By Kolmogorov’s Lemma, there is a modification z̃ of z in C(R × [0, T ]). We define
ỹgσ,ε(u, t) := z̃(g(u), t). In particular, u 7→ ỹgσ,ε(u, ·) is measurable and, since g is a càdlàg
function, ỹgσ,ε belongs to D((0, 1), C[0, T ]).

Remark 3.8. In the case where g is continuous, it is straightforward to see that ỹgσ,ε
belongs to C([0, 1]× [0, T ]).

Furthermore, ỹgσ,ε belongs toM. Indeed,

E

[
sup
t6T

∫ 1

0

∣∣ỹgσ,ε(u, t)∣∣2 du

]
6 E

[∫ 1

0

sup
t6T

∣∣ỹgσ,ε(u, t)∣∣2 du

]
=

∫ 1

0

E

[
sup
t6T

∣∣ỹgσ,ε(u, t)∣∣2] du.

By Lemma 3.7, for every u ∈ [0, 1], (ỹgσ,ε(u, t))t∈[0,T ] is a martingale, we have by Doob’s
inequality:

E

[
sup
t6T

∣∣ỹgσ,ε(u, t)∣∣2] 6 CE
[∣∣ỹgσ,ε(u, T )

∣∣2]
6 2Cg(u)2 + 2CE

∫ T

0

∫ 1

0

∣∣∣∣∣ ϕσ(ỹgσ,ε(u, s)− ygσ,ε(u′, s))
ε+

∫ 1

0
ϕ2
σ(ỹgσ,ε(u, s)− ygσ,ε(v, s))dv

∣∣∣∣∣
2

du′ds


6 2Cg(u)2 + 2C

T

ε2
.

Therefore, ‖ỹgσ,ε‖M 6 2C‖g‖2L2
+ 2C T

ε2 < +∞. Moreover, (ỹgσ,ε(·, t))t∈[0,T ] is an L2[0, 1]-
valued (Gt)t∈[0,T ]-martingale. Indeed, for every h ∈ L2[0, 1], for every t ∈ [0, T ], the
expectation E

[
(ỹgσ,ε(·, t), h)L2

]
is finite. Fix 0 6 s 6 t 6 T , and As ∈ Gs. We have:

E

[(∫ 1

0

ỹgσ,ε(u, t)h(u)du−
∫ 1

0

ỹgσ,ε(u, s)h(u)du

)
1As

]
=

∫ 1

0

E
[
(ỹgσ,ε(u, t)− ỹgσ,ε(u, s))1As

]
h(u)du = 0.

Lemma 3.9. We have E
[
supt6T

∫ 1

0

∣∣ỹgσ,ε(u, t)− ygσ,ε(u, t)∣∣2 du
]

= 0. Therefore, ỹgσ,ε = ygσ,ε
inM.

Proof. Since (ỹgσ,ε(·, t)− ygσ,ε(·, t))t∈[0,T ] is an L2[0, 1]-valued martingale, then by [9, p.21-

22]
∫ 1

0

∣∣ỹgσ,ε(u, t)− ygσ,ε(u, t)∣∣2 du is a real-valued submartingale. By Doob’s inequality,

E

[
sup
s6t

∫ 1

0

∣∣ỹgσ,ε(u, s)− ygσ,ε(u, s)∣∣2 du

]
6 CE

[∫ 1

0

∣∣ỹgσ,ε(u, t)− ygσ,ε(u, t)∣∣2 du

]
6 CE

[∫ 1

0

∣∣∣∣∫ t

0

∫ 1

0

(θσ,ε(ỹ
g
σ,ε(u, s), u

′, s)− θσ,ε(ygσ,ε(u, s), u′, s))dw(u′, s)

∣∣∣∣2 du

]

6 CE

[∫ 1

0

∫ t

0

∫ 1

0

∣∣θσ,ε(ỹgσ,ε(u, s), u′, s)− θσ,ε(ygσ,ε(u, s), u′, s)∣∣2 du′dsdu

]
,

where θσ,ε(x, u′, s) =
ϕσ(x−ygσ,ε(u

′,s))

ε+
∫ 1
0
ϕ2
σ(x−y

g
σ,ε(v,s))dv

. Using the same constant Cσ,ε as in the proof

of Proposition 3.5, we have:

E

[
sup
s6t

∫ 1

0

∣∣ỹgσ,ε(u, s)− ygσ,ε(u, s)∣∣2 du

]
6 Cσ,εE

[∫ 1

0

∫ t

0

∣∣ỹgσ,ε(u, s)− ygσ,ε(u, s)∣∣2 dsdu

]
6 Cσ,ε

∫ t

0

E

[
sup
r6s

∫ 1

0

∣∣ỹgσ,ε(u, r)− ygσ,ε(u, r)∣∣2 du

]
ds.
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By Gronwall’s Lemma, we deduce that E
[
sups6t

∫ 1

0

∣∣ỹgσ,ε(u, s)− ygσ,ε(u, s)∣∣2 du
]

= 0 for

every t ∈ [0, T ]. This implies the statement of the Lemma.

Lemma 3.10. Almost surely, for every u1, u2 ∈ Q such that u1 < u2, we have for every
t > 0, ỹgσ,ε(u1, t) 6 ỹgσ,ε(u2, t). Furthermore, if g(u1) < g(u2) (resp. g(u1) = g(u2)), then
for every t > 0, ỹgσ,ε(u1, t) < ỹgσ,ε(u2, t) (resp. ỹgσ,ε(u1, t) = ỹgσ,ε(u2, t)).

Proof. Let (u1, u2) ∈ Q2 such that 0 6 u1 < u2 6 1. For u = u1, u2, we have:

ỹgσ,ε(u, t) = g(u) +

∫ t

0

∫ 1

0

θσ,ε(ỹ
g
σ,ε(u, s), u

′, s)dw(u′, s),

where θσ,ε(x, u′, s) =
ϕσ(x−ygσ,ε(u

′,s))

ε+
∫ 1
0
ϕ2
σ(x−y

g
σ,ε(v,s))dv

. Therefore, we have (writing ỹ instead of ỹgσ,ε
and θ instead of θσ,ε):

ỹ(u2, t)− ỹ(u1, t) = g(u2)− g(u1) +

∫ t

0

∫ 1

0

(θ(ỹ(u2, s), u
′, s)− θ(ỹ(u1, s), u

′, s))dw(u′, s)

= g(u2)− g(u1) +

∫ t

0

(ỹ(u2, s)− ỹ(u1, s))dMs (3.5)

where Mt =
∫ t
0

∫ 1

0
1{ỹ(u2,s)6=ỹ(u1,s)}

θ(ỹ(u2,s),u
′,s)−θ(ỹ(u1,s),u

′,s)
ỹ(u2,s)−ỹ(u1,s)

dw(u′, s). Observe that:

θ(ỹ(u2, s), u
′, s)− θ(ỹ(u1, s), u

′, s) =

∫ ỹ(u2,s)

ỹ(u1,s)

∂xθ(x, u
′, s)dx,

and that ∂xθ(x, u′, s) =
ϕ′σ(x−y(u

′,s))

ε+
∫ 1
0
ϕ2
σ(x−y(v,s))dv

− ϕσ(x−y(u′,s))
∫ 1
0
(ϕ2
σ)
′(x−y(v,s))dv

(ε+
∫ 1
0
ϕ2
σ(x−y(v,s))dv)2

. Therefore, ∂xθ

is bounded uniformly in (x, u′, s) ∈ R× [0, 1]× [0, T ] by Cσ,ε :=
‖ϕ′σ‖L∞

ε +
‖ϕσ‖L∞‖(ϕ

2
σ)
′‖L∞

ε2 .
We deduce that

E [〈M,M〉T ] = E

[∫ T

0

∫ 1

0

1{ỹ(u2,s) 6=ỹ(u1,s)}

(
θ(ỹ(u2, s), u

′, s)− θ(ỹ(u1, s), u
′, s)

ỹ(u2, s)− ỹ(u1, s)

)2

du′ds

]

6 E

[∫ T

0

∫ 1

0

(Cσ,ε)
2

du′ds

]
6 T (Cσ,ε)

2
,

and thus M is a (Gt)t∈[0,T ]-martingale on [0, T ]. We resolve the stochastic differential
equation (3.5): ỹgσ,ε(u2, t) − ỹgσ,ε(u1, t) = (g(u2) − g(u1)) exp

(
Mt − 1

2 〈M,M〉t
)
. If g(u1) <

g(u2) (resp. g(u1) = g(u2)), then almost surely for every t ∈ [0, T ], ỹgσ,ε(u1, t) < ỹgσ,ε(u2, t)

(resp. =). Thus it is true almost surely for every (u1, u2) ∈ Q2 such that u1 < u2.

Therefore the proof of Proposition 3.6 is complete:

Proof (Proposition 3.6). For each t ∈ [0, T ], Y gσ,ε(t) = ygσ,ε(·, t) has a modification ỹgσ,ε(·, t)
belonging to L↑2[0, 1].

We precise the properties of ỹgσ,ε in the following Corollary, which derives directly
from Proposition 3.6. From now on, we will always use this version of the process.

Corollary 3.11. The following two statements hold:

• for almost every u ∈ (0, 1), (ỹgσ,ε(ω, u, t))t∈[0,T ] is a (Fσ,εt )t∈[0,T ]-martingale, and it is
continuous for almost every (u, ω) ∈ (0, 1)× Ω.

• almost surely, for every t ∈ [0, T ], u 7→ ỹgσ,ε(u, t) is càdlàg and non-decreasing.
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We complete the proof of Proposition 3.2.

Proof (Proposition 3.2). Thanks to Proposition 3.6, the proof of properties (A1) and (A2)

has been completed. It remains to compute the quadratic variation. Recall that for every
u ∈ [0, 1], (ỹgσ,ε(u, t))t∈[0,T ] is a (Gt)t∈[0,T ]-martingale and that

ỹgσ,ε(u, t) = g(u) +

∫ t

0

∫ 1

0

θσ,ε(ỹ
g
σ,ε(u, s), u

′, s)dw(u′, s).

Therefore, for every u, u′ ∈ [0, 1],

〈ỹgσ,ε(u, ·), ỹgσ,ε(u′, ·)〉t = 〈
·∫

0

1∫
0

θσ,ε(ỹ
g
σ,ε(u, s), v, s)dw(v, s),

·∫
0

1∫
0

θσ,ε(ỹ
g
σ,ε(u

′, s), v, s)dw(v, s)〉t

=

∫ t

0

∫ 1

0

θσ,ε(ỹ
g
σ,ε(u, s), v, s)θσ,ε(ỹ

g
σ,ε(u

′, s), v, s)dvds.

Therefore, for every h, k ∈ L2[0, 1],

〈(Y gσ,ε, h)L2
, (Y gσ,ε, k)L2

〉t

=

∫ t

0

∫ 1

0

∫ 1

0

h(u)k(u′)

∫ 1

0

θσ,ε(ỹ
g
σ,ε(u, s), v, s)θσ,ε(ỹ

g
σ,ε(u

′, s), v, s)dvdudu′ds

=

∫ t

0

∫ 1

0

∫ 1

0

h(u)k(u′)

∫ 1

0

θσ,ε(y
g
σ,ε(u, s), v, s)θσ,ε(y

g
σ,ε(u

′, s), v, s)dvdudu′ds

=

∫ t

0

∫ 1

0

∫ 1

0

h(u)k(u′)
mg
σ,ε(u, u

′, s)

(ε+mg
σ,ε(u, s))(ε+mg

σ,ε(u′, s))
dudu′ds,

which completes the proof.

We conclude this Section with a property on the quadratic variation of two fixed
particles, which will be useful to obtain lower bounds on the mass in the next Section.

Corollary 3.12. For almost every u, u′ ∈ [0, 1],

〈ỹgσ,ε(u, ·), ỹgσ,ε(u′, ·)〉t =

∫ t

0

∫ 1

0

mg
σ,ε(u, u

′, s)

(ε+mg
σ,ε(u, s))(ε+mg

σ,ε(u′, s))
dvds. (3.6)

Proof. This statement follows clearly from the proof of Proposition 3.2, from the fact
that for almost every u ∈ (0, 1), (ỹgσ,ε(u, t))t∈[0,T ] is a continuous martingale.

4 Convergence of the process (ygσ,ε)σ,ε∈Q+

From now on, for the sake of simplicity, we fix a function g in L↑2+[0, 1] and yσ,ε will
denote the version ỹgσ,ε starting from g. We denote by p a number such that p > 2 and
g ∈ Lp(0, 1).

We begin by proving the tightness of the sequence (yσ,ε)σ,ε∈Q+
in L2([0, 1], C[0, T ]) in

Paragraph 4.1. We will then pass to the limit in distribution, first when ε→ 0 and then
when σ → 0 and prove, in Paragraph 4.3, that the limit process is also a martingale.

4.1 Tightness of the collection (yσ,ε)σ>0,ε>0 in L2([0, 1], C[0, T ])

Recall that for all σ > 0, the map ϕσ is smooth, even, bounded by 1, equal to 1 on[
0, σ−η2

]
and equal to 0 on

[
σ
2 ,+∞

)
, where η is chosen so that η < σ

3 . Recall that yσ,ε is
solution of the following equation:

yσ,ε(u, t) = g(u) +

∫ t

0

∫ 1

0

ϕσ(yσ,ε(u, s)− yσ,ε(u′, s))
ε+

∫ 1

0
ϕ2
σ(yσ,ε(u, s)− yσ,ε(v, s))dv

dw(u′, s).
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We begin by proving that the collection (yσ,ε)σ>0,ε>0 satisfies a compactness criterion
in the space L2([0, 1], C[0, T ]). We recall the following criterion (see [18, Theorem 1,
p.71]):

Proposition 4.1. Let K be a subset of L2([0, 1], C[0, T ]).
K is relatively compact in L2([0, 1], C[0, T ]) if and only if:

(H1) for every 0 6 u1 < u2 6 1,
{∫ u2

u1
f(u, ·)du, f ∈ K

}
is relatively compact in C[0, T ],

(H2) limh→0+ supf∈K
∫ 1−h
0
‖f(u+ h, ·)− f(u, ·)‖2C[0,T ]du = 0.

By Ascoli’s Theorem, (H1) is satisfied if and only if for every 0 6 u1 < u2 6 1,

- for every t ∈ [0, T ],
∫ u2

u1
f(u, t)du is uniformly bounded,

- limη→0+ supf∈K sup|t2−t1|<η

∣∣∣∫ u2

u1
(f(u, t2)− f(u, t1))du

∣∣∣ = 0.

In order to prove tightness for the collection (yσ,ε)σ>0,ε>0, we will prove the following
Proposition:

Proposition 4.2. Let δ > 0. The following statements hold:

(K1) there exists M > 0 such that for all σ, ε > 0, P
[∫ 1

0
‖yσ,ε(u, ·)‖2C[0,T ]du 6M

]
> 1− δ,

(K2) for all k > 1, there exists ηk > 0 such that for all σ > 0, ε > 0,

P

[∫ 1

0

sup
|t2−t1|<ηk

|yσ,ε(u, t2)− yσ,ε(u, t1)|du 6
1

k

]
> 1− δ

2k
,

(K3) for all k > 1, there exists hk > 0 such that for all σ > 0, ε > 0,

P

[
∀h ∈ (0, hk),

∫ 1−h

0

‖yσ,ε(u+ h, ·)− yσ,ε(u, ·)‖2C[0,T ]du 6
1

k

]
> 1− δ

2k
.

Proposition 4.2 will be proved in Paragraph 4.1.2. It implies tightness of (ygσ,ε)σ>0,ε>0

in L2([0, 1], C[0, T ]):

Corollary 4.3. For all g ∈ L↑2+[0, 1], the collection (ygσ,ε)σ>0,ε>0 is tight in L2([0, 1], C[0, T ]).

Proof (Corollary 4.3). Let δ > 0. Let M , (hk)k>1, (ηk)k>1 be such that the statements of
Proposition 4.2 hold for δ.

Denote Kδ the closed set of all functions f ∈ L2([0, 1], C[0, T ]) satisfying:

(L1)

∫ 1

0

‖f(u, ·)‖2C[0,T ]du 6M .

(L2) for all k > 1,

∫ 1

0

sup
|t2−t1|<ηk

|f(u, t2)− f(u, t1)|du 6
1

k
.

(L3) for all k > 1, ∀h ∈ (0, hk),

∫ 1−h

0

‖f(u+ h, ·)− f(u, ·)‖2C[0,T ]du 6
1

k
.

Let 0 6 u1 < u2 6 1. We deduce from (L1) that for every t ∈ [0, T ], and every

f ∈ Kδ,
∣∣∣∫ u2

u1
f(u, t)du

∣∣∣ 6
(∫ u2

u1
f(u, t)2du

)1/2
6
(∫ 1

0
‖f(u, ·)‖2C[0,T ]du

)1/2
6
√
M . We

deduce from (L2) that for every k > 1,

sup
f∈Kδ

sup
|t2−t1|<ηk

∣∣∣∣∫ u2

u1

(f(u, t2)− f(u, t1))du

∣∣∣∣ 6 sup
f∈Kδ

∫ 1

0

sup
|t2−t1|<ηk

|f(u, t2)− f(u, t1)|du 6
1

k
.

Therefore, by Ascoli’s Theorem, condition (H1) of Proposition 4.1 is satisfied.
Furthermore, by (L3), condition (H2) is also satisfied uniformly for f ∈ Kδ. Therefore,

Kδ is compact in L2([0, 1], C[0, T ]). By Proposition 4.2, for all σ > 0, ε > 0, P [yσ,ε ∈ Kδ] >
1− 3δ. This concludes the proof.
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To prove Proposition 4.2, we will first give in the next Paragraph an estimation of the
inverse of the mass function (see Lemma 4.6). This Lemma is an equivalent in our case
of short-range interacting particles of Lemma 2.16 in [12], stated in the case of a system
of coalescing particles.

4.1.1 Estimation of the inverse of mass

Recall that mσ,ε(u, t) =
∫ 1

0
ϕ2
σ(yσ,ε(u, t)− yσ,ε(v, t))dv. We define a modified mass

Mσ,ε(u, t) :=


(ε+mσ,ε)

2

mσ,ε
(u, t) if mσ,ε(u, t) > 0,

+∞ otherwise.

Clearly, Mσ,ε(u, t) > mσ,ε(u, t) for every u ∈ [0, 1] and t ∈ [0, T ].

By Corollary 3.11, there exists a (non-random) Borel set A in [0, 1], Leb(A) = 1, such
that for all u ∈ A, (yσ,ε(u, t))t∈[0,T ] is almost surely a continuous (Fσ,εt )t∈[0,T ]-martingale.
Recall also that almost surely, for every t ∈ [0, T ], u 7→ yσ,ε(u, t) is càdlàg and non-
decreasing. Moreover, we assume that for every u, u′ ∈ A, equality (3.6) holds.

Lemma 4.4. There exist C > 0 and γ ∈ (0, 1) such that for each σ, ε > 0, t ∈ (0, T ] and
for every u ∈ A and every h > 0 satisfying u− h ∈ (0, 1),

P

[∫ T

0

1{Mσ,ε(u,s)<γh}ds > t

]
6 C [g(u)− g(u− h)]

√
h

t
. (4.1)

Proof. Fix σ > 0 and ε > 0. Let h > 0 be such that u − h belongs to A. If g(u − h) =

g(u), then for every t ∈ [0, T ], yσ,ε(u − h, t) = yσ,ε(u, t). By the non-decreasing and
càdlàg property, for every v ∈ (u− h, u), we have yσ,ε(v, t) = yσ,ε(u, t). We deduce that
mσ,ε(u, t) >

∫ u
u−h ϕ

2
σ(yσ,ε(u, t)− yσ,ε(v, t))dv =

∫ u
u−h ϕ

2
σ(0)dv = h. Therefore, Mσ,ε(u, t) >

h > γh for every t ∈ [0, T ], and (4.1) is satisfied.

Consider now the case where g(u−h) < g(u). Choose k in (h3 ,
2h
3 ) such that u− k ∈ A.

Denote by N and Ñ the two following (Fσ,εt )t∈[0,T ]-martingales:

Nt = yσ,ε(u, t)− yσ,ε(u− h, t),

Ñt = yσ,ε(u, t)− yσ,ε(u− k, t).

Denote by Gs and Hs respectively the events
{
Mσ,ε(u, s) <

h
26

}
and {Ñs > σ+η

2 }. We
want to prove the existence of a constant C1 independent of h and u such that for all
σ > 0, ε > 0 and t > 0,

P

[∫ T

0

1{Gs}ds > t

]
6 C1 [g(u)− g(u− h)]

√
h

t
. (4.2)

Decompose this probability in two terms:

P

[∫ T

0

1{Gs}ds > t

]
6 P

[∫ T

0

1{Gs∩Hs}ds >
t

2

]
+ P

[∫ T

0

1{Gs∩H{
s }ds >

t

2

]
, (4.3)

where H{
s denotes the complement of the event Hs.
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• First step: Study of Gs ∩Hs.

Fix s ∈ [0, T ]. Under Gs ∩Hs, we have Mσ,ε(u, s) <
h
26 and Ñs >

σ+η
2 . We want to

show that it implies the following inequality:

2mσ,ε(u, u− h, s)
(ε+mσ,ε(u, s))(ε+mσ,ε(u− h, s))

6
1

Mσ,ε(u, s)3/4Mσ,ε(u− h, s)1/4
. (4.4)

Suppose, by contradiction, that (4.4) is false. Using Cauchy-Schwarz inequality,
mσ,ε(u, u− h, s) 6 mσ,ε(u, s)

1/2mσ,ε(u− h, s)1/2, and we would deduce that:

1

Mσ,ε(u, s)3/4Mσ,ε(u− h, s)1/4
6

2

Mσ,ε(u, s)1/2Mσ,ε(u− h, s)1/2
,

and thus Mσ,ε(u − h, s) 6 24Mσ,ε(u, s). Using the fact that Mσ,ε > mσ,ε, we can
deduce that

mσ,ε(u, s) +mσ,ε(u− h, s) 6Mσ,ε(u, s) +Mσ,ε(u− h, s) 6 (1 + 24) h26 <
h
3 . (4.5)

We distinguish three cases depending on the value of Ns = yσ,ε(u, s)− yσ,ε(u− h, s).

• Ns 6 σ − η: For each v ∈ [u − h, u], one of the two terms yσ,ε(u, s) − yσ,ε(v, s)
and yσ,ε(v, s)− yσ,ε(u− h, s) is lower than σ−η

2 , which means that one of those
terms belongs to the preimage of 1 by the function ϕσ. Hence

mσ,ε(u, s) +mσ,ε(u− h, s)

=

∫ 1

0

(
ϕ2
σ(yσ,ε(u, s)− yσ,ε(v, s)) + ϕ2

σ(yσ,ε(u− h, s)− yσ,ε(v, s))
)

dv

>
∫ u

u−h
dv = h.

This is in contradiction with (4.5). Therefore inequality (4.4) is satisfied in this
case.

• Ns ∈ (σ − η, σ): Introduce Med := {v : yσ,ε(u, s)− yσ,ε(v, s) ∈ [σ−η2 , σ+η2 ]}, which
is a set of particles more or less at half distance between particle u and particle
u− h. Since η < σ

3 , we have Ns > σ − η > σ+η
2 and thus Med ⊂ [u− h, u]. Let

v ∈ [u− h, u]. We distinguish three new cases:

- if yσ,ε(u, s)− yσ,ε(v, s) < σ−η
2 , then ϕσ(yσ,ε(u, s)− yσ,ε(v, s)) = 1.

- if yσ,ε(u, s) − yσ,ε(v, s) > σ+η
2 , and since Ns 6 σ, yσ,ε(v, s) − yσ,ε(u − h, s) is

lower than σ−η
2 and thus ϕσ(yσ,ε(u− h, s)− yσ,ε(v, s)) = 1.

- otherwise, v belongs to Med.

It follows that:

h =

∫ u

u−h
(1{yσ,ε(u,s)−yσ,ε(v,s)<σ−η

2 }
+ 1{yσ,ε(u,s)−yσ,ε(v,s)>σ+η

2 }
+ 1{v∈Med})dv

6
∫ u

u−h
(ϕ2
σ(yσ,ε(u, s)− yσ,ε(v, s)) + ϕ2

σ(yσ,ε(u− h, s)− yσ,ε(v, s)) + 1{v∈Med})dv

6 mσ,ε(u, s) +mσ,ε(u− h, s) + Leb(Med).

By inequality (4.5), we deduce that Leb(Med) > 2h
3 . As Med is an interval

included in [u − h, u] and since k ∈ (h3 ,
2h
3 ) we deduce that u − k ∈ Med, i.e.

Ñs ∈ [σ−η2 , σ+η2 ], which is in contradiction with the hypothesis Ñs >
σ+η
2 . Thus

inequality (4.4) is also true in this case.
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• Ns > σ: In this case, the two particles u and u− h do not have any interaction.
In other words, since the support of ϕσ is included in [−σ2 ,

σ
2 ], ϕσ(yσ,ε(u, s)−

yσ,ε(v, s)) and ϕσ(yσ,ε(u− h, s)− yσ,ε(v, s)) can not be simultaneously non-zero,
whence we deduce that mσ,ε(u, u− h, s) = 0. Inequality (4.4) follows clearly.

Therefore, inequality (4.4) is proved. By Corollary 3.12, it follows that, on Gs ∩Hs:

d

ds
〈N,N〉s =

1

Mσ,ε(u, s)
+

1

Mσ,ε(u− h, s)
− 2mσ,ε(u, u− h, s)

(ε+mσ,ε(u, s))(ε+mσ,ε(u− h, s))

>
1

Mσ,ε(u, s)
+

1

Mσ,ε(u− h, s)
− 1

Mσ,ε(u, s)3/4Mσ,ε(u− h, s)1/4

>
1

4Mσ,ε(u, s)
+

3

4Mσ,ε(u− h, s)
>

1

4Mσ,ε(u, s)
>

24

h
,

where we have applied a convexity inequality: ∀a, b > 0, a3/4b1/4 6 3a
4 + b

4 .

To sum up, we showed that Gs ∩Hs implies d
ds 〈N,N〉s >

24

h . If
∫ T
0
1{Gs∩Hs}ds >

t
2 ,

we get

〈N,N〉T =

∫ T

0

d

ds
〈N,N〉sds >

∫ T

0

d

ds
〈N,N〉s1{Gs∩Hs}ds >

24

h

∫ T

0

1{Gs∩Hs}ds >
23t

h
.

Hence, since N is a continuous square integrable (Fσ,εt )t∈[0,T ]-martingale, there
exists a standard (Fσ,εt )t∈[0,T ]-Brownian motion β such that we have the relation
Nt = g(u)−g(u−h)−β(〈N,N〉t). Since N remains positive on [0, T ] by Lemma 3.10
(because g(u−h) < g(u)), we deduce that sup[0,〈N,N〉T ] β 6 g(u)−g(u−h). Therefore,

P

[∫ T

0

1{Gs∩Hs}ds >
t

2

]
6 P

 sup
[0, 2

3t
h ]

β 6 g(u)− g(u− h)


= P

[√
23

h
sup
[0,t]

β̂ 6 g(u)− g(u− h)

]

6 C2 [g(u)− g(u− h)]

√
h

t
, (4.6)

where β̂ is a rescaled Brownian motion and C2 does not depend on u, h, σ, ε and t.

• Second step: Study of Gs ∩H{
s .

Under this event, we have Mσ,ε(u, s) <
h
26 and Ñs 6 σ+η

2 . In particular, by the

assumption η < σ
3 , we have Ñs 6 σ − η. We claim that the following inequality

holds true:

2mσ,ε(u, u− k, s)
(ε+mσ,ε(u, s))(ε+mσ,ε(u− k, s))

6
1

Mσ,ε(u, s)3/4Mσ,ε(u− k, s)1/4
. (4.7)

To prove it, it is sufficient to imitate the proof of the case Ns 6 σ− η of the previous
step. We should notice that we did not use the hypothesis Ñs >

σ+η
2 in that case.

Using inequality (4.7) as in the first step, we show that d
ds 〈Ñ , Ñ〉s >

24

h . Therefore,

P
[∫ T

0
1{Gs∩H{

s }ds >
t
2

]
6 P

[
〈Ñ , Ñ〉T > 23t

h

]
. There exists a (Fσ,εt )t∈[0,T ]-Brownian

motion β̃ such that Ñt = g(u)−g(u−k)−β̃(〈Ñ , Ñ〉t). Finally, we obtain the existence
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of a constant C3 independent of u, h, k, σ, ε and t such that:

P

[∫ T

0

1{Gs∩H{
s }ds >

t

2

]
6 P

 sup
[0, 2

3t
h ]

β̃ 6 g(u)− g(u− k)


6 C3 [g(u)− g(u− k)]

√
h

t

6 C3 [g(u)− g(u− h)]

√
h

t
. (4.8)

Putting together inequality (4.3) and inequalities (4.6) and (4.8), we conclude the
proof of inequality (4.2). Thus inequality (4.1) is proved for every h such that u− h ∈ A.
Let h > 0 be such that u− h ∈ (0, 1). Let h1 ∈ (h2 , h) be such that u− h1 ∈ A.

P

[∫ T

0

1{Mσ,ε(u,s)<
γh
2 }ds > t

]
6 P

[∫ T

0

1{Mσ,ε(u,s)<γh1}ds > t

]

6 C [g(u)− g(u− h1)]

√
h1
t

6 C [g(u)− g(u− h)]

√
h

t
.

Up to replacing γ by γ
2 , inequality (4.1) follows for every h > 0 such that u−h ∈ (0, 1).

Remark 4.5. Similarly, there exist C > 0 and γ ∈ (0, 1) such that for each σ, ε > 0,
t ∈ (0, T ] and for every u ∈ A and every h > 0 satisfying u+ h ∈ (0, 1),

P

[∫ T

0

1{Mσ,ε(u,s)<γh}ds > t

]
6 C [g(u+ h)− g(u)]

√
h

t
.

Thanks to Lemma 4.4 and to the above remark, we obtain the following result, which
has to be compared with Proposition 4.3 in [11]:

Lemma 4.6. Let g ∈ Lp(0, 1). For all β ∈ (0, 32 −
1
p ), there is a constant C > 0 depending

only on β and ‖g‖Lp such that for all σ, ε > 0 and 0 6 s < t 6 T , we have the following
inequality:

E

[∫ t

s

∫ 1

0

1

Mβ
σ,ε(u, r)

dudr

]
6 C
√
t− s. (4.9)

Remark 4.7. Observe that by the assumption p > 2, made at the beginning of Section 4,
there exists some β > 1 such that (4.9) holds.

Proof. By Fubini-Tonelli Theorem, we have:

E

[∫ t

s

∫ 1

0

dudr

Mβ
σ,ε(u, r)

]
=

∫ 1

0

E

[∫ t

s

∫ +∞

0

1{M−βσ,ε (u,r)>x}dxdr

]
du

6 2β(t− s) +

∫ 1

0

∫ +∞

2β
E

[∫ t

s

1{Mσ,ε(u,r)<x−1/β}dr

]
dxdu

6 2β
√
T
√
t− s+

∫ 1

0

∫ +∞

2βγβ
E

[∫ t

s

1{Mσ,ε(u,r)<γx−1/β}dr

]
γ−βdxdu.
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Furthermore, we compute:

E

[∫ t

s

1{Mσ,ε(u,r)<γx−1/β}dr

]
=

∫ t−s

0

P

[∫ t

s

1{Mσ,ε(u,r)<γx−1/β}dr > α

]
dα

6
∫ t−s

0

P

[∫ T

0

1{Mσ,ε(u,r)<γx−1/β}dr > α

]
dα.

Using Lemma 4.4, we obtain a constant C1 independent of σ and ε such that for all
x > 2β:∫ 1

1
2

E

[∫ t

s

1{Mσ,ε(u,r)<γx−1/β}dr

]
du 6

∫ 1

1
2

∫ t−s

0

C1

[
g(u)− g(u− x−1/β)

]√x−1/β

α
dαdu

6 2C1

∫ 1

1/2
(g(u)− g(u− x−1/β))du

x1/(2β)
√
t− s.

Moreover, we have for each x > 2β , using Hölder’s inequality:∫ 1

1
2

(
g(u)− g(u− x−1/β)

)
du =

∫ 1

0

(
1[ 12 ,1]

(u)− 1[ 12−x−1/β ,1−x−1/β ](u)
)
g(u)du

6 ‖g‖Lp(2x−1/β)1−
1
p . (4.10)

Therefore,∫ 1

1
2

∫ +∞

2βγβ
E

[∫ t

s

1{Mσ,ε(u,r)<x−1/β}dr

]
dxdu 6 C2

∫ +∞

2βγβ

‖g‖Lp
√
t− s

x
1
2β x

1
β (1−

1
p )

dx

6 C3‖g‖Lp
√
t− s,

where C2 and C3 are independent of σ, ε, and t. The last inequality holds because
1
β

(
3
2 −

1
p

)
> 1.

We conclude the proof of the Lemma by using a similar argument for u belonging to
[0, 12 ] and using g(u+ x−1/β)− g(u) instead of g(u)− g(u− x−1/β).

Corollary 4.8. There is a constant C such that for every t ∈ [0, T ] and for every σ, ε > 0,

E

[∫ 1

0

y2σ,ε(u, t)du

]
6 C.

Proof. We have:

E

[∫ 1

0

y2σ,ε(u, t)du

]1/2
6 E

[∫ 1

0

g(u)2du

]1/2
+ E

[∫ 1

0

(yσ,ε(u, t)− g(u))2du

]1/2
.

Since g belongs to L2(0, 1), the first term of the right hand side is bounded. Furthermore,
by Corollary 3.12 and Fubini-Tonelli Theorem:

E

[∫ 1

0

(yσ,ε(u, t)− g(u))2du

]
=

∫ 1

0

E [〈yσ,ε(u, ·), yσ,ε(u, ·)〉t]du =

∫ 1

0

E

[∫ t

0

1

Mσ,ε(u, s)
ds

]
du

6 C
√
t,

by Lemma 4.6.
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4.1.2 Proof of Proposition 4.2

We will now use Lemma 4.6 and its Corollary 4.8 to prove Proposition 4.2. We start
by (K1):

Proposition 4.9. Let g ∈ L↑2+[0, 1] and δ be positive. Then there exists M > 0 such that

for all σ > 0 and ε > 0, P
[∫ 1

0
‖yσ,ε(u, ·)‖2C[0,T ]du >M

]
6 δ.

Proof. Using again Fubini-Tonelli Theorem,

E

[∫ 1

0

sup
t6T
|yσ,ε(u, t)|2du

]
=

∫ 1

0

E

[
sup
t6T
|yσ,ε(u, t)|2

]
du.

Moreover, for almost every u ∈ [0, 1], yσ,ε(u, ·) is a (Fσ,εt )t∈[0,T ]-martingale. Hence by
Doob’s inequality, there is a constant C1 independent of u, σ and ε such that:

E

[
sup
t6T
|yσ,ε(u, t)|2

]
6 C1E

[
|yσ,ε(u, T )|2

]
.

Therefore, by Corollary 4.8,

E

[∫ 1

0

sup
t6T
|yσ,ε(u, t)|2du

]
6 C1

∫ 1

0

E
[
|yσ,ε(u, T )|2

]
du 6 C2, (4.11)

where C2 is independent of σ and ε. We conclude by Markov’s inequality: there is a
constant C > 0 such that for all σ, ε > 0,

P

[∫ 1

0

‖yσ,ε(u, ·)‖2C[0,T ]du >M

]
6
E
[∫ 1

0
supt6T |yσ,ε(u, t)|2du

]
M

6
C

M
.

For M large enough, that last quantity is smaller than δ.

Then, we show criterion (K2):

Proposition 4.10. Let g ∈ Lp[0, 1] and δ > 0. Then for all k > 1, there exists ηk > 0 such
that for every σ, ε > 0,

P

[∫ 1

0

sup
|t2−t1|<ηk

|yσ,ε(u, t2)− yσ,ε(u, t1)|du >
1

k

]
6

δ

2k
.

Proof. By Markov’s inequality, it is sufficient to prove that:

lim
η→0+

sup
σ>0,ε>0

E

[∫ 1

0

sup
|t2−t1|<η

|yσ,ε(u, t2)− yσ,ε(u, t1)|du

]
= 0. (4.12)

Fix δ > 0 and β ∈ (1, 32 −
1
p ). For every u ∈ (0, 1), define

K1(u) := E
[
‖yσ,ε(u, ·)‖C[0,T ]

]
,

K2(u) := E

[∫ T

0

1

Mβ
σ,ε(u, s)

ds

]
.

Since yσ,ε is uniformly bounded for σ > 0 and ε > 0 in L2([0, 1], C[0, T ]) (see inequal-

ity (4.11)) and by Lemma 4.6,
∫ 1

0
K1(u)du and

∫ 1

0
K2(u)du are uniformly bounded for
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σ > 0 and ε > 0. Therefore, there exists C > 0 such that
∫ 1

0
1{K1(u)>C}du 6 δ and∫ 1

0
1{K2(u)>C}du 6 δ. We define:

K1 := {u ∈ (0, 1) : K1(u) 6 C},
K2 := {u ∈ (0, 1) : K2(u) 6 C}.

The collection (yσ,ε(u, ·))σ>0,ε>0,u∈K1∩K2
is tight in C[0, T ]. We use Aldous’ tightness

criterion to prove this claim (see [4, Theorem 16.10]). We prove the two following
statements:

- lima→∞ supσ>0,ε>0,u∈K1∩K2
P
[
‖yσ,ε(u, ·)‖C[0,T ] > a

]
= 0.

- for all α > 0 and r > 0, there is η0 such that for all η ∈ (0, η0), for all σ > 0, ε > 0

and u ∈ K1 ∩ K2, if τ is a stopping time for yσ,ε(u, ·) such that τ 6 T , then
P [|yσ,ε(u, τ + η)− yσ,ε(u, τ)| > r] 6 α.

By Markov’s inequality, for all a > 0, σ > 0, ε > 0 and u ∈ K1 ∩K2,

P
[
‖yσ,ε(u, ·)‖C[0,T ] > a

]
6

1

a
E
[
‖yσ,ε(u, ·)‖C[0,T ]

]
=
K1(u)

a
6
C

a
,

whence we obtain the first statement. Moreover, for all u ∈ K1 ∩ K2, by Hölder’s
inequality,

E
[
|yσ,ε(u, τ + η)− yσ,ε(u, τ)|2

]
= E

[∫ τ+η

τ

1

Mσ,ε(u, s)
ds

]
6 K2(u)

1
β η1−

1
β 6 C

1
β η1−

1
β ,

whence we obtain the second statement.
By Aldous’ tightness criterion, there exists a compact L of the set D[0, T ] of càdlàg

functions on [0, T ] such that for all σ > 0, ε > 0 and u ∈ K1 ∩ K2, P [yσ,ε(u, ·) ∈ L] >
1 − δ. Since C[0, T ] is closed in D[0, T ] with respect to Skorohod’s topology, and since
yσ,ε(u, ·) ∈ C[0, T ] almost surely, we may suppose that L is a compact set of C[0, T ].

Back to (4.12), we have:

E

[∫ 1

0

sup
|t2−t1|<η

|yσ,ε(u, t2)− yσ,ε(u, t1)|du

]
=

∫ 1

0

E

[
sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|

]
du

=

∫ 1

0

E

[
1{u∈K1∩K2,yσ,ε(u,·)∈L}{ sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|

]
du

+

∫ 1

0

E

[
1{u∈K1∩K2,yσ,ε(u,·)∈L} sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|

]
du.

(4.13)

The first term on the right hand side of (4.13) is bounded by:(∫ 1

0

E
[
1{u∈K1∩K2,yσ,ε(u,·)∈L}{

]
du

)1/2
(∫ 1

0

E

[
sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|2

]
du

)1/2

.

We have:∫ 1

0

E
[
1{u∈K1∩K2,yσ,ε(u,·)∈L}{

]
du 6

∫ 1

0

1{u∈K1∩K2}P [yσ,ε(u, ·) /∈ L] du

+

∫ 1

0

1{K1(u)>C}du+

∫ 1

0

1{K2(u)>C}du

6 3δ.
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Moreover,∫ 1

0

E

[
sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|2

]
du 6 4

∫ 1

0

E

[
sup
t6T
|yσ,ε(u, t)|2

]
du 6 4M,

where M is a constant independent of σ > 0 and ε > 0 by inequality (4.11).
It remains to handle the second term on the right hand side of (4.13). Since L

is a compact set of C[0, T ], there exists η > 0 such that for every f ∈ L, ωf (η) :=

sup|t−s|<η |f(t)− f(s)| < δ. Therefore, there exists η > 0 such that:∫ 1

0

E

[
1{u∈K1∩K2,yσ,ε(u,·)∈L} sup

|t2−t1|<η
|yσ,ε(u, t2)− yσ,ε(u, t1)|

]
du 6 δ.

Back to equality (4.13), we have proved that there is η > 0 such that for every σ > 0 and
ε > 0:

E

[∫ 1

0

sup
|t2−t1|<η

|yσ,ε(u, t2)− yσ,ε(u, t1)|du

]
6 δ +

√
12δM.

This proves convergence (4.12) and thus concludes the proof of the Proposition.

Then, to obtain criterion (K3), we state the following Proposition:

Proposition 4.11. Let g ∈ L↑2+[0, 1] and δ > 0. Then for all k > 1, there is hk > 0 such
that for all σ, ε > 0,

P

[∫ 1−hk

0

‖yσ,ε(u+ hk, ·)− yσ,ε(u, ·)‖2C[0,T ]du >
1

k

]
6

δ

2k
.

If
∫ 1−hk
0

‖yσ,ε(u + hk, ·) − yσ,ε(u, ·)‖2C[0,T ]du 6 1
k , we deduce by monotonicity of u 7→

yσ,ε(u, t) for every t ∈ [0, T ] that for every h ∈ (0, hk),∫ 1−h

0

‖yσ,ε(u+ h, ·)− yσ,ε(u, ·)‖2C[0,T ]du

6
∫ 1−hk

0

‖yσ,ε(u+h, ·)−yσ,ε(u, ·)‖2C[0,T ]du+

∫ 1−hk

1−2hk+h
‖yσ,ε(u+hk, ·)−yσ,ε(u+hk−h, ·)‖2C[0,T ]du

6 2

∫ 1−hk

0

‖yσ,ε(u+ hk, ·)− yσ,ε(u, ·)‖2C[0,T ]du 6
2

k
.

Therefore, the latter Proposition implies the following Corollary, which is equivalent to
criterion (K3):

Corollary 4.12. Let g ∈ L↑2+[0, 1] and δ > 0. Then for all k > 1, there is hk > 0 such that
for all σ, ε > 0,

P

[
∀h ∈ (0, hk),

∫ 1−h

0

‖yσ,ε(u+ h, ·)− yσ,ε(u, ·)‖2C[0,T ]du 6
2

k

]
> 1− δ

2k
.

Proof (Proposition 4.11). Let h ∈ (0, 1). By Corollary 3.11, for almost every u ∈ (0, 1−h),
Nu,t := yσ,ε(u+ h, t)− yσ,ε(u, t) is a martingale. By Fubini-Tonelli Theorem and Doob’s
inequality, we have:

E

[∫ 1−h

0

‖Nu,·‖2C[0,T ]du

]
=

∫ 1−h

0

E
[
‖Nu,·‖2C[0,T ]

]
du 6 C

∫ 1−h

0

E
[
N2
u,T

]
du. (4.14)

Let us split E
[
N2
u,T

]
in two terms E

[
N2
u,T1{Nu,T61}

]
+ E

[
N2
u,T1{Nu,T>1}

]
.
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Study of
∫ 1−h
0

E
[
N2
u,T1{Nu,T61}

]
du. Let u ∈ (0, 1 − h) be such that Nu,· is a martin-

gale. By Lemma 3.10, if g(u + h) − g(u) = 0, then Nu,T = 0 almost surely, thus
E
[
N2
u,T1Nu,T61

]
= 0. From now on, we suppose that g(u + h) − g(u) > 0. Nu,· is

a square integrable continuous martingale, starting from g(u+ h)− g(u) > 0 and
positive by Lemma 3.10. Therefore, there exists a standard Brownian motion βu
such that Nu,t = Nu,0 + βu(〈Nu,·, Nu,·〉t). Recall that Nu,0 = g(u + h) − g(u) is a
deterministic quantity. If Nu,0 > 1, then the inequality E

[
N2
u,T1{Nu,T61}

]
6 Nu,0 is

obvious. Otherwise, we have

E
[
N2
u,T1{Nu,T61}

]
=

∫ +∞

0

P
[
N2
u,T1{Nu,T61} > λ

]
dλ 6

∫ 1

0

P
[
N2
u,T > λ

]
dλ

6 N2
u,0 +

∫ 1

N2
u,0

P
[
Nu,T > λ1/2

]
dλ. (4.15)

Let us estimate P [Nu,T > κ] for a real number κ > Nu,0. We define the following
stopping times:

τ−Nu,0 := inf{t > 0 : Nu,0 + βu(t) 6 0};
τκ−Nu,0 := inf{t > 0 : Nu,0 + βu(t) > κ};

τ := inf{t > 0 : Nu,t > κ} ∧ T.

On the first hand, we know that almost surely, for all t ∈ [0, T ], Nu,t > 0, hence
τ−Nu,0 > 〈Nu,·, Nu,·〉T . On the other hand, if Nu,T > κ, Nu,τ is equal to κ by
continuity of Nu,·, hence 〈Nu,·, Nu,·〉τ > τκ−Nu,0 . It follows from both inequalities
that τκ−Nu,0 6 τ−Nu,0 . Therefore,

P [Nu,T > κ] 6 P
[
τκ−Nu,0 6 τ−Nu,0

]
=
Nu,0
κ

, (4.16)

by a usual martingale equality. Using inequality (4.15) and Nu,0 6 1, we obtain:

E
[
N2
u,T1{Nu,T61}

]
6 N2

u,0 +

∫ 1

N2
u,0

Nu,0
λ1/2

dλ 6 N2
u,0 + 2Nu,0 6 3Nu,0.

Therefore, we have:
∫ 1−h
0

E
[
N2
u,T1{Nu,T61}

]
du 6 3

∫ 1−h
0

Nu,0du.

Study of
∫ 1−h
0

E
[
N2
u,T1{Nu,T>1}

]
du. Recall that g belongs to Lp(0, 1) for some p > 2.

Fix β ∈ (1, 32 −
1
p ). We compute:

∫ 1−h

0

E
[
N2
u,T1{Nu,T>1}

]
du

6 2

∫ 1−h

0

E
[
(Nu,T −Nu,0)21{Nu,T>1}

]
du+ 2

∫ 1−h

0

E
[
N2
u,01{Nu,T>1}

]
du

6 2

(∫ 1−h

0

E
[
(Nu,T −Nu,0)2β

]
du

) 1
β
(∫ 1−h

0

P [Nu,T > 1] du

)1− 1
β

+ 2

∫ 1−h

0

N2
u,0du.

Furthermore, we have P [Nu,T > 1] 6 Nu,0: that inequality is obvious if Nu,0 > 1

and otherwise, it is a consequence of inequality (4.16).

Then, we are willing to give an upper bound for E
[
(Nu,T −Nu,0)2β

]
. Using

Burkholder-Davis-Gundy inequality, there exists Cβ such that E
[
(Nu,T −Nu,0)2β

]
6
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CβE
[
〈Nu,·, Nu,·〉βT

]
. We compute the quadratic variation of the martingale Nu,t =

yσ,ε(u+ h, t)− yσ,ε(u, t):

E
[
〈Nu,·, Nu,·〉βT

]
= E

[∣∣∣∣∣
∫ T

0

(
1

Mσ,ε(u, s)
+

1

Mσ,ε(u+ h, s)

− 2mσ,ε(u, u+ h, s)

(ε+mσ,ε(u, s))(ε+mσ,ε(u+ h, s))

)
ds

∣∣∣∣∣
β]
.

By Cauchy-Schwarz inequality mσ,ε(u, u+h, s) 6 m
1/2
σ,ε (u, s)m

1/2
σ,ε (u+h, s), we deduce

that the sum of the three terms in the integral is non-negative and thus that it is
bounded by 1

Mσ,ε(u,s)
+ 1

Mσ,ε(u+h,s)
, whence we obtain:

E
[
〈Nu,·, Nu,·〉βT

]
6 T β−1E

[∫ T

0

∣∣∣∣ 1

Mσ,ε(u, s)
+

1

Mσ,ε(u+ h, s)

∣∣∣∣β ds

]

6 Cβ,T

(
E

[∫ T

0

ds

Mβ
σ,ε(u, s)

]
+ E

[∫ T

0

ds

Mβ
σ,ε(u+ h, s)

])
.

By Lemma 4.6, we deduce that
∫ 1−h
0

E
[
〈Nu,·, Nu,·〉βT

]
du is bounded, because β <

3
2 −

1
p . Therefore, we can conclude that there is a constant CT,β such that:

∫ 1−h

0

E
[
N2
u,T1{Nu,T>1}

]
du 6 2CT,β

(∫ 1−h

0

Nu,0 du

)1−1/β

+ 2

∫ 1−h

0

N2
u,0 du.

Conclusion: Putting together the studies of both cases, we have proved that there is a
positive constant C satisfying, for all σ, ε and h ∈ (0, 1):

∫ 1−h

0

E
[
N2
u,T

]
du 6 C

∫ 1−h

0

Nu,0 du+ C

(∫ 1−h

0

Nu,0 du

)1−1/β

+ C

∫ 1−h

0

N2
u,0 du.

(4.17)

Recall that there is p > 2 such that g ∈ Lp(0, 1). As for inequality (4.10), we get:∫ 1−h

0

Nu,0 du =

∫ 1−h

0

(g(u+ h)− g(u))du 6 ‖g‖Lp(2h)1−
1
p .

Furthermore, define α := p−2
p−1 ∈ (0, 1). We have∫ 1−h

0

N2
u,0 du =

∫ 1−h

0

(g(u+ h)− g(u))α(g(u+ h)− g(u))2−αdu

6

(∫ 1−h

0

(g(u+ h)− g(u))du

)α(∫ 1−h

0

(g(u+ h)− g(u))
2−α
1−α du

)1−α

6
(
‖g‖Lp(2h)1−

1
p

)α (
Cp‖g‖Lp

)1−α
,

because 2−α
1−α = p. Therefore∫ 1−h

0

N2
u,0 du =

∫ 1−h

0

(g(u+ h)− g(u))2du 6 C1−α
p ‖g‖Lph

p−2
p . (4.18)
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It follows from (4.17) that there is Cβ such that for each σ, ε > 0,∫ 1−h

0

E
[
(yσ,ε(u+ h, T )− yσ,ε(u, T ))2

]
du 6 Cβ‖g‖Lp

(
h
p−1
p + h

p−1
p (1− 1

β ) + h
p−2
p

)
,

for every β < 3
2 −

1
p , i.e. such that 0 < 1− 1

β <
p−2
3p−2 . Thus, there is q > 0 depending on p

(e.g. q = (p−1)(p−2)
2p(3p−2) by choosing 1 − 1

β = p−2
2(3p−2) ) and a constant C such that for each

σ, ε > 0, ∫ 1−h

0

E
[
(yσ,ε(u+ h, T )− yσ,ε(u, T ))2

]
du 6 C‖g‖Lphq. (4.19)

Therefore, by (4.14) and Markov’s inequality, there is C such that for each σ, ε > 0,

P

[∫ 1−h

0

‖yσ,ε(u+ h, ·)− yσ,ε(u, ·)‖2C[0,T ]du >
1

k

]
6 kC‖g‖Lphq,

whence it is sufficient to choose hk so that kC‖g‖Lph
q
k <

δ
2k

.

4.2 Convergence when ε→ 0

Fix σ ∈ Q+. By Prokhorov’s Theorem, it follows from Corollary 4.3 that the collec-
tion of laws of the sequence (yσ,ε)ε∈Q+

is relatively compact in P(L2([0, 1], C[0, T ])). In
particular, up to extracting a subsequence, we may suppose that (yσ,ε)ε∈Q+

converges in
distribution in L2([0, 1], C[0, T ]) to a limit, denoted by yσ.

For every t ∈ [0, T ], let us denote by et(f) := f(·, t) the continuous evaluation function:
L2([0, 1], C[0, T ]) → L2[0, 1]. We define Yσ(t) := et(yσ) = yσ(·, t). Under the same model
as Proposition 3.2, we obtain:

Proposition 4.13. Fix σ ∈ Q+. Suppose that g ∈ L↑2+[0, 1]. (Yσ(t))t∈[0,T ] is a L↑2[0, 1]-
valued process such that:

(B1) Yσ(0) = g;

(B2) (Yσ(t))t∈[0,T ] is a square integrable continuous L↑2[0, 1]-valued martingale relatively
to the filtration (Fσt )t∈[0,T ], where Fσt = σ(Yσ(s), s 6 t);

(B3) for every h, k ∈ L2[0, 1],

〈(Yσ, h)L2
, (Yσ, k)L2

〉t =

∫ t

0

∫ 1

0

∫ 1

0

h(u)k(u′)
mσ(u, u′, s)

mσ(u, s)mσ(u′, s)
dudu′ds,

where mσ(u, u′, s) =
∫ 1

0
ϕσ(yσ(u, s)− yσ(v, s)) ϕσ(yσ(u′, s)− yσ(v, s)) dv and

mσ(u, s) =
∫ 1

0
ϕ2
σ(yσ(u, s)− yσ(v, s))dv.

Proof. Fix t ∈ [0, T ]. We want to prove that Yσ(t) belongs to L↑2[0, 1]. For each ε ∈ Q+,
Yσ,ε(t) belongs with probability 1 to the set K :={
f ∈ L2(0, 1) : ∀u, u′,∀r, r′, if 0 < u < u+ r < u′ < u′ + r′ < 1, then

1

r

∫ u+r

u

f 6
1

r′

∫ u′+r′

u′
f

}

which is closed in L2(0, 1). Recall that the sequence (yσ,ε)ε∈Q+ converges in distribution
to yσ in L2([0, 1], C[0, T ]). Therefore, (Yσ,ε(t))ε∈Q+ converges in distribution to Yσ(t) in
L2[0, 1]. Because K is closed, the limit Yσ(t) also belongs to K with probability 1.

Therefore, almost surely, for every t ∈ [0, T ] ∩Q, Yσ(t) ∈ K. Let ω ∈ Ω′, where Ω′ is
such that P [Ω′] = 1 and for every ω ∈ Ω′,

∫ 1

0
sups6T |yσ(v, s)|2(ω)dv < +∞ and for every

EJP 23 (2018), paper 124.
Page 27/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP254
http://www.imstat.org/ejp/


A new approach for the construction of a Wasserstein diffusion

t ∈ [0, T ] ∩ Q, Yσ(t)(ω) ∈ K. Let t ∈ [0, T ] and (tn) be a sequence in [0, T ] ∩ Q tending
to t. For every n ∈ N and each u, u′, r, r′ such that 0 < u < u + r < u′ < u′ + r′ < 1,
1
r

∫ u+r
u

yσ(v, tn)(ω)dv 6 1
r′

∫ u′+r′
u′

yσ(v, tn)(ω)dv. Since yσ(ω) belongs to L2([0, 1], C[0, T ]),

and since
∫ u+r
u

yσ(v, tn)2(ω)dv 6
∫ 1

0
sups6T |yσ(v, s)|2(ω)dv < +∞, 1

r

∫ u+r
u

yσ(v, tn)(ω)dv

tends to 1
r

∫ u+r
u

yσ(v, t)(ω)dv (and the same is true for u′ and r′). Thus almost surely Yσ(t)

belongs to K for every t ∈ [0, T ]. It remains to prove that it implies that Yσ(t) belongs to
L↑2[0, 1].

Let f ∈ K. Define, for each u ∈ (0, 1), f̂(u) := lim infh→0+
1
h

∫ (u+h)∧1
u

f(v)dv. First,

remark that f̂ is non-decreasing. Then, since h 7→ 1
h

∫ u+h
u

f is non-increasing, we

have f̂(u) = limh→0+
1
h

∫ (u+h)∧1
u

f(v)dv. Choose a sequence (un) ↘ u. By monotonicity,

f̂(u) 6 f̂(un). Fix δ > 0. There exists h > 0 such that u+ h < 1 and |f̂(u)− 1
h

∫ u+h
u

f | < δ.

Since f ∈ L2, there exists N such that for all n > N , | 1h
∫ un+h
un

f − 1
h

∫ u+h
u

f | < δ.

Therefore, f̂(un) 6 1
h

∫ un+h
un

f 6 f̂(u) + 2δ for all n > N . Thus f̂(un)→ f̂(u). In addition,

f̂ has left limits because of its monotonicity. Hence f̂ is a càdlàg function.
Furthermore, f̂ = f almost everywhere. Indeed, for every δ > 0, there exists

F ∈ C[0, 1] such that ‖f − F‖L1(0,1) < δ. Define F̂ (u) = limh→0+
1
h

∫ (u+h)∧1
u

F (v)dv. By

continuity of F , F (u) = F̂ (u) for every u ∈ (0, 1). Thus we have:∫ 1

0

|f(u)− f̂(u)|du 6
∫ 1

0

|f(u)− F (u)|du+

∫ 1

0

|f̂(u)− F̂ (u)|du

6 δ +

∫ 1

0

lim
h→0+

1

h

∫ (u+h)∧1

u

|f(v)− F (v)|dvdu

6 δ + lim inf
h→0+

∫ 1

0

|f(v)− F (v)|dv 6 2δ,

where we used Fatou’s Lemma to obtain the last line. Thus
∫ 1

0
|f(u) − f̂(u)|du = 0,

whence f̂ = f almost everywhere. Thus f belongs to L↑2[0, 1]: Yσ is a L↑2[0, 1]-valued
process.

Property (B1). (Yσ,ε(0))ε∈Q+
converges in law to Yσ(0) in L2[0, 1]. Therefore, Yσ(0) = g.

Property (B2). By inequality (4.11), E
[
‖Yσ,ε‖2L2([0,1],C[0,T ])

]
is bounded uniformly in

ε ∈ Q+. We deduce that for every t ∈ [0, T ], E
[
‖Yσ(t)‖2L2([0,1])

]
< +∞, thus the process

Yσ is square integrable.
Furthermore, Yσ is a continuous L↑2[0, 1]-valued process. Indeed, for each sequence

(tn)n>0 converging to a time t, ‖Yσ(tn)− Yσ(t)‖2L2
=
∫ 1

0
(yσ(u, tn)− yσ(u, t))2du −→

n→∞
0 by

dominated convergence Theorem, since for almost every u ∈ (0, 1), yσ(u, ·) is continuous
at time t, and (yσ(u, tn)−yσ(u, t))2 6 4 supt6T |yσ(u, t)|2 which is almost surely integrable.

Moreover, we know from property (A2) that for each h ∈ L2(0, 1), for each l > 1,
0 6 s1 6 s2 6 . . . 6 sl 6 s 6 t and for each bounded and continuous function fl :

(L2(0, 1))l → R:

E

[∫ 1

0

h(u)(yσ,ε(u, t)− yσ,ε(u, s))du fl(yσ,ε(·, s1), . . . , yσ,ε(·, sl))
]

= 0. (4.20)

Since
∣∣∣∫ 1

0
h(u)b(u, t)du

∣∣∣ 6 ‖h‖L2

(∫ 1

0
sup[0,T ] |b(u, ·)|2du

)1/2
for every b ∈ L2([0, 1], C[0, T ]),

the function ϕ : b ∈ L2([0, 1], C[0, T ]) 7→
∫ 1

0
h(u)(b(u, t)− b(u, s))du fl(b(·, s1), . . . , b(·, sl)) is
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continuous. Furthermore, we prove that (ϕ(yσ,ε))ε∈Q+
is bounded in L2:

E
[
ϕ(yσ,ε)

2
]
6 ‖fl‖2∞‖h‖2L2

E

[∫ 1

0

(yσ,ε(u, t)− yσ,ε(u, s))2du

]
6 C‖fl‖2∞‖h‖2L2

,

where C is independent of ε by Corollary 4.8. We deduce that (ϕ(yσ,ε))ε∈Q+
is uni-

formly integrable. By continuity of ϕ and since (yσ,ε)ε∈Q+ converges in law to yσ in
L2([0, 1], C[0, T ]), we get: E [ϕ(yσ,ε)] −→

ε→0
E [ϕ(yσ)]. Since by equality (4.20), E [ϕ(yσ,ε)] = 0

for each ε ∈ Q+, we have:

E

[∫ 1

0

h(u)(yσ(u, t)− yσ(u, s))dufl(Yσ(s1), . . . , Yσ(sl))

]
= 0. (4.21)

Therefore, Yσ(·) is a square integrable continuous (Fσt )t∈[0,T ]-martingale.

Property (B3). We know, by property (A3), that for every l > 1, for every 0 6 s1 6 s2 6
. . . 6 sl 6 s 6 t, for every bounded and continuous fl : (L2(0, 1))l → R and for every h
and k in L2(0, 1):

E

[ ∫ 1

0

∫ 1

0

h(u)k(u′)[(yσ,ε(u, t)− g(u))(yσ,ε(u
′, t)− g(u′))

− (yσ,ε(u, s)− g(u))(yσ,ε(u
′, s)− g(u′))]dudu′fl(Yσ,ε(s1), . . . , Yσ,ε(sl))

]
= E

[ ∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

mσ,ε(u, u
′, r) drdudu′

(ε+mσ,ε(u, r))(ε+mσ,ε(u′, r))
fl(Yσ,ε(s1), . . . , Yσ,ε(sl))

]
.

(4.22)

First, we want to obtain the convergence of the left hand side of (4.22). We proceed
in the same way as for the proof of equality (4.21); to get a uniform integrability property,
we have now to prove the existence of β > 1 such that

sup
ε∈Q+

E

[(∫ 1

0

h(u)(yσ,ε(u, t)− g(u))du

∫ 1

0

k(u′)(yσ,ε(u
′, t)− g(u′))du′

)β]
(4.23)

is finite. Therefore, it is sufficient to prove the existence of β > 1 such that

sup
ε∈Q+

E

[(∫ 1

0

h(u)(yσ,ε(u, t)− g(u))du

)2β
]

is finite for every h ∈ L2[0, 1]. By Cauchy-Schwarz inequality,

E

[(∫ 1

0

h(u)(yσ,ε(u, t)− g(u))du

)2β
]
6 E

[
‖h‖2βL2

(∫ 1

0

(yσ,ε(u, t)− g(u))2du

)β]

6 ‖h‖2βL2
E

[∫ 1

0

(yσ,ε(u, t)− g(u))2βdu

]
. (4.24)

We deduce by Burkholder-Davis-Gundy inequality and Fubini’s Theorem that there are
some constants independent of ε such that

E

[∫ 1

0

(yσ,ε(u, t)− g(u))2βdu

]
6 C1

∫ 1

0

E
[
〈yσ,ε(u, ·), yσ,ε(u, ·)〉βt

]
du

6 C2E

[∫ 1

0

∫ t

0

1

Mβ
σ,ε(u, r)

drdu

]
.
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By Lemma 4.6, there exists β > 1 such that E
[∫ 1

0

∫ t
0

1

Mβ
σ,ε(u,r)

drdu
]

is bounded uniformly

for ε ∈ Q+. Thus (4.23) is finite. It is also finite if we replace t by s.
To obtain the convergence of the right hand side of (4.22), we start by using Skoro-

hod’s representation Theorem1: there exists a sequence (ŷσ,ε)ε∈Q+ defined on a common

probability space (Ω̂, P̂) that converges to ŷσ in L2([0, 1], C[0, T ]) almost surely, where
ŷσ,ε (resp. ŷσ) has same distribution as yσ,ε (resp. yσ). We denote by m̂σ,ε (resp. m̂σ) the
mass associated to ŷσ,ε (resp. ŷσ).

Furthermore, on the probability space (Ω̂ × [0, 1], P̂ ⊗ Leb |[0,1]), ŷσ,ε converges in
probability in the space C[0, T ] to ŷσ. Indeed, for every δ > 0, we have:

P̂⊗ Leb |[0,1]{(ω, u) : ‖(ŷσ,ε − ŷσ)(ω, u)‖C[0,T ] > δ}

= Ê
[
Leb{u : ‖(ŷσ,ε − ŷσ)(ω, u)‖C[0,T ] > δ}

]
6 Ê

[
1 ∧ 1

δ2

∫ 1

0

‖(ŷσ,ε − ŷσ)(ω, u)‖2C[0,T ]du

]
.

We know that, for every fixed δ > 0, 1 ∧ 1
δ2

∫ 1

0
‖(ŷσ,ε − ŷσ)(ω, u)‖2C[0,T ]du converges to 0

almost surely, and it is bounded by 1, so we deduce that the latter term tends to 0.
We deduce from the convergence in probability that there exists a subsequence (εn)n,
εn → 0, such that for almost every (ω, u) ∈ Ω̂× [0, 1], ‖(ŷσ,εn − ŷσ)(ω, u)‖C[0,T ] → 0.

We want to prove that,

E

[∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

m̂σ,εn(u, u′, r) drdudu′

(εn + m̂σ,εn(u, r))(εn + m̂σ,εn(u′, r))
fl(Ŷσ,εn(s1), . . . , Ŷσ,εn(sl))

]
−→
n→∞

E

[∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

m̂σ(u, u′, r)

m̂σ(u, r)m̂σ(u′, r)
drdudu′fl(Ŷσ(s1), . . . , Ŷσ(sl))

]
. (4.25)

On the one hand, almost surely and for almost every u ∈ (0, 1), ŷσ,εn(u, ·) → ŷσ(u, ·) in
C[0, T ]. Then for almost every u, u′ ∈ (0, 1),

m̂σ,εn(u, u′, r) =

∫ 1

0

ϕσ(ŷσ,εn(u, r)− ŷσ,εn(v, r))ϕσ(ŷσ,εn(u′, r)− ŷσ,εn(v, r))dv

−→
n→∞

m̂σ(u, u′, r), (4.26)

εn + m̂σ,εn(u, r) = εn +

∫ 1

0

ϕ2
σ(ŷσ,εn(u, r)− ŷσ,εn(v, r))dv −→

n→∞
m̂σ(u, r). (4.27)

Therefore, in order to obtain (4.25), it remains to justify that there exists β > 1 such
that:

sup
n∈N

E

[(∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

m̂σ,εn(u, u′, r)

(εn + m̂σ,εn(u, r))(εn + m̂σ,εn(u′, r))
drdudu′

)β]

is finite. By Cauchy-Schwarz inequality, m̂σ,εn(u, u′, r) 6 m̂
1/2
σ,εn(u, r)m̂

1/2
σ,εn(u′, r), so that it

is sufficient to prove that there is β > 1 such that

sup
n∈N

E

(∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

1

M̂
1/2
σ,εn(u, r)M̂

1/2
σ,εn(u′, r)

drdudu′

)β
1L2([0, 1], C[0, T ]) is a Polish space. Its separability can be proved using the separability of C([0, 1]× [0, T ])

and the density of C([0, 1]× [0, T ]) in L2([0, 1], C[0, T ]).
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is finite, and thus that supn∈NE
[∫ 1

0

∫ t
s

1

M̂β
σ,εn (u,r)

drdu
]

is finite, using Cauchy-Schwarz

inequality as in the proof of (4.24). By Lemma 4.6, this statement holds. We conclude
that we have the following equality:

E

[ ∫ 1

0

∫ 1

0

h(u)k(u′)[(yσ(u, t)− g(u))(yσ(u′, t)− g(u′))

− (yσ(u, s)− g(u))(yσ(u′, s)− g(u′))]dudu′fl(Yσ(s1), . . . , Yσ(sl))

]
= E

[ ∫ 1

0

∫ 1

0

h(u)k(u′)

∫ t

s

mσ(u, u′, r)

mσ(u, r)mσ(u′, r)
drdudu′fl(Yσ(s1), . . . , Yσ(sl))

]
, (4.28)

whence we obtain property (B3), since
∫ 1

0

∫ 1

0
h(u)k(u′)

∫ t
0
mσ(u,u

′,r) drdudu′

mσ(u,r)mσ(u′,r)
is (Fσt )t∈[0,T ]-

measurable.

Property (B3) implies the following Corollary:

Corollary 4.14. Let ψ be a non-negative and bounded map: [0, 1]→ R. Then for every
l ∈ N\{0}, 0 6 s1 6 s2 6 . . . 6 sl 6 s 6 t and for every bounded and continuous function
fl : L2[0, 1]l → R, we have:

E

[ ∫ 1

0

ψ(u)

(
(yσ(u, t)− g(u))2 − (yσ(u, s)− g(u))2 −

∫ t

s

1

mσ(u, r)
dr

)
du

fl(Yσ(s1), . . . , Yσ(sl))

]
= 0.

Proof. We use the following notations. First z(u, ·) := yσ(u, ·) − g(u) and second Fl =

fl(Yσ(s1), . . . , Yσ(sl)). Let us consider an orthonormal basis (ei)i>1 in the Hilbert space

L2(ψ(x)dx). We denote by [·, ·]L2(ψ) the scalar product of L2(ψ(x)dx): [h, k]L2(ψ) =
∫ 1

0
hkψ.

By Parseval’s formula, we have:

E

[∫ 1

0

ψ(u)(z(u, t)2 − z(u, s)2)duFl

]
= E

∑
i>1

([z(·, t), ei]2L2(ψ)
− [z(·, s), ei]2L2(ψ)

)Fl


=
∑
i>1

E
[
((z(·, t), eiψ)2L2

− (z(·, s), eiψ)2L2
)Fl
]

=
∑
i>1

E

[∫ 1

0

∫ 1

0

ei(u)ψ(u)ei(u
′)ψ(u′)

∫ t

s

mσ(u, u′, r)

mσ(u, r)mσ(u′, r)
drdudu′Fl

]
,

by applying equality (4.28) with h = k = ei. By definition of mσ(u, u′, r), we have:

E

[∫ 1

0

ψ(u)(z(u, t)2 − z(u, s)2)duFl

]
= E

∫ t

s

∫ 1

0

∑
i>1

[
ϕσ(yσ(·, r)− yσ(v, r))

mσ(·, r)
, ei

]2
L2(ψ)

dvdrFl


= E

[∫ t

s

∫ 1

0

∫ 1

0

ϕ2
σ(yσ(u, r)− yσ(v, r))

m2
σ(u, r)

ψ(u)dudvdrFl

]
= E

[∫ 1

0

∫ t

s

1

mσ(u, r)
drψ(u)duFl

]
,

since mσ(u, r) =
∫ 1

0
ϕ2
σ(yσ(u, r)− yσ(v, r))dv.

We deduce the following estimation, by analogy with Lemma 4.6:
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Lemma 4.15. For all β ∈ (0, 32 −
1
p ), there is a constant C > 0 such that for all σ > 0 and

0 6 s < t 6 T , we have the following inequality:

E

[∫ t

s

∫ 1

0

1

mβ
σ(u, r)

dudr

]
6 C
√
t− s.

Proof. We use again the sequence (ŷσ,εn)n∈N obtained by Skorohod’s representation
Theorem, as in the proof of convergence (4.25). Therefore, by Fatou’s Lemma,

E

[∫ t

s

∫ 1

0

1

m̂β
σ(u, r)

dudr

]
6 lim inf

n→∞
E

[∫ t

s

∫ 1

0

1

M̂β
σ,εn(u, r)

dudr

]
6 C
√
t− s,

where C is obtained thanks to Lemma 4.6.

By Burkholder-Davis-Gundy inequality, we obtain immediately the following Corollary:

Corollary 4.16. For each β ∈ (0, 32 −
1
p ), sup

σ∈Q+

sup
t6T

E

[∫ 1

0

(yσ(u, t)− g(u))2βdu

]
< +∞.

4.3 Convergence when σ → 0

Recall that by Corollary 4.3 and Prokhorov’s Theorem, the collection of laws of the
sequence (yσ,ε)σ,ε∈Q+ is relatively compact in P(L2([0, 1], C[0, T ])). By construction, the
collection of laws of the sequence (yσ)σ∈Q+ inherits the same property.

Thus, up to extracting a subsequence, we may suppose that (yσ)σ∈Q+
converges in

distribution to a limit, denoted by y, in L2([0, 1], C[0, T ]). As before, we define Y (t) :=

y(·, t). We state the first part of Theorem 1.4 in the following Proposition:

Proposition 4.17. Suppose that g ∈ L↑2+[0, 1]. (Y (t))t∈[0,T ] is a L↑2[0, 1]-valued process
such that:

(C1) Y (0) = g;

(C2) (Y (t))t∈[0,T ] is a square integrable continuous L↑2[0, 1]-valued (Ft)t∈[0,T ]-martingale,
where Ft = σ(Y (s), s 6 t).

Proof. We refer to the proof of Proposition 4.13.

Remark 4.18. It should be noticed at this point that a new difficulty arises when we
want to obtain a property analogous to (B3). Indeed, whereas it was straightforward
to prove (4.26) and (4.27), the convergence of mσ(u, t) =

∫ 1

0
ϕ2
σ(yσ(u, t) − yσ(v, t))dv

to m(u, t) =
∫ 1

0
1{y(u,t)=y(v,t)}dv is not obvious, due to the singularity of the indicator

function. It will be the main goal of the next Section to prove this convergence.

In Section 5, we will study the martingale properties of the limit process Y and
compute its quadratic variation (property (C5) of Theorem 1.4). To obtain this, we will
first prove that for every positive t, Y (t) is a step function (see property (C3)). It implies
that y has a version in D((0, 1), C[0, T ]) (see property (C4)) by an argument given in ([11,
Proposition 2.3]).

5 Properties of the limit process Y

The aim of this Section is to complete the proof of Theorem 1.4. Properties (C3)

and (C4) will be proved in Paragraph 5.1 and property (C5) will be proved in two steps
in Paragraph 5.2 and Paragraph 5.3.
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5.1 Coalescence properties and step functions

In this Paragraph, we will prove the following Proposition:

Proposition 5.1. Almost surely, for every t > 0, Y (t) is a step function.

Recall that Y (0) = g is not necessarily a step function, since g can be chosen
arbitrarily in L↑2+[0, 1]. If we denote for each t ∈ [0, T ] by µt the measure associated to
the quantile function Y (t), that is µt = Leb |[0,1] ◦ Y (t)−1, Proposition 5.1 means that for
every positive time t, µt is a finite weighted sum of Dirac measures. We begin by the
following Lemma. Recall the definition of the mass: m(u, t) =

∫ 1

0
1{y(u,t)=y(v,t)}dv.

Lemma 5.2. There exists a probability space (Ω̃, P̃) on which the sequence (ỹσ)σ∈Q+

converges almost surely to ỹ in L2([0, 1], C[0, T ]) and where, for each σ ∈ Q+, ỹσ (resp. ỹ)
has same law as yσ (resp. y). Furthermore, there is a subsequence (σn)n, σn → 0, such
that for almost every (ω, u) ∈ Ω× (0, 1) and for every time t ∈ [0, T ],

lim sup
n→∞

m̃σn(u, t) 6 m̃(u, t).

Proof. Recall that (yσ)σ∈Q+
converges in distribution in L2([0, 1], C[0, T ]) to y. By Skoro-

hod’s representation Theorem, we deduce that there exists a sequence (ỹσ)σ∈Q+
and

a random variable ỹ defined on a common probability space (Ω̃, P̃) such that for every
σ ∈ Q+, the laws of ỹσ and yσ are the same, the laws of ỹ and y are also equal and the
sequence (ỹσ)σ∈Q+ converges almost surely to ỹ in L2([0, 1], C[0, T ]).

For every ε > 0, we get by Markov’s inequality:

P̃⊗ Leb{(ω, u) : ‖(ỹσ − ỹ)(ω, u)‖C[0,T ] > ε} = Ẽ
[
Leb{u : ‖(ỹσ − ỹ)(ω, u)‖C[0,T ] > ε}

]
6 Ẽ

[
1 ∧ 1

ε2

∫ 1

0

‖(ỹσ − ỹ)(ω, u)‖2C[0,T ]du

]
.

(5.1)

Since (ỹσ)σ∈Q+ converges almost surely to ỹ in L2([0, 1], C[0, T ]), the right hand side
tends to 0. Therefore, (ỹσ)σ∈Q+ converges in probability to ỹ in C[0, T ] on the probability

space (Ω̃ × [0, 1], P̃ ⊗ Leb). Thus there exists a subsequence (σn)n tending to 0 along
which ỹσn converges on an almost sure event of Ω̃× [0, 1] to ỹ in C[0, T ]. Therefore, there
is Ω′, P̃[Ω′] = 1, such that for every ω ∈ Ω′, there exists a Borel set A = A(ω) in [0, 1],
Leb(A) = 1, such that for all u ∈ A, ‖ỹσn(u, ·)− ỹ(u, ·)‖C[0,T ] tends to zero. Remark that
the extraction (σn)n does not depend on ω. From now on, we forget the tildes and the
extraction in our notation.

Let ω ∈ Ω. Fix u ∈ A(ω) and t ∈ [0, T ]. We set v ∈ A such that y(v, t) 6= y(u, t). Then
there exist σ0 > 0 and δ > 0 such that for all σ ∈ (0, σ0) ∩ Q+, |yσ(v, t) − yσ(u, t)| > δ.
For all σ 6 min(σ0, δ), we have |yσ(v, t)− yσ(u, t)| > σ and thus ϕσ(yσ(v, t)− yσ(u, t)) = 0.
Hence, limσ→0

(
1− ϕ2

σ(yσ(v, t)− yσ(u, t))
)

= 1. Thus we have shown that for all v ∈ A,

1{y(v,t)6=y(u,t)} 6 lim inf
σ→0

(
1− ϕ2

σ(yσ(v, t)− yσ(u, t))
)
,

since 1− ϕ2
σ is non-negative. By Fatou’s Lemma and since Leb(A) = 1, we deduce that:

1−m(u, t) =

∫ 1

0

1{y(v,t)6=y(u,t)}dv 6 lim inf
σ→0

∫ 1

0

(
1− ϕ2

σ(yσ(v, t)− yσ(u, t))
)

dv,

whence for all u ∈ A and t ∈ [0, T ], lim supn→∞mσn(u, t) 6 m(u, t).

We deduce from Lemma 5.2 the following Corollary. Set N(t) :=
∫ 1

0
du

m(u,t) . By a

classical combinatorial argument, N(t) is the number of equivalence classes at time t
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relatively to the equivalence relation u ∼
t
v ⇐⇒ y(u, t) = y(v, t). In other words,

if N(t) < ∞, Y (t) is a càdlàg step function taking N(t) distinct values: there exist
0 = a1 < a2 < · · · < aN(t) < aN(t)+1 = 1 and y1 < y2 < · · · < yN(t) such that for all
u ∈ [0, 1]

Y (t)(u) =

N(t)∑
k=1

yk1{u∈[ak,ak+1)} + yN(t)1{u=1}.

Corollary 5.3. For every time t ∈ [0, T ], E
[∫ t

0
N(s)ds

]
is finite.

Proof. By Lemma 5.2, there is a subsequence (σn) such that almost surely, for every
t ∈ [0, T ] and for almost every u ∈ [0, 1], lim supn→∞mσn(u, t) 6 m(u, t). Therefore,

1
m(u,t) 6 lim inf

n→∞
1

mσn (u,t)
. By Fatou’s Lemma, we deduce that:

E

[∫ t

0

N(s)ds

]
6 E

[∫ t

0

∫ 1

0

lim inf
n→∞

1

mσn(u, t)
duds

]
6 lim inf

n→∞
E

[∫ t

0

∫ 1

0

duds

mσn(u, s)

]
6 C
√
t,

by Lemma 4.15.

Corollary 5.4. Almost surely, for every t > 0,N(t) is finite and t 7→ N(t) is non-increasing
on (0, T ].

Proof. We begin by proving the coalescence property. Let u1, u2, h ∈ Q be such
that 0 < u1 < u1 + h < u2 < u2 + h < 1. Define yh(u1, t) = 1

h

∫ u1+h

u1
y(v, t)dv =

(Y (t), 1h1(u1,u1+h))L2
and yh(u2, t) = (Y (t), 1h1(u2,u2+h))L2

. By Proposition 4.17, Z(t) =

yh(u2, t) − yh(u1, t) is a continuous R-valued (Ft)t∈[0,T ]-martingale, almost surely non-
negative. As a consequence, Z(t) = 0 for every t > τ0 = inf{s > 0, Z(s) = 0}. In other
terms, the following coalescence property holds: for every u1, u2, h ∈ Q such that
0 < u1 < u1 + h < u2 < u2 + h < 1, yh(u1, t0) = yh(u2, t0) implies yh(u1, t) = yh(u2, t) for
every t > t0 almost surely.

On a full event Ω′ of (Ω,P), the latter statement is true and
∫ T
0
N(s)ds is finite (by

Corollary 5.3). Fix ω ∈ Ω′. In particular, for almost every t ∈ (0, T ), N(t) is finite. Let
t0 ∈ (0, T ) be such that N(t0) < +∞. There exist 0 = a1 < a2 < · · · < aN(t0) < aN(t0)+1 =

1 and z1 < z2 < · · · < zN(t0), depending on ω, such that for all u ∈ [0, 1],

Y (t0)(u) =

N(t0)∑
k=1

zk1{u∈[ak,ak+1)} + zN(t0)1{u=1}.

Fix k ∈ {1, . . . , N(t0)}. By the coalescence property, almost surely, for all u1, u2, h ∈ Q
such that ak < u1 < u1 + h < u2 < u2 + h < ak+1, since yh(u1, t0) = zk = yh(u2, t0), we
have yh(u1, t) = yh(u2, t) for every t > t0. Fix t > t0. By monotonicity of Y (t), we deduce
that Y (t) is constant on (u1, u2 + h). Thus Y (t) is constant on (ak, ak+1). Therefore,
since Y (t) is càdlàg, there exist z̃1 6 z̃2 6 . . . 6 z̃N(t0), depending on ω, such that for all
u ∈ [0, 1],

Y (t)(u) =

N(t0)∑
k=1

z̃k1{u∈[ak,ak+1)} + z̃N(t0)1{u=1}.

We deduce that N(t) 6 N(t0) < +∞, for every t > t0. Therefore, for every ω ∈ Ω′,
t 7→ N(t) is finite and non-increasing on (0, T ]. This concludes the proof of the Lemma.

Therefore, Corollary 5.4 concludes the proof of Proposition 5.1. Then, Proposition 4.17
and Proposition 5.1 imply the following property, by applying Proposition 2.3 of [11]:
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Proposition 5.5. There exists a modification ỹ of y in L2([0, 1], C[0, T ]) such that ỹ
belongs to D((0, 1), C[0, T ]). In particular, for every t ∈ [0, T ], y(·, t) and ỹ(·, t) are equal
in L2[0, 1] almost surely. Moreover, for every u ∈ (0, 1), ỹ(u, ·) is a square integrable and
continuous (Ft)t∈[0,T ]-martingale and

P [∀u, v ∈ (0, 1),∀s ∈ [0, T ], ỹ(u, s) = ỹ(v, s) implies ∀t > s, ỹ(u, t) = ỹ(v, t)] = 1.

From now on, we denote by y (instead of ỹ) the version of the limit process in
D((0, 1), C[0, T ]).

Remark 5.6. The proof can be found in Appendix B of [11]. It should be noticed that
the difficult part of the proof relies on the construction of a version ỹ such that for every
u ∈ (0, 1), ỹ(u, ·) is continuous at time t = 0.

This concludes the proof of properties (C3) and (C4) of Theorem 1.4. The aim of the
next two Paragraphs is to prove property (C5), in two steps.

5.2 Quadratic variation of y(u, ·)
The following Proposition shows that the quadratic variation of a particle is propor-

tional to the inverse of its mass:

Proposition 5.7. Let y be the version in D((0, 1), C[0, T ]) of the limit process given by
Proposition 5.5. For every u ∈ (0, 1),

〈y(u, ·), y(u, ·)〉t =

∫ t

0

1

m(u, s)
ds,

where m(u, s) =
∫ 1

0
1{y(u,s)=y(v,s)}dv.

Proof. By Corollary 4.14, for every positive ψ ∈ L∞(0, 1), we have:

E

[∫ 1

0

ψ(u)[(yσ(u, t)− g(u))2 − (yσ(u, s)− g(u))2]fl(Yσ(s1), . . . , Yσ(sl))du

]
= E

[∫ 1

0

ψ(u)

∫ t

s

1

mσ(u, r)
dr fl(Yσ(s1), . . . , Yσ(sl))du

]
. (5.2)

To obtain the convergence of the left hand side of (5.2), we proceed in the same
way as for the proof of equality (4.28). The uniform integrability property follows from
Corollary 4.16. Therefore, the left hand side of (5.2) converges when σ → 0 to

E

[∫ 1

0

ψ(u)[(y(u, t)− g(u))2 − (y(u, s)− g(u))2]fl(Y (s1), . . . , Y (sl))du

]
.

We also get a uniform integrability property for the right hand side of (5.2) by the
same argument as in the proof of property (B3) (see Proposition 4.13). Assume that
there exists a sequence (σn) of rational numbers tending to 0, a probability space (Ω̂, P̂),
a modification (m̂σn , ŷσn)n∈N of (mσn , yσn)n∈N on L1([0, 1], C[0, T ])× L2([0, 1], C[0, T ]) and
a modification (m̂, ŷ) of (m, y) on the same space such that for almost each ω ∈ Ω and
almost every (u, t) ∈ [0, 1] × [0, T ], the sequence (m̂σn(ω, u, t), ŷσn(ω))n∈N converges to
(m̂(ω, u, t), ŷ(ω)) in R× L2([0, 1], C[0, T ]). This will be proved in Lemma 5.8.

It follows that for every ψ ∈ L∞(0, 1):

E

[∫ 1

0

ψ(u)

[
(ŷ(u, t)− g(u))2 − (ŷ(u, s)− g(u))2 −

∫ t

s

dr

m̂(u, r)

]
fl(Ŷ (s1), . . . , Ŷ (sl))du

]
= 0.
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By Fubini’s Theorem, we deduce that for almost every u ∈ (0, 1),

E

[(
(ŷ(u, t)− g(u))2 − (ŷ(u, s)− g(u))2 −

∫ t

s

dr

m̂(u, r)

)
fl(Ŷ (s1), . . . , Ŷ (sl))

]
= 0. (5.3)

We want to prove that (5.3) holds for every u ∈ (0, 1). Let u ∈ (0, 1). Choose δ > 0

such that u ∈ (δ, 1 − δ). Let (up)p∈N be a decreasing sequence in (δ, 1 − δ) converging
to u such that for every p ∈ N, equality (5.3) holds at point up, (yσn,ε(up, t))t∈[0,T ] is a
square integrable continuous (Fσn,εt )t∈[0,T ]-martingale for every n ∈ N and ε ∈ Q+ and
lim supn→∞ m̂σn(up, t) 6 m̂(up, t) almost surely for all t ∈ [0, T ]. Such a sequence exists
by Corollary 3.11 and Lemma 5.2. We will use these different properties later in this
proof.

Almost surely, for every r ∈ (0, T ], ŷ(·, r) is right-continuous at point u and is a step
function. Therefore, m̂(·, r) =

∫ 1

0
1{ŷ(·,r)=ŷ(v,r)}dv is also right continuous at point u for

every positive time r. In order to prove (5.3) at point u, it is thus sufficient to show the
following uniform integrability property: there exists β > 1 such that

sup
p∈N

E

[(
(ŷ(up, t)− g(up))

2 − (ŷ(up, s)− g(up))
2 −

∫ t

s

dr

m̂(up, r)

)β]
< +∞. (5.4)

First, by monotonicity, for all p ∈ N, E
[
g(up)

2β
]
6 g(δ)2β +g(1− δ)2β . Then, the following

statement holds: there exists β > 1 such that for every t ∈ [0, T ], supp∈NE
[
ŷ(up, t)

2β
]
<

+∞. Indeed, for every p ∈ N, by monotonicity,

1

δ

∫ δ

0

ŷ(v, t)dv 6 ŷ(up, t) 6
1

δ

∫ 1

1−δ
ŷ(v, t)dv.

Therefore, we have:

E
[
ŷ(up, t)

2β
]
6 E

(1

δ

∫ δ

0

ŷ(v, t)dv

)2β
+ E

[(
1

δ

∫ 1

1−δ
ŷ(v, t)dv

)2β
]

6
2

δ
E

[∫ 1

0

ŷ(v, t)2βdv

]
, (5.5)

by Hölder’s inequality. By Fatou’s Lemma

E

[∫ 1

0

ŷ(v, t)2βdv

]
6 lim inf

n→∞
E

[∫ 1

0

ŷσn(v, t)2βdv

]
,

which is finite by Corollary 4.16, for a β chosen in (1, 32 −
1
p ).

Let us keep the same exponent β ∈ (1, 32 −
1
p ). It remains to show that for every

t ∈ [0, T ], supp∈NE

[(∫ t
0

dr
m̂(up,r)

)β]
< +∞. Since lim supn→∞ m̂σn(up, t) 6 m̂(up, t) and

by Fatou’s Lemma,

E

[∣∣∣∣∫ t

0

dr

m̂(up, r)

∣∣∣∣β
]
6 E

[∣∣∣∣∫ t

0

lim inf
n→∞

dr

m̂σn(up, r)

∣∣∣∣β
]
6 lim inf

n→∞
E

[∣∣∣∣∫ t

0

dr

m̂σn(up, r)

∣∣∣∣β
]

6 lim inf
n→∞
ε∈Q+

E

∣∣∣∣∣
∫ t

0

dr

M̂σn,ε(up, r)

∣∣∣∣∣
β
 .

Because (ŷσn,ε(up, t))t∈[0,T ] is a square integrable martingale relatively to (Fσn,εt )t∈[0,T ]

and 〈ŷσn,ε(up, ·), ŷσn,ε(up, ·)〉t =
∫ t
0

dr

M̂σn,ε(up,r)
, we obtain by Burkholder-Davis-Gundy
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inequality:

E

(∫ t

0

dr

M̂σn,ε(up, r)

)β 6 CE
[
(ŷσn,ε(up, t)− g(up))

2β
]
.

We have already seen that E
[
g(up)

2β
]

is uniformly bounded for p ∈ N. By the same

argument as for inequality (5.5), E
[
ŷσn,ε(up, t)

2β
]
6 2

δE
[∫ 1

0
ŷσn,ε(v, t)

2βdv
]
, which is

uniformly bounded for n ∈ N and ε ∈ Q+. This concludes the proof of (5.4).

Therefore, equality (5.3) holds for every u ∈ (0, 1), for every bounded and continu-
ous fl and for every 0 6 s1 6 . . . 6 sl 6 s 6 t. Thus for every u ∈ (0, 1), the process(

(ŷ(u, t)− g(u))2 −
∫ t
0

ds
m̂(u,s)

)
t∈[0,T ]

is an (Ft)t∈[0,T ]-martingale. This concludes the proof

of the Proposition.

In the proof of Proposition 5.7, we used the following Lemma:

Lemma 5.8. There exists a sequence (σn) of rational numbers tending to 0, a sequence
of processes (m̂σn , ŷσn)n∈N and a process (m̂, ŷ) defined on the same probability space
such that

• for all n ∈ N, (m̂σn , ŷσn) and (mσn , yσn) (resp. (m̂, ŷ) and (m, y)) have same law on
L1([0, 1], C[0, T ])× L2([0, 1], C[0, T ]).

• for almost each ω ∈ Ω and for almost every (u, t) in [0, 1] × [0, T ], the sequence
(m̂σn(ω, u, t), ŷσn(ω))n∈N converges to (m̂(ω, u, t), ŷ(ω)) in R× L2([0, 1], C[0, T ]).

Remark 5.9. The Borel subset of [0, 1]× [0, T ] on which we have the convergence can
depend on ω.

Before giving the proof of Lemma 5.8, we give the following definition and state
the following Lemma, which will be useful in the proof. Let us define in L1([0, 1] ×
[0, 1], C[0, T ]):

Cσ(u1, u2, t) :=

∫ t

0

(
1

mσ(u1, s)
+

1

mσ(u2, s)
− 2mσ(u1, u2, s)

mσ(u1, s)mσ(u2, s)

)
ds.

Lemma 5.10. There exists a sequence (σn) in Q+ tending to 0 such that (yσn , Cσn)n∈N
converges in distribution to (y, C) in L2([0, 1], C[0, T ]) × L1([0, 1] × [0, 1], C[0, T ]). For
almost every u1, u2 ∈ [0, 1], the limit process C(u1, u2, ·) is the quadratic variation of
y(u1, ·)− y(u2, ·) relatively to the filtration generated by Y and C.

We start by giving the proof of Lemma 5.8 and then we give the proof of Lemma 5.10.

Proof (Lemma 5.8). By Skorohod’s representation Theorem, it follows from Lemma 5.10
that there exists a sequence (ŷσn , Ĉσn)n and a random variable (ŷ, Ĉ) defined on the
same probability space such that

• for all n ∈ N, (ŷσn , Ĉσn) and (yσn , Cσn) (resp. (ŷ, Ĉ) and (y, C)) have same law,

• the sequence (ŷσn , Ĉσn)n converges almost surely to (ŷ, Ĉ) in L2([0, 1], C[0, T ]) ×
L1([0, 1]× [0, 1], C[0, T ]).

We apply to (ŷσn)n the argument in the proof of Lemma 5.2 and we prove that, up
to extracting another subsequence (independent of ω), for almost every u ∈ [0, 1] and
almost surely, lim supn→∞ m̂σn(u, t) 6 m̂(u, t) for every t ∈ [0, T ].
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For each t ∈ [0, T ], we may suppose that for each n ∈ N, ŷσn(·, t) is a càdlàg function,
so that for every u ∈ (0, 1),

m̂σn(u, t) =

∫ 1

0

ϕ2
σn(ŷσn(u, t)− ŷσn(v, t))dv

= lim
p→∞

p

∫ (u+ 1
p )∧1

u

∫ 1

0

ϕ2
σn(ŷσn(u′, t)− ŷσn(v, t))dvdu′

is a measurable function with respect to ŷσn(·, t). We deduce that (m̂σn(u, t), ŷσn) has the
same law as (mσn(u, t), yσn) for every u ∈ (0, 1).

From now on, we forget the hats in our notation. We may suppose that y is the version
in D((0, 1), C[0, T ]) given by Proposition 5.5. Let Ω′ be such that P [Ω′] = 1 and for all
ω ∈ Ω′, we have the following convergences in R:∫ 1

0

sup
t6T
|yσn(u, t)− y(u, t)|2(ω)du −→

n→∞
0, (5.6)∫ 1

0

∫ 1

0

sup
t6T
|Cσn(u1, u2, t)− C(u1, u2, t)|(ω)du1du2 −→

n→∞
0. (5.7)

Fix ω ∈ Ω′. Thanks to (5.6), we already have the convergence of (yσn(ω))n to
y(ω) in L2([0, 1], C[0, T ]). It remains to show that for almost every (u, t) ∈ [0, 1] × [0, T ],
(mσn(ω, u, t))n converges to m(ω, u, t) =

∫ 1

0
1{y(u,t)=y(v,t)}(ω)dv. We already know that

for every ω ∈ Ω′, every t ∈ [0, T ] and almost every u ∈ (0, 1), lim supn→∞mσn(ω, u, t) 6
m(ω, u, t).

Proof of inequality: lim infn→∞mσn(ω, u, t) > m(ω, u, t).
By the coalescence property given by Proposition 5.5, for every u1, u2 and for all

t > τu1,u2 , y(u1, t) = y(u2, t). Therefore, since C(u1, u2, ·) is the quadratic variation of
y(u1, ·)− y(u2, ·), t 7→ C(u1, u2, t) remains constant on (τu1,u2 , T ). Thus we obtain:∣∣∣∣∣
∫ 1

0

∫ 1

0

∫ T

τu1,u2

(
1

mσn(u1, t)
+

1

mσn(u2, t)
− 2mσn(u1, u2, t)

mσn(u1, t)mσn(u2, t)

)
dtdu1du2

∣∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0

(Cσn(u1, u2, T )− Cσn(u1, u2, τu1,u2
))du1du2

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0

(Cσn(u1, u2, T )− C(u1, u2, T ) + C(u1, u2, τu1,u2
)− Cσn(u1, u2, τu1,u2

))du1du2

∣∣∣∣
6 2

∫ 1

0

∫ 1

0

sup
t6T
|Cσn(u1, u2, t)− C(u1, u2, t)|du1du2.

By (5.7), the latter term tends to 0. We also recall that

1

mσn(u1, t)
+

1

mσn(u2, t)
− 2mσn(u1, u2, t)

mσn(u1, t)mσn(u2, t)

=

∫ 1

0
|ϕσn(yσn(u1, t0)− yσn(v, t0))− ϕσn(yσn(u2, t0)− yσn(v, t0))|2 dv

mσn(u1, t0)mσn(u2, t0)

is non-negative.

We define fσn(t, u1, u2) :=
(

1
mσn (u1,t)

+ 1
mσn (u2,t)

− 2mσn (u1,u2,t)
mσn (u1,t)mσn (u2,t)

)
1{t>τu1,u2}. For

every ω ∈ Ω′,
∫ T
0

∫ 1

0

∫ 1

0
fσn(t, u1, u2)(ω)du1du2dt −→

n→∞
0. Therefore, for every ε > 0, using
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Markov’s inequality as in (5.1), and since fσn > 0:

P⊗ 1

T
Leb |[0,T ] ⊗ Leb |[0,1] ⊗ Leb |[0,1] {(ω, t, u1, u2) : fσn(t, u1, u2)(ω) > ε}

6 E

[
1 ∧ 1

εT

∫ T

0

∫ 1

0

∫ 1

0

fσn(t, u1, u2)du1du2dt

]
,

which tends to 0 when n → ∞, whence we obtain a convergence in probability with
respect to the probability space Ω × [0, T ] × [0, 1] × [0, 1]. Up to extracting another
subsequence (independent of the choice of ω), we deduce the existence of an almost
sure event on which (fσn) converges to 0.

Let Ω′′, P [Ω′′] = 1, be such that for every ω ∈ Ω′′, we have fσn(t, u1, u2)(ω) → 0 for
almost every (t, u1, u2) ∈ [0, T ] × [0, 1] × [0, 1]. Fix ω ∈ Ω′′. Let us consider a Borel set
B = B(ω) in [0, T ], Leb(B) = T , such that for every t ∈ B, fσn(t, u1, u2) → 0 for almost
every (u1, u2) ∈ [0, 1]× [0, 1].

Let t0 ∈ B. Let us consider a Borel set A (depending on ω and t0) of measure 1 such
that for all u1, u2 ∈ A,

fσn(t0, u1, u2) −→
n→∞

0. (5.8)

Let u ∈ A. We want to prove that lim infn→∞mσn(u, t0) > m(u, t0). Define usup =

sup{v ∈ [0, 1] : y(v, t0) = y(u, t0)} and uinf the infimum of that set. Since v 7→ y(v, t0) is
non-decreasing, m(u, t0) = usup − uinf . If m(u, t0) = 0, then we clearly have:

lim inf
n→∞

mσn(u, t0) > m(u, t0).

Suppose now that m(u, t0) > 0. Choose δ > 0 such that δ < usup−uinf

6 . Let umax ∈
A∩ (usup−δ, usup), umin ∈ A∩ (uinf , uinf +δ) and umed ∈ A∩

(
umin+umax

2 − δ, umin+umax

2 + δ
)
.

We have: umax − umin > usup − uinf − 2δ = m(u, t0)− 2δ and by definition of usup and uinf
and since umax, umin and umed belongs to (uinf , usup), we have t0 > τu1,u2

for (u1, u2) =

(u, umax), (u, umin), (umax, umin) and (u, umed).
We deduce from (5.8) and the fact that u, umax, umin, umed belongs to A that there

exists N such that for each n > N , fσn(t0, u1, u2) 6 δ for (u1, u2) = (u, umax), (u, umin),
(umax, umin) and (u, umed). It implies that for each n > N ,∫ 1

0
|ϕσn(yσn(u1, t0)− yσn(v, t0))− ϕσn(yσn(u2, t0)− yσn(v, t0))|2 dv

mσn(u1, t0)mσn(u2, t0)
= fσn(t0, u1, u2) 6 δ.

(5.9)
Since the mass mσn is bounded by 1, we deduce in particular that for all n > N ,∫ 1

0

|ϕσn(yσn(u1, t0)− yσn(v, t0))− ϕσn(yσn(u2, t0)− yσn(v, t0))|2 dv 6 δ. (5.10)

Inequalities (5.9) and (5.10) are satisfied for (u1, u2) = (u, umax), (u, umin), (umax, umin)

and (u, umed).
Let n > N and d := yσn(umax, t0)− yσn(umin, t0) > 0. We distinguish three cases:

• d > σn: Recall that ϕσn is equal to 0 on [σn2 ,+∞). Thus for every v ∈ [0, 1], the
terms ϕσn(yσn(umax, t0) − yσn(v, t0)) and ϕσn(yσn(umin, t0) − yσn(v, t0)) can not be
simultaneously different from 0, because d > σn. Therefore, selecting (u1, u2) =

(umax, umin), inequality (5.9) implies:∫ 1

0
ϕ2
σn(yσn(umax, t0)− yσn(v, t0))dv +

∫ 1

0
ϕ2
σn(yσn(umin, t0)− yσn(v, t0))dv

mσn(umax, t0)mσn(umin, t0)
6 δ,
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that is:
1

mσn(umin, t0)
+

1

mσn(umax, t0)
6 δ.

Thus, we obtain δ > 2, which is excluded by definition of δ.

• d 6 σn − η: Recall that η is chosen so that η < σn
3 . Define the two following sets

Vmax = {v ∈ [umin, umax] : yσn(umax, t0)− yσn(v, t0) 6 σn−η
2 },

Vmin = {v ∈ [umin, umax] : yσn(umax, t0)− yσn(v, t0) > σn−η
2 }.

Clearly, we have: Leb(Vmax) + Leb(Vmin) = umax − umin > m(u, t0) − 2δ. Recall
that ϕσn is equal to 1 on [0, σn−η2 ]. Thus, for each v ∈ Vmax, ϕσn(yσn(umax, t0) −
yσn(v, t0)) = 1, and for each v ∈ Vmin, using d 6 σn − η, ϕσn(yσn(umin, t0) −
yσn(v, t0)) = 1. We have

mσn(u, t0) >
∫
Vmax

ϕ2
σn(yσn(u, t0)−yσn(v, t0))dv+

∫
Vmin

ϕ2
σn(yσn(u, t0)−yσn(v, t0))dv.

(5.11)

We can deduce from inequality (5.10) applied to (u1, u2) = (u, umax) that:∫
Vmax
|ϕσn(yσn(u, t0)− yσn(v, t0))− ϕσn(yσn(umax, t0)− yσn(v, t0))|2 dv 6 δ.

By Minkowski’s inequality |‖f1‖L2
− ‖f2‖L2

| 6 ‖f1 − f2‖L2
, we obtain:∣∣∣∣∣

(∫
Vmax

ϕ2
σn(yσn(u, t0)− yσn(v, t0))dv

)1/2

− Leb(Vmax)1/2

∣∣∣∣∣ 6 √δ,
whence∣∣∣∣∫

Vmax

ϕ2
σn(yσn(u, t0)− yσn(v, t0))dv − Leb(Vmax)

∣∣∣∣ 6 (m1/2
σn (u, t0) + Leb(Vmax)1/2)

√
δ

6 2
√
δ.

Similarly, applying inequality (5.10) to (u, umin), we obtain:∣∣∣∫Vmin
ϕ2
σn(yσn(u, t0)− yσn(v, t0))dv − Leb(Vmin)

∣∣∣ 6 2
√
δ.

Thus, by inequality (5.11), we conclude:

mσn(u, t0) > Leb(Vmax) + Leb(Vmin)− 4
√
δ

> m(u, t0)− 2δ − 4
√
δ.

• d ∈ (σn − η, σn): We now define three distinct sets

Vmax = {v ∈ [umin, umax] : yσn(umax, t0)− yσn(v, t0) < σn−η
2 },

Vmed = {v ∈ [umin, umax] : yσn(umax, t0)− yσn(v, t0) ∈ [σn−η2 , σn+η2 ]},
Vmin = {v ∈ [umin, umax] : yσn(umax, t0)− yσn(v, t0) > σn+η

2 }.

By definition of those sets, and since d ∈ (σn − η, σn), we have

∀v ∈ Vmax, ϕσn(yσn(umax, t0)− yσn(v, t0)) = 1,

∀v ∈ Vmin, ϕσn(yσn(umin, t0)− yσn(v, t0)) = 1.

Moreover, we have yσn(umax, t0)− yσn(umed, t0) ∈ [σn−η2 , σn+η2 ].
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Indeed, if yσn(umax, t0) − yσn(umed, t0) was greater than σn+η
2 , we would have,

for all v ∈ [umin, umed], ϕσn(yσn(umax, t0) − yσn(v, t0)) = 0 and ϕσn(yσn(umin, t0) −
yσn(v, t0)) = 1. By inequality (5.10) applied to (u1, u2) = (umax, umin), we would
deduce that:

δ >
∫ 1

0

|ϕσn(yσn(umax, t0)− yσn(v, t0))− ϕσn(yσn(umin, t0)− yσn(v, t0))|2 dv

>
∫ umed

umin

dv = umed − umin >
umax − umin

2
− δ.

However, since δ < usup−uinf

6 and umax−umin > usup−uinf−2δ, we have umax−umin >

4δ, which is in contradiction with the above inequality. Similarly, yσn(umax, t0) −
yσn(umed, t0) can not be smaller than σn−η

2 , otherwise yσn(umed, t0) − yσn(umin, t0)

would be greater than σn+η
2 and we would obtain the same contradiction. Therefore,

yσn(umax, t0)− yσn(umed, t0) ∈ [σn−η2 , σn+η2 ], which implies that umed ∈ Vmed and in
particular that

∀v ∈ Vmed, ϕσn(yσn(umed, t0)− yσn(v, t0)) = 1.

As in the previous case, we deduce that

mσn(u, t0) > Leb(Vmax) + Leb(Vmed) + Leb(Vmin)− 6
√
δ

= umax − umin − 6
√
δ

> m(u, t0)− 2δ − 6
√
δ.

Actually, putting all the cases together, we have proved that for each n > N ,
mσn(u, t0) > m(u, t0)− 2δ − 6

√
δ. Hence, for all δ < usup−uinf

6 , we have:

lim inf
n→∞

mσn(u, t0) > m(u, t0)− 2δ − 6
√
δ.

By letting δ converge to 0, we have for every t0 ∈ B, lim infn→∞mσn(u, t0) > m(u, t0) for
every u ∈ A. Therefore, there exists a subsequence (σn) such that for almost every ω,
for almost every t ∈ [0, T ] and almost every u ∈ [0, 1], mσn(ω, u, t)→n→∞ m(ω, u, t).

It remains to give the proof of Lemma 5.10.

Proof (Lemma 5.10). The first step will be to prove that the sequence (yσ, Cσ)σ∈Q+
is

tight in L2([0, 1], C[0, T ])×L1([0, 1]× [0, 1], C[0, T ]). We have already proved that (yσ)σ∈Q+

is tight in L2([0, 1], C[0, T ]). We will use a tightness criterion to prove that the sequence
(Cσ)σ∈Q+

is tight in L1([0, 1] × [0, 1], C[0, T ]). The space changed in comparison with
L2([0, 1], C[0, T ]), but the criterion remains very semilar to the one of Proposition 4.2.

We have, similarly to Proposition 4.2, three criteria to prove. We want to show the
following criterion:

First criterion: Let δ > 0. There is M > 0 such that for every σ in Q+,
P [‖Cσ‖ >M ] 6 δ, where ‖Cσ‖ :=

∫ 1

0

∫ 1

0
supt6T |Cσ(u1, u2, t)|du1du2.

That statement follows from Markov’s inequality and the existence of a constant C
independent of σ such that:

E

[∫ 1

0

∫ 1

0

sup
t6T
|Cσ(u1, u2, t)|du1du2

]
6 2E

[∫ 1

0

∫ T

0

dtdu1
mσ(u1, t)

]
+ 2E

[∫ 1

0

∫ T

0

dtdu2
mσ(u2, t)

]
6 C.
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The existence of C is a consequence of Lemma 4.15.

Then, we prove the following criterion:
Second criterion: Let δ > 0. For each k > 1, there exists ηk > 0 such that for all σ

in Q+,

P

[∫ 1

0

∫ 1

0

sup
|t2−t1|<ηk

|Cσ(u1, u2, t2)− Cσ(u1, u2, t1)|du1du2 >
1

k

]
6

δ

2k
.

The proof is very close to Proposition 4.10. We start by defining for every u1, u2 ∈
(0, 1): K1(u1, u2) := E

[
‖Cσ(u1, u2, ·)‖C[0,T ]

]
and K2(u1) := E

[∫ T
0

1

mβσ(u1,s)
ds
]
. Fix δ > 0.

There exists C > 0 such that
∫ 1

0

∫ 1

0
1{K1(u1,u2)>C}du1du2 6 δ and

∫ 1

0
1{K2(u)>C}du 6 δ.

Define the following set K := {(u1, u2) : K1(u1, u2) 6 C,K2(u1) 6 C,K2(u2) 6 C}.
By Aldous’ tightness criterion, the collection (Cσ(u1, u2, ·))σ∈Q+,(u1,u2)∈K is tight in

C[0, T ]. This fact relies on the following inequality, where η > 0 and τ is a stopping time
for Cσ(u1, u2, ·):

E [|Cσ(u1, u2, τ + η)− Cσ(u1, u2, τ)|]

= E

[∣∣∣∣∫ τ+η

τ

(
1

mσ(u1, s)
+

1

mσ(u2, s)
− 2mσ(u1, u2, s)

mσ(u1, s)mσ(u2, s)

)
ds

∣∣∣∣]
6 2E

[∫ τ+η

τ

(
1

mσ(u1, s)
+

1

mσ(u2, s)

)
ds

]
,

and the rest of the proof is an adaptation of the proof of Proposition 4.10.

Finally we show the third criterion:
Third criterion: Let δ > 0. For each k > 1, there is H > 0 such that for all σ in Q+,

P

[
∀h = (h1, h2), 0 < h1 < H, 0 < h2 < H,

∫ 1−h1

0

∫ 1−h2

0

sup
t6T
|Cσ(u1 + h1, u2 + h2, t)− Cσ(u1, u2, t)|du1du2 6

1

k

]
> 1− δ

2k
. (5.12)

Let h1 > 0 and begin by estimating

Eσ := E

[∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 + h1, u2, t)− Cσ(u1, u2, t)|du1du2

]
.

We compute (for the sake of simplicity, we will write from now on yσ(u) instead of yσ(u, ·)
if there is no possibility of confusion):

Cσ(u1 + h1, u2, t)− Cσ(u1, u2, t) = 〈yσ(u1 + h1)− yσ(u2), yσ(u1 + h1)− yσ(u2)〉t
− 〈yσ(u1)− yσ(u2), yσ(u1)− yσ(u2)〉t

= 〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u2)〉t
+ 〈yσ(u1)− yσ(u2), yσ(u1 + h1)− yσ(u1)〉t.

Therefore,

sup
t6T
|Cσ(u1 + h1, u2, t)− Cσ(u1, u2, t)|

6 sup
t6T
|〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u2)〉t|

+ sup
t6T
|〈yσ(u1)− yσ(u2), yσ(u1 + h1)− yσ(u1)〉t|.

(5.13)
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Then, we use Kunita-Watanabe’s inequality on the first term of the right hand side:

|〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u2)〉t|

6 |〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u1)〉t|
1
2

|〈yσ(u1 + h1)− yσ(u2), yσ(u1 + h1)− yσ(u2)〉t|
1
2

6 |〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u1)〉T |
1
2

|〈yσ(u1 + h1)− yσ(u2), yσ(u1 + h1)− yσ(u2)〉T |
1
2 .

By doing the same computation on the second term of the right hand side of (5.13), by
Cauchy-Schwarz inequality and by the substitution of u1 + h1 by u1, we obtain:

Eσ 6 2E

[∫ 1−h1

0

∫ 1

0

〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u1)〉Tdu1du2

]1/2

× E
[∫ 1

0

∫ 1

0

〈yσ(u1)− yσ(u2), yσ(u1)− yσ(u2)〉Tdu1du2

]1/2

6 2E

[∫ 1−h1

0

〈yσ(u1 + h1)− yσ(u1), yσ(u1 + h1)− yσ(u1)〉Tdu1

]1/2
C1/2,

where C is the same constant as the one in the first criterion. By Fubini’s Theorem:

Eσ 6 2C1/2E

[∫ 1−h1

0

(yσ(u1 + h1, T )− yσ(u1, T ) + g(u1)− g(u1 + h1))2du1

]1/2

6 2C1/2E

[∫ 1−h1

0

(yσ(u1 + h1, T )− yσ(u1, T ))2du1

]1/2

+ 2C1/2E

[∫ 1−h1

0

(g(u1 + h1)− g(u1))2du1

]1/2
.

We recall inequalities (4.18) and (4.19). Therefore, there are α > 0 and C > 0 such that
for each σ ∈ Q+ and each h1 > 0,

Eσ 6 Chα1 .

We deduce that for each n ∈ N, by Markov’s inequality,

pn := P

[∫ 1− 1
2n

0

∫ 1

0

sup
t6T
|Cσ(u1 + 1

2n , u2, t)− Cσ(u1, u2, t)|du1du2 > 1

2
nα
2

]
6 2

nα
2 C

(
1

2n

)α
=

C

2
nα
2
.

Since α > 0,
∑
n>0 pn converges. By Borel-Cantelli’s Lemma, for each k > 1, there is

n0 > 0 such that, with probability greater than 1− δ
2k

, for all n > n0,∫ 1− 1
2n

0

∫ 1

0

sup
t6T
|Cσ(u1 + 1

2n , u2, t)− Cσ(u1, u2, t)|du1du2 6
1

2
nα
2
.

Furthermore, up to choosing a greater n0, we can suppose that for all n > n0, we also
have: ∫ 1

0

∫ 1− 1
2n

0

sup
t6T
|Cσ(u1, u2 + 1

2n , t)− Cσ(u1, u2, t)|du1du2 6
1

2
nα
2
.
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We will now extend these estimations to more general perturbations. Let h = (h1, h2) be
such that 0 < h1 <

1
2n0

, 0 < h2 <
1

2n0
. We decompose:∫ 1−h1

0

∫ 1−h2

0

sup
t6T
|Cσ(u1 + h1, u2 + h2, t)− Cσ(u1, u2, t)|du1du2

6
∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 + h1, u2, t)− Cσ(u1, u2, t)|du1du2

+

∫ 1

0

∫ 1−h2

0

sup
t6T
|Cσ(u1, u2 + h2, t)− Cσ(u1, u2, t)|du1du2. (5.14)

Suppose h1 > 0. Since h1 <
1

2n0
, there exists a sequence (εn)n>n0

with values in {0, 1}
such that h1 =

∑
n>n0+1

εn
2n . Moreover, we have for every q > 1:∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 + h1, u2, t)− Cσ(u1 +

∑
n>n0+q

εn
2n , u2, t)|du1du2

6
q−1∑
k=1

∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 +

∑
n>n0+k

εn
2n , u2, t)− Cσ(u1 +

∑
n>n0+k+1

εn
2n , u2, t)|du1du2

6
q−1∑
k=1

∫ 1− 1

2n0+k

0

∫ 1

0

sup
t6T
|Cσ(u1 + 1

2n0+k , u2, t)− Cσ(u1, u2, t)|du1du2 6
q−1∑
k=1

1

2(n0+k)
α
2

.

(5.15)

We want to let q tend to +∞ in (5.15). To do that, we prove that:∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 +

∑
n>n0+q

εn
2n , u2, t)− Cσ(u1, u2, t)|du1du2 −→

q→+∞
0. (5.16)

By definition of Cσ,∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 +

∑
n>n0+q

εn
2n , u2, t)− Cσ(u1, u2, t)|du1du2

6
∫ 1−h1

0

∫ T

0

∣∣∣∣∣ 1

mσ(u1 +
∑
n>n0+q

εn
2n , s)

− 1

mσ(u1, s)

∣∣∣∣∣dsdu1
+

∫ 1−h1

0

∫ 1

0

∫ T

0

2

mσ(u2, s)

∣∣∣∣∣mσ(u1 +
∑
n>n0+q

εn
2n , u2, s)

mσ(u1 +
∑
n>n0+q

εn
2n , s)

− mσ(u1, u2, s)

mσ(u1, s)

∣∣∣∣∣ dsdu1du2.

(5.17)

For each s ∈ [0, T ], mσ(·, s) is right-continuous. Therefore, mσ(u1 +
∑
n>n0+q

εn
2n , s)

converges to mσ(u1, s) when q → +∞. Furthermore, there is β > 1 such that almost
surely,

sup
u∈

[
0, 1

2n0−1

]
∫ 1−u

0

∫ T

0

∣∣∣∣ 1

mσ(u1 + u, s)
− 1

mσ(u1, s)

∣∣∣∣β dsdu1 < +∞.

Indeed,

E

 sup
u∈

[
0, 1

2n0−1

]
∫ 1−u

0

∫ T

0

∣∣∣∣ 1

mσ(u1 + u, s)
− 1

mσ(u1, s)

∣∣∣∣β dsdu1


6 CβE

[∫ 1

0

∫ T

0

1

mσ(u1, s)β
dsdu1

]
< +∞,
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by Lemma 4.6. Therefore, since
∑
n>n0+q

εn
2n 6 h1 <

1
2n0−1 for every q > 1,

∫ 1−h1

0

∫ T

0

∣∣∣∣∣ 1

mσ(u1 +
∑
n>n0+q

εn
2n , s)

− 1

mσ(u1, s)

∣∣∣∣∣
β

dsdu1

6
∫ 1−

∑
n>n0+q

εn
2n

0

∫ T

0

∣∣∣∣∣ 1

mσ(u1 +
∑
n>n0+q

εn
2n , s)

− 1

mσ(u1, s)

∣∣∣∣∣
β

dsdu1

6 sup
u∈

[
0, 1

2n0−1

]
∫ 1−u

0

∫ T

0

∣∣∣∣ 1

mσ(u1 + u, s)
− 1

mσ(u1, s)

∣∣∣∣β dsdu1,

which is almost surely finite. Thus the first term of the right hand side of (5.17) tends
almost surely to 0 for every h1 < 1

2n0
. A similar argument shows that the second

term of the right hand side of (5.17) also converges to 0. Hence we have justified
convergence (5.16).

When q →∞ in inequality (5.15), we obtain:

∫ 1−h1

0

∫ 1

0

sup
t6T
|Cσ(u1 + h1, u2, t)− Cσ(u1, u2, t)|du1du2 6

+∞∑
k=1

1

2(n0+k)
α
2

6
Cα

2
n0α
2

.

Then, we proceed similarly for the second term of the right hand side of (5.14) and we
finally obtain, for each h = (h1, h2) such that 0 < h1 <

1
2n0

and 0 < h2 <
1

2n0
,

∫ 1−h1

0

∫ 1−h2

0

sup
t6T
|Cσ(u1 + h1, u2 + h2, t)− Cσ(u1, u2, t)|du1du2 6

C

2
n0α
2

.

Choosing H = 1
2n0

such that CHα/2 6 1
k , we get (5.12) for each σ in Q+.

Conclusion of the proof. By Simon’s tightness criterion on L1([0, 1]×[0, 1], C[0, T ]), the
collection of laws of (Cσ)σ∈Q+ is relatively compact in P(L1([0, 1]× [0, 1], C[0, T ])). Thus
the collection of laws of (yσ, Cσ)σ∈Q+ is also relatively compact in P(L2([0, 1], C[0, T ])×
L1([0, 1]× [0, 1], C[0, T ])). Thus there is a subsequence, (yσn , Cσn)n>1 converges in distri-
bution in L2([0, 1], C[0, T ]) × L1([0, 1] × [0, 1], C[0, T ]). We denote by (y, C) the limit. We
want to prove that for almost every u1, u2 ∈ [0, 1], C(u1, u2, ·) is the quadratic variation of
y(u1, ·)− y(u2, ·) relatively to the filtration generated by Y and C.

Let l > 1, 0 6 s1 6 s2 6 . . . 6 sl 6 s 6 t and fl : (L2(0, 1))l × L1([0, 1]× [0, 1])l → R be
a bounded and continuous function. For every non-negative ψ1, ψ2 ∈ L∞(0, 1), we have
for every n > 1:

E

[∫ 1

0

∫ 1

0

ψ1(u1)ψ2(u2)
(

(yσn(u1, t)− yσn(u2, t)− g(u1) + g(u2))2

− (yσn(u1, s)− yσn(u2, s)− g(u1) + g(u2))2 − Cσn(u1, u2, t) + Cσn(u1, u2, s)
)

du1du2

fl(Yσn(s1), . . . , Yσn(sl), Cσn(s1), . . . , Cσn(sl))

]
= 0,

since the process (Cσn(t))t∈[0,T ] := (Cσn(·, ·, t))t∈[0,T ] is (Fσnt )t∈[0,T ]-adapted. By the
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convergence in distribution, we obtain when n goes to∞:

E

[∫ 1

0

∫ 1

0

ψ1(u1)ψ2(u2)
(

(y(u1, t)− y(u2, t)− g(u1) + g(u2))2

− (y(u1, s)− y(u2, s)− g(u1) + g(u2))2 − C(u1, u2, t) + C(u1, u2, s)
)

du1du2

fl(Y (s1), . . . , Y (sl), C(s1), . . . , C(sl))

]
= 0.

By Fubini’s Theorem, we obtain that for almost every u1, u2 ∈ (0, 1), for all rational
numbers (s1, . . . , sl, s, t) such that 0 6 s1 6 s2 6 . . . 6 sl 6 s 6 t:

E

[(
(y(u1, t)− y(u2, t)− g(u1) + g(u2))2 − (y(u1, s)− y(u2, s)− g(u1) + g(u2))2

− C(u1, u2, t) + C(u1, u2, s)
)
fl(Y (s1), . . . , Y (sl), C(s1), . . . , C(sl))

]
= 0.

By continuity in time, the latter equality remains true for every 0 6 s1 6 s2 6 . . . 6 sl 6
s 6 t. Furthermore, for almost every u1, u2, (Cσn(u1, u2, t))t∈[0,T ] is a non-decreasing
bounded variation process. This remains true for the limit (C(u1, u2, t))t∈[0,T ]. Therefore,
we deduce that

C(u1, u2, t) = 〈y(u1)− y(u2), y(u1)− y(u2)〉t,

for almost every u1, u2 ∈ (0, 1), with respect to the filtration generated by (Y,C).

We conclude this Paragraph by using Fatou’s Lemma to extend the statement of
Lemma 4.15 to the limit process:

Proposition 5.11. Let g ∈ Lp(0, 1). For all β ∈ (0, 32 −
1
p ), there is a constant C > 0

depending only on β and ‖g‖Lp such that for all 0 6 s < t 6 T , we have the following
inequality:

E

[∫ t

s

∫ 1

0

1

m(u, r)β
dudr

]
6 C
√
t− s.

By Burkholder-Davis-Gundy inequality, we deduce the following estimation:

Corollary 5.12. For each β ∈ (0, 32 −
1
p ), sup

t6T
E

[∫ 1

0

(y(u, t)− g(u))2βdu

]
< +∞.

5.3 Covariation of y(u, ·) and y(u′, ·)
In this Paragraph, we want to complete the proof of property (C5) of Theorem 1.4. It

remains to prove the following Proposition:

Proposition 5.13. Let y be the version in D((0, 1), C[0, T ]) of the limit process given by
Proposition 5.5. For every u, u′ ∈ (0, 1),

〈y(u, ·), y(u′, ·)〉t∧τu,u′ = 0, (5.18)

where τu,u′ = inf{t > 0 : y(u, t) = y(u′, t)} ∧ T .

As in the previous Paragraph, we will need to prove the convergence of the joint law
of yσ and a quadratic covariation. More precisely, define:

Kσ(u, u′, t) :=

∫ t

0

mσ(u, u′, s)

mσ(u, s)mσ(u′, s)
ds.

We state the following result:
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Lemma 5.14. For every sequence (σn)n of rational numbers tending to 0, we can extract
a subsequence (σ̃n)n such that the sequence (yσ̃n ,Kσ̃n)n→∞ converges in distribution to
(y,K) in L2([0, 1], C[0, T ]) ×L1([0, 1]× [0, 1], C[0, T ]), where

K(u, u′, t) := 〈y(u, ·), y(u′, ·)〉t.

Proof (Lemma 5.14). We follow the same structure as in the proof of Lemma 5.10. First,

we define Kσ,ε = 〈yσ,ε(u, ·), yσ,ε(u′, ·)〉t =
∫ t
0

mσ,ε(u,u
′,s)

(ε+mσ,ε(u,s))(ε+mσ,ε(u′,s))
ds. We show that

Kσ,ε satisfies the three criteria of tightness in L1([0, 1] × [0, 1], C[0, T ]). For the first
criterion, we want to bound

E

[∫ 1

0

∫ 1

0

sup
t6T
|Kσ,ε(u, u

′, t)|dudu′
]

uniformly for σ, ε ∈ Q+. This follows from Kunita-Watanabe’s inequality:

|Kσ,ε(u, u
′, t)| = |〈yσ,ε(u), yσ,ε(u

′)〉t| 6 〈yσ,ε(u), yσ,ε(u)〉1/2t 〈yσ,ε(u′), yσ,ε(u′)〉
1/2
t

6 〈yσ,ε(u), yσ,ε(u)〉1/2T 〈yσ,ε(u
′), yσ,ε(u

′)〉1/2T

and from Cauchy-Schwarz inequality:

E

[∫ 1

0

∫ 1

0

sup
t6T
|Kσ,ε(u, u

′, t)|dudu′
]
6 E

[∫ 1

0

〈yσ,ε(u), yσ,ε(u)〉Tdu

]
= E

[∫ 1

0

(yσ,ε(u, T )− g(u))2du

]
,

which is bounded uniformly for σ, ε ∈ Q+ by Corollary 4.8.
We refer to the proof of Lemma 5.10 for the second and the third criteria of tightness,

and for the rest of the proof, which follows in the same way. It remains to explain why
(K(u, u′, t))t∈[0,T ] is a bounded variation process for almost every u, u′ ∈ (0, 1). It follows
from Kunita-Watanabe’s inequality that:

p−1∑
k=0

|Kσ,ε(u, u
′, tk+1)−Kσ,ε(u, u

′, tk)| =
p−1∑
k=0

|〈yσ,ε(u), yσ,ε(u
′)〉tk+1

− 〈yσ,ε(u), yσ,ε(u
′)〉tk |

6
p−1∑
k=0

(∫ tk+1

tk

d〈yσ,ε(u), yσ,ε(u)〉s
) 1

2
(∫ tk+1

tk

d〈yσ,ε(u′), yσ,ε(u′)〉s
) 1

2

6
1

2

∫ tp

t0

d〈yσ,ε(u), yσ,ε(u)〉s +
1

2

∫ tp

t0

d〈yσ,ε(u′), yσ,ε(u′)〉s

=
1

2

∫ tp

t0

ds

Mσ,ε(u, s)
+

1

2

∫ tp

t0

ds

Mσ,ε(u′, s)
,

Therefore, for every p > 1 and 0 6 t0 6 t1 6 . . . 6 tp,
∑p−1
k=0 |K(u, u′, tk+1)−K(u, u′, tk)| 6

1
2

∫ tp
t0

ds
m(u,s) + 1

2

∫ tp
t0

ds
m(u′,s) . By Proposition 5.11, we know that almost surely and for

almost every u ∈ (0, 1),
∫ T
0

ds
m(u,s) is finite. Thus for almost every u and u′ in (0, 1),

K(u, u′, ·) is a bounded variation process. This concludes the proof of the Lemma.

We use the latter Lemma to prove Proposition 5.13.

Proof (Proposition 5.13). By Lemma 5.14 and Skorohod’s representation Theorem, we
may suppose that (yσ,Kσ)σ∈Q+

converges almost surely in L2([0, 1], C[0, T ])× L1([0, 1]×
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[0, 1], C[0, T ]) to (y,K). As previously, up to extracting a subsequence, we deduce that for
almost every (ω, u, u′) ∈ Ω× [0, 1]× [0, 1],

sup
t6T
|yσ(u, t)− y(u, t)|(ω) −→

σ→0
0, (5.19)

and
sup
t6T
|Kσ(u, u′, t)−K(u, u′, t)|(ω) −→

σ→0
0. (5.20)

Therefore, there exists a (non-random) subset A of [0, 1], such that for every u, u′ ∈ A,
(5.19) and (5.20) holds almost surely.

Let u, u′ ∈ A. If g(u) = g(u′) then τu,u′ = 0 almost surely, thus (5.18) is clear. Up to
exchanging u and u′, assume that g(u) < g(u′). Let δ < 2(g(u′) − g(u)). Almost surely,
by (5.19), there exists σ0 such that for all σ ∈ (0, σ0) ∩Q+,

sup
t6T
|yσ(u, t)− y(u, t)| 6 δ

4
,

sup
t6T
|yσ(u′, t)− y(u′, t)| 6 δ

4
.

Define τ δu,u′ := inf{t > 0 : |y(u, t)− y(u′, t)| 6 δ}∧T . Therefore, for all t < τ δu,u′ and for all

σ < σ0, |yσ(u, t)− yσ(u′, t)| > δ
2 . Let σ < min(σ0,

δ
2 ). For all t < τ δu,u′ , we have |yσ(u, t)−

yσ(u′, t)| > σ and thus mσ(u, u′, t) = 0, hence Kσ(u, u′, t) =
∫ t
0

mσ(u,u
′,s)

mσ(u,s)mσ(u′,s)
ds = 0 for

t 6 τ δu,u′ . By (5.20), we obtain

sup
t6τδ

u,u′

|K(u, u′, t)| = 0.

Thus for every δ > 0, for every u, u′ ∈ A and t 6 τ δu,u′ , 〈y(u), y(u′)〉t = 0. Since τ δu,u′ →
τu,u′ when δ → 0, we have for each u, u′ ∈ A:

〈y(u), y(u′)〉t∧τu,u′ = 0. (5.21)

It remains to show that (5.21) holds for every (u, u′) ∈ (0, 1)2. Let (u, u′) ∈ (0, 1)2. As
previously, we may assume that g(u) < g(u′). By continuity of the processes (y(u, t))t∈[0,T ]

and (y(u′, t))t∈[0,T ], the first time of coalescence τu,u′ is almost surely positive. Fix l > 1,
0 6 s1 6 s2 6 . . . 6 sl 6 s 6 t and a bounded and continuous function fl : (L2(0, 1))l → R.
Suppose that s > 0. We want to prove that:

E [(y(u, t ∧ τu,u′)y(u′, t ∧ τu,u′)− y(u, s ∧ τu,u′)y(u′, s ∧ τu,u′))fl(Y (s1), . . . , Y (sl))] = 0.

(5.22)

Let ε > 0. For each v ∈ (u, u + ε) ∩ A and v′ ∈ (u′, u′ + ε) ∩ A (since A is of plain
measure in (0, 1), both sets are non-empty), since we have equality (5.21),

0 = E
[
(y(v, t ∧ τv,v′)y(v′, t ∧ τv,v′) − y(v, s ∧ τv,v′)y(v′, s ∧ τv,v′))fl(Y (s1), . . . , Y (sl))

]
.

(5.23)

Let t0 ∈ (0, s). We define

η := sup{h > 0 : y(u+ h, t0) = y(u, t0) and y(u′ + h, t0) = y(u′, t0)}.

By the coalescence property given by Proposition 5.5, under the event {τu,u′ > t0}, we
know that for every r > t0, for each v ∈ (u, u + η) and v′ ∈ (u′, u′ + η), y(v, r) = y(u, r)
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and y(v′, r) = y(u′, r), whence τv,v′ = τu,u′ . Thus, by equality (5.23), we deduce that for
each v ∈ (u, u+ ε) ∩ A and v′ ∈ (u′, u′ + ε) ∩ A,

0 = E
[
1{η>ε}1{τu,u′>t0}(y(u, t ∧ τu,u′)y(u′, t ∧ τu,u′)

− y(u, s ∧ τu,u′)y(u′, s ∧ τu,u′))fl(Y (s1), . . . , Y (sl))
]

+ E
[
1{η6ε}∪{τu,u′6t0}(y(v, t ∧ τv,v′)y(v′, t ∧ τv,v′)− y(v, s ∧ τv,v′)y(v′, s ∧ τv,v′))

fl(Y (s1), . . . , Y (sl))
]
. (5.24)

Let h > 0 be such that (u, u+ ε) and (u′, u′+ ε) are contained in (h, 1− h). Thus for every
v ∈ (u, u + ε) ∩ A, for every r ∈ [0, T ], by inequality (5.5) and by Doob’s inequality, we
deduce that:

E

[
sup
r6T

y(v, r)2β
]
6

2

h
E

[∫ 1

0

sup
r6T

y(x, r)2βdx

]
6
Cβ
h
E

[∫ 1

0

y(x, T )2βdx

]
6
C̃β
h
,

for a β arbitrarily chosen in (1, 32 −
1
p ) (by Corollary 5.12). Thus, there exists β > 1

such that E
[
(y(v, t ∧ τv,v′)y(v′, t ∧ τv,v′))β

]
is uniformly bounded for v ∈ (u, u + ε) and

v′ ∈ (u′, u′+ε). Let α = 1− 1
β . Therefore, we deduce from (5.24) that there is a constant C

depending only on u, u′ and α such that:

E
[
1{η>ε}1{τu,u′>t0}(y(u, t ∧ τu,u′)y(u′, t ∧ τu,u′)− y(u, s ∧ τu,u′)y(u′, s ∧ τu,u′))

fl(Y (s1), . . . , Y (sl))
]
6 C (P [η 6 ε]

α
+ P [τu,u′ 6 t0]

α
) . (5.25)

We divide the left hand side of inequality (5.25) into two parts by writing

1{η>ε}1{τu,u′>t0} = 1− 1{η6ε}∪{τu,u′6t0}

and we estimate the second term in the same way as above. We deduce that there is a
constant C ′ such that:

E [(y(u, t ∧ τu,u′)y(u′, t ∧ τu,u′)− y(u, s ∧ τu,u′)y(u′, s ∧ τu,u′))fl(Y (s1), . . . , Y (sl))]

6 C ′ (P [η 6 ε]
α

+ P [τu,u′ 6 t0]
α

) .

Let δ > 0. Since τu,u′ > 0 almost surely, we choose t0 ∈ (0, s) such that P [τu,u′ 6 t0]
α 6 δ.

Since t0 > 0, we know by Proposition 5.1 that y(·, t0) is almost surely a step function,
so η > 0 almost surely. Therefore, we can choose ε > 0 so that P [η 6 ε]

α 6 δ. This
concludes the proof of equality (5.22).

Recall that we suppose that t > s > 0. By continuity of time of y(u, ·) and y(u′, ·),
equality (5.22) also holds for s = 0. Therefore, y(u, t ∧ τu,u′)y(u′, t ∧ τu,u′) is a (Ft)t∈[0,T ]-
martingale and 〈y(u), y(u′)〉t∧τu,u′ = 0. This concludes the proof of Proposition 5.13.

A Appendix: Itô’s formula for the Wasserstein diffusion

Let g ∈ L↑2+[0, 1]. We assume, to simplify the notations, that g(1) is finite, but the
proof can be easily adapted to functions g with g(u) −→

u→1
+∞. Let y be a process in

D([0, 1], C[0, T ]) satisfying (i)− (iv) (see Introduction).
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Recall that the process y(·, t)t∈[0,T ] can be considered as the quantile function of
(µt)t∈[0,T ], by setting µt = Leb |[0,1] ◦ y(·, t)−1. The latter process has every feature of
a Wasserstein diffusion. We describe in this Paragraph the dynamics of the process
(µt)t∈[0,T ], after having introduced a differential calculus on P2(R) due to Lions (see [15,
5]). We prove that, for a smooth function U : P2(R)→ R, the process (U(µt))t∈[0,T ] is a
semi-martingale with quadratic variation proportional to the square of the gradient of U
(see Theorem A.3). This result is a generalization of the formula given by Konarovskyi
and von Renesse in [13]. We compare it to a similar result obtained by von Renesse and
Sturm [22] for the Wasserstein diffusion on [0, 1] (see Remark A.4).

In order to describe the dynamics of (µt)t∈[0,T ], we begin by a discretization in space
and by writing the classical Itô formula for that discretized process. Let introduce
µ̃nt := 1

n

∑
k∈[n] δy( kn ,t)

, where [n] denotes the set {1, . . . , n}. Fix U : P2(R) → R a

continuous function, with respect to the Wasserstein distance W2 on P2(R). Let define
Un(x1, . . . , xn) := U( 1

n

∑
j∈[n] δxj ). Remark that U(µ̃nt ) = Un

(
y( 1
n , t), y( 2

n , t), . . . , y(1, t)
)
.

Assuming that Un belongs to C2(Rn), and using that y( kn , ·) is a square integrable
continuous martingale on [0, T ], we have (recall that g(1) is finite):

U(µ̃nt ) =Un(g( 1
n ), . . . , g(1)) +

∑
k∈[n]

∫ t

0

∂kU
n(y( 1

n , s), . . . , y(1, s)) dy( kn , s)

+
1

2

∑
k,l∈[n]

∫ t

0

∂2k,lU
n(y( 1

n , s), . . . , y(1, s)) d〈y( kn , ·), y( ln , ·)〉s. (A.1)

In order to write the derivatives of Un in terms of derivatives of U , we should
introduce a differential calculus on P2(R), well-adapted to the differentiation of empirical
measures. P.L. Lions introduces in his lectures at Collège de France (see Section 6.1
of Cardaliaguet’s notes [5]) a differential calculus on P2(R) by using the Hilbertian
structure of L2(Ω). We set Ũ(X) := U(Law(X)) for all X ∈ L2(Ω).

A function U : P2(R)→ R is said to be L-differentiable (or differentiable in the sense
of Lions) at a point µ0 ∈ P2(R) if there is a random variable X0 with law µ0 such that
Ũ is Fréchet-differentiable at X0. The definition does not depend on the choice of the
representative X0 of the law µ0, and if X0 and X1 have the same law, then the laws
of DŨ(X0) and DŨ(X1) are equal (see e.g. [5]). Furthermore, if DŨ : L2(Ω) → L2(Ω)

is a continuous function, then for all µ0 ∈ P2(R), there exists a measurable function
R → R, denoted by ∂µU(µ0), such that for each X ∈ L2(Ω) with law µ0, we have

DŨ(X) = ∂µU(µ0)(X) almost surely (see [5]).

In [6], Carmona and Delarue prove that the L-differentiability of U : P2(R) → R

implies the differentiability of Un on Rn, and that we have for each k ∈ [n]:

∂kU
n(x1, . . . , xn) =

1

n
∂µU( 1

n

∑
j∈[n] δxj )(xk).

Furthermore, assume that U is L-differentiable and that (µ, v) ∈ P2(R) × R 7→
∂µU(µ)(v) ∈ R is continuous. Moreover, we assume that for every µ ∈ P2(R), the map
v ∈ R 7→ ∂µU(µ)(v) ∈ R is differentiable on R in the classical sense and that its derivative
is given by a jointly continuous function (µ, v) 7→ ∂v∂µU(µ)(v). We also assume that for
every v ∈ R, the map µ 7→ ∂µU(µ)(v) is L-differentiable and its derivative is denoted by
(µ, v, v′) 7→ ∂2µU(µ)(v, v′). Then, Un is C2 on Rn and for all k, l ∈ [n]:

∂2k,lU
n(x1, . . . , xn) =

1

n
∂v∂µU( 1

n

∑
j∈[n] δxj )(xk)1{k=l} +

1

n2
∂2µU( 1

n

∑
j∈[n] δxj )(xk, xl).

EJP 23 (2018), paper 124.
Page 50/54

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP254
http://www.imstat.org/ejp/


A new approach for the construction of a Wasserstein diffusion

Therefore, we obtain from equation (A.1):

U(µ̃nt ) = U(µ̃n0 ) +
1

n

∑
k∈[n]

∫ t

0

∂µU(µ̃ns )(y( kn , s))dy( kn , s)

+
1

2n

∑
k∈[n]

∫ t

0

∂v∂µU(µ̃ns )(y( kn , s))
ds

m( kn , s)

+
1

2n2

∑
k,l∈[n]

∫ t

0

∂2µU(µ̃ns )(y( kn , s), y( ln , s))
1{τ k

n
, l
n
6s}

m( kn , s)
ds. (A.2)

By property of coalescence, if τ k
n ,

l
n
6 s, we have y( kn , s) = y( ln , s), so that the last term

in the latter equation is equal to:

1

2n

∑
k∈[n]

∫ t

0

∂2µU(µ̃ns )(y( kn , s), y( kn , s))

1
n

∑
l∈[n] 1{τ k

n
, l
n
6s}

m( kn , s)
ds.

Observe that the difference between 1
n

∑
l∈[n] 1{τ k

n
, l
n
6s} and m( kn , s) =

∫ 1

0
1{τ k

n
,u

6s}du is

bounded by 2
n , since the set {u : τ k

n ,u
6 s} is an interval.

We want to let n tend to +∞ in order to obtain an Itô formula for the limit process.
We start by proving the convergence of a subsequence of ((µ̃nt )t∈[0,T ])n>1 to (µt)t∈[0,T ]

with respect to the L2-Wasserstein distance.

Proposition A.1. There exists a subsequence ((µ̃
ϕ(n)
t )t∈[0,T ])n>1 of ((µ̃nt )t∈[0,T ])n>1 such

that, for almost every t ∈ [0, T ], the sequence (µ̃
ϕ(n)
t )n>1 converges almost surely to µt

with respect to the Wasserstein distance W2.

Remark A.2. We point out that the extraction function ϕ does not depend on t ∈ [0, T ].

Proof. To obtain the statement of the Proposition, it is sufficient to prove that:

E

[∫ T

0

W2(µ̃nt , µt)
2dt

]
→ 0.

Let V be a uniform random variable on [0, 1], defined on a probability space (Ω̃, F̃ , P̃).
Therefore, µt is the law of y(V, t) and µ̃nt the law of

∑
k∈[n] 1{ k−1

n <V6 k
n}
y( kn , t). Hence we

have:

W2(µ̃nt , µt)
2 6 Ẽ


∑
k∈[n]

1{ k−1
n <V6 k

n}
y( kn , t)− y(V, t)

2


=

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|y( kn , t)− y(u, t)|2du.

Therefore, it is sufficient to show that:

E

∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|y( kn , t)− y(u, t)|2dudt

 −→
n→+∞

0. (A.3)

Fixing u ∈ (0, 1), t ∈ (0, T ),
∑
k∈[n] 1{ k−1

n <u6 k
n}
|y( kn , t)− y(u, t)|2 converges almost surely

to 0 by the right-continuity of y(·, t) at point u. To prove (A.3), we have to show a uniform
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integrability property, i.e. that for a certain β > 1,

sup
n>1

E


∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|y( kn , t)− y(u, t)|2dudt

β
 < +∞.

We compute:

E


∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|y( kn , t)− y(u, t)|2dudt

β

1/(2β)

6 T
β−1
2β E

∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|y( kn , t)− y(u, t)|2βdudt

1/(2β)

6 T
β−1
2β E

∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|M0|2βdudt

1/(2β)

+ T
β−1
2β E

∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|Mt −M0|2βdudt

1/(2β)

,

where Mt = y( kn , t)−y(u, t). Recall that by property (i) of the process y, M0 = g( kn )−g(u).
We deduce that:

E

∫ T

0

∫ 1

0

∑
k∈[n]

1{ k−1
n <u6 k

n}
|g( kn )− g(u)|2βdudt

 6 TCβE

[∫ 1

0

g(u)2βdu

]
.

Since g belongs to L↑2+[0, 1], there exists p > 2 such that g ∈ Lp(0, 1). Therefore, we can
choose β > 1 such that 2β 6 p. By Burkholder-Davis-Gundy inequality and the martingale
property of M , we have:

E
[
(Mt −M0)2β

]
6 CβE

[
〈M,M〉βt

]
.

By property (iv),

〈M,M〉t =

∫ t

0

ds

m( kn , s)
+

∫ t

0

ds

m(u, s)
− 2

∫ t

0

1{τ k
n
,u

6s}

m( kn , s)
1/2m(u, s)1/2

ds

6
∫ t

0

ds

m( kn , s)
+

∫ t

0

ds

m(u, s)
,

so that there is a constant Cβ satisfying:

E
[
〈M,M〉βt

]
6 Cβt

β−1E

[∫ t

0

ds

m( kn , s)
β

+

∫ t

0

ds

m(u, s)β

]
.

To conclude, we use the following statement: provided β < 3
2 −

1
p , there is a constant Cβ

such that for each t and u:

E

[∫ 1

0

∫ t

0

ds

m(u, s)β
du

]
6 Cβ

√
t. (A.4)

This statement is Proposition 5.11 for the limit process that we constructed in this paper,
or in [11, Prop. 4.3] for the process constructed by Konarovskyi. This completes the
proof.
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By similar arguments of convergence, equation (A.2) leads to the following Itô formula
for (µt)t∈[0,T ], by letting n tend to∞. The estimation (A.4) is the key of the proof of those
convergences.

Theorem A.3. Let U : P2(R)→ R be smooth enough so that U and its derivatives ∂µU ,
∂v∂µU and ∂2µU exist, are uniformly continuous and bounded. Almost surely, for each
t ∈ [0, T ], we have:

U(µt) = U(µ0) +

∫ 1

0

∫ t

0

∂µU(µs)(y(u, s))dy(u, s)du+
1

2

∫ 1

0

∫ t

0

∂v∂µU(µs)(y(u, s))

m(u, s)
dsdu

+
1

2

∫ 1

0

∫ t

0

∂2µU(µs)(y(u, s), y(u, s))dsdu,

where

∫ 1

0

∫ t

0

∂µU(µs)(y(u, s))dy(u, s)du is a square integrable continuous martingale

with a quadratic variation process equal to t 7→
∫ 1

0

∫ t

0

(∂µU(µs))
2

(y(u, s))dsdu.

Remark A.4. Choose in particular U : µ 7→ V
(∫
R
α1dµ, . . . ,

∫
R
αmdµ

)
=: V (

∫ −→α dµ),
where V ∈ C2(Rm) and α1, . . . , αm are bounded C2(R)-functions, with bounded first
and second-order derivatives. In this case, ∂µU(µ)(v) =

∑m
i=1 ∂iV

(∫ −→α dµ
)
α′i(v) for all

µ ∈ P2(R) and v ∈ R. Computing the second-order derivatives, we show that

U(µt)− U(µ0)− 1

2

∫ t

0

L1U(µs)ds−
1

2

∫ t

0

L2U(µs)ds

is a martingale with quadratic variation process

t 7→
∫ t

0

∫ 1

0

(
m∑
i=1

∂iV

(∫
−→α dµs

)
α′i(y(u, s))

)2

duds

and an operator L = L1 + L2 of the form L1U(µs) :=
∑m
i=1 ∂iV

(∫ −→α dµs
) ∫ 1

0
α′′i (y(u,s))
m(u,s) du

and L2U(µs) :=
∑m
i,j=1 ∂

2
i,jV

(∫ −→α dµs
) ∫ 1

0
α′i(y(u, s))α′j(y(u, s))du.

Remark that we have some restrictions on the domain of the generator L1. We know
that for measures with finite support,

∫ 1

0
du

m(u,s) is finite and is equal to the cardinality of
the support (see the Paragraph preceding Corollary 5.3). The fact that the generator of
the martingale problem is not defined on the whole Wasserstein space is related to the
fact that the process (µt)t∈[0,T ] takes values, for every positive time t, on the space of
measures with finite support.

We compare this result to Theorem 7.17 in [22]. The generator of the martingale in
the case of von Renesse and Sturm’s Wasserstein diffusion is L = L1 + L2 + βL3, with
L1 = L2 and L3 similar to L1 up to the lack of the mass function, whereas L2, which is
the part of the generator considering the gaps of the measure µ, does not appear in our
model.
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