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Abstract

The partner model is an SIS epidemic in a population with random formation and
dissolution of partnerships, and with disease transmission only occuring within part-
nerships. Foxall, Edwards, and van den Driessche [7] found the critical value and
studied the subcritical and supercritical regimes. Recently Foxall [4] has shown that (if
there are enough initial infecteds I0) the extinction time in the critical model is of order√
N . Here we improve that result by proving the convergence of iN (t) = I(

√
Nt)/

√
N

to a limiting diffusion. We do this by showing that within a short time, this four dimen-
sional process collapses to two dimensions: the number of SI and II partnerships
are constant multiples of the the number of infected singles. The other variable, the
total number of singles, fluctuates around its equilibrium like an Ornstein-Uhlenbeck
process of magnitude

√
N on the original time scale and averages out of the limit

theorem for iN (t). As a by-product of our proof we show that if τN is the extinction
time of iN (t) (on the

√
N time scale) then τN has a limit.
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1 Introduction

In the partner model each of N individuals can be susceptible or infected and in
a partnership or not. So the system is described by the five quantities St and It, the
number of single susceptible and infected individuals, and SSt, SIt, and IIt, the number
of partnered pairs of the three possible combinations, at time t. Infected individuals
become healthy (and susceptible to re-infection) at rate 1. A susceptible individual with
an infected partner becomes infected at rate λ. Partnerships dissolve at rate r−. Each
pair of single individuals forms a partnership at rate r+/N .
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Diffusion limit at the critical value
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Figure 1: Markov chain for computation of R0

Foxall, Edwards, and van den Driessche [7] introduced this model and showed that
despite the complexity of the model it is possible to find the critical value explicitly. To do
this they used the continuous time Markov chainXt with state space {A,B,C,D,E, F,G}
and rates as shown in Figure 1. Thinking of a single infected individual in an other-
wise susceptible population, we start in state A, and let τ be the first time Xt enters
{D,E, F,G}. The basic reproduction number for the model is

R0 = PA(Xτ = F ) + 2PA(Xτ = G) (1.1)

which is the expected number of infected singles at time τ . The critical value of λ is

λc = sup{λ ≥ 0, R0 ≤ 1}

with λc <∞ if and only if r+ > 1 + 1/r−. There is an explicit formula for λc but it is not
very pretty since the formulas for the hitting probabilities are somewhat complicated.

In [7] it was shown that

Theorem 1.1. If R0 < 1 there are constants T , C so that, from any initial configuration,
with high probability the process dies out by time T + C logN . If R0 > 1, then for any
ε > 0 there are constants T , C, γ, such that from any initial configuration with at least
εN infected, with probability at least 1− e−γN the process survives for time eγN and the
frequencies of the five types st = St/N, it = It/N, etc. are within ε of their equilibrium
values (s∗, i∗, ss∗, si∗, ii∗) when T ≤ t ≤ eγN .

To describe the equilibrium values we need some notation. Let Yt = St + It be the
number of single individuals and yt = Yt/N . yt approaches and remains close to a
stationary value y∗ which is the unique equilibrium in (0, 1) for the ODE

y′ = r−(1− y)− r+y
2

We will explain this result in more detail later, see (3.4). The equilibrium frequency of
singles, y∗, is the solution of r−(1− y∗) = r+y

2
∗.

To find the number of single infecteds in equilibrium we let it = It/N and note the
three events that affect the number of infected singles are

• I → S at rate It = itN ,

• I + I → II at rate (r+/N)
(
It
2

)
≈ r+(i

2
t/2)N , and

• S + I → SI at rate (r+/N)StIt ≈ r+itstN .
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Diffusion limit at the critical value

Fixing it = i ∈ (0, y∗) we define probabilities

pS =
1

z
pII =

r+i

2z
pSI =

r+(y∗ − i)

z

where z = 1 + r+(y∗ − i/2) is the sum of the numerators. Let

∆S = −1 ∆II = −2 + PC(Xτ = F ) + 2PC(Xτ = G)

∆SI = −1 + PB(Xτ = F ) + 2PB(Xτ = G)

be the expected change in the number of single infecteds (at partnership breakup) due
to the three events. Finally let

∆(i) = pS∆S + pII∆II + pSI∆SI

be the expected change in the number of infecteds per event. In equilibrium ∆(i∗) = 0.
Having found i∗ and s∗ = y∗ − i∗, it is routine to find ii∗, si∗, and ss∗; see Section 5 of [7]
for more details. It’s also worth noting that the condition i∗ = 0 is equivalent to R0 = 1.

The analysis of the critical case was done in a second paper by Foxall [4]. The main
result is

Theorem 1.2. Let Vt be the number of infected vertices at time t. If R0 = 1 then

• there are C, γ > 0 so that from any initial configuration, with probability at least
1− e−γm, VmC

√
N = 0, and

• if V0 ≥
√
N and y0 ≥ y∗ − (logN)/

√
N there is c > 0 so that Vc

√
N 6= 0 with

probability at least 1− e−c(logN)2 .

The goal of this paper is to obtain a more complete description of the process in the
case R0 = 1. In particular, for the rest of the paper we assume that R0 = 1.

Theorem 1.2 shows that the extinction time τN is of order N1/2 if V0 ≥
√
N . By

analogy with critical branching processes one might expect the time to be of order N
if V0 = N (same order as the initial values). To explain why N1/2 is the right order of
magnitude and to indicate what more precise result we would like to prove, we sketch
the proof in the following simpler setting.

Example: Contact process on a complete graph with N vertices. Individuals die
at rate 1, and give birth at rate β to an offspring that is sent to a randomly chosen vertex,
so the number of occupied vertices X(t) is a Markov chain on {0, 1, . . . N} with transition
rates

q(k, k − 1) = k and q(k, k + 1) = βk(1− k/N).

The critical value for prolonged survival is βc = 1.

Theorem 1.3. Let xN (t) = X(N1/2t)/N1/2, with β = 1. Then xN (t) ⇒ xt, the solution of

dxt = −x2t dt+
√
2xtdBt. (1.2)

Let τ0(xN ) = inf{t : xN (t) = 0}. If xN (0) → ∞, τ0(xN ) ⇒ τ0(x), the hitting time of 0 for
the diffusion process started at ∞.

Proof. With β = 1 we find
d

dt
E[Xt] = −(E[X2

t ])/N

and using Jensen’s inequality, E[Xt] satisfies the differential inequality y′ ≤ −y2/N .
Since E[X0] ≤ N this gives E[Xt] ≤ N/(1+ t), and using Markov’s inequality P (XεN1/2 ≤
ε−2N1/2) ≥ 1− ε. Letting Let xN (t) = X(N1/2t)/N1/2 this means that xN (ε) ≤ ε−2 with
probability at least 1− ε. The drift of xNt is
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Diffusion limit at the critical value

N1/2 1

N1/2
[−xN (t)N1/2 + xN (t)N1/2(1− xN (t)/N1/2)] = −(xN (t))2

while the diffusivity is

N1/2 1

N
[xN (t)N1/2 + xN (t)N1/2(1− xN (t)/N1/2)] ≈ 2xN (t)

(these terms are explained in Section 2). The first result then follows from Lemma
2.7 in the next section. Then, as in the proof of Theorem 1.6 in Section 4.7, to show
τ0(xN ) ⇒ τ0(x), it is enough to show that for each ε > 0 we can find δ > 0, so that if
xN (t) ≤ δ then xN (t+ε) = 0 with probability at least 1−ε. This is easy to do once we note
that Xt is dominated by the critical branching process X̃t in which each particle splits in
two, or dies, each at rate one. We know that P (X̃t = 0 | X̃0 = k) = (1−(1+t)−1)k ≥ 1−k/t,
which is at least 1−ε if we let t = k/ε. Letting k = δN1/2, the result follows with δ = ε2.

In the above example, there are three main steps:

i) Show Xt comes down to Cε

√
N within εN1/2 time,

ii) Show that xN (t) = XN1/2t/N
1/2 converges to a diffusion,

iii) Show that once xN (t) is small, it hits zero in a short time.

The corresponding result for the partner model follows the same three steps, but is
more complicated because the process is four dimensional and there are two different
time scales.

Some notation. To state our results and to avoid confusion between SI and S · I
etc we introduce alternative notations that we will use throughout the paper: J = II,
K = SI and L = SS. We refer to the stochastic process (S, I, J,K,L) as the infection
process. We outline some further notational conventions below.

Asymptotic notation. Let aN , bN be sequences of real numbers.

• aN = O(bN ) if lim supN→∞ |aN/bN | <∞.
• aN = Ω(bN ) if lim infN→∞ |aN/bN | > 0.
• aN = o(bN ) if limN→∞ |aN/bN | = 0.
• aN = ω(bN ) if limN→∞ |aN/bN | = ∞.

Moreover, for efficiency of notation we will say that a certain property holds for o(f(N)) ≤
t ≤ ω(f(N)) if there exist sequences aN , bN with aN = o(f(N)) and bN = ω(f(N)) such
that the property holds for all t ∈ [aN , bN ].

Rescaling. Throughout the paper, the placement of the time variable, as for example It
or I(t), is chosen according to notational convenience and does not change the meaning.
On the other hand, we will often want to rescale in either time or space, so we introduce
the following notation for these purposes. When we need to distinguish the spatial scale,
upper case is reserved for the originally defined variables S, I, J,K,L and Y = S + I,
and lower case denotes the following:

sNt = St/N, y
N
t = Yt/N,

iNt = It/
√
N, jNt = Jt/

√
N, and kNt = Kt/

√
N.

Note that I, J,K are rescaled by 1/
√
N , and not by 1/N as in Theorem 1.1; as demon-

strated by Theorem 1.3 this rescaling is more appropriate when R0 = 1. To distinguish
time scales we note that two scales will be relevant: the original time scale that we call
fast, and the

√
N time scale that we call slow, or long. We will use the superscript N for

the fast time scale and the subscript N for the slow time scale. So, for example,

iNt = It/
√
N and iN (t) = I(

√
Nt)/

√
N .
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Diffusion limit at the critical value

This distinction appears in discussion as well as computation: for example, saying that
iN reaches a certain value within O(1) amount of time is the same as saying that iN

reaches that value in O(N1/2) time. For the sake of consistency, and to distinguish from
limit processes, we will write SN , IN , etc. for the originally defined variables, on the
original time scale. A few more processes will be introduced later, and they will follow
the same notation for time scale; some will have upper and lower case versions, again to
denote different spatial scales; the precise scaling is specified in each case.

Times. We will use lower-case s or t for time variables, T to denote a fixed (determin-
istic) time and τ for stopping times. For an R-valued process X, we let

τ−x (X, t) = inf{s ≥ t : Xs ≤ x} and τ+y (X, t) = inf{s ≥ t : Xs > y},

and ifX isR+-valued we write τ0(X, t) for τ
−
0 (X, t). τ−x (X) denotes τ−x (X, 0) and similarly

in other cases. In one case we will need the following:

τx,y(X, t) = inf{s ≥ t : Xt ≤ x or Xt > y}.

We will also define some labelled and unlabelled times such as τ, τ∗, τ1, τ2, . . . when
proving specific results, if they do not fit the above template, or to save on notation if
they are written frequently.

We first describe the limit processes, followed by statements of the main results, and
then we provide the workflow. Throughout the paper, if we say a statement holds with
high probability (whp), then it has probability tending to 1 as N → ∞.

Deterministic limits. We show in Section 3 that as N → ∞, sample paths of yNt
and (iNt , j

N
t , k

N
t ) converge in distribution to deterministic limits yt and (it, jt, kt). We

find that limt→∞ yt = y∗, the solution of r+y2∗ = (1− y∗)r−, while (it, jt, kt) converges as
t→ ∞ to a point on the ray (α, β, 1)R+ of fixed points for the linear system described in
(3.7), where α, β are given by (3.11). This is reminiscent of (multiplicative) state space
collapse in queueing networks where a vector of queue lengths are all proportional to
one of them. There are many results of this type. For examples, see [8, 1, 21, 20, 19].

Diffusion limits. We will show that the fluctuations zNt =
√
N(yNt − y∗) are approxi-

mately an Ornstein-Uhlenbeck process

dz = −µzzdt+ σzdB

that evolves on the fast time scale, where µz, σz are some positive constants. On the
other hand, the fluctuations of (iN , jN , kN ) (once they are close to the ray) occur on the
slow time scale. Since it stays close to a ray in phase space, (iN , jN , kN ) is effectively
one-dimensional, and we will show that iN (t) = IN (

√
Nt)/

√
N converges to the limit in

(1.2) but with different constants for the mean and variance. As in the previous result,
the hitting time of 0 converges. More precisely, we prove the following results, which
are the main goal of this article. As pointed out earlier, R0 = 1 is assumed throughout;
for clarity, we recall this assumption in each of our main results.

Theorem 1.4. Suppose that R0 = 1, |(iN (0), jN (0), kN (0)) − (αx, βx, x)| = O(N−ε) for
some x, ε > 0 and |zN (0)| = O(1) as N → ∞, where α and β are defined in (3.11). Then
there are constants µX , σ

2
X > 0 such that for any fixed T > 0, iN converges in distribution

in C[0, T ] to the diffusion

dXt = −µXX
2
t dt+ σX

√
XtdBt (1.3)

started from X0 = αx.

It is possible to compute the constants µX , σX from our proof; since the expressions
are not particularly nice-looking and do not add much insight, we have omitted them. It
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Diffusion limit at the critical value

is possible the assumptions on the rate of convergence of initial data may be relaxed; to
do so one would require a more careful account of transient behavior. Since this paper
is already lengthy, we have not pursued this extension.

Our next result builds on Theorem 1.4 and allows the process to start from ∞. In the
proof of Theorem 1.5, which is in Section 4, we also point out why it makes sense to
start the limiting diffusion (1.3) from ∞.

Theorem 1.5. Suppose that R0 = 1, iN (0) + jN (0) + kN (0) → ∞ and yN (0) → y∗ as
N → ∞. Then iN converges in distribution in C[ε, T ] for any fixed 0 < ε < T <∞ to the
diffusion (1.3), started from X0 = ∞.

It is possible that in Theorem 1.5 the assumption yN (0) → y∗ can be dropped. We do
not pursue this direction in this paper. Lastly we show convergence of the hitting time.

Theorem 1.6. Under the assumptions of Theorem 1.4 or 1.5, for

τ0(iN + jN + kN ) = inf{t : (iN (t), jN (t), kN (t)) = (0, 0, 0)}

we have τ0(iN + jN + kN ) ⇒ τ0(X), the time to hit zero for the limiting diffusion (1.3).

The separation of time scales between yN and the infection variables iN , jN , kN may
remind the reader of the work of Kang and Kurtz [12] and Kang, Kurtz, and Popovic [13]
on chemical reaction networks. We found that writing our model in their framework
does not simplify the difficult aspects of the proof, so we have opted instead to use a
general result of [3] for obtaining the diffusion limit, which is tailored to our context in
Lemma 2.7.

Workflow. There are seven main steps, described in greater detail in Section 4. In
order to make certain estimates it is helpful to define the following additional observ-
ables:

i) The positive linear combination HN
t = INt + γJN

t + ηKN
t and hNt = HN

t /
√
N , where

(1, γ, η), defined by (4.4), is a left eigenvector for the matrix A given by (3.6), that
determines the linear system (3.7) for (it, jt, kt). The variable HN is helpful to the
analysis because the linear terms drop out of the equation for its drift.

ii) The rescaled infection vector (UN , V N ,WN ) = (IN , γJN , ηKN )/HN , and its meta-
stable equilibrium value (u∗, v∗, w∗) which is given by (7.3).

iii) The quantity QN = θ2(U
N − u∗)

2 + θ1(V
N − v∗)

2, where θ1, θ2, given by (7.6),
are well-chosen positive constants. QN measures the deviation of (UN , V N ,WN )

from equilibrium, so when QN is small, (iNt , j
N
t , k

N
t ) is close to the invariant ray, a

property which is essential to obtaining a limiting 1-dimensional equation for the
diffusion.

Of course, HN (t) = HN (
√
Nt), etc. The main steps, written in terms of the slow

time scale, are sketched below in the context of Theorem 1.5, when hN (0) = ω(1); for
Theorem 1.4, we just need that if |zN (0)|, hN (0) and QN (0) are small, then they can be
kept small for ω(1) amount of time.

1. Lemma 4.1. Show that |zN (t)| = O(
√
logN) for o(1) ≤ t ≤ ω(1).

2. Lemma 4.2. Show that hN (t) = O(logN) for o(1) ≤ t ≤ ω(1).
3. Lemma 4.3. Show that |QN (t)| = O(N−1/6) for o(1) ≤ t ≤ ω(1).
4. Lemma 4.6. Show that the integral of iN (t)zN (t) averages to zero on finite time

intervals.
5. Lemma 4.7. Show for any ε > 0 there is Cε > 0 so that P (τ−Cε

(hN ) ≤ ε) ≥ 1− ε.
6. Lemma 4.8, Theorems 1.4 and 1.5. Show convergence of iN (t) to the diffusion

limit.
7. Lemma 4.9. Show that τ0(hN ) → 0 in probability as hN (0) → 0, uniformly for

large N .
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Diffusion limit at the critical value

The organization of the rest of the paper is as follows: In Section 2 we gather some
probability estimates and limit theorems that are used throughout the paper. In Section
3 we describe the deterministic limits. In Section 4 we state precise lemmas relating to
each of the workflow steps, and prove diffusion limits. The latter sections are devoted to
proofs of the lemmas.

2 Sample path estimation

In this section we describe some sample path estimates, a diffusion limit theorem,
and results on drift and diffusivity of functions of continuous time Markov chains that
are used throughout the paper. Any results that are not cited are proved in the Ap-
pendix. The natural setting for these results is semimartingales. For an overview of the
semimartingale theory that is used here, we refer the reader to [9].

First we recall some standard definitions from semimartingale theory, noting along
the way how the present context fits into this framework.

Let (Ω,F ,F,P) be a filtered probability space that satisfy the usual conditions. This
means that the filtration F = (Ft)t∈R+ is right continuous in the sense that Ft =

∧
s>t Fs

for each t, and each Ft in the filtration F = (Ft)t∈R+ contains the P null sets of F . In
[9] it is also assumed that F is P complete; if this is not the case then it is easy to
check that completing F and then F with respect to null sets does not violate right
continuity. In our case, the filtered probability space is that of the finite state continuous-
time Markov chain corresponding to the state variables (SN , IN , JN ,KN , LN ), with the
completion of the natural filtration. Since such a process is Feller, as shown in [18, I.5],
the corresponding filtered space satisfies the usual conditions.

A procss X is called optional if it is measurable with respect to the σ-field (on Ω×R+)
generated by all càdlàg adapted processes. All the processes considered here are
optional. We assume the reader is familiar with the notions of stopping time, predictable
time and process, localization and martingale.

Given a stochastic process X we denote by X− the left-continuous process obtained
from X. We further let ∆X = X − X− denote the process of jumps. We say that X
has bounded jumps if |∆X| ≤ c a.s. for some constant c > 0, and let ∆?(X) denote the
infimum of such values of c. X is quasi-left continuous (qlc) if ∆Xτ = 0 a.s. on {τ <∞}
for any predictable time τ .

Given a process A, define the process Var (A) by setting Var (A)t(ω) equal to the total
variation of the function s 7→ As(ω) on the interval [0, t]. A process A has finite variation
if Var (A)t(ω) <∞ for each t, ω, and is locally integrable if it has a localizing sequence
(τn) such that E[Var (A)τn ] < ∞ for each n. The compensator of a locally integrable
process A, denoted Ap, is the unique predictable and locally integrable process such
that A−Ap is a local martingale (see [9, I.3.18]).

A semimartingale (s-m) X is a process that can be written as X = X0 +M + A,
where X0 is an F0-measurable random variable,M is a local martingale and A has finite
variation. We call a semimartingale special if it can be written as

X = X0 +Xm +Xp (2.1)

where Xp is the compensator of X and Xm is a uniquely defined local martingale
satisfying Xm

0 = 0. By [9, I.4.24], if X has bounded jumps then it is special and
|∆Xm| ≤ 2∆?(X), and if it also qlc then using [9, I.2.35] in the proof of [9, I.4.24], we
have the more convenient estimate ∆?(X

m) ≤ ∆?(X).
Recall that if a martingaleM is locally square-integrable thenM2 has a compensator,

denoted 〈M〉 and called the predictable quadratic variation (pqv). Any local martingale
M with M0 = 0 and bounded jumps is locally square integrable (see [9, I.4.1]). If X is
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Diffusion limit at the critical value

a special s-m and Xm is locally square-integrable we will use 〈X〉 to denote 〈Xm〉. The
following basic estimate is used repeatedly throughout the paper.

Lemma 2.1 ([6, Lemma 3]). Let X be a semimartingale with bounded jumps and let
a, φ > 0.

If 0 < φ∆?(X) ≤ 1/2 then P

(
sup
t≥0

{|Xm
t | − φ〈X〉t} ≥ a

)
≤ 2e−φa. (2.2)

In order to obtain tidy expressions forXp and 〈X〉, we define quasi-absolute continuity,
together with drift and diffusivity. To motivate the name, note that if X is a special
semimartingale with Xm locally square-integrable, then as shown in [6, Lemma 2], X is
qlc iff both Xp and 〈X〉 are continuous.

Definition 2.2. A special semimartingale X with locally square-integrable martingale
part Xm is called quasi-absolutely continuous (qac) if both Xp and 〈X〉 are absolutely
continuous. In this case define the drift µ(X) = (µt(X))t and the diffusivity σ2(X) =

(σt(X))t for Lebesgue-a.e. t by

µt(X) =
d

dt
Xp

t , σ2
t (X) =

d

dt
〈X〉t. (2.3)

Letting X = (SN , IN , JN ,KN , LN ) denote the infection process, we note that the
estimates of Lemma 2.1 and the upcoming Lemma 2.5 will be applied to observables of
the form f(Xτ

t ), where f : R → R is Lipschitz, R ⊂ R5 is compact, and τ is a stopping
time so that the stopped process Xτ

t = Xt∧τ has Xτ
t ∈ R for t ∈ R+. Any such process

is right continuous and has finite variation so is a s-m, and has bounded jumps since
this is the case for X and since f is Lipschitz. Let qi(x), i = 1, . . . , n denote the rates of
the various transitions (S + I → K,K → J, J → K etc.) and ∆i their effect (for example,
SN , IN decreases by 1, KN increases by 1), and let Yt = f(Xτ

t ). By writing Yt as a sum
of jumps and using the standard linear and quadratic martingales for Poisson processes,
it is easy to show that Y is qac and has

µt(Y ) = 1(t < τ)

n∑
i=1

qi(Xt)(f(Xt +∆i)− f(Xt)),

σ2
t (Y ) = 1(t < τ)

n∑
i=1

qi(Xt)(f(Xt +∆i)− f(Xt))
2,

a fact that we use ubiquitously when invoking Lemma 2.1 below. In a few cases, we are
interested in computing the drift for products of such processes, as well as processes of
the form f(Xτ

t )g(t), where g(t) is an absolutely continuous deterministic function (which
is easily shown to be a qac s-m). Below we state a result from [6] that allows to find the
drift for products of qac s-m.

Lemma 2.3 (Product rule). SupposeXt, Yt are qac semimartingales on a common filtered
probability space. Then 〈Xm, Y m〉 and (XY )p exist and are absolutely continuous.
Denote µt(XY ) = d

dt (XY )pt . Then

µ(XY ) = σ(X,Y ) +X−µ(Y ) + Y−µ(X),

where σt(X,Y ) = d
dt 〈X

m, Y m〉t.
The next result will allow us to obtain simple estimates for the drift of certain

processes. As in [9, I.3.4], if H is optional and A has locally finite variation, we let

(H ·A)t(ω) =
∫ t

0

Hs(ω)dAs(ω),
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Diffusion limit at the critical value

for ω ∈ Ω such that the above can be evaluated as a Stieltjes integral; a sufficient
condition is that H also has finite variation. Of course, if A is absolutely continuous then
H ·A is differentiable and d

dt (H ·A)t = Ht
d
dtAt for Lebesgue-a.e. t. As noted in [9, I.3.18],

if H is predictable and both A,H ·A are locally integrable then H ·Ap = (H ·A)p, which
we use below.

Lemma 2.4 (Taylor approximation). Let X be a qac s-m with bounded jumps and let
f ∈ C2(R). Then, f(X) is a qac s-m and satisfies the following inequality for Lebesgue-a.e.
t:

|µt(f(X))− f ′(Xt)µt(X)| ≤ 1

2
σ2
t (X) sup

|x−Xt|≤∆?(X)

|f ′′(x)|.

Building on Lemma 2.1 we derive the following simple result, which is the basis of
several estimates in this article.

Lemma 2.5 (Drift barrier). Fix x > 0 and let X be a qac s-m on R with bounded
jumps, such that ∆?(X) ≤ x/2. Suppose there are positive reals µ?, σ

2
?, Cµ?

, C∆ with
max{∆?(X)µ?/σ

2
?, 1/2} ≤ C∆ so that if 0 < Xt < x then

µt(X) ≤ −µ?, |µt(X)| ≤ Cµ?
and σ2

t (X) ≤ σ2
?. (2.4)

Let Γ = exp(µ?x/(32C∆σ
2
?)). Then we have

P

(
sup

t≤bΓcx/16Cµ?

Xt ≥ x | X0 ≤ x/2

)
≤ 4/Γ. (2.5)

We will occasionally need to apply Lemma 2.5 to a stopped process, for which the
following easy corollary will be helpful.

Corollary 2.6 (Drift barrier with stopped process). In the setting of Lemma 2.5, let τ be
a stopping time and suppose that (2.4) holds assuming t < τ in addition to 0 < Xt < x.
Then

P

(
sup

t≤τ∧bΓcx/16Cµ?

Xt ≥ x | X0 ≤ x/2

)
≤ 4/Γ.

The final result of this section is about identifying the diffusion limit (or an ODE
limit) for a stochastic process. Before stating the result let us introduce some more
notations. A stochastic process Xt = (Xt,1, . . . , Xt,d) is an Rd-valued semimartingale if
each component is a s-m. The compensator (when it exists) of Xt is defined component-
wise and the predictable quadratic variation (when exists) is a d × d matrix-valued
process with 〈X〉t,ij = 〈Xm

i , X
m
j 〉t. Drift and diffusivity are similarly defined. Here we

use Theorem 4.1 in [3] to obtain easily checkable conditions for convergence to an ODE
or diffusion limit.

Lemma 2.7 (Diffusion limit). Let XN
t be a sequence of semimartingales, a be a Lipschitz

d×dmatrix-valued function onRd and b : Rd → Rd be Lipschitz. Suppose that∆?(X
N ) →

0 as N → ∞. Also assume that for each T,R > 0,

sup
t≤T∩τ+

R (|XN |)
|(XN

i )p −
∫ t

0

b(XN
i,s)ds| → 0, (2.6)

sup
t≤T∩τ+

R (|XN |)
|(〈XN

i , X
N
j 〉t −

∫ t

0

aij(XX
>)ds| → 0, (2.7)

as N → ∞, where the convergence holds in probability, and τ+R (|XN |) = inf{t : |XN
t | ≥

R}. Suppose XN
0 → x ∈ Rd. Then XN

t converges in distribution to the diffusion process
x with

x0 = x and dx = b(x)dt+ a(x)dB.

EJP 23 (2018), paper 102.
Page 9/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP229
http://www.imstat.org/ejp/


Diffusion limit at the critical value

In particular, if a = 0 then XN converges to the solution of the ODE system with

x0 = x and x′ = b(x).

The above statements also hold if XN are qac with drift and diffusivity given by functions
µN , σ

2
N satisfying

sup
|x|≤R

|µN (x)− b(x)|, |σ2
N (xx>)− a(xx>)| → 0.

3 Deterministic limits

The goal of this section is show that on the fast time scale, yN and (iN , jN , kN ) have
deterministic limits, and to compute a relevant eigenvector for later on. In particular,
none on the theorems of this section are used elsewhere in the paper; they are simply
provided for context. It is worth noting that the limit for (iN , jN , kN ) is a linear system,
and only comes into force once yN is close to its equilibrium value y∗.

Recall that, in terms of original notation, JN = II, KN = SI and LN = SS. From the
transition rates of the partner model we get the following equations for the drift (see [7,
Section 5] for a detailed derivation):

µ(SN ) = 2r−L
N + r−K

N − 2
r+
N

· S
N (SN − 1)

2
− r+
N
SNIN + IN

µ(IN ) = 2r−J
N + r−K

N − 2
r+
N

· I
N (IN − 1)

2
− r+
N
SNIN − IN

µ(JN ) = −r−JN +
r+
N

· I
N (IN − 1)

2
− 2JN + λKN (3.1)

µ(KN ) = −r−KN +
r+
N

· SNIN + 2JN − (λ+ 1)KN

µ(LN ) = −r−LN +
r+
N

· S
N (SN − 1)

2
+KN

Recalling that Y N = SN + IN is the number of unpartnered individuals and considering
only the rate of partnership formation and dissolution, we obtain

µ(Y N ) = r−(N − Y N )− r+
N
Y N (Y N − 1). (3.2)

Since yNt = Y N
t /N ,

µ(yN ) = r−(1− yN )− r+(y
N )2 +O(1/N).

Since transition rates are O(N) and yN jumps by ±2/N we have σ2(yN ) ≤ CN/N2 =

C/N = o(1), for some absolute constant C. Using Lemma 2.7 we obtain the following
result.

Theorem 3.1. If yN0 → y0 as N → ∞ then yNt ⇒ yt, the solution to the initial value
problem with y0 and

dy

dt
= r−(1− y)− r+y

2 (3.3)

From the limiting differential equation, we see that in equilibrium

0 = r−(1− y∗)− r+y
2
∗. (3.4)

Since SN + IN + 2(JN +KN + LN ) = N and SN is accounted for by Y N , the three
remaining equations are those for IN , JN and KN . Since Y N tends towards Ny∗ it
is helpful to introduce the variable ZN = Y N − Ny∗ to describe its distance from
equilibrium. Most of the terms in these equations are linear, with the exception of terms
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involving StIt and It(It − 1). Writing SN = Y N − IN = Ny∗ + ZN − IN , from (3.1) we
find that µ(IN )

µ(JN )

µ(KN )

 = A

 IN

JN

KN

+ r+
ZNIN

N

−1

0

1

+
r+(I

N )2

N

 0

1/2

−1

+
r+I

N

N

 1

−1/2

0

 (3.5)

where the matrix A is given by

A =

−(r+y∗ + 1) 2r− r−
0 −(r− + 2) λ

r+y∗ 2 −(r− + λ+ 1)

 . (3.6)

Since IN , JN ,KN jump by O(1) at rate O(IN + JN + KN ), the diffusivity matrix has
entries of size O(IN + JN +KN ).

Results in [4] suggest, and our results will show that for any ε > 0, after εN1/2 time
IN , JN , and KN are O(

√
N). Looking at (3.5), if IN + JN +KN and ZN are o(1) then

the entries of the diffusivity matrix, as well as the non-linear terms in the drift, are
o(IN + JN +KN ). Theorem 3.1 implies that if ZN

0 = o(N) then ZN
s = o(N) uniformly

on (fixed) finite time intervals [0, t]. Thus, if we rescale to iNt = INt /
√
N , jNt = JN

t /
√
N

and kNt = KN
t /

√
N (in fact any rescaling by 1/f(N) where f(N) → ∞ will work but

f(N) =
√
N is the most relevant to the main results) and use Lemma 2.7 we obtain the

following result.

Theorem 3.2. If yN0 → y∗ and (iN0 , j
N
0 , k

N
0 ) → (i0, j0, k0) as N → ∞ then (iNt , j

N
t , k

N
t ) ⇒

(it, jt, kt), the solution to the initial value problem with (i0, j0, k0) and

di

dt
= −(r+y∗ + 1)i+ 2r−j + r−k

dj

dt
= −r−j − 2j + λk (3.7)

dk

dt
= r+y∗ · i+ 2j − (r− + λ+ 1)k

Theorem 3.2 is not used elsewhere in the paper; it only motivates the following
calculations. To analyze the limit behavior of (3.7), which is a linear system, we write
the condition for an equilibrium as A(i, j, k)T = 0. To have a nontrivial solution we need
det(A) = 0. Expanding around the first row

det(A) = −(r+y∗ + 1)[(r− + 2)(r− + λ+ 1)− 2λ]

− 2r−(−λ)r+y∗ + r−(r− + 2)r+y∗ (3.8)

For det(A) = 0 we need

(r+y∗ + 1)[2 + (3 + λ)r− + r2−] = r+y∗r−(r− + 2 + 2λ) (3.9)

In Section 11 we show that (3.9) is equivalent to R0 = 1. This indeed shows that there is
a non-trivial equilibrium. We now proceed to find the solution. To have A(i, j, k)T = 0 we
must have

−(r+y∗ + 1)i+ 2r−j + r−k = 0

−(r− + 2)j + λk = 0 (3.10)

r+y∗i+ 2j − (r− + λ+ 1)k = 0

The second equation implies j = λk/(r− + 2). Using this in the first equation we want

−(r+y∗ + 1)i+
2r−λk

r− + 2
+ r−k = 0.
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Solving we see that if

α =
r−

r+y∗ + 1

(
2λ

r− + 2
+ 1

)
and β =

λ

r− + 2
(3.11)

then the ray (αz, βz, z), z ≥ 0 is invariant for the dynamical system (3.7).
To prove the dynamical system converges to this ray we note that

θI −A =

θ + (r+y∗ + 1) −2r− −r−
0 θ + (r− + 2) −λ

−r+y∗ −2 θ + (r− + λ+ 1)

 .

The eigenvalues of A are the roots of 0 = det(θI −A) = θ3 + b1θ
2 + b2θ + b3, where

b1 = trace(−A) = (r+y∗ + 1) + (r− + 2) + r− + (λ+ 1)

and b2 is the sum of the 2× 2 principal minors of −A, which is given by

(r+y∗ + 1)(r− + 2) + (r− + 2)(r− + λ+ 1)− 2λ+ (r+y∗ + 1)(r− + λ+ 1)− r−r+y∗.

Note that the above is positive since each of the two negative terms are cancelled by a
part of the positive term that precedes it. Since b3 = det(−A) = 0 and b1b2 − b3 > 0 one
can use the Routh Hurwicz conditions to conclude that the other two eigenvalues have
negative real part. Alternatively one can observe that the non-zero roots of the equation
det(θI −A) are

−b1 ±
√
b21 − 4b22
2

.

Therefore the dynamical system (3.7) indeed converges to the invariant ray (αz, βz, z), z ≥
0. A quantitative statement that applies to the infection process is given in Lemma 4.3.

4 Worklow and diffusion limits

In this section we give a precise statement of the lemmas corresponding to the
workflow steps outlined at the end of the Introduction, and use these lemmas to prove
the main results, Theorems 1.4,1.5, and 1.6. The lemmas are listed in the same numerical
order as in the Introduction, which is also the order in which they will be proved in
subsequent sections.

4.1 Step 1: the number of singles Yt

Recall that (see (3.1)-(3.2)) on the original time scale

Y N → Y N + 2 at rate r−(N − Y N )/2

Y N → Y N − 2 at rate r+Y
N (Y N − 1)/2N = r+(Y

N )2/2N +O(1).

If we let zNt = N−1/2(Y N
t −Ny∗), that is, Y N

t = Ny∗ +N1/2zNt then

zN → zN + 2/N1/2 at rate r−[(1− y∗)N − zNN1/2]/2 (4.1)

zN → zN − 2/N1/2 at rate Nr+(y∗ + zNN−1/2)2/2 +O(1)

= Nr+y
2
∗/2 + r+y∗z

NN1/2 +O(1 ∨ (zN )2).

Since r−(1− y∗) = r+y
2
∗,

µ(zN ) = −µzz
N +O((1 ∨ (zN )2)/N1/2) where µz = r− + 2r+y∗ (4.2)
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and

σ2(zN ) = σ2
z +O(N−1 ∨ zN/N1/2) where σ2

z = 2[r−(1− y∗) + r+y
2
∗]. (4.3)

So, if zN = o(N1/4), then using Lemma 2.7, zNt ⇒ zt which satisfies

dz = −µzz dt+ σz dB

i.e., the limit zt is an Ornstein-Uhlenbeck process. To control the behavior of zNt we will
prove the following two facts.

Lemma 4.1 (Step 1). There is a constant C4.1 so that with high probability,

• |ZN
t | ≤ C4.1 for some t ≤ C4.1 logN and

• if |zN0 | ≤ (C4.1/2)
√
logN then |zNt | ≤ C4.1

√
logN for all t ≤ N .

To understand the
√
logN scaling note that the stationary distribution of the Ornstein-

Uhlenbeck process is a normal, whose tail scales roughly like exp(−x2/2σ2)/x; using
the heuristic that the time to reach a rare set scales like the reciprocal of its stationary
probability and letting x be a constant times

√
logN , we find the time to reach level x

scales roughly like Np for constant p, which (with p = 1) is the time scale on which we
control zNt .

4.2 Step 2: a special linear combination of (IN , JN ,KN )

In Section 3 we showed that (iN , jN , kN ) converges quickly (in O(1) time) to the
invariant ray (3.11) for the ODE (3.7). Thus the knowledge of one component determines
the other two, provided we have good control on the distance of the triple from the
invariant ray. Recall that in the example from the Introduction (contact process on a
complete graph at criticality), the negative drift of Xt brings it down to the natural
spatial scale for the diffusion, CεN

1/2, within εN1/2 time. This suggests that in our
model, we should look for a linear combination of (IN , JN ,KN ) that has negative drift
when it takes values that are ω(N1/2).

Motivated by these observations we introduce the variable HN = IN + γJN + ηKN

where (1, γ, η)A = 0 and A is given by (3.6). Existence is guaranteed since det(A) = 0,
and the desired constants satisfy

−(r+y∗ + 1) + r+y∗η = 0

2r− − (r− + 2)γ + 2η = 0 (4.4)

r− + λγ − (r− + λ+ 1)η = 0

Solving for η in the first equation, and γ in the second, we find that

η = (r+y∗ + 1)/r+y∗

γ =

(
2r−
r− + 2

+ η · 2

r− + 2

)
(4.5)

Clearly, η > 1, which implies γ > 1. By assumption, R0 = 1, so in the notation of [7] we
have λ = λc. Since λ is finite it follows from [7, Theorem 2.1] that r+y∗ > 1 and so η < 2,
which easily implies γ < 2. We record these in a display equation for later use:

1 < η < 2 and 1 < γ < 2. (4.6)

We now compute the drift of HN , using (3.5). From our choice of linear combination, the
linear part drop out, and only the fluctuation term with ZN , the quadratic part, and the
lower order term remain:

µ(HN ) = (η − 1)r+
ZNIN

N
− (η − γ/2)r+

(IN )2

N
+ (1− γ/2)r+

IN

N
. (4.7)
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This gets a bit nicer if we rescale in space and time. With hN (t) = HN (
√
Nt)/

√
N we

have

µ(hN ) = (η − 1)r+zN iN − (η − γ/2)r+i
2
N + (1− γ/2)iN/

√
N (4.8)

From (4.6) we have γ/2 < 1 < η so the coefficient in the second term is negative. If
iN = ω(1) the second term dominates the third. Using the bound |zN | = O(

√
logN),

the second term dominates the first term when iN = ω(
√
logN). Thus, to obtain a

closed-form differential inequality for E[hN ] which is useful when hN = ω(
√
logN) it

would be enough to show that IN/HN is bounded away from zero after a short time,
which is done in Section 6. Writing τ−

N1/5(HN ) = inf{t : HN (t) ≤ N1/5} we will prove the
following result. Note we are using the slow time scale here.

Lemma 4.2 (Step 2). Let τ = τ−
N1/5(HN ) ∧ τ+

C4.1

√
logN

(|zN |). With high probability,

• hN (t) ≤ 1
2 logN for some t ≤ 1/

√
logN and

• if hN (0) ≤ 1
2 logN then hN (t) ≤ logN for all t ≤ N1/2 ∧ τ .

The choice of N1/5 as a floor on HN is so that once HN ≤ N1/5 a branching process
approximation can be used to take HN to 0. See Section 10.

Our reliance on Lemma 4.1 to bound the first part of the drift prevents us from
showing hN comes all the way down to O(1). To obtain the stronger bound we will have
to show that the first term in the drift in (4.8) averages out to 0.

4.3 Step 3: (IN , JN ,KN ) stays close to the invariant ray

To reduce (IN , JN ,KN ) to a one-dimensional system we let UN = IN/HN , V N =

γJN/HN , and WN = ηKN/HN . The coefficients in V N and WN are there to make
UN + V N +WN = 1. Recalling the definitions of α, β, γ, and η (see (3.11) and (4.4)) we
let u∗ = α/d, v∗ = βγ/d, and w∗ = η/d where d = α + βγ + η which, as the reader will
see, is the fixed point for the dynamical system corresponding to (UN , V N ,WN ). Let
QN = θ2(U

N − u∗)
2 + θ1(V

N − v∗)
2. This result is stated on the fast time scale, since this

is the time scale on which QN naturally converges.

Lemma 4.3 (Step 3). Let τ = τ−
N1/5(H

N ) ∧ τ+
C4.1

√
logN

(|zN |) ∧ τ+logN (hN ). There is a

constant C4.3 so that, for any sequence of constants cQN with N−1/6 ≤ cQN = o(1), with
high probability,

• τ−
N−1/6/2

(QN ) ∧ τ ≤ C4.3 logN , and

• if QN
0 ≤ cQN/2 then Q

N
t ≤ cQN for all t ≤ N ∧ τ .

Steps 1,2 and 3 could be called the “a priori” bounds, since they provide the control
needed to implement the averaging result. With this in mind, we make the following
definition. Additional constants for both h and Q are specified since we’ll need them
later.

Definition 4.4. Let cQN , c
h
N be sequences of constants. Say that there is chN , c

Q
N control at

time t, on the slow time scale, if

|zN (t)| ≤ C4.1

√
logN, hN (t) ≤ chN ,

QN (t) ≤ cQN and HN (t) > N1/5.

Define the chN , c
Q
N -control time on the slow time scale as

τN (chN , c
Q
N , t) = inf{s ≥ t : there is not chN , c

Q
N control at time s}.
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Define the control time τN (ctrl, t) as τN (ctrl, t) = τN (logN,N−1/6, t). Define τN (chN ,

cQN , t) on the fast time scale by
√
NτN (chN , c

Q
N , t), similarly for τN (ctrl, t).

Applying Steps 1-3 (i.e., Lemmas 4.1, 4.2 and 4.3) sequentially in time, we obtain the
following result, which is stated on the slow time scale.

Lemma 4.5. For each ε > 0, with high probability

τ−
N1/5(HN ) ∧N1/2 ≤ τ−

N1/5(HN ) ∧ τN (ctrl, ε).

In words, this result says that for any fixed ε > 0, so long asHN has not hit the interval
[0, N1/5], then w.h.p. the variables |zN |, QN and hN have the desired upper bounds (i.e.,
those specified by Definition 4.4) on the slow time scale, on the time interval [ε,N1/2].

4.4 Step 4: averaging the drift to 0

Recall from Section 4.1 that zN is approximately an O.U. process that oscillates on
the fast time scale, and once (iN , jN , kN ) converges on the invariant ray, we expect it to
diffuse along that ray on the slow time scale and thus move slowly when viewed on the
fast time scale. Thus, it should not be surprising that we have the following result.

Lemma 4.6 (Step 4). Fix T < ∞. Let L : R3 → R be Lipschitz in the `1 norm with
constant cL and such that L(0, 0, 0) = 0. Let ω(N−1/2) = chN ≤ logN and 0 < cQN = o(1)

be sequences of constants and let τN = τN (chN , c
Q
N , 0). With high probability,

sup
t≤T

∣∣∣∣∫ t∧τN

0

zN (s)L(iN (s), jN (s), kN (s)) ds

∣∣∣∣ = O(cL(c
h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2) log2N).

4.5 Step 5: Show hN comes down to O(1)

In order to prove Theorem 1.5 we need to show that w.h.p., hN (t) = O(1) for fixed
t > 0.

Lemma 4.7 (Step 5). Let τ−C (hN ) = inf{t : hN (t) ≤ C}. For small enough ε > 0,

lim
C→∞

lim sup
N

P (ε/C3 < τ−C (hN ) ≤ 1/εC) = 1.

4.6 Step 6: convergence to diffusion

Here we prove Theorem 1.4 and Theorem 1.5. We will need the following result,
proved in Section 10, that shows that once HN hits [0, N1/5], before long the infection
process hits 0.

Lemma 4.8. Suppose that HN
0 ≤ N1/5, and that w.h.p. supt≤N1/4 |zNt | ≤ C4.1

√
logN .

Then, w.h.p., τ0(HN ) ≤ N1/4 and HN
t ≤ N .24 for all t ≤ τ0(H

N ).

Proof of Theorem 1.4. We use Lemma 2.7 to prove this theorem. Since the jump size of
iN is O(N−1/2) = o(1) it suffices to find a, b and show convergence of the compensator
and predictable quadratic variation. By assumption,

a) |zN (0)| = O(1) so by Lemma 4.1, for fixed T > 0, w.h.p. |zN (t)| ≤ C4.1

√
logN for all

t ≤ T , and

b) QN (0) = O(N−ε), so letting cQN = 2QN (0) ∨N−1/6, Lemma 4.3 shows that for fixed
T > 0, w.h.p.QN (t) ≤ cQN for all t ≤ T ∧ τ−

N1/5(HN ).

Point b) implies that hN (t) = (1/u∗ + O(QN (t)1/2))iN (t) = (1/u∗ + o(1))iN (t) for all
t ≤ T ∧ τ−

N1/5(HN ). Point a) and Lemma 4.8 imply that w.h.p. for all τ−
N1/5(HN ) ≤ t ≤ T ,
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Diffusion limit at the critical value

iN (t) ≤ hN (t) = O(N0.24−1/2) = o(1). Thus if Theorem 1.4 can be proved for hN for some
constants µ∗, σ

2
∗ then it holds for iN with different constants. We recall (4.8):

µ(hN ) = (η − 1)r+zN iN − (η − γ/2)r+i
2
N + (1− γ/2)iN/

√
N (4.9)

Also iN (0), jN (0), kN (0) = O(1) so the same holds for hN (0). Letting chN = logN , by
Lemma 4.2 and a) above, w.h.p. hN (t) ≤ chN for all t ≤ T ∧ τ−

N1/5(HN ). Combining a) and
b) with the bound on hN , w.h.p.

τN (chN , c
Q
N , 0) ∧ T = τ−

N1/5(HN ) ∧ T.

Using this and Lemma 4.6, for any fixed T > 0, w.h.p.

sup
t≤T

∣∣∣∣∣
∫ t∧τ−

N1/5
(HN )

0

(η − 1)r+zN (s)iN (s)ds

∣∣∣∣∣ = O(N−( ε
2∧

1
4 )(log3N)) = o(1),

uniformly for t ≤ T . Since iN ≤ hN , w.h.p. for t ≤ T ∧ τ−
N1/5(HN ) the third term in the

RHS of (4.9) is O(N−1/2 logN) = o(1). Using the bound on QN , if hN (t) ≤ R for fixed
R > 0 and t ≤ T ∧ τ−

N1/5(HN ) then w.h.p.

iN (t) = (u∗ + o(1))hN (t) = u∗hN (t) + o(1).

Looking back to (4.9), we let

b(x) = −µ∗x
2 with µ∗ = (η − γ/2)r+u

2
∗,

and let τ+R (hN ) = inf{t : hN (t) ≥ R}. Recall that hpN denotes the compensator of hN (see

Section 2). Since hpN (t) =
∫ t

0
µs(hN )ds, we find that w.h.p.

sup
t≤T∧τ+

R (hN )∧τ−
N1/5

(HN )

|hpN (t)−
∫ t

0

b(hN (s))ds| = o(1).

Next let us consider the easier case τ−
N1/5(HN ) ≤ t ≤ T ∧ τ+R (HN ). For this range of

values of t, from (4.9), and using Lemma 4.1 it easily follows that µ(hN ) = o(1) and
hN = o(1). So w.h.p.

sup
τ−
N1/5

(HN )≤t≤T∧τ+
R (hN )

|hpN (t)−
∫ t

0

b(hN (s))ds| = o(1).

This proves the assertion about the compensator of hN , as required by Lemma 2.7.
Now to calculate the diffusivity of h we let m index the possible transitions and write

σ2(hN ) =
∑
m

qm (∆mhN )2,

where qm is the rate of transition m (it is a function of the state) and ∆mhN is the change
in hN at that transition. Note that there are constants cm so that (∆mhN )2 = cm/N .
Recall that on the fast (original) time scale the transitions of IN , JN ,KN have the
following rates:

transition rate
I → S IN

J → K 2JN

K → J λKN

I + I → J r+(I
N )2/N

I + S → K r+S
NIN/N

J → I + I r−J
N

K → S + I r−K
N
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Most rates are linear in IN , JN , or KN . Those which are not are the I + I → J

transition and the I + S → K transition. As we have seen above, w.h.p., for all t ≤
T∧τ−

N1/5(H
N ), IN (t) ≤ N1/2 logN . Therefore the I+I → J transition has rateO((logN)2).

By a similar reasoning the I + S → K transition has rate r+(y∗ +O(N−1/2 logN))IN =

r+y∗I
N +O((logN)2). Speeding up time by N1/2 and writing in lower case, the rates are

equal to NiN , 2NjN , etc and the error terms have rate O(
√
N(logN)2). Since each of

iN (t), jN (t), kN (t) is equal to (constant+ o(1))hN (t) for t ≤ T ∧ τ−
N1/5(HN ), if in addition

hN (t) ≤ R then there are constants dm so that for each m,

qm = NdmhN (1 + o(1)) +O(
√
N(logN)2)) = NdmhN + o(N).

Thus there is a constant σ2
∗ so that if hN ≤ R and t ≤ T ∧ τ−

N1/5(HN ) ∧ τ+R (hN ) then w.h.p.

σ2(hN ) =
∑
m

NdmhN
cm
N

+ o(1) = σ2
∗hN + o(1).

If τ−
N1/5(HN ) ≤ t ≤ T then since w.h.p. hN (t) = O(N .24−1/2) = o(1), an easy computation

gives σ2(hN ) = o(1). This implies the desired convergence of predictable quadratic
variation with a(x) = σ2

∗x. An application of Lemma 2.7 now shows hN (and hence iN )
converges to a diffusion of the desired form.

We now prove Theorem 1.5.

Proof of Theorem 1.5. We first explain why it makes sense to start the limiting diffusion
X from ∞. For C > 0, let τ−C (X) = inf{t : Xt ≤ C}. Using Jensen’s inequality,

d

dt
E[Xt] = −µE[X2

t ] ≤ −µ(E[Xt])
2,

so we find that

E[Xt | X0 = x] ≤ 1

µt+ 1/x

and using Markov’s inequality,

P (τ−C (X) ≥ t | X0 = x) ≤ C−1E[Xt | X0 = x] ≤ 1

Cµt+ C/x
.

In particular, if x,C → ∞ with C ≤ x then τ−C (X) converges in probability to zero. It is
then not hard to show that the law of X, conditioned on X0 = x, converges in distribution
as x→ ∞.

Since the limiting diffusion is continuous, it crosses any level C > 0, if it starts from
∞. Thus if we let τC(X) = inf{t : Xt = C}, τC(X) ↓ 0 in probability as C ↑ ∞. Since
convergence in distribution allows for small time change, given the proof of Theorem
1.4, it is enough to show there are sequences εm → 0, Cm → ∞ so that for each m,
w.h.p. there is a tm ≤ εm such that

• hN (tm) = Cm +O(N−1/2),
• |zN (tm)| ≤ C4.1

√
logN and

• |QN (tm)| ≤ N−1/6.

Letting Cm = m and εm = 1/εm for small ε > 0, Lemma 4.7 gives the bound on hN . Since
Lemma 4.7 also gives tm ≥ ε/m3, we may apply Lemma 4.5 to obtain the desired bounds
on |zN | and QN . This completes the proof.
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4.7 Step 7: extinction time

To prove a result for the time for the infection to die out, note that τ0(hN ) =

inf{t : hN (t) = 0} is the first time (on the N1/2 time scale) there are no infected in-
dividuals.

The continuous mapping theorem makes half of the proof easy. To complete it we
need to show that τ0(hN ) converges in probability to 0 as hN (0) → 0, uniformly for large
N . This is accomplished by combining Lemma 4.8 with the following result, that by the
definition of τ(ctrl, 0) implies that if hN is initially small and if the values of |zN |, QN

can be kept under control then within a short time, HN hits [0, N1/5].

Lemma 4.9. Fix ε > 0. There is δ > 0 so that

P (τN (ctrl, 0) < τ+logN (hN ) ∧ ε | hN (0) ≤ δ) ≥ 1− ε.

Lemmas 4.8 and 4.9 are postponed to Section 10. For now we use them to prove
Theorem 1.6.

Proof of Theorem 1.6. Recall that Q is the law of the limiting diffusion for hN and τx(X)

is the hitting time of x > 0 for the limiting diffusion. By the strong Markov property and
Blumenthal’s 0-1 law, after hitting x, the process will with probability one immediately
hit (0, x) and (x,∞). From this it follows easily that τx(X) : C → R is continuous
Q-almost surely. Suppose the infection process satisfies the conditions of Theorem 1.4
with hN (0) → x. Let PN denote its law and let τ−x (hN ) = inf{t : hN (t) ≤ x}. Using the
continuous mapping theorem,

PN (τ−x (hN ) > t) → Q(τx(X) > t)

Let ε > 0. If x is small enough then Qx(τ0(X) > ε) < ε and hence Q(τ0(X) > t + ε) ≤
Q(τx(X) > t) + ε. Combining this with the last result and noting that x 7→ τ−x (hN ) is
increasing,

lim inf
N→∞

PN (τ0(hN ) > t) ≥ Q(τ0(X) > t+ ε)− ε.

Letting ε→ 0 we have half of the desired convergence in distribution.
To get the other half we again fix any arbitrary ε > 0. Note that for δ > 0

PN (τ0(hN ) > t+ ε) ≤ PN (τ−δ (hN ) > t) + sup
h≤δ

PN (τ0(hN ) > ε | hN (0) = h).

Letting N → ∞, PN (τ−δ (hN ) > t) → Q(τδ(X) > t) ≤ Q(τ0(X) > t). So it suffices to show
that for each ε > 0 there is a δ > 0 so that the second term is at most O(ε), uniformly for
large N . Since by convergence in distribution, on the N1/2 time scale it takes at least
s > 0 amount of time, w.h.p. as s → 0+ and N → ∞, for h to reach δ if hN (0) → x > δ,
using Lemma 4.5 we may assume when taking the above sup that not only h ≤ δ but
also that |zN (t)| and QN (t) are small (in the sense of the definition of τ(ctrl, t) given in
Definition 4.4) for all t ≤ ω(1) ∧ τ−

N1/5(HN ). The desired bound then follows directly from
Lemmas 4.8 and 4.9. This completes the proof.

5 Step 1: upper bound on |zN |
Let C4.1 be a sufficiently large constant. In this short section we prove Lemma 4.1, in

two parts:

• approach: show that |ZN
t | ≤ C4.1 for some t ≤ C4.1 logN w.h.p., then

• control: show that if |zNt | ≤ (C4.1/2)
√
logN then w.h.p., |zNt | ≤ C4.1

√
logN for all

t ≤ N .
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Approach. Recall from (3.2) that

µ(Y N ) = FN (Y N ) where FN (Y N ) = r−(N − Y N )− r+
N
Y N (Y N − 1),

where, for each N , FN : R → R is just some function. Let Y N
∗ ∈ (0, N) be the unique

value with FN (Y N
∗ ) = 0. Note that Y N

∗ 6= Ny∗ since we used Y N (Y N − 1) and not (Y N )2

to compute it. However note that FN (Ny∗) = r+y∗ and by concavity of FN , |F ′
N | is

bounded below by |F ′
N (0)| = r− − r+/N , so

|Y N
∗ −Ny∗| ≤ r+y

∗/(r− − r+/N) = O(1),

and letting Z̃N = Y N − Y N
∗ we have Z̃N − ZN = Y N

∗ − Ny∗ = O(1), so it is enough to
prove the result with Z̃N in place of ZN . Since FN is concave, if we let rN = FN (0)/Y N

∗
then for Y N ∈ [0, N ] with Y N 6= Y N

∗ we have

FN (Y N )/(Y N − Y N
∗ ) ≤ −rN .

Letting r = 1
2 lim infN→∞ rN , it follows that FN (Y N

∗ + Z̃N )/Z̃N ≤ −r for large N and

Z̃N 6= 0. If Z̃N
0 ≥ 1 then letting τ−2 (Z̃N ) = inf{t : Z̃N

t ≤ 2} and using the product rule
(Lemma 2.3), for t < τ−2 (Z̃N )

µ(ertZ̃N
t ) = ert(rZ̃N

t + F (Y∗ + Z̃N
t )) ≤ 0,

so ξt = exp(r(t ∧ τ−2 (Z̃N )))Z̃N
t∧τ2(Z̃N )

is a supermartingale. If τ−2 (Z̃N ) > t then ξt ≥ 2ert.

Moreover ξ0 = Z̃N
0 ≤ N . So

P (τ−2 (Z̃N ) > t) ≤ P (ξt ≥ 2ert) ≤ e−rt

2
E[ξt] ≤ e−rtN/2.

If Z̃N
0 ≤ −1 then letting τ−2 (−Z̃N ) = inf{t : Z̃N

t ≥ −2}, we obtain the same estimate
for P (τ−2 (−Z̃N ) > t), so for τ−2 (|Z̃N |) = inf{t : |ZN

t | ≤ 2}, taking a union bound and
t = C logN with C = 2/r we find

P (τ−2 (Z̃N ) > (2/r) logN) ≤ 1/N = o(1),

which proves the result.
Control. We use Lemma 2.5 to control zN = N−1/2ZN .
Let x = (C4.1/2)

√
logN with C4.1 to be determined and let X = −x+ |zN − x|, then

∆?(X) ≤ 2/N1/2 ≤ x/2 for large N . Since zN jumps by at most x, if |zN | ≥ x then
µ(X) = sgn(zN )µ(zN ). From the proof of approach, µ(zN )/zN ≤ −r if zN 6= 0. If
X ≥ x/2 then |zN | ≥ 3x/2 so letting µ? = 3rx/2, µ(X) ≤ −µ?. If X ≤ x then |zN | ≤ 2x

so using (4.2)-(4.3), |µ(zN )| ≤ Cx and σ2(zN ) ≤ C for some C > 0, so let Cµ? be a large
enough multiple of x and σ2

? a large enough constant. Then, ∆?(X)µ?/σ
2
? = o(1) which

allows us to take C∆ = 1. Then, Γ ≥ exp(δL2) and bΓcx/16Cµ? ≥ δΓ for some δ > 0.
Taking C4.1 > 1/

√
δ makes Γ, δΓ ≥ N for large N and the result follows from Lemma 2.5.

6 Step 2: upper bound on hN

Recall HN = IN + γJN + ηKN and τ−
N1/5(H

N ) is the first time that HN ≤ N1/5.
Recalling (4.7) we see that the negative term in µ(HN ) involves IN . Therefore, the first
step is to get a lower bound on IN/HN . Note the event below is taken to be vacuous if
τ−
N1/5(H

N ) < C6.1.

Lemma 6.1. There is a constant C6.1 > 0 so that with high probability,

HN
t ≤ C6.1I

N
t for all C6.1 ≤ t ≤ N ∧ τ−

N1/5(H
N ).
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Proof. Let ε > 0 be a small enough constant, then there are two steps:

• approach : show that τ+ε (IN/HN ) ∧ τ−
N1/5(H

N ) ≤ 1/ε w.h.p., then
• control : show that if IN0 /H

N
0 ≥ ε then w.h.p. INt /H

N
t ≥ ε/2 for all t ≤ N ∧

τ−
N1/5(H

N ).

Approach. From equations (3.5) and (4.7), we have

µ(IN ) = −r+
ZN

N
IN − (r+y∗ + 1)IN + 2r−J

N + r−K
N + r+

IN

N
(6.1)

µ(HN ) = (η − 1)r+
ZN

N
IN − (η − γ/2)r+

(IN )2

N
+ (1− γ/2)r+

IN

N
.

Using the product rule of Lemma 2.3 and the Taylor approximation of Lemma 2.4, we
find that if HN > N1/5, then since HN = ω(1),

µ

(
IN

HN

)
=
µ(IN )

HN
+ INµ

(
1

HN

)
+ σ

(
IN ,

1

HN

)
(6.2)

=
µ(IN )

HN
− IN

(HN )2
µ(HN ) + σ2(HN )O

(
IN

(HN )3

)
+ σ

(
IN ,

1

HN

)
.

The assumption HN = ω(1) is used together with the fact ∆?(H
N ) = O(1) to obtain

O(IN/(HN )3) from the Taylor approximation. Next we show the last two terms are
O(1/HN ). To compute σ(IN , 1/HN ) note that IN or HN jumps at rate O(HN ), IN jumps
by O(1), and 1/HN jumps by O(1/(HN )2) when HN = ω(1). Multiplying, we obtain
σ(I, 1/HN ) = O(1/HN ). By a similar argument σ2(HN ) = O(HN ), and since IN ≤ HN it
follows that σ2(HN )IN/(HN )3 = O(1/HN ).

If IN/HN ≤ ε then

max{γJN/HN , ηKN/HN} ≥ (1− ε)/2.

Since |ZN |, IN ≤ N it follows that µ(HN ) = O(IN ). From (6.1) and (6.2) we then deduce
that if IN/HN ≤ ε and HN = ω(1) then

µ(IN/HN ) ≥ −ε(r+ + r+y∗ + 1) + r− min(2/γ, 1/η)(1− ε)/2

−O(ε2)− o(1).
(6.3)

If ε > 0 is taken small enough, the right-hand side is at least a constant µ0 > 0. To
estimate σ2(IN/HN ) we note that if HN = ω(1) then IN/HN jumps at rate O(HN ), by
an amount O(1/HN ) when IN jumps, and an amount O(IN/(HN )2) = O(1/HN ) (since
IN ≤ HN ) when HN jumps. Thus σ2(IN/HN ) = O(1/HN ) when HN = ω(1).

To summarize our progress so far, if we let

τ1 = inf{t : INt /HN
t > ε or HN

t ≤ N1/5}

and note that t < τ1 implies HN > N1/5 = ω(1) and 1/HN < N−1/5, then there are
constants µ0, C > 0 such that

µt(I
N/HN ) ≥ µ0 and σ2(IN/HN ) ≤ CN−1/5 for all t < τ1. (6.4)

Define ξt = INt∧τ1/H
N
t∧τ1 . In the notation of Section 2,

ξmt = ξt − ξ0 − ξpt ≤ ξt − µ0(t ∧ τ1) and 〈ξ〉t ≤ CN−1/5t ∧ τ1.

So for a, φ > 0

ξmt + (a+ φ 〈ξ〉t) ≤ ξt + a− (µ0 − φCN−1/5)t ∧ τ1. (6.5)
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Using Lemma 2.1, if φ∆?(ξ) ≤ 1/2, then the left-hand side of (6.5) is ≥ 0 for all t ≥ 0 with
probability ≥ 1− 2e−φa, or in other words,

P (ξt ≥ −a+ (µ0 − φCN−1/5)t ∧ τ1 for all t ≥ 0) ≥ 1− 2e−φa.

Letting a = ε and φ = (µ0/2C)N
1/5 gives e−φa = o(1). Since ξ is stopped if ever

HN ≤ N1/5, it follows that ∆?(ξ), which is O(1/HN ), is a fortiori O(N−1/5), which means
that φ∆?(ξ) ≤ 1/2 if C > 0 is taken large enough. Summarizing, we find that

P (ξt ≥ −ε+ µ0t ∧ τ1/2 for all t ≥ 0) = 1− o(1).

Since t > τ1 if ever ξt ≥ ε, it follows that

P (τ1 > 4ε/µ0) = 1− o(1).

Since 4ε/µ0 is a constant and τ1 = τ−
N1/5(H

N ) ∧ τ+ε (IN/HN ), the first part is proved.
Control. We now show that if IN0 /H

N
0 ≥ ε then w.h.p. INt /H

N
t ≥ ε/2 for all t ≤

N ∧ τ−
N1/5(H

N ). To do so we use Corollary 2.6 to Lemma 2.5. Let τ = τ−
N1/5(H

N ),
let Xt = ε − IN (t ∧ τ)/HN (t ∧ τ), and let x = ε/2. Similarly as for ξ, we find that
∆?(X) = O(1/HN ) = O(N−1/5), which is o(x). From (6.1)-(6.2) it is easy to check that
|µ(IN/HN )| = O(1) when HN = ω(1) so let Cµ?

be a large constant. From (6.4) we
have µt(X) ≤ −µ0 and σ2

t (X) ≤ CN−1/5 when t < τ and Xt ≥ 0, so let µ? = µ0 and
σ2
? = CN−1/5 for some C > 0. In this way ∆?(X)µ?/σ

2
? = O(1) which allows us to let C∆

be a large constant. Then, Γ ≥ exp(δN1/5) and bΓcx/16Cµ?
≥ δΓ ≥ N for some δ > 0 and

large N , so Corollary 2.6 gives

lim
N→∞

P

 sup
t<N∧τ−

N1/5
(HN )

INt /H
N
t ≤ ε/2 | IN0 /HN

0 ≥ 3ε/4

 = 0,

which completes the proof.

Proof of Lemma 4.2. The result has two parts.
Approach. First we show that

w.h.p., hN (t) ≤ 1
2 logN for some t ≤ 1/

√
logN .

Note the slow time scale is used. We will need the estimates we’ve proved so far. Let

τ1 = inf{t ≥ C4.1N
−1/2 logN : |zN (t)| > C4.1

√
logN} and

τ2 = inf{t ≥ C6.1N
−1/2 : hN (t) > C6.1iN (t) or HN (t) ≤ N1/5}.

By Lemma 4.1, τ1 > N1/2 w.h.p., and by Lemma 6.1, τ2 > N1/2 ∧ τ−
N1/5(HN ) w.h.p. It

is more convenient if we shift the time variable over by −C4.1N
−1/2 logN so that both

estimates begin to hold at t = 0; since N−1/2 logN = o(1/
√
logN) this will not affect the

conclusion.
We recall (4.8):

µ(hN ) = (η − 1)r+zN iN − (η − γ/2)r+i
2
N + (1− γ/2)iN/

√
N

From (4.6), η > 1 > γ/2, moreover iN ≤ hN , so for t < τ1 ∧ τ2,

µ(hN ) ≤
(
(η − 1)r+C4.1

√
logN + (1− γ/2)r+

1√
N

)
hN
C6.1

− (η − γ/2)r+
(hN )2

C2
6.1

.

EJP 23 (2018), paper 102.
Page 21/42

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP229
http://www.imstat.org/ejp/


Diffusion limit at the critical value

If hN > 1
2 logN the first term is o((hN )2). Since η > γ/2, we see there is δ > 0 so that, if

we let τ3 = τ1 ∧ τ2 ∧ τ−1
2 logN

(hN ), then for t < τ3,

µ(hN ) ≤ −δ (hN )2.

Next we’d like to set up a differential inequality for hN ; the only trouble is, the drift
estimate only holds up to a stopping time. To fix this, let ψ(t;h) denote the solution
flow for the differential equation h′(t) = −δh(t)2 (i.e., the function with maximal domain
containing {0} × R such that ∂tψ(t;h) = −δψ(t;h)2 and ψ(0;h) = h) and define the
continued process

h̃N (t) = ψ(t− t ∧ τ3;hN (t ∧ τ3)).

In words, h̃N is equal to hN up to time τ3, at which point it evolves according to the flow
ψ. It is then clear that for all t ≥ 0,

µ(h̃N ) ≤ −δ (h̃N )2.

Taking expectations and using Jensen’s inequality we then find

d

dt
E[h̃N (t)] ≤ −δ

(
E[h̃N (t)]

)2
,

which implies E[h̃N (t)] ≤ ψ(t;E[hN (0)]) (note h̃N (0) = hN (0)). Solving the DE we have

ψ(t;h) = 1/(δt+ 1/h) ≤ 1/(δt).

If τ3 > t then h̃N (t) = hN (t) > 1
2 logN , so it follows that

P (τ3 > t) ≤ P (h̃N (t) = hN (t) >
1

2
logN) ≤ 2

logN
E[h̃N (t)] ≤ 2(δt logN)−1.

Taking t = 1/
√
logN the above is o(1). As noted above, τ1 ∧ τ2 > N1/2 ∧ τ−

N1/5(HN ) w.h.p.

Since hN > 1
2 logN implies HN > N1/5, if hN (s) > 1

2 logN for all s ≤ t then w.h.p. τ3 > t.
It follows that

P (hN (s) >
1

2
logN for all s ≤ 1/

√
logN) = P (τ3 > 1/

√
logN) + o(1) = o(1)

and the statement is proved.
Control. We now show that

if hN (0) ≤ 1
2 logN then w.h.p.hN (t) ≤ logN for all t ≤ N1/2 ∧ τ−

N1/5(HN ) ∧ τ+C4.1
(|zN |).

This time, let τ1 = τ+C4.1
(|zN |), and define τ2 as in the proof of approach. By Lemma 6.1,

τ2 > N1/2 ∧ τ−N1/5
(HN ). For the present result we cannot ignore small times, so first we

show the conclusion holds for all t ≤ C6.1N
−1/2 without assuming a bound on iN/hN .

Let τ3 = τ1 ∧ τ+logN (hN ). From (4.8), if t < τ3 then since iN ≤ hN , η − γ/2 > 0 and

zN (t) = O(
√
logN), for large N we have µ(hN (t)) ≤ log(N)hN (t). Since hN jumps by

O(N−1/2) at rate NhN on the slow time scale, σ2(hN ) ≤ ChN for some constant C > 0.
Let ξt = hN (t ∧ τ3), then for a, φ > 0 and all t ≥ 0,

ξmt − a− φ〈ξ〉t ≥ ξt − ξ0 − a−
(
(logN)2 + Cφ logN)t.

Using Lemma 2.1, if φ∆?(ξ) ≤ 1/2, the LHS is ≤ 0 for all t ≥ 0 with probability at least
1 − 2e−φa. Letting φ = (logN)/C and a = 1, φ∆?(ξ) = O(N−1/2 logN) ≤ 1/2 for large
enough N and e−φa = o(1), so

P (ξt ≤ ξ0 + 1 + 2t(logN)2 for all t ≥ 0) = 1− o(1).
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It follows that P (ξt ≤ logN for all t ≤ C6.1N
−1/2) = 1 − o(1), since ξ0 ≤ 1

2 logN and
1 + 2t(logN)2 ≤ 1

4 logN for all t ≤ C6.1N
−1/2, which implies that

P (hN (t) ≤ 3

4
logN for all t ≤ C6.1N

−1/2 ∧ τ1) = 1− o(1).

With the above estimate in hand, to prove the desired result we may assume hN (0) ≤
3
4 logN , redefine τ2 = τ+C6.1

(hN/iN ) ∧ τ−
N1/5(HN ) and suppose that τ2 > N1/2 ∧ τ−

N1/5(HN )

w.h.p. We will use Corollary 2.6. Let τ = τ1 ∧ τ2, let Xt = hN (t ∧ τ) − log(N)/2 and
let x = log(N)/2, then ∆?(X) = O(N−1/2) = o(x). Since hN jumps by O(N−1/2) at
rate O(NhN ), if hN ≤ logN then |µ(hN )| = O(N1/2hN ) = O(N1/2 logN) and σ2(hN ) =

O(hN ) = O(logN), so let Cµ? = CN1/2 logN and σ2
? = C logN for large C. From

the proof of approach, if t < τ and hN (t) ≥ log(N)/2 then µt(hN ) ≤ −δ(hN )2, so let
µ? = −δ(logN)2/4. With these choices ∆?(X)µ?/σ

2
? = o(1) so let C∆ = 1. We now

find µ?x/σ
2
? = Ω((logN)2). Therefore, Γ = eΩ((logN)2) = ω(N) and x/16Cµ? = Ω(N−1/2).

Using Corollary 2.6,

P (hN (t) ≥ logN for some t ≤ N1/2 ∧ τ | hN (t) ≤ 3

4
logN) = o(1),

and the result follows since N1/2 ∧ τ = N1/2 ∧ τ−
N1/5(HN ) ∧ τ1 w.h.p.

7 Step 3: (IN , JN , KN) stays close to the invariant ray

In this section we prove Lemma 4.3. As in the statement of the lemma, let

τ = τ−
N1/5(H

N ) ∧ τ+
C4.1

√
logN

(|zN |) ∧ τ+logN (hN ).

Looking back to (6.2), we showed that if HN = ω(1) then

σ(IN , 1/HN ) + σ2(HN )O(IN/(HN )3) = O(1/HN );

it is clear the same estimate holds with JN ,KN in place of IN . If, moreover, HN , |ZN | ≤
N1/2 logN , then since η, γ ≥ 1 (see (4.6)), IN , JN ,KN ≤ HN , from (6.2) we obtain the
estimate µ(HN ) = O((logN)2). Recalling that (UN , V N ,WN ) = (IN , γJN , ηKN )/HN ,
writing (6.2) but with γJN and ηKN as well, and using the above estimates, we find that
if t < τ then

µt

UN

V N

WN

 =
1

HN
t

µt

 IN

γJN

ηKN

+O((logN)2N−1/5). (7.1)

Let JN denote the vector (IN , JN ,KN ). Again, if HN , |ZN | ≤ N1/2 logN then from
(3.5) we find that µ(JN ) = AJN + O((logN)2N−1/5). Letting D = Diag(1, γ, η) denote
the diagonal matrix with 1, γ, η along the main diagonal, and VN denote the vector
(UN , V N ,WN )>, so that VN = DJN/HN . Moreover let Λ = DAD−1 denote the con-
jugation of A by D. Combining the estimate on µ(JN ) with (7.1) we find that if t < τ

then

µt(VN ) =
1

HN
t

Dµt(JN ) +O((logN)2N−1/5

= ΛVN
t +O((logN)2N−1/5 (7.2)

To reduce the dimensionality, since from (3.10) we have A(α, β, 1)>R = 0 it follows that
Λ(α, βγ, η)>R = 0. We select the vector V∗ = (u∗, v∗, w∗) with u∗ + v∗ + w∗ = 1, namely

u∗ = α/d v∗ = βγ/d w∗ = η/d where d = α+ βγ + η. (7.3)
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Then, WN − w∗ = −(UN − u∗)− (V N − v∗), so (7.2) can be re-written as

µt

(
UN
t − u∗
V N
t − v∗

)
=

(
Λ11 − Λ13 Λ12 − Λ13

Λ21 − Λ23 Λ22 − Λ23

)(
UN
t − u∗
V N
t − v∗

)
+O((logN)2N−1/5) (7.4)

Note that Λ is obtained from A by multiplying entries in rows 2,3 by γ, η and dividing
entries in columns 2,3 by γ, η, respectively. Referring to (3.6) we find that(

Λ11 − Λ13 Λ12 − Λ13

Λ21 − Λ23 Λ22 − Λ23

)
=

(
−(r+y∗ + 1 + r−/η)

(
2r−
γ − r−

η

)
−(γλ/η) −(r− + 2 + γλ/η)

)
(7.5)

The diagonal entries in the matrix are negative, so the trace is negative. From (4.6),
γ/2 < η which implies 2r−/γ − r−/η > 0, so the determinant is positive and so both
eigenvalues have negative real part (which we already knew from analyzing A). To turn
these calculations into control on the distance of V from V∗ we let

θ1 = 2r−/γ − r−/η and θ2 = γλ/η (7.6)

and examine QN
t = θ2(U

N
t − u∗)

2 + θ1(V
N
t − v∗)

2.
Approach. First we show that w.h.p., τ−

(N−1/6/2)
(QN ) ∧ τ ≤ C4.3 logN . From Lemma

2.3, for a process X we have µ(X2) = 2Xµ(X)+σ2(X), and of course, σ2(X−c) = σ2(X)

and µ(X − c) = µ(X) for any constant c. As noted in the proof of Lemma 6.1, UN =

IN/HN jumps by O(1/HN ) at rate O(HN ), so σ2(UN ) = O(1/HN ) and similarly for V N .
Let a1 = min(r+y∗ + 1 + r−/η, r− + 2 + γλ/η), so that both diagonal entries in (7.5) are
at most −a1. Since the cross-terms cancel (by choice of θ1, θ2), from (7.4) we find that
for t < τ ,

µt(Q
N ) ≤ −2a1θ2(U

N − u∗)
2 − 2a1θ1(V

N − v∗)
2 +O((logN)2N−1/5) +O(1/HN )

≤ −2a1Q
N + a2(logN)2N−1/5

for some constant a2 and large N . It is also not hard to check that |µt(Q
N
t )| = O(QN

t )

for t < τ , which we will need in a moment. Letting Q̃ = Q − (a2/a1)(logN)2N−1/5,
µt(Q̃

N ) ≤ −2a1Q̃
N for t < τ so ξt = exp(2a1(t ∧ τ))Q̃N (t ∧ τ) is a supermartingale. Since

(a2/a1)(logN)2N−1/5 ≤ N−1/6/4 for large N and since ξ0 = Q̃N
0 ≤ QN

0 ≤ θ1 + θ2,

P (τ−
N−1/6/2

(QN ) ∧ τ > t) ≤ P (ξt ≥ e2a1tN−1/6/4) ≤ 4N1/6e−2a1t(θ1 + θ2).

Choosing t equal to a large enough multiple of logN , the RHS is o(1).
Control. Now we suppose that cQN are constants with N−1/6 ≤ cQN = o(1) and show

that

if QN
0 ≤ cQN/2 then w.h.p.QN

t ≤ cQN for all t ≤ N ∧ τ .

We will use Corollary 2.6. Let

τ1 = τ ∧ τ+
cQN

(QN ), x = cQN/2 and Xt = QN
t∧τ1 − x.

As noted above, UN jumps by O(1/HN ) when HN = ω(1). Thus when HN = ω(1),
(UN − u∗)

2 jumps by O((UN − u∗)/H
N + 1/(HN )2). If t < τ and QN ≤ cQN then since

HN ≥ N1/5 and cQN ≥ N−1/6 = ω(1/HN ),

UN − u∗
HN

+
1

(HN )2)
= O

(
(cQN )1/2

HN

)
= O(N−1/5(cQN )1/2).

An analogous estimate holds for (V −v∗)2, which shows that∆?(X) = O(N−1/5(cQN )1/2) =

o(x). If QN
t ≥ cQN/2 and t < τ , we have µ(QN ) ≤ −(2a1 − o(1))cQN/2 ≤ −µ? for large N ,
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where µ? = a1c
Q
N/2. As noted above, if t < τ then |µ(QN

t )| = O(QN
t ) so if in addition

QN
t ≤ cQN then |µ(QN

t )| = O(cQN ) ≤ Cµ?
= CcQN for large enough constant C > 0. QN

has transition rate O(HN ), and as shown above, if QN ≤ cQN and t < τ then QN jumps
by O((cQN )1/2/HN ) and so σ2(QN

t ) = O(cQN/H
N ) ≤ σ2

? = CcQNN
−1/5 for large enough

C > 0. Since ∆?(X)µ?/σ
2
? = O((cQN )1/2) = o(1), let C∆ = 1. Since µ?x/σ

2
? = Ω(cQNN

1/5) =

Ω(N1/5−1/6), we find Γ = exp(Ω(N1/30)) = ω(N) and x/16Cµ?
= Ω(1). Corollary 2.6 then

gives the desired result.

8 Step 4: averaging zN iN to 0

In this section we prove Lemma 4.6. Letting σ2
z = 4r−(1−y∗), using (4.1) and recalling

r−(1− y∗) = r+y
2
∗, we see

zN → zN + 2/N1/2 at rate q+ = σ2
zN/8− r−z

NN1/2/2

zN → zN − 2/N1/2 at rate q− = σ2
zN/8 + r+y∗z

NN1/2 +O(1 ∨ (zN )2).

In order to prove an averaging result we’d like to work with a process whose transitions
are symmetric on reflection about 0. Thus we define the following process z̃N , which can
be thought of as a spatially discrete Ornstein-Uhlenbeck process. Letting µz = r−+2r+y∗
we let z̃N have transitions

z̃N → z̃N + 2/N1/2 at rate q̃+ = q̃+(z̃
N ) = σ2

zN/8− µzN
1/2z̃N/4 (8.1)

z̃N → z̃N − 2/N1/2 at rate q̃− = q̃−(z̃
N ) = σ2

zN/8 + µzN
1/2z̃N/4.

Furthermore take z̃N (0) = 2N−1/2bN1/2zN (0)/2c so that z̃N takes values in 2N−1/2Z.
Couple zN with z̃N in the obvious way, i.e. couple jumps of +2/N1/2 at the minimum of
the two rates and similarly for jumps of −2/N−1/2, and let DN = zN − z̃N with respect
to this coupling. The following result controls the size of DN . The power of logN in the
bound is not optimal but it’s good enough and frees us from having to track yet another
constant.

Lemma 8.1. With high probability,

sup{ |DN
t | : t ≤ N ∧ τ+

C4.1

√
logN

(|zN |) } ≤ N−1/4 logN.

Proof. DN has the following transitions:

DN → DN + 2/N1/2 at rate q+(D
N ) = max(q+ − q̃+, 0) + max(q̃− − q̃−, 0)

DN → DN − 2/N1/2 at rate q−(D
N ) = max(q̃+ − q+, 0) + max(q− − q̃−, 0).

Using the fact that max(a, 0)−max(−a, 0) = a for a ∈ R, we compute

µ(DN ) = 2N−1/2(q+(D
N )− q−(D

N ))

= 2N−1/2((q+ − q̃+)− (q− − q̃−))

From their definition and the choice of constant µz = r− + 2r+y∗,

((q+ − q̃+)− (q− − q̃−))

= q+ − q− − (q̃+ − q̃−)

= (−r− − 2r+y∗)z
NN1/2/2− (−µz/4− µz/4)z̃

NN1/2/2 +O(1 ∨ (zN )2)

= −µz(z
N − z̃N )N1/2/2 +O(1 ∨ (zN )2)
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and so

µ(DN ) = −µzD
N +O((1 ∨ (zN )2)/N1/2). (8.2)

Computing the diffusivity,

σ2(DN ) = (4/N)(|q+ − q̃+|+ |q− − q̃−|) (8.3)

= O(max(zN , z̃N , (1 ∨ (zN )2)/N1/2)/N1/2.

Define τ = τ+
C4.1

√
logN

(|zN |) ∧ τ+
N−1/4 logN

(|DN |), and observe that if t < τ then not only is

|zNt | ≤ C4.1

√
logN but also

|z̃Nt | ≤ |zNt |+ |DN
t | ≤ C4.1

√
logN +N−1/4 logN ≤ 2C4.1

√
logN

for large N . We use Corollary 2.6 to control |DN |. Let x = 1
2N

−1/4 logN and let
X = −x+|DN−x|, then∆?(X) ≤ 2/N1/2 ≤ x/2 for largeN . SinceDN jumps by at most x,
if |DN | ≥ x then µ(X) = sgn(DN )µ(DN ). Suppose X ≥ x/2 and t < τ , then |DN

t | ≥ 3x/2,
and since (1 ∨ (zNt )2)/N1/2 = o(DN

t ), from (8.2) we have µ(DN
t )/DN

t ≤ −µz/2. Thus,
letting µ? = 3xµz/4, we find that µt(X) ≤ −µ?. Now suppose that X ≤ x and t < τ ,
then |DN

t | ≤ 2x, and using (8.2)-(8.3) and |zNt |, |̃zNt | = O(
√
logN), |µt(z

N )| ≤ 4µzx and
σ2
t (D

N ) ≤ CN−1/2
√
logN for some C > 0 and large N , so let Cµ?

= 4µzx and let
σ2
? = CN−1/2

√
logN . Then, ∆?(X)µ?/σ

2
? = o(1) which allows us to take C∆ = 1. Then,

Γ = exp(Ω((logN)3/2)) = ω(N) and x/16Cµ?
= Ω(1), so the result follows from Corollary

2.6.

In the context of Lemma 4.6, if t < τN = τN (chN , c
Q
N , 0) then hN (t) ≤ chN ≤ logN .

Letting LN (t) denote L(iN (t), jN (t), kN (t)), since L(0, 0, 0) = 0, iN , jN , kN ≤ hN and
L is Lipschitz with constant cL, |LN (t)| ≤ cLc

h
N ≤ cL(c

h
N )1/2(logN)1/2). Let τN,D =

τN ∧ τ+
N−1/4 logN

(|DN (s)|), then

sup
t≤T

∣∣∣∣∫ t∧τN,D

0

|DN (s)LN (s)|ds
∣∣∣∣ = O(cLN

−1/4(chN )1/2(logN)3/2T ).

Since by definition τN ≤ τ+
C4.1

√
logN

(|zN |), Lemma 8.1 implies that w.h.p. τN,D = τN , so it

is enough to prove Lemma 4.6 with zN replaced by z̃N . Thus, we will prove the following
result.

Lemma 8.2. Let LN (s) denote L(iN (s), jN (s), kN (s)). In the context of Lemma 4.6 except
with z̃N in place of zN , with high probability

sup
t≤T

∣∣∣∣∫ t∧τN

0

z̃N (s)LN (s) ds

∣∣∣∣ = O(cL(c
h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2) log2N).

We begin by estimating excursions of z̃N .

Lemma 8.3. Define c∗ =
√
σ2
z/4µz. Let τ∗0 = inf{t : z̃Nt = 0} and let

τ∗1 = inf{s > τ∗0 : |z̃N (s)| > c∗}
τ∗2 = inf{s > τ∗1 : z̃N (s) = 0}.

• If C > 1/µz then w.h.p. τ∗0 ≤ C logN .
• E[τ∗1 − τ∗0 ] ≥ 1/4µz.
• There are constants θ,Θ > 0 so that E[exp(θ(τ∗2 − τ∗0 ))] ≤ Θ for large N .

• With θ,Θ as above, P

(∫ τ∗
2

τ∗
0

|z̃Ns |ds > 3c∗M + (θ + σ2
∗)M

2

)
≤ (1 + 3Θ)e−θm.
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Proof. From (8.1) we compute

µ(z̃N ) = −µz z̃
N and σ2(z̃N ) = σ2

z .

If z̃N0 > 0 then ξt = eµz(t∧τ∗
0 )z̃Nt∧τ∗

0
is a supermartingale. Since z̃Nt ≥ 2N−1/2 if τ∗0 > t,

P (τ∗0 > t | z̃N0 = z) ≤ P (ξt ≥ 2N−1/2eµzt | ξ̃0 = z) ≤
√
Nz

2
e−µzt.

By symmetry of z̃N , the same estimate holds if −z̃N0 = z. Since |z̃N | ≤ N1/2 + 2N−1/2,
the first statement follows by taking t = C logN for C > 1/µz.

To prove the second statement, let τ = τ+c∗(|z̃
N |), and note that by the strong Markov

property, τ∗1 − τ∗0 is equal to distribution to τ conditioned on z̃N0 = 0. We compute

µ((z̃N )2) = 2z̃Nµ(z̃N ) + σ2(z̃N )

= −2µz(z̃
N )2 + σ2

z . (8.4)

In particular, µ((z̃N )2) ≤ σ2
z , so (z̃Nt∧τ )

2 − σ2
z(t ∧ τ) is a supermartingale. Since (z̃N0 )2 = 0

and (z̃Nτ )2 ≥ c2∗, using optional stopping

E[τ ] ≥ E[z̃Nτ ]/σ2
z ≥ c2∗/σ

2
z = 1/4µz.

To prove the third statement it suffices to show that for large N , both P (τ∗1 − τ∗0 > t)

and P (τ∗2 − τ∗1 > t) are bounded by some function that decays exponentially in t. We
prove the two parts in the order given. Suppose |z̃N0 | ≤ c∗ and let τ = τ+c∗(|z̃

N |). From
(8.4), if |z̃N | ≤ c∗ =

√
σ2
z/4µz then µ((z̃N )2) ≥ σ2

z/2. Moreover if |z̃N | ≤ c∗ then (z̃N )2

jumps by 2(2N−1/2)z̃N − (z̃N )2 ≤ 4N−1/2c∗ for large N , and jumps at rate σ2
zN/4, so

σ2((z̃N )2) ≤ 4c2∗σ
2
z . Let Xt = (z̃Nt∧τ )

2 − (z̃N0 )2, so that for φ > 0,

−Xm
t − φ〈X〉t ≥ −Xt + (σ2

z/2− 4c2∗σ
2
zφ)(t ∧ τ).

Let φ = 1/16c2∗ so that there is σ2
z/4 in the above parentheses, noting that φ∆?(X) =

O(N−1/2) ≤ 1/2 for large N . Using Lemma 2.1 with a = 1/φ = 16c2∗, we find that

P (τ > t and Xt ≤ −16c2∗ + σ2
zt/4) ≤ 2/e.

If τ > t then |z̃Nt | ≤ c∗, so Xt ≤ 4(c∗)
2. Denoting the constant t∗ = 80c2∗/σ

2
z we find that

P (τ > t∗) ≤ 2/e.

Using the Markov property to iterate, P (τ > kt∗) ≤ (2/e)k, which proves the first part.
Taking now τ = inf{t : z̃N = 0} and j∗ the least multiple of 2N−1/2 larger than c∗,

we bound P (τ∗2 − τ∗1 > t) = P (τ > t | |z̃N0 | = 2j∗/
√
N). Since this quantity is non-

decreasing in j∗ and we only need an upper bound we may assume j∗ is even, and
by symmetry we may assume z̃N > 0. For any j let τj = inf{t : z̃Nt = 2j/

√
N} and let

τ0,j = inf{t : z̃Nt ∈ {0, 2j/
√
N}}. The approach is to condition on the number of commutes

from 2j∗/
√
N to j∗/

√
N and back, before hitting 0. Since z̃N , stopped at zero, is a

supermartingale,
P (z̃Nτ0,j∗ = 0 | z̃N0 = j∗/

√
N) ≥ 1/2,

so the number of commutes is at most geometric(1/2). It is easy to check that if a
random variable X has an exponential tail, then a geometric sum (with positive stopping
probability) of i.i.d. copies of X itself has an exponential tail. Thus it suffices to show
that both

P (τj∗/2 > t | z̃N0 = 2j∗/
√
N) and P (τ0,j∗ > t | z̃N0 = j∗/

√
N)
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are bounded by some function that decays exponentially in t, for large N . Using the
supermartingale ξ defined above, it is easy to check that

P (τj∗/2 > t | z̃N0 = 2j∗/
√
N) ≤ 2e−µzt.

Then, since τ0,j∗ ≤ inf{t : |z̃Nt | ≥ 2j∗/
√
N}, using the proof of the bound on τ∗1 − τ∗0 we

deduce that P (τ0,j∗ > kt∗ | z̃N0 = j∗/
√
N) ≤ (2/e)k. Since j∗ is even, in applying the

proof we may need to replace c∗ with a quantity up to 2N−1/2 larger, but the only effect
is an o(1) change in t∗.

To prove the fourth statement, we first note that∫ τ∗
2

τ∗
0

|z̃Ns |ds ≤ (τ∗1 − τ∗0 )c∗ +

∫ τ∗
2

τ∗
1

|z̃Ns |ds.

Since τ∗1 ≤ τ∗2 , the third statement shows P ((τ∗1 − τ∗0 )c∗ > c∗M) ≤ Θe−θM . To bound the
second term we use the fact that∫ τ∗

2

τ∗
1

|z̃Ns |ds ≤ (τ∗2 − τ∗1 ) sup
t∈[τ∗

1 ,τ
∗
2 ]

|z̃Nt |,

then control the latter quantity. For ease of notation we suppose z̃N0 = 2j∗/
√
N , let

τ = inf{t : z̃Nt = 0} and control supt≤τ z̃
N
t . Define Xt = z̃Nt∧τ , then X is a supermartingale

with X0 ≤ c∗ + 2/
√
N ≤ 2c∗ for large N , and for φ > 0

Xm
t − φ〈X〉t ≥ Xt −X0 − σ2

∗φ(t ∧ τ).

Using Lemma 2.1, if 2φ/
√
N ≤ 1/2 then P (Xt > 2c∗ + a + σ2

∗φ(t ∧ τ) for some t ≥ 0) ≤
2e−φa. Fix φ = 1. Since τ is equal in distribution in τ∗2 − τ∗1 , which is at most τ∗2 − τ∗0 ,
from the third statement P (τ > M) ≤ Θe−θM . Letting a = θM we find

P (sup
s≤τ

Xs > 2c∗ + (θ + σ2
∗)M) ≤ (1 + Θ)e−θM .

Combining with the estimate of the first term, and another estimate on τ∗2 − τ∗1 , we obtain
the desired result.

Proof of Lemma 8.2. We begin by whittling down the statement of Lemma 8.2 until it is
ready to analyze in detail. Define

L∗
N (s) = 1(s < τN )LN (s) + 1(s ≥ τN ) lim

t↑τN
LN (t).

In words, L∗
N is equal to LN until τN , at which point it remains at the last value assumed

by LN before τN . Since L∗
N (s) = LN (s) for s < τN , the statement of Lemma 8.2 is

unchanged if we replace LN with L∗
N .

In the same manner as z̃N is coupled to z̃N as described at the beginning of this
section, it can be coupled to the full infection process. Recall the chN , c

Q
N control time

τN = τN (chN , c
Q
N , ε), defined in Definition 4.4 and given on the slow time scale. Define

τN,z̃ = inf{t : |z̃N (t)| ≥ 2C4.1

√
logN}. By Lemma 8.1 and the definition of τN , w.h.p.

τN,z̃ ≥ τ+
C4.1

√
logN

(|zN |) ≥ τN ,

so it is enough to show the statement of Lemma 8.2 holds with τN,z̃ in place of τN . As in
Lemma 8.3 let c∗ =

√
σ2
z/4µz. Define τ∗0 = inf{t : z̃N (t) = 0} and for j ≥ 0,

τ∗2j+1 = inf{s > τ∗2j : |z̃N (s)| > c∗}
τ∗2j+2 = inf{s > τ∗2j+1 : z̃N (s) = 0}.
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The definition of τ∗i , i = 0, 1, 2 differs from Lemma 8.3 only by the choice of time scale.
We show the contribution to the integral up to time τ∗0 can be ignored. By Lemma 8.3,
w.h.p. τ∗0 ≤ (2/µz)N

−1/2 logN . Since iN , jN , kN ≤ hN , L(0, 0, 0) = 0 and L has Lipschitz
constant cL in the `1 norm, |LN (s)| ≤ cLhN (s). If s < τN then by definition hN (s) ≤ chN .
Since L∗

N only sees the values {LN (s) : s < τN} it follows that |L∗
N (s)| ≤ cLc

h
N for all

s ≥ 0. Since |z̃Nt | ≤ 2C4.1

√
logN for t < τN,z̃, using the above estimate on τ∗0 and

chN ≤ (chN logN)1/2, with high probability

sup
t≤T

∣∣∣∣∣
∫ t∧τ∗

0 ∧τN,z̃

0

zN (s)L∗
N (s) ds

∣∣∣∣∣ ≤ 2C4.1

√
logNcLc

h
N (2/µz)N

−1/2 logN

= O(cL(c
h
N )1/2N−1/2 log2N).

Thus, without affecting the conclusion, we may assume that τ∗0 = 0, equivalently, z̃N (0) =

0. At this point we will also replace t ∧ τN,z̃ with t as the upper endpoint; this does not
decrease the supremum over t ≤ T . To summarize thus far, it remains to show that, if
z̃N (0) = 0 and T > 0 then w.h.p.,

sup
t≤T

∣∣∣∣∫ t

0

z̃N (s)L∗
N (s) ds

∣∣∣∣ = O(cL(c
h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2) log2N). (8.5)

For j, k ≥ 0 define ξj =
∫ τ∗

2j+2

τ∗
2j

z̃N (s) ds,

Sk =

k∑
j=0

ξjL
∗
N (τ∗2j) and Gk =

∫ τ∗
2k+2

τ∗
2k

|z̃N (s)(L∗
N (s)− L∗

N (τ∗2k))|ds.

Let I denote the LHS of (8.5). If KN is such that w.h.p. τ∗2KN
≥ T , then w.h.p.

I ≤ | sup
k<KN

Sk|+
∑

k<KN

Gk. (8.6)

Since the variables {τ∗2j+2 − τ∗2j}j≥0 are i.i.d., by Lemma 8.3,

E[τ∗2j+2 − τ∗2j ] ≥ 1/(4µz

√
N) = ε/

√
N,

and since for random variable X ≥ 0, E[θ2X2/2] ≤ E[eθX ], by Lemma 8.3,

Var (τ∗2j+2 − τ∗2j) ≤ E[(τ∗2j+2 − τ∗2j)
2] ≤ (2Θ/θ2)/N = C/N.

Letting KN = 2T/E[τ∗2 − τ∗0 ] = 2
√
NT/ε we have E[τ∗2KN

] = 2T and Var (τ∗2KN
) ≤

KNC/N = 2CT/ε
√
N , so using Chebyshev’s inequality,

P (τ∗2KN
< T ) ≤

Var (τ∗2KN
)

T 2
= O(1/

√
N),

and τ∗2KN
≥ T w.h.p., as desired. It remains to estimate the terms in (8.6).

For t ≥ 0 let F(t) denote the information up to time t. The {ξj}j≥0 are i.i.d., and by
symmetry of z̃N , ξj and −ξj are equal in distribution. Because of this and since L∗

N (τ∗2j) is
F(τ∗2j)-measurable, S is a discrete time martingale. Using Doob’s L2 maximal inequality
for martingales and orthogonality of martingale increments,

E[( sup
k<KN

Sk)
2] ≤ 4E

[(KN−1∑
j=0

ξjL
∗
N (τ∗2j)

)2]
≤ c2L(c

h
N )2

KN−1∑
j=0

E[ ξ2j ]
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From Lemma 8.3 and noting the change of time scale, there are θ, C > 0 so that for large

M , P (
( ∫ τ∗

2

τ∗
0
|z̃N (s)|ds

)2
> CM4/N) ≤ Ce−θM , which implies that

E[ ξ2j ] ≤ E

[( ∫ τ∗
2

τ∗
0

|z̃N (s)|ds
)2] ≤ C/N (8.7)

for some possibly larger C > 0. It follows that

E[ | sup
k<KN

Sk| ] ≤ (E[ ( sup
k<KN

Sk)
2 ])1/2

= O(cLc
h
N (KN/N)1/2) = O(cLc

h
NN

−1/4). (8.8)

Noting that chN ≤ (chn logN)1/2, then using Markov’s inequality we find that

w.h.p. sup
k<KN

Sk = O(cL(c
h
N )1/2N−1/4 logN).

It remains to estimate
∑

k<KN
Gk. Let ξk denote

∫ τ∗
2k+2

τ∗
2k

|z̃N (s)|ds. Then

Gk ≤ ξk sup
s∈[τ∗

2k,τ
∗
2k+2]

|L∗
N (s)− L∗

N (τ∗2k)|

so by the Cauchy-Schwarz inequality

E[Gk] ≤ (E[ ξ
2

k ])
1/2

(
E
[(

sup
s∈[τ∗

2k,τ
∗
2k+2]

|L∗
N (s)− L∗

N (τ∗2k)|
)2])1/2

· (8.9)

The first term is O(1/
√
N) by the latter part of (8.7). Let ML

k denote the supremum
inside the second term. To estimate E[(ML

k )
2], recall (7.3) and note that if s < τN then

(iN (s), γjN (s), ηkN (s)) = (u∗, v∗, w∗)hN (s) +O((cQN )1/2chN ).

It follows that

ML
k = O(cL sup

τ∗
2k≤s<τ∗

2k+2

|hN (s ∧ τN )− hN (τ∗2k)|) +O(cL(c
Q
N )1/2chN ).

LetMh
k denote the above supremum. Using the simple inequality (a+ b)2 ≤ 2(a2 + b2),

E[(ML
k )

2] = O(c2LE[(Mh
k )

2] + c2Lc
Q
N (chN )2). (8.10)

We estimateMh
k . If s < τN then since |zN (s)| ≤ C4.1

√
logN and hN (s) ≤ chN , referring to

(4.8) we have
µs(hN ) = O(

√
logNchN + (chN )2) = O(chN logN)

and so ∫ s∧τN

τ∗
2k

|µr(hN )| dr = (s ∧ τN − τ∗2j)O(chN logN).

Since hN jumps by 1/
√
N at rate O(NhN ), if s < τN then σ2

s(hN ) = O(chN ).
Applying Doob’s L2-maximal inequality,

E

[(
sup

τ∗
2k≤s≤t∧τN

hN (s)− hN (τ∗2k)−
∫ s∧τN

τ∗
2k

µr(hN ) dr
)2 | Fτ∗

2k

]
≤ 4E

[(
hN (t ∧ τN )− hN (τ∗2k)−

∫ t∧τN

τ∗
2k

µr(hN ) dr
)2 | Fτ∗

2k

]
≤ (t− τ∗2k)O(chN ).
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Using again the inequality (a+ b)2 ≤ 2(a2 + b2), from the above two displays we obtain

E

[(
sup

τ∗
2k≤s≤t∧τN

|hN (s)− hN (τ∗2k)|
)2

| Fτ∗
2k

]
≤ (t− τ∗2k)O(chN ) + (t− τ∗2k)

2O((chN )2 log2N)

Letting t = τ∗2k+2 and taking an expectation we find that

E[ (Mh
k )

2 ] ≤ O(chN/
√
N) +O(N−1(chN )2 log2N)

= O(chN/
√
N).

Using (8.10) we find that

(E[(ML
k )

2])1/2 = O(cL(c
h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2).

Recalling that KN = O(
√
N) and (E[ξ

2

k])
1/2 = O(1/

√
N), from (8.9) we have

E
[ ∑

k<KN

Gk

]
= O(cL(c

h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2).

Again, using Markov’s inequality we find that

w.h.p.
∑

k<KN

Gk = O(cL(c
h
N )1/2(N−1/4 ∨ (chNc

Q
N )1/2) logN)

and the proof is complete.

9 Step 5: bounding the time for hN to reach O(1)

In this section our goal is to prove Lemma 4.7. Before proving Lemma 4.7, we need
one additional estimate, that controls the transient behaviour of zN .

Lemma 9.1. Let τ = inf{t : |zNt | ≤ C4.1N
−1/2}. Then with high probability∫ τ

0

|zNt |dt = O(|zN0 |) +O((logN)2).

Proof. We use Lemma 2.5, and assume zN0 > 0; the case zN0 < 0 is analogous. Let
µ? = x = logN . Define Xt = zNt − zN0 −

∫ t

0
µs(z

N )ds − µ?t. We note that X0 = 0,
µ(X) = −µ? and σ2(X) = σ2(zN ) = O(1), by (4.3), so let σ2

? be a large enough constant.
Since ∆?(X) = 2N−1/2, ∆?(X)µ?/σ

2
? = o(1), so we can take C∆ = 1. Since |µ(X)| = µ?,

let Cµ?
= µ?. With these choices Γ = exp(Ω(µx)) = ω(N) and x/Cµ?

= Ω(1). By Lemma
2.5, w.h.p. Xt ≤ x for all t ≤ N .

Next we show this implies the desired bound. Since zNt > 0 for t < τ by assumption,
µt(z

N ) ≤ −rzNt , with r as in the proof of Lemma 4.1. Thus if Xt ≤ x then

zNt ≤ zN0 − r

∫ t

0

zNs ds+ (t+ 1)x.

Solving by repeated substitution we find zNt ≤ zN0 e
−rt +x((1− e−rt)/r+ e−rt) = zN0 e

−rt +

O(x). So
∫ t

0
zNs ds = O(zN0 ) +O(xt). By Lemma 4.1, τ ≤ C4.1 logN w.h.p., and the result

follows.

Proof of Lemma 4.7. Recall the goal is to estimate τ = τ−C (hN ) = inf{t : hN (t) ≤ C}, as
C → ∞, assuming hN (0) = ω(1). We may assume C ≥ 1 so that hN (t) ≥ 1 for t < τ .
Recall from (4.8) that

µ(hN ) = c1zN iN − c2i
2
N + c3iN/

√
N,
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where ci, i = 1, 2, 3 are positive constants, and that σ2(hN ) = O(hN ). Using the Taylor
approximation of Lemma 2.4, if hN = ω(N−1/2) then∣∣∣∣µ( 1

hN

)
+

1

h2N
µ(hN )

∣∣∣∣ = σ2(hN )O

(
1

h3N

)
= O

(
1

h2N

)
,

and combining with the previous display,

µ

(
1

hN

)
= −c1zN iN

h2N
+ c2

i2N
h2N

+ o(1) +O

(
1

h2N

)
.

Let x(t) = 1/hN (t) and ν = 1/C, so that τ = inf{t : x(t) ≥ ν} and x(t) < ν for t < τ . Since
hN (0) → ∞, x(0) = o(1). From the above display, if t < τ then

x(t)p = −
∫ t

0

c1zN (s)iN (s)

h2N (s)
ds+

∫ t

0

c2i
2
N (s)/h2N (s)ds+ o(t) +

∫ t

0

O

(
1

h2N

)
dt. (9.1)

Since iN ≤ hN and hN (t) ≥ 1/ν for t < τ , for large N

x(t ∧ τ)p ≤ (c1/ν)

∫ t

0

|zN (s)|ds+ c4(t ∧ τ) (9.2)

where c4 is another positive constant. Let τ1 = inf{t : |zN (t)| ≤ C4.1N
−1/2}. Since zN has

constant sign on [0, τ1], using Lemma 9.1 and recalling that |z0| = o(N1/2) by assumption,
w.h.p. ∫ τ1

0

|zN (s)|ds = O(N−1/2|z0|) +O(N−1/2(logN)2) = o(1). (9.3)

To estimate the integral on s ∈ [τ1, t], couple zN to z̃N beginning at time τ1 so that
|DN (τ1)| ≤ 2N−1/2. Noting that zN (τ1) ≤ C4.1N

−1/2, by Lemma 4.1 and 8.1, w.h.p.
|DN (s)| ≤ N−1/4 logN for all s ∈ [τ1, t]. Let τ∗k be as in the proof of Lemma 8.2
except beginning with τ∗0 = τ1. Since z̃N (τ1) ∈ [0, c∗], the value of τ∗2 − τ∗0 is not
larger than if z̃N (τ∗0 ) = 0. Following that proof, if M1 > 0 is a large enough constant
then w.h.p. as N → ∞ for fixed t, τ∗

2bM1

√
Ntc ≥ t. Since E[ |ξj | ] = O(1/

√
N), letting

M2 =M1 lim supn(
√
NE[ |ξj | ]), it follows that for large N ,

E
[ ∑
k≤M1

√
Nt

∫ τ∗
2k+2

τ∗
2k

|z̃N (s)|ds
]
≤M2t.

Using Markov’s inequality on the last display, combining with the bound on |DN |, and
using the fact that τ∗

2bM1

√
Ntc ≥ t w.h.p.,

P
( ∫ t

τ1

|zN (s)|ds > (N−1/4 logN +M2/2ε)t
)
≤ ε/2 + o(1).

Combining with (9.3), we find that with probability ≥ 1− ε/2− o(1),

x(t ∧ τ)p ≤ (c4 + c1(M2/2ε+ o(1))/ν)t.

Since 1/hN jumps by O(N−1/2/h2N ) at rate O(NhN ), σ2(x) = σ2(1/hN ) ≤ c5/h
3
N = c5x

3

for some c5 > 0. Using Lemma 2.1, if a > 0 and ∆?(x)φ ≤ 1/2 then with probability at
least 1− 2e−φa, for all t ≥ 0

|x(t ∧ τ)− x(0)− x(t ∧ τ)p| ≤ a+ φc5ν
3(t ∧ τ). (9.4)
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Using the above bound on x(t)p, noting x(0) = o(1) (since h(0) → ∞) and ν ≤ 1, with
probability ≥ 1− 2e−φa − ε for large N ,

x(t ∧ τ) ≤ (c4 + c1(M2/2ε+ o(1))/ν + c5φ)t+ a+ o(1).

Let ε = ν, a = ν/4, φ = 1/ν2, letM3 = 2(c4 + c1M2 + c5) and let t = ν3/M3. If N is large
thenM2/2ε+ o(1) ≤M2/ε =M2/ν. Since ν ≤ 1 by assumption,

x(t ∧ τ) ≤ ν/2 + ν/4 + o(1) < ν

for large N , implying τ > t. Since φa = 1/4ν and ε = ν, we have shown that

lim
ν→0+

lim sup
N

P (τ ≤ ν3/M3) = 0.

To obtain the upper bound we need to take one more term in the Taylor series for
1/hN . Expanding to third order and noting that 1/hN jumps by O(N−1/2/h2N ) at rate
O(NhN ),

µ

(
1

hN

)
= −c1zN iN

h2N
+ c2

i2N
h2N

+
1

h3N
σ2(hN ) +O(N−1/2h−5

N ). (9.5)

Since we only need an upper bound on τ , we wait for an amount of time ν ∧ τ before
estimating the compensator. To estimate the first term we note that L(iN , hN ) = iN/h

2
N

is Lipschitz with constant cL = 2, when hN ≥ 1. By Lemma 4.5, we may use Lemma 4.6
with ch = logN and cQ = N−1/6 to find that w.h.p.,

sup
ν≤t≤1

∣∣ ∫ t∧τ

ν∧τ

c1zN (s)iN (s)

h2N (s)
ds
∣∣ = O(N−1/12 log3N) = o(1).

By Lemma 6.1, w.h.p. c2iN (t)2/hN (t)2 ≥ c6 for all ν ∧ τ ≤ t ≤ N1/2 ∧ τ (since Ht ≥ N1/5

for t ≤ τ ), and some c6 > 0. Combining these observations with (9.5) we find that w.h.p.,∫ t∧τ

ν

µs(x) ≥ (c6 − o(1))(t ∧ τ − ν ∧ τ).

Recalling that σ2
t (x) ≤ c5ν

3 for t < τ , using Lemma 2.1 and the above display, if a > 0

and ∆?(x)φ ≤ 1/2 then with probability at least 1− 2e−φa − o(1), for t ≥ ν,

x(t ∧ τ) ≥ x(ν ∧ τ) +
∫ t∧τ

ν∧τ

µs(x)ds− a− φc5ν
3(t ∧ τ − ν ∧ τ)

≥ ((c6 − o(1)− φc5ν
3)(t ∧ τ − ν ∧ τ)− a.

On the above event, if τ > t ≥ ν then t ∧ τ = t, ν ∧ τ = ν and x(t ∧ τ) = x(t) < ν. Taking
φ = ν−2 and a = ν, if ν is small enough and N large enough that c5ν + o(1) ≤ c6/2, then

ν ≥ (c6/2)(t− ν)− ν

and so t ≤ (1 + 2/c6)ν. Since our choice of φ, a gives e−φa = e−1/ν → 0 as ν → 0, it
follows that

lim
ν→0+

lim sup
N

P (τ > (1 + 2/c6)ν) = 0.
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10 Small values of HN

In this section our goal is to prove Lemmas 4.8 and 4.9. First we prove Lemma
4.9. Thus, given ε > 0, we suppose hN (0) ≤ δ where δ is to be determined during the
course of the proof. Let ak = 2kδ for integer k and recall τN (ctrl, 0), given by Definition
4.4. To prove Lemma 4.9 we will repeat the following step up to time τN (ctrl, 0): start
from ak + O(N−1/2) and run the process up to time τ∗k = τk ∧ τN (ctrl, 0), where τk is
the first exit time of hN from (ak−1, ak+1). Since jump sizes are O(N−1/2), if τ∗k = τk
then hN (τ∗k ) = aj + O(N−1/2) for some j ∈ {k − 1, k + 1}. Since HN (t) ≥ N1/5 for
t < τN (ctrl, 0), ak = Ω(N−0.3) for the duration of this iterative procedure. We begin by
estimating the expectation of the exit times.

Lemma 10.1. Fix a positive integer m > 0. There is a constant C10.1 so that if 4mδ is
small enough, k ≤ m and ak ≥ 2N−0.3, if hN (0) ∈ (ak−1, ak+1) then E[τ∗k ] ≤ C10.1ak for
large N .

Proof. We claim that to complete the proof it is enough to find C10.1, ε > 0 so that if
hN (0) ∈ (ak−1, ak+1) then

P (τ∗k > εC10.1ak) ≤ 1− ε. (10.1)

Indeed, one can deduce from (10.1) that

P (τ∗k > nεC10.1ak) ≤ (1− ε)n,

for any positive integer n. Now the proof finishes by noting that

E[τ∗k ] ≤
∑
n≥1

εC10.1ak(1− ε)n ≤ C10.1ak.

Thus it remains to prove (10.1). To do so we use h2N . If t < τN (ctrl, 0) then iN (t) ≤
hN (t) ≤ logN , and as shown in the proof of Theorem 1.4, for some constant σ2

∗, σ
2
t (hN ) =

(σ2
∗ + o(1))hN (t). Omitting the t, from (4.8) we then have, for constants c1, c2 > 0,

µ(h2N ) = 2hNµ(hN ) + σ2(hN )

= 2c1zN iNhN − 2c2i
2
NhN + (σ2

∗ + o(1))hN +O(N−1/2 logN). (10.2)

Let chN = 2ak, c
Q
N = N−1/6 and L = iNhN , which is Lipschitz with constant cL = O(ak) (to

see this expand i′h′− ih = i′(h′−h)+h(i′− i)). By the assumptions k ≤ m and 4mδ small,
ak = O(1). Using Lemma 4.6 and noting (chNc

Q
n )

1/2 = (N−1/6ak)
1/2 = Ω(N−(.15+1/12)) =

ω(N−1/4), for fixed T > 0, w.h.p.

sup
t≤T

∣∣∣∣∣
∫ t∧τ∗

k

0

zN (s)iN (s)hN (s)ds

∣∣∣∣∣ = O(a2kN
−1/12 log2N) = o(ak). (10.3)

Since k ≤ m, if t < τ∗k then iN (t) ≤ hN (t) ≤ 2m+1δ so 2c2iN (t)2hN (t) ≤ c′24
mδ2hN (t) for

some c′2. Thus if 4
mδ > 0 is sufficiently small and t < τ∗k ∧T , from (10.2)-(10.3) we obtain

(h2(t))p ≥ (σ2
∗ − c′24

mδ2 − o(1))ak−1t ≥ (σ2ak−1/2)t,

for all large N . On the other hand, if hN ≥ N−1/2, then h2N jumps by O(N−1/2)hN +

O(N−1) = O(N−1/2hN ) at rate O(NhN ). Thus if t < τ∗k ∧ T then σ2(h2N (t)) = O(h3N (t)) ≤
c3a

3
k+1 for some c3 > 0. Noting that ak = 2ak−1 = ak+1/2 and letting φ = σ2

∗/(64c3a
2
k), if

t < τ∗k ∧ T then

(h2N (t))p − φ〈h2N 〉t ≥ (σ2
∗/4− 8φc3a

2
k)akt ≥ (σ2

∗ak/8)t.
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Since for t < τ∗k , h
2
N (t) ≤ a2k+1δ

2 = 4a2kδ
2, we find that w.h.p.

(h2N (t))p − (h2N (t)− h2N (0))− φ〈(h2N )m〉t ≥ (σ2
∗t/8− 4akδ

2)ak.

Letting t = T = ak, a = σ2a2k/16 and taking δ ≤ σ2
∗/32, if τ

∗
k > t then

h2N (t)− h2N (0)− (h2N (t))p ≤ −(a+ φ〈(h2N )m〉t).

Since ∆?(h
2
N ) = O(N−1/2hN ) = O(N−1/2ak),

∆?(h
2
N )φ = O(N−1/2/ak) = O(N−0.5+0.3) = o(1),

using the fact that ak = Ω(N−0.3). Using Lemma 2.1 it follows that

P (τ∗k > ak) ≤ 1− ε

with ε = 1− 2e−φa and φa = (σ2
∗)

2/(210c3). Now the proof of the claim (10.1) follows by
setting C10.1 = 1/ε. This finishes the proof of the lemma.

Next, we estimate the exit probabilities.

Lemma 10.2. Fix a positive integer m > 0 and ε > 0. Let δ, τk, τ∗k be as in Lemma 10.1
and its proof. Assume hN (0) = ak +O(N−1/2) ≥ N−0.3. Then for large N and all k ≤ m,

P (hN (τ∗k ) ≥ ak+1) ≤ 1/3 + ε.

Proof. Using the facts that τk is the exit time from (ak−1, ak+1) = (ak/2, 2ak), τ∗k ≤ τk
and hN jumps by O(N−1/2), for any T > 0

E[hN (τk∗ ∧ T )]≥ 2akP (hN (τ∗k ∧T )≥ 2ak)+ (ak/2)(1−P (hN (τ∗k ∧T )≥ 2ak))−O(N−1/2).

Rearranging and noting N−1/2 = o(ak),

3

2
P (hN (τ∗k ∧ T ) ≤ 2ak) ≤

1

ak
E[hN (τ∗k ∧ T )]− 1

2
+ o(1). (10.4)

As with the derivation of (10.2), for t < τ∗k ,

µt(hN ) = c1zN (t)iN (t)− c2iN (t) +O(N−1/2 logN),

and so

E[hN (τ∗k ∧ T )]− E[hN (0)] = E

[∫ τ∗
k∧T

0

(c1zN (s)iN (s)− c2iN (s)2 +O(N−1/2 logN))ds

]
.

(10.5)
Using Lemma 4.6 with L = iN , chN = 2ak and cQN = N−1/6 and noting as in the previous
proof that (chNc

Q
N )1/2 = ω(N−1/4),∫ τ∗

k∧T

0

zN (s)iN (s) ds = O
(
akN

−1/12 log2N
)
= o(ak).

Now, the second term on the RHS of (10.5) is negative and since ak = Ω(N−0.3) the
third term is o(ak). So E[hN (τ∗k ∧ T )] ≤ E[hN (0)] + o(ak) = ak(1 + o(1)), noting that
hN (0) = ak +O(N−1/2) = ak + o(ak). Combining with (10.4),

P (hN (τ∗k ∧ T ) ≥ 2ak) ≤ (2/3)(1− 1/2 + o(1)) ≤ 1/3 + o(1).

Using Lemma 10.1 we see that we can take T > 0 large enough so that P (τ∗k > T )) ≤ ε/2,
uniformly for k ≤ m. Combining with the above display gives the desired result.
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Equipped with Lemma 10.1 and Lemma 10.2 we now prove Lemma 4.9.

Proof of Lemma 4.9. We first recall the following two facts about a simple random walk
on Z with probability p < 1/2 of increasing by 1 and (1− p) of decreasing by 1, at each
time step.

1. Starting from 0 the probability to ever reach k > 0 is (p/(1− p))k, and
2. starting from k, the expected number of jumps out of k is equal to 1/(1− 2p).

Fix a positive integer m and suppose hN (0) ≤ δ = a0. Using Lemma 10.2 and by
comparison it follows that, uniformly for k ≤ m

1. For any k > 0, the probability that hN reaches [ak,∞) is at most (1/2 + o(1))k.
2. If hN (t) = ak + O(N−1/2), the expected number of times we perform the step of

exiting (ak−1, ak+1) before time τN (ctrl, 0) is at most 3 + o(1).

Using point 2 and summing over the expected number of exits from each level (and
adding one for the initial exit, since hN (0) may not be equal to ak +O(N−1/2) for some
k) to find that

E[τN (ctrl, 0) ∧ τ+2mδ(hN )] ≤ C10.1(a0 + 3
0∑

k=−∞

ak + 3
m∑

k=1

(1/2 + o(1))kak

= C10.1δ(1 + 3 + Cm) = Dmδ

where Cm, Dm are constants that depend only on m. Using Markov’s inequality,

P (τN (ctrl, 0) ∧ τ+2mδ(hN ) ≥MDmδ) ≤ 1/M.

Let M = 2/ε so the above probability is at most ε/2. Since τN (ctrl, 0) ≤ τ−N−0.3(hN ),
using point 1, P (τN (ctrl, 0) ≥ τ+2mδ(hN )) → 0 as m → ∞, so take m large enough that
this probability is at most ε/2. Combining,

P (τN (ctrl, 0) ≥ 2Dmδ/ε ∧ τ2mδ(hN )) ≤ ε.

Take δ > 0 small enough that 2Dmδ/ε ≤ ε. Since τ+2mδ(hN ) ≤ τ+logN (hN ) for large N , the
result is proved.

Next we prove Lemma 4.8.

Proof of Lemma 4.8. Recall that τ = inf{t : HN
t = 0 or HN

t ≥ N0.24} and define

τ ′ = τ ∧ τ+
C4.1

√
logN

(|zN |).

Note that HN
0 ≤ N1/5 and that τ ′ ∧N1/4 ≥ τ ∧N1/4 w.h.p. by assumption. We will show

that i) τ ′ ≤ N1/4 w.h.p. and that ii) Hτ ′ < N .24 w.h.p. To deduce the result from these,
first combine i) with the second assumption to find that w.h.p.

τ ∧N1/4 ≤ τ ′ ∧N1/4 = τ ′,

and that since τ ′ ≤ τ , w.h.p. τ = τ ′ ≤ N1/4. Then, note that Hτ is either ≥ N .24 or is
equal to 0, so that if τ = τ ′ and Hτ ′ < N .24, then Hτ = 0.

Showing that τ ′ ≤ N1/4 w.h.p. The idea is to approximate (IN , JN ,KN ) by a multi-
type continuous time branching process. Such processes are characterized by having
transition rates that are a homogeneous linear function of the variables. In (IN , JN ,KN )

there are two non-linear interactions: I + I and S + I partnership formation. If t < τ ′

then since INt ≤ HN
t ≤ N .24, the rate at which a pair of single I form a partnership is
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O((IN )2/N) = O(N0.48−1) = o(N−1/4). Therefore, with high probability no such events
occur on the interval [0, τ ′ ∧N1/4]. S + I partnerships form at rate O(SNIN/N). If t < τ ′

then using the bound on |zN | (and omitting t),

SNIN/N = (Y N − IN )IN/N = y∗I
N + zNIN/

√
N − (IN )2/N

= y∗I +O(
√

log(N)/NIN ) + o(N−1/4)

= y∗I
N + o(N−1/4).

Thus, if we pretend the rate is y∗IN (i.e., generate transitions using two independent
sources of randomness, one with rate y∗IN and the other with rate o(N−1/4)), then
w.h.p. the process so obtained will be identical to the original process on the time
interval [0, τ ′ ∧N1/4].

Thus, the continuous time three-type (Markov) branching process (I,J ,K) obtained
by letting (I0,J0,K0) = (IN0 , J

N
0 ,K

N
0 ) and ignoring I + I transitions and the non-linear

part of S + I transitions is such that

P ((It,Jt,Kt) 6= (INt , J
N
t ,K

N
t ) for some t ≤ τ ′ ∧N1/4) = o(1).

If (IN , JN ,KN ) = (0, 0, 0) then t ≥ τ ′, so it would be enough to show the extinction time
of (I,J ,K) is o(N1/4) w.h.p. We first extract an embedded one-type CMJ (non-Markov)
branching process. To do this, we note the following two points:

1. Initial decay: each initial particle of type J ,K decays at rate ≥ r− (regardless of
its type) into 0, 1 or 2 type I particles before ever producing additional particles of
other types, and

2. Reproduction cycle: each type I particle follows the evolution described in Figure
1, yielding 0, 1 or 2 type I particles upon reaching the set {D,E, F,G}.

Since there are initially O(N0.2) particles, by point 1., with high probability, within
constant times logN time every initial particle of type J ,K has turned into 0, 1 or 2 type
I particles. Thus, since logN = o(N1/4), we may assume all initial particles have type I.

Point 2. says that we can use the Markov chain described in Figure 1 to determine the
timing and number of type I offspring of each type I particle. The offspring distribution
has mean R0 = 1 and is supported on the set {0, 1, 2}. Referring to Figure 1, the waiting
time to produce offspring is the absorption time at {D,E, F,G} starting from A, which is
at most exponential(1 + r+y∗) + exponential(r−).

In the embedded one-type process of type I particles, the set of descendants of
any particle forms a critical Galton-Watson tree. We recall a couple of facts that hold
for such trees, when the offspring distribution has finite variance. The height of the
tree (maximum distance to the root) is greater than or equal to n with probability
O(1/n), and the total number of vertices is greater than or equal to n with probability
O(n−1/2). Thus with O(N0.2) initial particles, with high probability the tallest tree has
height O(N0.22) and the sum of tree sizes is O(N0.44). In particular there are in total
O(N0.44) offspring production events. Since the waiting time for offspring is at most
the sum of two exponential random variables with fixed constant rates, the longest
waiting time for offspring is whp bounded by constant times logN . Bounding the waiting
times by their maximum and noting the height bound, whp the process dies out within
O(N0.22 logN) = o(N1/4) amount of time.

Showing that Hτ ′ < N .24 w.h.p. Using the bound on |zN | and the fact that γ/2 < η

and IN ≤ HN , from (4.7) we find that for t < τ ′,

µt(H
N ) ≤ a1

2

(√
logN

N
+O(1/N)

)
INt ≤ a1

√
logN

N
HN

t (10.6)
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for some constant a1 > 0. For b > 0 to be determined, letting f(x) = e−bx and using
Taylor’s theorem, for fixed x, y we get

f(y)− f(x) = (−b(y − x) +
b2

2
(y − x)2)e−bx − b3(y − x)3

3!
e−bz

where z is between x and y. Applying this to e−bHN

, since ∆?(H
N ) = O(1) we will have

e−bz = e−b(x+O(1)) and (y − x)3 = O(1) across jump times of HN . Noting that transition
rates are bounded by O(HN ) and multiplying by those transition rates, upon summing
over y we obtain

µ(e−bHN

) =

(
−bµ(HN ) +

b2

2
σ2(HN ) +O(b3HNeO(b))

)
e−bHN

.

Since σ2(HN ) = Ω(HN ), applying (10.6) we obtain

µ(e−bHN

) ≥

(
−a1

√
logN

N
+Ω(b) +O(b2eO(b))

)
bHNe−bHN

.

Taking b = N−0.22 and noting that b2eO(b) = o(b) we deduce µ(e−bHN

) is non-negative for

large N , so the process ξt = e−bHN
t∧τ′ is a submartingale. From the definition of τ ′, the

fact that the jumps are of size O(1) and the fact that e−bHN ≤ 1, we use the optional
stopping theorem to obtain

P (Hτ ′ ≥ N0.24) exp(−b(N0.24 +O(1))) + P (Hτ ′ < N .24)

≥ E[e−bHτ′ ] ≥ E[e−bH0 ].

Since H0 ≤ N0.2, bH0 = o(1) and bN0.24 = ω(1), so

P (Hτ ′ < N .24) ≥ e−o(1) − eω(1) = 1− o(1).

11 Computing R0

In this section we show that (3.9) is equivalent to the condition R0 = 1. To do this we
recall (1.1), namely the definition of R0:

R0 = PA(Xτ = F ) + 2PA(Xτ = G)

where τ is the hitting time of {D,E, F,G} for the Markov chain with rates drawn in
Figure 1. To calculate R0 we let

f(x) = Px(Xτ = F ) + 2Px(Xτ = G)

and note that f(D) = 0, f(E) = 0, f(F ) = 1, and f(G) = 2. By considering what happens
on the first jump from each state we see that

f(A) =
r+y∗

1 + r+y∗
f(B), (11.1)

f(B) =
λ

λ+ 1 + r−
f(C) +

r−
λ+ 1 + r−

· 1, (11.2)

f(C) =
2

2 + r−
f(B) +

r−
2 + r−

· 2. (11.3)

The equations (11.2) and (11.3) can be rewritten as

λ+ 1 + r−
λ

f(B) = f(C) +
r−
λ
,

− 2

2 + r−
f(B) = −f(C) + 2r−

2 + r−
.
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Adding these last two equations we have(
λ+ 1 + r−

λ
− 2

2 + r−

)
f(B) = r−

(
1

λ
+

2

2 + r−

)
.

Adding the fractions in the parentheses we have

(2 + r−)(λ+ 1 + r−)− 2λ

λ(2 + r−)
· f(B) = r−

r− + 2 + 2λ

λ(2 + r−)
.

Therefore we deduce

f(B) = r−
r− + 2 + 2λ

(2 + r−)(λ+ 1 + r−)− 2λ
= r−

r− + 2 + 2λ

2 + (3 + λ)r− + r2−

where we have used the simplification of the denominator used in going from (3.8) to
(3.9). Using (11.1) now we have

f(A) =
r+y∗

1 + r+y∗
· r−

r− + 2 + 2λ

2 + (3 + λ)r− + r2−

The expression on the RHS above will be equal to 1 when

(r+y∗ + 1)(2 + (3 + λ)r− + r2−) = r−(r+y∗)(r− + 2 + 2λ)

which is the same as (3.9).
When R0 = 1, f(A) = 1, so f(B) = (1 + r+y∗)/r+y∗ and

f(C) =
2r−

2 + r−
=

2

2 + r−
· f(B). (11.4)

12 Appendix

Here we prove any uncited results from Section 2.

Proof of Lemma 2.4. By Itô’s lemma [9, Theorem I.4.57],

f(Xt) = f(X0)+ (f ′(X−) ·X)t +
1

2
(f ′′(X−) · 〈Xc〉)t +

∑
s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)∆Xs),

where Xc is the continuous part of Xm. Since X has bounded jumps, both X and
〈Xc〉 are locally integrable. Furthermore, since f, f ′, f ′′ are continuous, both are locally
bounded, so since X is locally bounded, f(X), f ′(X−), f

′′(X−) are locally integrable.
Taking the compensator of both sides (and noting that 〈Xc〉 is its own compensator),

f(Xt)
p − (f ′(X−) ·Xp)t =

1

2
(f ′′(X−)〈Xc〉)t +

(∑
s≤t

(f(Xs)− f(Xs−)− f ′(Xs−)∆Xs)

)p

.

(12.1)

To obtain the result we take the derivative, but we need to estimate the last
term more carefully. By a Taylor expansion, the term under the sum is at most
1
2 (∆Xs)

2 sup|x−Xs− |≤∆?(X) |f ′′(x)|. Thus∣∣ ∑
t<s≤t+h

f(Xs)− f(Xs−)− f ′(Xs−)∆Xs

∣∣ ≤ R(h)

2

∑
t<s≤t+h

(∆Xs)
2,

where
R(h) = sup{|f ′′(x)| : |x−Xs− | ≤ ∆?(X) for some t < s ≤ t+ h}.
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Moreover, ( ∑
t<s≤t+h

(∆Xs)
2

)p

= 〈Xd〉t+h − 〈Xd〉t

where Xd is the discontinuous part of Xm. Since X is right-continuous,

lim
h→0+

R(h) = sup
|x−Xt|≤∆?(X)

|f ′′(x)|.

Let Qt denote the right-hand side of (12.1). Since 〈X〉 = 〈Xc〉+ 〈Xd〉, it follows that

|Qt+h −Qt| ≤
1

2
R(h)(〈X〉t+h − 〈X〉t).

Then, dividing by h and letting h→ 0 and referring again to (12.1) we obtain the desired
result, since d

dtf(Xt)
p = µt(f(X)), d

dtX
p
t = µ(X), d

dt 〈X〉t = σ2
t (X), and Xt− = Xt for a.e. t,

since {t : ∆Xt 6= 0} is countable.

Proof of Lemma 2.5. Suppose |X0 − x/2| ≤ ∆?(X)/2. Let τ = inf{t : |Xt − x/2| ≥ x/2}.
If t ≤ τ and φ > 0 then it follows that

Xm
t − φ〈X〉t ≥ Xt −X0 + (µ? − φσ2

?)t.

Let φ = min(µ?/σ
2
?, 1/(2∆?(X))). Hence, Xm

t − φ〈X〉t ≥ Xt −X0 for any t ≤ τ . Next set
a = (x −∆?(X))/2. Therefore, Xτ ≥ x implies that Xτ −X0 ≥ a. Since φ∆?(X) ≤ 1/2,
φ ≥ µ?/2C∆σ

2
?, and a ≥ x/4, we can apply Lemma 2.1 to conclude that

P (Xτ ≥ x | |X0 − x/2| ≤ ∆?(X)/2) ≤ 2 exp(−µ?x/8C∆σ
2
?). (12.2)

Since |µt(X)| ≤ Cµ? for t < τ and |Xτ −X0| ≥ (x−∆?(X))/2, it follows that

|Xm
τ | − φ〈X〉τ ≥ (x−∆?(X))/2− (Cµ?

+ φσ2
?)τ ≥ (x−∆?(X))/2− 2Cµ?

τ,

where the last step follows from the fact that φσ2
? ≤ µ? ≤ Cµ? . Using the same value of

φ, but changing the value of a to a = (x−∆?(X))/4 ≥ x/8, let t = (x−∆?(X))/8Cµ? ≥
x/16Cµ? . Then τ ≤ t implies that |Xm

τ | − φ〈X〉τ ≥ a. Therefore, using Lemma 2.1 we
further deduce

P (τ ≤ x/16Cµ?
| |X0 − x/2| ≤ ∆?(X)/2) ≤ 2 exp(−µ?x/16C∆σ

2
?). (12.3)

Thus taking a union bound, from (12.2)-(12.3), we deduce

P (τ ≤ x/16Cµ?
or Xτ ≥ x | |X0 − x/2| ≤ ∆?(X)/2) ≤ 4 exp(−µ?x/16C∆σ

2
?). (12.4)

Iterating the estimate bΓc times, alternately stopping the process when |Xt − x/2| ≤
∆?(X)/2 and |Xt − x/2| ≥ x/2, the result follows from a union bound.

Indeed, setting τ0 = 0,

τ2j−1 = inf{t > τ2j−2 : |Xt − x/2| ≤ ∆?(X)/2},

and

τ2j = inf{t > τ2j−1 : |Xt − x/2| ≥ x/2},

for j = 1, 2, . . . , from (12.4) we see

P (Xτ2j ≥ x or τ2j − τ2j−1 ≤ x/16Cµ?
|τ2j−1 <∞) ≤ 4 exp(−µ?x/16C∆σ

2
?).
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Hence, taking a union bound, as mentioned above, (note that τ2j−1 = ∞ for some j
automatically implies suptXt ≤ x) we see

P (Xτ2j ≥x for some j≤bΓc, or τ2bΓc ≤bΓcx/16Cµ?
|X0 ≤x/2)≤ 4bΓc exp(−µ?x/16C∆σ

2
?).

Since ∆?(X) < x it can be easily checked that if Xτ2j < x for all j ≤ bΓc then Xt < x

for all t ≤ τ2bΓc. Now the desired probability bound is immediate. This completes the
proof.

Proof of Corollary 2.6. We use the following “continuation trick”. Define a new process
X̃ by

X̃t = Xt∧τ − µ?(t− t ∧ τ).

In words, X̃ is equal toX up to time τ , at which point it decreases at a fixed deterministic
speed µ?. Since t 7→ X̃t is continuous on [τ,∞), ∆?(X̃) ≤ ∆?(X). Moreover, it is easy
to check that X̃ satisfies (2.4) assuming only 0 < X̃t < x (i.e., without assuming t < τ ).
Thus, Lemma 2.5 applies to X̃. Since Xt = X̃t for t ≤ τ , the result follows.

Proof of Lemma 2.7. We show the conditions (4.1)-(4.7) of Theorem 4.1 of [3, Chapter 7]
are satisfied. The fact that a and b are Lipschitz ensures the martingale problem for the
limit process is well-posed. (XN )p and 〈XN 〉 play the role of BN and AN respectively.
Since v>〈XN 〉tv = 〈v>XNv〉t for vector v and the latter is R-valued, the process 〈XN 〉 is
non-negative definite. We also note that Xi −Xp

i and XiXj − 〈X〉ij are local martingales
as required by (4.1) and (4.2).

Since the jump size of XN tends to 0 (4.3) is satisfied. Applying [9, Lemma I.4.24]
we see that jump size of Xp and 〈X〉 also converge to 0, which gives (4.4) and (4.5).
The requirements of (4.6) and (4.7) are immediate from (2.6)-(2.7) above. The rest is
straightforward, so we omit the details.
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