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Abstract

We show that the canonical random-cluster measure associated to isoradial graphs is
critical for all q > 1. Additionally, we prove that the phase transition of the model is
of the same type on all isoradial graphs: continuous for 1 6 q 6 4 and discontinuous
for q > 4. For 1 6 q 6 4, the arm exponents (assuming their existence) are shown
to be the same for all isoradial graphs. In particular, these properties also hold on
the triangular and hexagonal lattices. Our results also include the limiting case of
quantum random-cluster models in 1 + 1 dimensions.
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1 Introduction

The random-cluster model is a dependent percolation model that generalises Bernoulli
percolation. It was introduced by Fortuin and Kasteleyn in [21] to unify percolation theory,
electrical network theory and the Potts model. The spin correlations of the Potts model
get rephrased as cluster connectivity properties of its random-cluster representation,
and can therefore be studied using probabilistic techniques coming from percolation
theory.

The random-cluster model on the square lattice has been the object of intense study
in the past few decades. A duality relation enables to prove that the model undergoes
a phase transition at the self-dual value pc =

√
q

1+
√
q of the edge-parameter [3] (see

also [16, 17, 18]). It can also be proved that the distribution of the size of finite clusters
has exponential tails when the model is non-critical. Also, the critical phase is now fairly
well understood: the phase transition of the model is continuous if the cluster-weight
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Universality for the random-cluster model on isoradial graphs

belongs to [1, 4] [20] and discontinuous if it is greater than 4 [15]. When the cluster-
weight is equal to 2, the random-cluster model is coupled with the Ising model, and is
known to be conformally invariant [42, 10] (we also refer to [19] for a review).

A general challenge in statistical physics consists in understanding universality,
i.e., that the behaviour of a certain model is not affected by small modifications of its
definition. This is closely related to the so-called conformal invariance of scaling limits:
when we scale out the model at criticality, the resulting limit should be preserved under
conformal transformations, including translations, rotations and Möbius maps.

The goal of this paper is to prove a form of universality for a certain class of random-
cluster models. Specifically we aim to transfer results obtained for the square lattice
to a larger class of graphs called isoradial graphs, i.e., planar graphs embedded in the
plane in such a way that every face is inscribed in a circle of radius one. A specific
random-cluster model is associated to each such graph, where the edge-weight of every
edge is an explicit function of its length. Moreover, the edge-weight is expected to
compensate the inhomogeneity of the embedding and render the model conformally
invariant in the limit.

Isoradial graphs were introduced by Duffin in [13] in the context of discrete complex
analysis, and later appeared in the physics literature in the work of Baxter [1], where
they are called Z-invariant graphs. The term isoradial was only coined later by Kenyon,
who studied discrete complex analysis on these graphs [29]. Since then, isoradial graphs
have been studied extensively; we refer to [11, 32, 36] for literature on the subject.
Several mathematical studies of statistical mechanics on isoradial graphs have appeared
in recent years. The connection between the dimer and Ising models on isoradial graphs
was studied in [6, 7]. In [11], the scaling limit of the Ising model and that of its associated
random-cluster model with q = 2 was shown to be the same on isoradial graphs as on the
square lattice. For other values of q > 1, the existence of the scaling limit of the random-
cluster model is still out of reach. However, for Bernoulli percolation (which corresponds
to q = 1) a universality result for isoradial graphs was obtained in [25, 26, 27]. In the
present paper, we generalise the result of [27] to all random-cluster models with q > 1.

1.1 Definition of the model

Isoradial graphs An isoradial graph G = (V,E) is a planar graph embedded in the
plane in such a way that (i) every face is inscribed in a circle of radius 1 and (ii) the
centre of each circumcircle is contained in the corresponding face. We sometimes call
the embedding isoradial. Note that an isoradial graph is necessarily infinite.

Given an isoradial graph (which we call the primal graph), we can construct its dual
graph G∗ = (V∗,E∗) as follows: V∗ is composed of the centres of circumcircles of faces
of G. By construction, every face of G is associated with a dual vertex. Then, E∗ is
the set of edges between dual vertices whose corresponding faces share an edge in G.
Edges of E∗ are in one-to-one correspondence with those of E. We denote the dual edge
associated to e ∈ E by e∗. When constructed like this, G∗ is also an isoradial graph.

The diamond graph G� associated to G (and G∗) has vertex set V ∪V∗ and an edge
between vertices u ∈ V and v ∈ V∗ if v is the centre of a face containing u. All edges
of G� are of length 1, and G� is a rhombic tiling of the plane. Conversely, each rhombic
tiling of the plane corresponds to a primal/dual pair of isoradial graphs. It will be often
convenient to think of isoradial graphs through their diamond graphs. See Figure 1 for
an illustration.

The isoradial graphs considered in this paper are assumed to be doubly-periodic. In
other words, given such a graph G, it is invariant under the action of a certain lattice
Λ ≈ Z⊕ Z; moreover, G/Λ is a finite graph embedded in the torus T := R2/Λ. We will
always translate G so that 0 is a vertex of G, which we call the origin.
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Figure 1: The black graph is (a finite part of) an isoradial graph. All its finite faces can
be inscribed into circumcircles of radius one. The dual vertices (in white) have been
drawn in such a way that they are the centres of these circles; the dual edges are in
dotted lines. The diamond graphs is drawn in gray in the right picture.

The random-cluster model. Fix an isoradial graph G = (V,E). For q > 1 and β > 0,
each edge e ∈ E is assigned a weight pe(β) =

ye(β)
1+ye(β)

, where ye(β) is given by

if 1 6 q < 4, ye(β) = β
√
q sin(r(π−θe))

sin(rθe)
, where r = 1

π cos−1
(√

q

2

)
;

if q = 4, ye(β) = β 2(π−θe)
θe

;

if q > 4, ye(β) = β
√
q sinh(r(π−θe))

sinh(rθe)
, where r = 1

π cosh−1
(√

q

2

)
.

(1.1)

In the above equations, θe ∈ (0, π) is the angle subtended by e; that is, θe is the angle at
the centre of the circle corresponding to any of the two faces bordered by e; see Figure 2.
This family of values can be found in [31, Sec. 5.3 and Prop. 2] and [4]. Note that the
expression for q = 4 is the common limit q → 4 of the expressions for q < 4 and q > 4.

e θe

Figure 2: The edge e ∈ E and its subtended angle θe.

The random-cluster model on a finite subgraph G = (V,E) of G is defined as follows
(see also [23] for a manuscript on the subject). A random-cluster configuration ω = (ωe :

e ∈ E) is an element of {0, 1}E . A configuration can be seen as a graph with vertex set V
and edge set {e ∈ E : ωe = 1}. Write k0(ω) for the number of connected components, also
called clusters, of the graph ω. For q > 0 and β > 0, the probability of a configuration ω

is equal to

φ0
G,β,q(ω) :=

qk0(ω)
∏
e∈E

pe(β)
ωe(1− pe(β))

1−ω(e)

Z0(G, β, q)
=

qk0(ω)
∏
e∈E

ye(β)
ωe

Z̃0(G, β, q)
, (1.2)
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where Z0(G, β, q) and Z̃0(G, β, q) are normalising constants called partition functions;
they are chosen such that φ0

G,β,q is a probability measure. In particular, here we have

Z0(G, β, q) =
∏

e∈E(1 − pe(β))Z̃
0(G, β, q). We note that both formulations with pe or

ye are equivalent and in what follows, we will switch between them according to our
convenience. The measure φ0

G,β,q is called the random-cluster measure with free bound-
ary conditions. Similarly, one defines the random-cluster measures φ1

G,β,q with wired
boundary conditions as follows. Let ∂G be the set of vertices of G with at least one
neighbour outside of G:

∂G =
{
u ∈ V : ∃v ∈ V \ V such that {u, v} ∈ E

}
.

Write k1(ω) for the number of connected components of ω, when all connected compo-
nents intersecting ∂G are counted as 1. Then, φ1

G,β,q is defined as φ0
G,β,q, with k1 instead

of k0.
Other boundary conditions may be defined and stand for connections outside of G.

They are represented by partitions of ∂G. Random-cluster measures with such boundary
conditions are defined as above, with the number of connected components intersecting
∂G being computed in a way that accounts for connections outside G.

For a configuration ω on G, its dual configuration ω∗ is the configuration on G∗

defined by ω∗(e∗) = 1 − ω(e) for all e ∈ E. If ω is chosen according to φξ
G,β,q for some

boundary conditions ξ, then ω∗ has law φξ∗

G∗,β−1,q, where ξ∗ are boundary conditions that
depend on ξ. Most notably, if ξ ∈ {0, 1} then ξ∗ = 1− ξ. Considering the above, one may
be tempted to declare the models with β = 1 self-dual. Note however that the dual graph
is generally different from the primal, and the tools associated with self-duality do not
apply.

For q > 1, versions of these measures may be obtained for the infinite graph G by
taking weak limits of measures on finite subgraphs G of G that increase to G (see [23,
Sec. 4]). The measures on G should be taken with free or wired boundary conditions;
the limiting measures are then denoted by φ0

G,β,q and φ1
G,β,q, respectively, and are called

infinite-volume measures with free and wired boundary conditions.
We will be interested in connectivity properties of the (random) graph ω ∈ {0, 1}E.

For A,B ⊂ R2, we say that A and B are connected, denoted by A↔ B, if there exists a
connected component of ω intersecting both A and B (here we see edges in ω as subsets
of the plane). Similarly, for a region R ⊂ R2, we say that A and B are connected in R,

denoted by A
R←→ B, if there exists a connected component of ω ∩R intersecting both A

and B. For u ∈ V, write u↔∞ if u is in an infinite connected component of ω.
Let Bn be the ball of radius n for the Euclidean distance, and ∂Bn its boundary. Below,

we will often identify a subset S of the plane with the subgraph of G induced by the
vertices (of G) within it.

1.2 Results for the classical random-cluster model

The square lattice embedded so that each face is a square of side-length
√
2 is an

isoradial graph. We will denote it abusively by Z2 and call it the regular square lattice.
The edge-weight associated to each edge of Z2 by (1.1) is y(β) = β

√
q (or p(β) =

β
√
q

1+β
√
q ).

When β = 1, we have p =
√
q

1+
√
q , which is indeed the critical parameter for the random-

cluster model on the square lattice proven in [3]. Moreover, the phase transition of
the model was shown to be continuous when q ∈ [1, 4] [20] and discontinuous when
q > 4 [15]. The following two theorems generalise these results to periodic isoradial
graphs.

Theorem 1.1. Fix a doubly-periodic isoradial graph G and 1 6 q 6 4. Then,
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• φ1
G,1,q[0↔∞] = 0 and φ0

G,1,q = φ1
G,1,q;

• there exist a, b > 0 such that for all n > 1,

n−a 6 φ0
G,1,q

[
0↔ ∂Bn

]
6 n−b;

• for any ρ > 0, there exists c = c(ρ) > 0 such that for all n > 1,

φ0
R,1,q

[
Ch(ρn, n)

]
> c,

where R = [−(ρ + 1)n, (ρ + 1)n] × [−2n, 2n] and Ch(ρn, n) is the event that there
exists a path in ω ∩ [−ρn, ρn]× [−n, n] from {−ρn} × [−n, n] to {ρn} × [−n, n].

The last property is called the strong RSW property (or simply RSW property) and
may be extended as follows: for any boundary conditions ξ,

c 6 φξ
R,1,q

[
Ch(ρn, n)

]
6 1− c, (1.3)

for any n > 1 and some constant c > 0 depending only on ρ. In words, crossing
probabilities remain bounded away from 0 and 1 uniformly in boundary conditions and
in the size of the box (provided the aspect ratio is kept constant). For this reason, in
some works (e.g. [27]) the denomination box crossing property is used.

The strong RSW property was known for Bernoulli percolation on the regular square
lattice from the works of Russo and Seymour and Welsh [40, 41], hence the name. The
term strong refers to the uniformity in boundary conditions; weaker versions were
developed in [3] for the square lattice. Hereafter, we say the model has the strong RSW
property if (1.3) is satisfied.

The strong RSW property is indicative of a continuous phase transition and has
numerous applications in describing the critical phase. In particular, it implies the first
two points of Theorem 1.1. It is also instrumental in the proofs of mixing properties and
the existence of certain critical exponents and subsequential scaling limits of interfaces.
We refer to [20] for details.

Theorem 1.2. Fix a doubly-periodic isoradial graph G and q > 4. Then,

• φ1
G,1,q[0↔∞] > 0;

• there exists c > 0 such that for all n > 1, φ0
G,1,q[0↔ ∂Bn] 6 exp(−cn).

Note that the above result is also of interest for regular graphs such as the triangular
and hexagonal lattices. Indeed, the transfer matrix techniques developed in [15] are
specific to the square lattice and do not easily extend to the triangular and hexagonal
lattices.

The strategy of the proof for Theorems 1.1 and 1.2 is the same as in [27]. There,
Theorem 1.1 was proved for q = 1 (Bernoulli percolation). The authors explained how
to transfer the RSW property from the regular square lattice model to more general
isoradial graphs by modifying the lattice step by step. The main tool used for the transfer
is the star-triangle transformation.

In this article, we will follow the same strategy, with two additional difficulties:

• The model has long-range dependencies, and one must proceed with care when
handling boundary conditions.

• For q 6 4, the RSW property is indeed satisfied for the regular square lattice (this
is the result of [20]), and may be transferred to other isoradial graphs. This is not
the case for q > 4, where a different property needs to be transported, and some
tedious new difficulties arise.
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The results above may be extended to isoradial graphs which are not periodic but
satisfy the so-called bounded angles property and an additional technical assumption
termed the square-grid property in [27]. We will not discuss this generalisation here and
simply stick to the case of doubly-periodic graphs. Interested readers may consult [27]
for the exact conditions required for G; the proofs below adapt readily.

A direct corollary of the previous two theorems is that isoradial random-cluster
models are critical for β = 1. This was already proved for the Ising model (q = 2) in [34]
and for q > 4 in [4] using different tools.

Corollary 1.3. Fix G a doubly-periodic isoradial graph and q > 1. Then, for any β 6= 1,
one has φ1

G,β,q = φ0
G,β,q and

• when β < 1, there exists cβ > 0 such that for any x, y ∈ V,

φ1
G,β,q[x↔ y] 6 exp(−cβ‖x− y‖);

• when β > 1, φ0
G,β,q[x↔∞] > 0 for any x ∈ V.

For 1 6 q 6 4, arm exponents at the critical point β = 1 are believed to exist and to
be universal (that is they depend on q and the dimension, but not on the structure of the
underlying graph). Below we define the arm events and effectively state the universality
of the exponents, but do not claim their existence.

Fix k ∈ {1} ∪ 2N. For N > n, define the k-arm event Ak(n,N) to be the event
that there exists k disjoint paths P1, . . . ,Pk in counterclockwise order, contained in
[−N,N ]2 \ (−n, n)2, connecting ∂[−n, n]2 to ∂[−N,N ]2, with P1,P3, . . . contained in ω

and P2,P4, . . . contained in ω∗. Note that this event could be void if n is too small
compared to k; we will always assume n is large enough to avoid such degenerate
situations.

For continuous phase transitions (that is for q ∈ [1, 4]) it is expected that,

φ0
R,1,q[Ak(n,N)] =

( n

N

)αk+o(1)

,

for some αk > 0 called the k-arm exponent. The RSW theory provides such polynomial
upper and lower bounds, but the exponents do not match.

The one-arm exponent of the model describes the probability for the cluster of a
given point to have large radius under the critical measure; the four-arm exponent is
related to the probability for an edge to be pivotal for connection events.

Theorem 1.4 (Universality of arm exponents). Fix G a doubly-periodic isoradial graph
and 1 6 q 6 4. Then, for any k ∈ {1} ∪ 2N, there exists a constant c > 0 such that, for all
N > n large enough,

c φ0
Z2,1,q[Ak(n,N)] 6 φ0

G,1,q[Ak(n,N)] 6 c−1φ0
Z2,1,q[Ak(n,N)].

1.3 Results for the quantum random-cluster model

The random-cluster model admits a quantum version, as described in [24, Sec. 9.3]
for q = 2. Consider the set Z × R as a system of vertical axis. Let C and B be two
independent Poisson point processes with parameters λ and µ respectively, the first on
Z×R, the second on ( 12 + Z)×R. Call the points of the former cuts and those of the
latter bridges. For any realisation of the two processes, let ω be the subset of R2 formed
of:

• the set Z×R with the exception of the points in B;

• a horizontal segment of length 1 centered at every point of C.
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For a rectangle R = [a, b]× [c, b] ⊂ R2 with a, b ∈ Z, define the quantum random-cluster
measure on R by weighing each configuration ω with respect to the number of clusters
in ω. More precisely, we define φQ,R,λ,µ to be the quantum random-cluster measure with
parameters λ, µ and q > 0 by

dφ0
Q,R,λ,µ(ω) ∝ qk(ω)dPλ,µ(ω)

where Pλ,µ is the joint law of the Poisson point processes B and C, and k(ω) is the number
of connected components of ω ∩R (notice that this number is a.s. finite).

Similarly, one may define measures with wired boundary conditions φ1
Q,R,λ,µ by

altering the definition of k. Infinite-volume measures may be defined by taking limits
over increasing rectangular regions R, as in the classical case.

As will be discussed in Section 5, the quantum model may be seen as a limit of
isoradial models on increasingly distorted embeddings of the square lattice. As a result,
statements similar to Theorems 1.1, 1.2 and Corollary 1.3 apply to the quantum setting.
In particular, we identify the critical parameters as those with µ

λ = q. This critical value
has already been computed earlier in [39, 5] for the case of the quantum Ising model
(q = 2).

Theorem 1.5. If q ∈ [1, 4] and µ/λ = q, then

• φ1
Q,λ,µ[0↔∞] = 0 and φ0

Q,λ,µ = φ1
Q,λ,µ;

• there exist a, b > 0 such that for all n > 1,

n−a 6 φ0
Q,λ,µ

[
0↔ ∂Bn

]
6 n−b;

• for any ρ > 0, there exists c = c(ρ) > 0 such that for all n > 1,

φ0
Q,R,λ,µ

[
Ch(ρn, n)

]
> c,

where R = [−(ρ + 1)n, (ρ + 1)n] × [−2n, 2n] and Ch(ρn, n) is the event that there
exists a path in ω ∩ [−ρn, ρn]× [−n, n] from {−ρn} × [−n, n] to {ρn} × [−n, n].

If q > 4 and µ/λ = q, then

• φ1
Q,λ,µ[0↔∞] > 0;

• there exists c > 0 such that for all n > 1, φ0
Q,λ,µ[0↔ ∂Bn] 6 exp(−cn).

Finally, if µ/λ 6= q, then φ0
Q,λ,µ = φ1

Q,λ,µ and

• when µ/λ < q, there exists cµ/λ > 0 such that for any x, y ∈ Z×R,

φ0
Q,λ,µ[x↔ y] 6 exp(−cµ/λ‖x− y‖).

• when µ/λ > q, φ0
Q,λ,µ[0↔∞] > 0.

Notice that multiplying both λ and µ by a factor α is tantamount to dilating the
configuration ω vertically by a factor of 1/α. Hence it is natural that only the ratio µ/λ

plays a role in determining criticality.
However, for q ∈ [1, 4], there are reasons to believe that for the specific values

λ =
4r√

q(4− q)
and µ =

4r
√
q

√
4− q

,

the model is rotationally invariant at large scale, as will be apparent from the link to
isoradial graphs.
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Organisation of the paper Section 2 contains background on the star-triangle trans-
formation and how it acts on isoradial graphs. It also sets up the strategy for gradually
transforming the regular square lattice into general isoradial graphs. This is done in
two stages: first the regular square lattice is transformed into general isoradial square
lattices, then into bi-periodic isoradial graphs. This two-stage process is repeated in
each of the following two sections.

The proofs of Theorems 1.1 and 1.4 are contained in Section 3, while that of Theo-
rem 1.2 in Section 4. The reason for this partition is that the tools in the case 1 6 q 6 4

and q > 4 are fairly different. Section 5 contains the adaptation to the quantum case
(Theorem 1.5).

Several standard computations involving the random-cluster model and the RSW
technology are necessary. In order not to over-burden the paper, readers can refer to
appendixes of [33].

2 Star-triangle transformation

In this section, we introduce the main tool of our article: the star-triangle transforma-
tion, also known as the Yang-Baxter relation. This transformation was first discovered
by Kennelly in 1899 in the context of electrical networks [28]. Then, it was discovered
to be a key relation in different models of statistical mechanics [38, 2] indicative of the
integrability of the system.

2.1 Abstract star-triangle transformation

For a moment, we consider graphs as combinatorial objects without any embedding.
Consider the triangle graph 4 = (V,E) and the star graph = (V ′, E′) shown in
Figure 3; the boundary vertices of both graphs are {A,B,C}. Write Ω = {0, 1}E and
Ω′ = {0, 1}E′

for the two spaces of percolation configurations associated to these two
graphs. Additionally, consider two triplets of parameters, p = (pa, pb, pc) ∈ (0, 1)3 for the
triangle and p′ = (p′a, p

′
b, p

′
c) ∈ (0, 1)3 for the star, associated with the edges of the graph

as indicated in Figure 3. For boundary conditions ξ on {A,B,C}, denote by φξ
4,p,q (and

φξ

,p′,q
) the random-cluster measure on 4 (and , respectively) with cluster-weight q

and parameters p (and p′, respectively). For practical reasons write

yi =
pi

1− pi
and y′i =

p′i
1− p′i

.

pa

pbpc

A

B C

O

p′
a

p′
b p′

c

A

B C

Figure 3: Triangle and star graphs with parameters indicated on edges.

The two measures are related via the following relation.

Proposition 2.1 (Star-triangle transformation). Fix a cluster weight q > 1 and suppose
the following conditions hold:

yaybyc + yayb + ybyc + ycya = q, (2.1)

yiy
′
i = q, ∀i ∈ {a, b, c}. (2.2)
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Then, for any boundary conditions ξ, the connections between the points A,B,C inside
the graphs 4 and have same law under φξ

4,p,q and φξ

,p′,q
, respectively.

Remark 2.2. In light of (2.2), the relation (2.1) is equivalent to

y′ay
′
by

′
c − q(y′a + y′b + y′c) = q2. (2.3)

The statement of Proposition 2.1 is actually more precise than that of [31, Lem. 5].
In [31], it is proved that the partition functions of φξ

4,p,q and φξ

,p′,q
are proportional

with the same constant of proportionality for any boundary condition ξ, whereas our
proposition states that this proportionality even holds for any given boundary condition
and any connection inside the triangle and star.

The proof of the proposition is a straightforward computation of the probabilities of
the different possible connections between A, B and C in the two graphs.

Proof. The probabilities of the different possible connections between A, B and C in
4 and with different boundary conditions are summarized in the following tables.
For ease of notation, the probabilities are given up to a multiplicative constant; the
multiplicative constant is the inverse of the sum of all the terms in each column. Different
tables correspond to different boundary conditions; each line to one connection event.
We exclude symmetries of boundary conditions.

{{A,B}, C} In 4 In
all disconnected q q(q + y′a + y′b + y′c)

A↔ B = C ycq y′ay
′
bq

B ↔ C = A ya y′by
′
c

C ↔ A = B yb y′cy
′
a

A↔ B ↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by

′
c

{A,B,C} In 4 In
all disconnected 1 q + y′a + y′b + y′c
A↔ B = C yc y′ay

′
b

B ↔ C = A ya y′by
′
c

C ↔ A = B yb y′cy
′
a

A↔ B ↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by

′
c

{{A}, {B}, {C}} In 4 In
all disconnected q2 q2(y′a + y′b + y′c + q)

A↔ B = C ycq y′ay
′
bq

B ↔ C = A yaq y′by
′
cq

C ↔ A = B ybq y′cy
′
aq

A↔ B ↔ C yayb + ybyc + ycya + yaybyc y′ay
′
by

′
c

Table 1: Probabilities of different connection events with different boundary conditions.

It is straightforward to check that the corresponding entries in the two columns of
each table are proportional, with ratio (right quantity divided by the left one) q2/yaybyc
each time.

In light of Proposition 2.1, the measures φξ
4,p,q and φξ

,p′,q
may be coupled in a way

that preserves connections. For the sake of future applications, we do this via two
random maps T and S from {0, 1} to {0, 1}4, and conversely. These random mappings
are described in Figure 4; when the initial configuration is such that the result is random,
the choice of the resulting configuration is done independently of any other randomness.
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and similarly for all pairs of edges

y′
a

P ′

q

P ′

y′
b

P ′

y′
c

P ′

ybyc

P

yaybyc

P

ycya

P

yayb

P

and similarly for all single edges

S

S

T

T

T

S

Figure 4: The random maps T and S. Open edges are represented by thick segments,
closed edges by dashed ones. In the first and last lines, the outcome is random: it is
chosen among four possibilities with probabilities indicated below. The normalizing
constants are P ′ = q + y′a + y′b + y′c = y′ay

′
by

′
c/q and P = yaybyc + yayb + ybyc + ycya = q.

Proposition 2.3 (Star-triangle coupling). Fix q > 1, boundary conditions ξ on {A,B,C}
and triplets p ∈ (0, 1)3 and p′ ∈ (0, 1)3 satisfying (2.1) and (2.2). Let ω and ω′ be
configurations chosen according to φξ

4,p,q and φξ

,p′,q
, respectively. Then,

1. S(ω) has the same law as ω′,

2. T (ω′) has the same law as ω,

3. for x, y ∈ {A,B,C}, x 4, ω←−−→ y if and only if x
, S(ω)←−−−−→ y,

4. for x, y ∈ {A,B,C}, x , ω′

←−−→ y if and only if x
4, T (ω′)←−−−−→ y.

Proof. The points 3 and 4 are trivial by Figure 4. Points 1 and 2 follow by direct
computation from the construction of S and T , respectively, with the crucial remark that
the randomness in S and T is independent of that of ω and ω′, respectively.

2.2 Star-triangle transformation on isoradial graph

Next, we study the star-triangle transformation for isoradial graphs. We will see
that when star-triangle transformations are applied to isoradial graphs with the random-
cluster measure given by isoradiality when β = 1, what we get is exactly the random-
cluster measure on the resulting graph.

Proposition 2.4. Fix q > 1 and β = 1. Then, the random-cluster model is preserved
under star-triangle transformations in the following sense.

• For any triangle ABC contained in an isoradial graph, the parameters yAB, yBC and
yCA associated by (1.1) with the edges AB, BC and CA, respectively, satisfy (2.1).
Moreover, there exists a unique choice of point O such that, if the triangle ABC is
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replaced by the star ABCO, the resulting graph is isoradial and the parameters
associated with the edges CO, AO, BO by (1.1) are related to yAB, yBC and yCA

as in (2.2).

• For any star ABCO contained in an isoradial graph, the parameters yOC , yOA and
yOB associated by (1.1) with the edges CO, AO and BO, respectively, satisfy (2.1).
Moreover, if the star ABCO is replaced by the triangle ABC, the resulting graph
is isoradial and the parameters associated with the edges AB, BC, CA by (1.1)
are related to yOC , yOA and yOB as in (2.2).

Proof. We only give the proof of the first point; the second may be obtained by con-
sidering the dual graph. Let ABC be a triangle contained in an isoradial graph
G. Write a, b, c for the angles subtended to the edges BC, AC, AB, respectively.
Then, a + b + c = 2π. A straightforward trigonometric computation shows that then
yaybyc + yayb + ybyc + ycya − q = 0.

Permute the three rhombi of G� corresponding to the edges AB, BC, CA as described
in Figure 5 and let O be their common point after permutation. Let G̃ be the graph
obtained from G by adding the vertex O and connecting it to A,B and C and removing
the edges AB, BC, CA. Since G̃ has a diamond graph (as depicted in Figure 5), it is
isoradial. Moreover, the angles subtended by the edges OA, OB and OC are π − a, π − b

and π − c, respectively. It follows from (1.1) that the parameters of the edges OA, OB

and OC are related to those of the edges AB, BC and CA by (2.2).

A

B
C

b

a

c

A

B
C

π − b
π − a

π − c

O

Figure 5: A local triangle subgraph with corresponding subtended angles a, b and c.
Note that a+ b+ c = 2π. The order of crossing of the three tracks involved is changed.

Triangles and stars of isoradial graphs correspond to hexagons formed of three
rhombi in the diamond graph. Thus, when three such rhombi are encountered in a
diamond graph, they may be permuted as in Figure 5 using a star-triangle transformation.
We will call the three rhombi the support of the star-triangle transformation.

Let ω be a configuration on some isoradial graph G and σ a star-triangle transforma-
tion that may be applied to G. When applying σ to G, the coupling of Proposition 2.3
yields a configuration that we will denote by σ(ω).

Consider an open path γ in ω. Then, define σ(γ) the image of γ under σ to be the
open path of σ(ω) described as follows.

• If an endpoint of γ is adjacent to the support of σ, then we set σ(γ) to be γ plus the
additional possibly open edge if the latter has an endpoint on γ, which is given by
the first line of Figure 4.

• If γ does not cross (and is not adjacent to) the support of σ, we set σ(γ) = γ.

• Otherwise, γ intersects the support of σ in one of the ways depicted in the first two
lines of Figure 6. Then, we set σ(γ) to be identical to γ outside the support of σ.
And in the support of star-triangle transformation, since σ preserves connections,
the part of γ inside may be replaced by an open path as in the same figure. Notice
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the special case when γ ends in the centre of a star and the corresponding edge is
lost when applying σ (third line of Figure 6).

or

or

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

transforms
to

transforms
to

transforms
to

Figure 6: The effect of a star-triangle transformation on an open path. In the second
line, the second outcome is chosen only if the edge AB is closed. The fact that the result
is always an open path is guaranteed by the coupling that preserves connections. In the
last case, the open path may loose one edge.

2.3 Details on isoradial graphs: train tracks and bounded-angles property

Let G be an isoradial graph. Recall that G� is the diamond graph associated with
G, whose faces are rhombi. Each edge e of G corresponds to a face of G�, and the
angle θe associated to e is one of the two angles of that face. We say that G satisfies the
bounded-angles property with parameter ε > 0 if all the angles θe of edges e ∈ E are
contained in [ε, π − ε]. Equivalently, edges of G have parameter pe bounded away from 0

and 1 uniformly. The property also implies that the graph distance on G� or G and the
euclidean distance are quasi-isometric.

Write G(ε) for the set of doubly-periodic isoradial graphs satisfying the bounded-
angles property with parameter ε > 0.

Define a train track [8, 9] as a doubly-infinite sequence of faces (ri)i∈Z of G� such that
the intersections (ri ∩ ri+1)i∈Z are non-empty, distinct and parallel segments (Figure 7).

A train track as above may also be viewed as an arc in R2 which connects the
midpoints of the edges (ri ∩ ri+1)i∈Z. These edges are called the transverse segments of
the track, and the angle they form with the horizontal line is called the transverse angle
of the track.

Write T (G) for the set of train tracks of G. Notice that T (G) = T (G∗) since the
diamond graph is the same for the primal and dual graphs. Most commonly, T (G) is
regarded only up to homeomorphism. Then, it only encodes the structure of G; the
embedding of G may be recovered from the values of the transverse angles of the tracks.

One can easily check that the rhombi forming a track are all distinct, thus a track
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Figure 7: The train track representation (in dotted red lines) of the isoradial graph in
Figure 1. Transverse edges of a track are drawn in blue.

does not intersect itself. Furthermore, two distinct tracks can only have at most one
intersection. A converse theorem has been shown by Kenyon and Schlenker [32].

Each face of G� corresponds to an intersection of two train tracks. A hexagon in G�

(that is a star or triangle in G) corresponds to the intersection of three train tracks, as
in Figure 5. The effect of a star-triangle transformation is to locally permute the three
train tracks involved in the hexagon by “pushing” one track over the intersection of the
other two.

2.4 Switching between isoradial graphs

As explained in the introduction, the strategy of the proof is to transform the reg-
ularly embedded square lattice into arbitrary doubly-periodic isoradial graphs using
star-triangle transformations. This will enable us to transfer estimates on connection
probabilities from the former to the latter. Below, we explain the several steps of the
transformation.

2.4.1 From regular square lattice to isoradial square lattice

In this section we will consider isoradial embeddings of the square lattice. As described
in [27], a procedure based on track exchanges transforms one isoradial embedding of
the square lattice into a different one. This method was first noted by Onsager [37]
with details using the approach of transfer matrices in [2, Sec. 6.4]. In addition to [27],
the effect of boundary conditions needs to be taken into account; a construction called
convexification [12, Lem. 4.3] is therefore required.

Isoradial embeddings of the square lattice may be encoded by two doubly-infinite
sequences of angles. Let α = (αn)n∈Z and β = (βn)n∈Z be two sequences of angles in
[0, π) such that

sup{αn : n ∈ Z} < inf{βn : n ∈ Z},
inf{αn : n ∈ Z} > sup{βn : n ∈ Z} − π.

(2.4)

Then, define Gα,β to be the isoradial embedding of the square lattice with vertical train
tracks (sn)n∈Z with transverse angles (αn)n∈Z and horizontal train tracks (tn)n∈Z with

EJP 23 (2018), paper 96.
Page 13/70

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP223
http://www.imstat.org/ejp/


Universality for the random-cluster model on isoradial graphs

transverse angles (βn)n∈Z. Condition (2.4) ensures that Gα,β satisfies the bounded-
angles property for ε = inf{βn − αm, αn − βm + π : m,n ∈ Z} > 0.

ti

sj

αj

βi

xi,j

xi+1,j

ri,j

Figure 8: A piece of an isoradial embedding of a square lattice (the square lattice in red,
the diamond graph in black and the tracks in blue).

In the following, we mainly consider doubly-periodic isoradial graphs, hence periodic
sequences (αn)n∈Z and (βn)n∈Z. The bounded-angles property is then automatically
ensured if it is satisfied for a period of (αn) and (βn).

The same notation may be used to denote “rectangular” finite subgraphs of isoradial
square lattices. Indeed, for finite sequences α = (αn)M−6n6M+

and β = (βn)N−6n6N+
,

define Gα,β to be a (finite) isoradial square lattice with M+ −M− + 1 vertical tracks
and N+ − N− + 1 horizontal tracks. We will think of this graph as part of an infinite
isoradial graph, thus we call the right boundary of Gα,β the vertices to the right of sM+

,
the left boundary those to the left of sM− , the top boundary the vertices above tN+

and
the bottom boundary those below tN− . The term rectangular refers to the diamond graph
rather than to Gα,β; the boundary denominations are also used for G�

α,β.

The regular square lattice is the embedding corresponding to sequences βn = π
2 and

αn = 0 for all n ∈ Z.

Track exchange

Let us start by describing a simple but essential operation composed of star-triangle
transformations, which we call track exchange. In the language of transfer matrices,
since the random-cluster measure is preserved, this amounts to saying that the transfer
matrices associated with two adjacent rows commute with each other, which is the usual
formulation of the Yang-Baxter transformation.

Let G be a finite rectangular subgraph of an isoradial square lattice and t and t′

be two parallel adjacent horizontal train tracks. Suppose that we want to switch their
positions using star-triangle transformations. That is, we would like to perform a series
of star-triangle transformations that changes the graph G into an identical graph, with
the exception of the train tracks t and t′ that are exchanged (or equivalently that their
transverse angles are exchanged). We will suppose here that the transverse angles of t
and t′ are distinct, otherwise the operation is trivial.

Since t and t′ do not intersect, no star-triangle transformation may be applied to them.
Suppose however that G contains one additional rhombus (gray in Figure 9) at either
the left or right end of t and t′ that corresponds to the intersection of these two tracks.
(Depending on the transverse angles of the tracks, there is only one possible position for
this rhombus.) Then, a series of star-triangle transformations may be performed as in
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Figure 9. In effect, these transformations “slide” the gray rhombus from one end of the
tracks to the other, and exchange the two tracks in the process.

t

t
′

t

t
′

Figure 9: We move the gray rhombus from the right to the left by a sequence of star-
triangle transformation. Observe that these transformations only affect the tracks t and
t′, and that their ultimate effect is to exchange them.

As seen in Section 2.2, each star-triangle transformation of an isoradial graph pre-
serves the random-cluster measure and connection properties. Thus, the procedure
above, which we call a track exchange, allows us to deduce connection properties of the
resulting graph from those of the initial graph.

In [27], the gray rhombus was added before exchanging the tracks and removed
afterwards. Thus, the track exchange could be perceived as a measure- and connection-
preserving transformation between isoradial square lattices. By repeating such track
exchanges, blocks of tracks of a square lattice were exchanged, and RSW-type estimates
were transported from one block to another.

In the present context, adding a rhombus (and hence an edge) to a graph affects
the random-cluster measure of the entire graph. We therefore prefer to “prepare” the
graph by adding all necessary gray rhombi for all the track exchanges to be performed
at once. The operation is called the convexification of a finite part of a square lattice [12,
Lem. 4.3].

Convexification

Consider a finite rectangular portion G = Gα,β of an isoradial square lattice, with α and
β two finite sequences of angles. Suppose that β = (βn)06n6N for some N > 0. We call
the vertices below t0 (in the present case the bottom boundary) the base level of G.

We say that G̃ is a convexification of G = Gα,β if

• G is a subgraph of G̃ and G̃ has no other tracks than those of G;

• the top and bottom boundary of G� are also boundaries of G̃�;

• as we follow the boundary of G̃� in counterclockwise direction, the segment be-
tween the top and bottom boundaries (which we naturally call the left boundary)
and that between the bottom and top boundaries (called the right boundary) are
convex.

The second condition may be read as follows: in G̃, the vertical tracks (sn) only inter-
sect the horizontal tracks (tn); however, additionally to G, G̃ may contain intersections
between horizontal tracks.

The third condition is equivalent to asking that all horizontal tracks of G with distinct
transverse angles intersect in G̃. Indeed, the left and right boundaries of G̃� are formed
of the transverse segments of the horizontal tracks of G, each track contributing once to
each segment of the boundary. That both the left and right boundaries of G̃� are convex
means that the transverse segments of two tracks ti, tj with distinct transverse angles

appear in alternative order along the boundary of G̃�, when oriented in counterclockwise
direction. Hence, they necessarily intersect in G̃. The converse may also be easily
checked.
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Figure 10: An isoradial square lattice and a convexification of it. Only the diamond graph
is depicted.

Below, we will sometimes call G the square lattice block of G̃; G̃ \G is naturally split
into a left and a right part.

The following two simple lemmas will come in useful when performing track ex-
changes.

Lemma 2.5 (Lem. 4.3 [12]). For any adjacent horizontal tracks t, t′ of G with distinct
transverse angles, there exists a convexification G̃ of G in which the rhombus corre-
sponding to the intersection of t and t′ is adjacent to G�.

Lemma 2.6 (Thm. 5 [30]). For any two convexifications G̃ and G̃′ of G, there exists a
sequence of star-triangle transformations that transforms G̃ into G̃′ and that does not
affect any rhombus of G�.

Although Lemma 2.5 is the same as Lemma 4.3 from [12], we give essentials of the
proof below.

Proof of Lemma 2.5. We start by describing an algorithm that constructs a convexifica-
tion of G. Let 〈, 〉 be the scalar product on R2.

1. Set H = G, which is the graph to be convexified.

2. Orient the edges on the right boundary of H� above the base level upwards and
denote the corresponding unit vectors by −→e0 , . . . ,−→eN .

3. If there exists j such that 〈−−→ej+1 −−→ej , (1, 0)〉 > 0, fix such a value j and proceed to
Step 4. Otherwise, go to the Step 5.

4. Add a rhombus to H� whose boundary is given by −→ej ,−−→ej+1,−−→ej and −−−→ej+1 to the
right of the edges −→ej , −−→ej+1. Set H to be the graph thus obtained, and go back to
Step 2.

5. Proceed the same for the left boundary of G.

Each rhombus added in Step 4 corresponds to an intersection of two horizontal tracks of
G. As such, only a finite number of such rhombi may be added, which shows that the
algorithm necessarily terminates. Moreover, it is obvious to see that when it terminates,
the resulting graph, which we denote by G̃, is indeed a convexification of G.

The construction of G̃ does not ensure that the successive tracks t and t′ intersect in
G̃ adjacently to G. However, we may choose j corresponding to the index of t the first
time the algorithm arrives at Step 3 for either the right or left boundary. If such choice
is made, the intersection of the tracks t and t′ in the resulting graph G̃ will be adjacent
to G.

EJP 23 (2018), paper 96.
Page 16/70

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP223
http://www.imstat.org/ejp/


Universality for the random-cluster model on isoradial graphs

Proof of Lemma 2.6. By symmetry, it is sufficient to show that there exists a sequence
of star-triangle transformations that transforms the right part (call it Gr) of G̃\G into
the right part of G̃′\G (which we call G′

r) without affecting any rhombus of G�. Notice
that G�

r and (G′
r)

� have the same boundary. Indeed, the left boundaries of G�
r and (G′

r)
�

coincide both with the right boundary of G�. Their right boundaries are both formed of
the segments of length 1, with angles β, arranged in increasing order. Then, [30, Thm. 5]
ensures the existence of the transformations as required.

Consider a finite rectangular region G of an isoradial square lattice and consider any
of its convexification G̃. Using the previous two lemmas, one can switch the transverse
angles of any two neighbouring horizontal train tracks by a sequence of star-triangle
transformations. A more precise statement is given below.

Corollary 2.7. Let G = Gα,β be as above and let t and t′ be two adjacent horizontal

train tracks with distinct transverse angles. Then, for any convexification G̃ of G, there
exists a sequence of star-triangle transformations σ1, . . . , σk that may be applied to G̃

with the following properties:

• there exists 0 6 ` < k such that the transformations σ1, . . . , σ` only affect either the
right or the left side of G̃ \G;

• in (σ` ◦ · · · ◦ σ1)(G̃), the tracks t and t′ intersect at a rhombus adjacent to G;

• the transformations σ`+1, . . . , σk applied to (σ` ◦ · · · ◦ σ1)(G̃) are “sliding” the inter-
section of t and t′ from one side of G to the other, as described in Figure 9.

Write Σt,t′ = σk ◦ · · · ◦ σ1. If τ denotes the transposition of the indices of tracks t and t′,
then Σt,t′(G) is a convexification of Gα,τβ.

Proof. Suppose for simplicity that the tracks t and t′ intersect in G̃ to the right of G
(which is to say that the transverse angle of the lower track is greater than that of the
above).

Write G̃′ for a convexification of G in which the tracks t, t′ intersect in a rhombus
adjacent to G� (as given by Lemma 2.5). It is obvious that the left side of G̃′ may be
chosen identical to that of G̃, and we will work under this assumption.

Let σ1, . . . , σ` be a sequence of star-triangle transformations as that given by Lemma 2.6
that affects only the right side of G̃ and that transforms G̃ into G̃′. Let σ`+1, . . . , σk be the
series of star-triangle transformations that slides the intersection of t and t′ from right
to left of G, as in Figure 9. Then, σ1, . . . , σk obviously satisfies the conditions above.

In the following, we will apply repeated line exchanges Σti,tj to a convexification G̃ of
some finite portion of a square lattice. Thus, we will implicitly assume Σti,tj is a series
of star-triangle transformations as in the lemma above, adapted to the convexification to
which it is applied. When ti and tj have same transverse angles, we will simply write
Σti,tj for the empty sequence of transformations. We note that tracks are indexed with
respect to the starting graph and are not reindexed when track exchanges are applied.
This is the reason why neighboring tracks do not necessarily have indices which differ
by 1; thus, we call them ti and tj with the only constraint i 6= j.

All of the above may be summarised as follows. A convexification of G provides all
the horizontal track intersections necessary to exchange any two horizontal tracks (that
is the gray rhombus in Figure 9 for any pair of horizontal tracks). In order to exchange
two adjacent horizontal tracks ti and tj , the sequence of transformations Σti,tj starts
from bringing the intersection of ti and tj next to G (this is done through star-triangle
transformations that do not affect G), then slides it through ti and tj .
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In certain arguments below, it will be more convenient to work with a “double”
strip of square lattice G = Gα,β where α and β are finite sequences of angles and
β = (βn)−N6n6N for some N > 0. We will then separately convexify the upper half
Gα,(β0,...,βN ) and Gα,(β−N ,...,β−1) (as in Figure 12). Track exchanges will only be between
tracks above t0 or strictly below t0; the base (that is the vertices between t−1 and t0) will
never be affected by track exchanges.

Construction of the mixed graph by gluing

Consider two isoradial square lattices with same sequence α of transverse angles for
the vertical tracks. Write G(1) = Gα,β(1) and G(2) = Gα,β(2) . Additionally, suppose that
they both belong to G(ε) for some ε > 0.

Fix integers N1, N2,M ∈ N. We create an auxiliary graph Gmix, called the mixed
graph, by superimposing strips of G(1) and G(2) of width 2M + 1, then convexifying
the result. More precisely, let β̃ = (β

(1)
0 , . . . , β

(1)
N1

, β
(2)
0 , . . . , β

(2)
N2

) and α̃ = (αn)−M6n6M .
Define Gmix to be a convexification of Gα̃,β̃.

Write G(1) = G
α̃,β̃

(1) and G(2) = G
α̃,β̃

(2) , where

β̃
(1)

= (β
(1)
0 , . . . , β

(1)
N1

) and β̃
(2)

= (β
(2)
0 , . . . , β

(2)
N2

).

These are both subgraphs of Gmix; we call them the blocks of G(1) and G(2) inside Gmix.
Next, we aim to switch these two blocks of Gmix using star-triangle transformations.

That is, we aim to transform Gmix into a graph G̃mix obtained as above, with the sequence
β̃ replaced by (β(2)

0 , . . . , β
(2)
N2

, β
(1)
0 , . . . , β

(1)
N1

). There are two ways of doing this, each having
its own advantages.

One way is to use track exchanges to send the tracks tN1+1, . . . , tN1+N2+1 of Gmix all
the way down, one by one, while keeping their order. Using the notation of the previous
section, this corresponds to the following sequence of track exchanges

Σ↓ = Σ↓
N1+N2+1 ◦ · · · ◦ Σ

↓
N1+1,

where Σ↓
k = Σt0,tk ◦ · · · ◦ ΣtN1

,tk is a sequence of star-triangle transformations sending

the track tk to the bottom of the block G(1) in Gmix. This will be useful in the proof of
Proposition 3.6, where we need to control the upward drift of an open path.

The other is to push the tracks tN1
, . . . , t0 all the way up, one by one. It formally reads

Σ↑ = Σ↑
0 ◦ · · · ◦ Σ

↑
N1

,

where Σ↑
k = Σtk,tN1+N2+1

◦ · · · ◦ Σtk,tN1+1
is a sequence of star-triangle transformations

sending the track tk to the top of the block G(2) in Gmix. This will be used to study the
downward drift of an open path in Proposition 3.7.

One may easily check that the sequences Σ↓ and Σ↑ may be applied to Gmix. That
is that whenever a track exchange Σt,t′ is applied, the previous track exchanges are
such that the tracks t and t′ are adjacent. The two sequences of track exchanges are
illustrated in Figure 11.

The resulting graphs Σ↑(Gmix) and Σ↓(Gmix) both contain the desired block of iso-
radial square lattice, but the rhombus tilings added in the convexification may differ.
However, by Lemma 2.6, we may fix one convexification G̃mix of the resulting square
lattice block and add star-triangle transformations to the end of Σ↑ and Σ↓ that only
affect rhombi added in the convexification and such that Σ↑(Gmix) = Σ↓(Gmix) = G̃mix.

However, by Lemma 2.6, we may fix one convexification G̃mix of the resulting square
lattice block and add star-triangle transformations at the end of both sequences Σ↑

and Σ↓ that only affect the convexification and such that Σ↑(Gmix) = Σ↓(Gmix) = G̃mix.
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G(1)

G(2)

N2

N1 + 1 Σ↓
N1+1

ΣtN1
,tN1+1

Σt0,tN1+1

...

 G(1)

G(2)

N2

N1 + 1

Σ↑
N1



ΣtN1
,tN1+N2

ΣtN1
,tN1+1

...

...

Figure 11: The graph Gmix is obtained by superimposing G(1) and G(2) then convexifying
the result (in gray). Left: The sequence Σ↓

N1+1 moves the track tN1+1 below the block

G(1). Right: The sequence Σ↑
N1

moves the track tN1 above the block G(2).

Henceforth, we will always assume that both sequences of star-triangle transformations
Σ↑ and Σ↓ contain these additional transformations.

Since each star-triangle transformation preserves the random-cluster measure, we
have

Σ↑φξ
Gmix

= Σ↓φξ
Gmix

= φξ

G̃mix

for all boundary conditions ξ. Above, φξ
Gmix

and φξ

G̃mix
denote the random-cluster mea-

sures with β = 1 and boundary conditions ξ on Gmix and G̃mix respectively. The action of
Σ↑ (and Σ↓) should be understood as follows. For a configuration ω chosen according to
φξ
Gmix

, the sequence Σ↑ of star-triangle transformations is applied to ω with the resulting
configuration sampled as described in Figure 4, independently for each star-triangle
transformation. Then the final configuration follows φξ

G̃mix
. The same holds for Σ↓.

The reader may note that we do not claim that Σ↑(ω) and Σ↓(ω) have the same law
for any fixed configuration ω on Gmix; this is actually not the case in general.

G(1)

G(1)

G(2)

G(2)

N2 + 1

N1 + 1

N1

N2

M

t0

t−1

M

G(1)

G(1)

G(2)

G(2)

N1

N2

N2 + 1

N1 + 1

Figure 12: Left: The graph Gmix constructed in both the upper and lower half plane.
The convexification is drawn in gray Right: By exchanging tracks, the relative positions
of G(1) and G(2) are switched, the resulting graph is Σ↑(Gmix) = Σ↓(Gmix) = G̃mix. Note
that there is a slight assymetry in the upper-half and the lower-half planes.

In certain parts of the proofs that follow, we construct a mixture as described above,
in both the upper and lower half-plane, as depicted in Figure 12. That is, we set

β̃ = (β
(2)
−N2

, . . . , β
(2)
−1 , β

(1)
−N1

, . . . , β
(1)
N1

, β
(2)
0 , . . . , β

(2)
N2

)
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and α̃ = (αn)−M6n6M and define the base as the vertices of G�
α̃,β̃

between t−1 and t0.

Then, set Gmix to be the separate convexification of the portions of Gα̃,β̃ above and below
the base. We will call Gmix the symmetric version of the mixed graph.

The sequences Σ↑ and Σ↓ of track exchanges are defined in this case by performing
the procedure described above separately on both sides of the base. For instance, Σ↑ is
the sequence of star-triangle transformations that pushes tN1

all the way to the top and
t−N1

all the way to the bottom, then tN1−1 and t−N1+1 all the way to the top and bottom
respectively, etc. Observe that the blocks below the base, and therefore the number of
line exchanges applied, differ by one from those above due to the track t0.

Local behaviour of an open path

In the proofs of the coming sections we will use the line exchanges defined above to
transport certain connection estimates from G(1) to G(2). To that end, we will need to
control the effect that the line exchanges have on open paths. Recall that the coupling
of Figure 4 is designed to preserve connections. As such, any open path before a star-
triangle transformation has a corresponding open path in the resulting configuration.

Let Gmix be a mixed graph and t, t′ be two adjacent horizontal tracks. Let ω be a
configuration on Gmix and γ be a simple path, open in ω, and contained in the square
lattice block of Gmix. Then, the intersection of γ with the tracks t and t′ may be split
into disjoint segments of two edges (or of one edge if the endpoint of γ is on the line
between t and t′). The effect of the transformations on γ may therefore be understood
simply by studying how each individual segment is affected. Each segment is actually
only affected by at most three consecutive star-triangle transformations of Σt,t′ , and the
effect of these is summarized in Figure 13.

A very similar analysis appears in [27, Sec. 5.3]. The only difference between
Figure 13 and [27, Fig. 5.5.] is in the probabilities of secondary outcomes, which are
adapted to the random-cluster model. The exact values will be relevant in Section 5,
when studying the quantum model.

Finally, if an endpoint of γ lies between the two adjacent horizontal tracks t and t′, a
special segment of length 1 appears in the intersection of γ with t and t′. This segment
obeys separate rules; in particular it may be contracted to a single point, as shown in
Figure 14.

2.4.2 From isoradial square lattices to general graphs

Let G be an isoradial graph. We call a grid of G two bi-infinite families of tracks (sn)n∈Z
and (tn)n∈Z of G with the following properties.

• The tracks of each family do not intersect each other.

• All tracks of G not in (tn)n∈Z intersect all those of (tn)n∈Z.

• All tracks of G not in (sn)n∈Z intersect all those of (sn)n∈Z.

• The intersections of (sn)n∈Z with t0 appear in order along t0 (according to some
arbitrary orientation of t0) and the same holds for the intersections of (tn)n∈Z with
s0.

The tracks (sn)n∈Z and (tn)n∈Z are called vertical and horizontal respectively. The
vertices of G� below and adjacent to t0 are called the base of G.

In our setting, the existence of a grid is guaranteed by the following lemma.

Lemma 2.8. Let G be an isoradial graph. Then,

• if G is doubly-periodic, it contains a grid;
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Principal

outcome

Secondary

outcome

Probability

of secondary

outcome

yπ−θ1
yθ2

q

yπ−θ1
yπ−θ2+θ1

q

yθ2
yπ−θ2+θ1

q

yθ2
yπ−θ2+θ1

q

yπ−θ1
yπ−θ2+θ1

q

Initial

configuration

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

Figure 13: Path transformations. The left column exhausts all the possible intersections
of γ (in thick red lines) with t and t′. The second column depicts the “principal” outcome,
which arises with probability 1 when there is no secondary outcome or when the dotted
red edge in the initial diagram is closed. Otherwise, the resulting configuration is
random: either the principal or the secondary outcome (third column) appear, the latter
with the probability given in the last column. Dashed edges in the secondary outcome
are closed. The randomness comes from a star-triangle transformation, and hence is
independent of any other randomness.

• G is an embedding of the square lattice if and only if any of its grid contains all its
tracks.

It may be worth mentioning that if G has a grid (sn)n∈Z and (tn)n∈Z and σ1, . . . , σK

are star-triangle transformations that may be applied to G, then the tracks (sn)n∈Z and
(tn)n∈Z of (σK ◦ · · · ◦ σ1)(G) also form a grid of the transformed graph (σK ◦ · · · ◦ σ1)(G).
Observe also that generally, grids are not unique.

Proof. Let G be a doubly-periodic isoradial graph, invariant under the translation by
two linearly independent vectors τ1, τ2 ∈ R2. First notice that, by the periodicity of G,
each track t of G is also invariant under some translation aτ1 + bτ2 for a certain pair
(a, b) ∈ Z2\{(0, 0)}. Thus, t stays within bounded distance of the line of direction aτ1+bτ2,
which we now call the asymptotic direction of t. Call two tracks parallel if they have the
same asymptotic direction.

By the periodicity of G, the set of all asymptotic directions of tracks of G is finite.
Thus, the tracks of G may be split into a finite number of sets of parallel tracks. It is
immediate that two tracks which are not parallel intersect. Conversely, if two parallel
tracks intersect, they must do so infinitely many times, due to periodicity. This is
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Initial Resulting ResultingInitial

Figure 14: If an endpoint of a path lies between two tracks, the corresponding edge is
sometimes contracted to a single point.

impossible, since two tracks can intersect at most once. In conclusion, tracks intersect if
and only if they are not parallel.

Let t0 and s0 be two intersecting tracks of G. Orient each of them in some arbitrary
direction. Write . . . , t−1, t0, t1, . . . for the tracks parallel to t0, ordered by their intersec-
tions with s0. Similarly, let . . . , s−1, s0, s1, . . . be the tracks parallel to s0, in the order of
their intersections with t0.

Then, the two families (sn)n∈Z and (tn)n∈Z defined above form a grid for G: the
tracks of each family do not intersect each other since they are parallel, but intersect all
other tracks, since these have distinct asymptotic directions.

The second point of the lemma is straightforward.

In an isoradial graph G with grid (sn)n∈Z and (tn)n∈Z, write R(i, j; k, `) for the region
enclosed by si, sj , tk and t`, including the four boundary tracks. We say that R(i, j; k, `)
has a square lattice structure if it is the subgraph of some isoradial square lattice. This
will be applied to local modifications of bi-periodic graphs, thus inside R(i, j; k, `) there
may exist tracks not belonging to (sn)i6n6j which do not intersect any of the tracks
(sn)i6n6j . Such tracks would be vertical in a square lattice containing R(i, j; k, `), but
are not vertical in G. See the right-hand side of Figure 15 for an illustration.

t0

t1

t2

s0 s1 s2 s3 s4s
−1

s̃0 s̃2 s̃4 s̃6 s̃8s̃
−2 s̃1 s̃3 s̃5 s̃7s̃

−1

t0

t1

t2

s0 s1 s2 s3 s4s
−1

s̃0 s̃2 s̃4 s̃6 s̃8s̃
−2 s̃1 s̃3 s̃5 s̃7s̃

−1

Figure 15: Left: The train tracks of a portion of a doubly-periodic isoradial graph G. A
grid of G is given by vertical tracks (sn) and horizontal tracks (tn). We denote by (s̃n)

its non-horizontal tracks. We want to make the region R(0, 2; 0; 2) have a square lattice
structure by removing all the black points using star-triangle transformations. Right:
The black points are removed (from the top) from the region R(0, 2; 0; 2), making a square
structure appear inside. This region contains tracks s̃1 and s̃3 which would be vertical in
a square lattice containing R(0, 2; 0, 2) but are not vertical in the original graph G on the
left.

In the second stage of our transformation from the regular square lattice to arbi-
trary doubly-periodic isoradial graphs, we use star-triangle transformations to transfer
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crossing estimates from isoradial square lattices to periodic graphs. To that end, given a
doubly-periodic isoradial graph, we will use star-triangle transformations to construct a
large region with a square lattice structure. The proposition below is the key to these
transformations.

A star-triangle transformation is said to act between two tracks t and t′ if the three
rhombi affected by the transformation are all between t and t′, including potentially on t

and t′.

Proposition 2.9. Let G be a doubly-periodic isoradial graph with grid (sn)n∈Z, (tn)n∈Z.
There exists d > 1 such that for all M,N ∈ N, there exists a finite sequence of star-
triangle transformations (σk)16k6K , each acting between s−(M+dN) and sM+dN and
between tN and t0, none of them affecting any rhombus of t0 and such that in the
resulting graph (σk◦· · ·◦σ1)(G), the region R(−M,M ; 0, N) has a square lattice structure.

This is a version of [27, Lem. 7.1] with a quantitative control over the horizontal
position of the star-triangle transformations involved. Obviously, the lemma may be
applied also below the base level t0 by symmetry.

Proof. We only sketch this proof since it is very similar to the corresponding one in [27].
We will only refer below to the track system of G; we call an intersection of two tracks a
point. Fix M,N ∈ N.

Index all non-horizontal tracks of G as (s̃n)n∈Z, in the order of their orientation with
t0, such that s̃0 = s0. Then the vertical tracks (sn)n∈Z of G form a periodically distributed
subset of (s̃n)n∈Z. Let M+ and M− be such that s̃M+ = sM and s̃M− = s−M .

We will work with G and transformations of G by a finite number of star-triangle
transformations. The tracks of any such transformations are the same as those of
G, we therefore use the same indexing for them. Call a black point of G, or of any
transformation of G, an intersection of a track s̃k with M− 6 k 6 M+ with a non-
horizontal track, contained between t0 and tN . See Figure 15 for an example.

Observe that, if in a transformation (σk ◦ · · · ◦ σ1)(G) of G there are no black points,
then (σk ◦ · · · ◦ σ1)(G) has the desired property. The strategy of the proof is therefore to
eliminate the black points one by one as follows.

Orient all non-horizontal tracks of G upwards (that is from their intersection with
t0 to that with t1). We say that a black point is maximal if, along any of the two tracks
whose intersection gives this black point, there is no other black point further. One may
then check (see the proof of [27]) that if black points exist, then at least one maximal one
exists. Moreover, a maximal black point may be eliminated by a series of star-triangle
transformations involving its two intersecting tracks and the horizontal tracks between
it and tN . Thus, black points may be eliminated one by one, until none of them is left
(by the fact that (sn)n∈Z and (tn)n∈Z form a grid, only finitely many black points exist to
begin with). Call σ1, . . . , σK the successive star-triangle transformations involved in this
elimination. Then (σK ◦ · · · ◦ σ1)(G) has a square lattice structure in R(−M,M ; 0, N).

We are left with the matter of controlling the region where star-triangle transforma-
tions are applied. Notice that σ1, . . . , σK each involve exactly one horizontal track tk
with 0 < k 6 N . Thus, they all only involve rhombi between t0 and tN , but none of those
along t0.

Also observe that, due to the periodicity of G, between t0 and tN , a track s̃k intersects
only tracks s̃j with |j − k| 6 cN for some constant c depending only on the fundamental
domain of G. It follows, by the periodicity of the tracks (sn)n∈Z in (s̃n)n∈Z, that all black
points are initially in R(−M − dN,M + dN ; 0, N) for some constant d > 0 depending
only on the fundamental domain of G. Finally, since all star-triangle transformations
(σk)06k6K involve one horizontal track and two others intersecting at a black point, each
σk acts in the region of (σk−1 ◦ · · · ◦ σ1)(G) delimited by s−M−dM , sM+dN , t0 and tN .
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3 Proofs for 1 6 q 6 4

Starting from now, fix q ∈ [1, 4] and let G be a doubly-periodic graph with grid
(sn)n∈Z, (tn)n∈Z. Recall that G ∈ G(ε) for some ε > 0. All the constants below depend on
the value of ε. Write φξ

G := φξ
G,1,q for the random-cluster measure with parameters q and

β = 1 and boundary conditions ξ ∈ {0, 1} on G.

3.1 Notations and properties

For integers i 6 j and k 6 ` recall that R(i, j; k, `) is the subgraph of G contained
between tracks si and sj and between tk and t` (including the boundary tracks). Write
R(i; k) for the centred rectangle R(−i, i;−k, k) and Λ(n) = R(n;n). The same notation
applies to G� and G∗. We define R and Λ in the same way using Euclidean distances.
Note that R and Λ are domains with respect to a grid of G whereas R and Λ are Euclidean
ones and they should all be seen as subregions of R2.

Similarly to the crossings events defined in the introduction, set

• Ch(i, j; k, `): the event that there exists an open path in R(i, j; k, `) with one endpoint
left of the track si and the other right of the track sj . This is called a horizontal
crossing of R(i, j; k, `).

• Cv(i, j; k, `): the event that there exists an open path in R(i, j; k, `) with one endpoint
below tk and the other above t`. This is called a vertical crossing of R(i, j; k, `).

The crossings Ch and Cv can also be defined for symmetric rectangular domains R(m;n),
in which case we write Ch(m;n) and Cv(m;n). Also write C∗h(i, j; k, `), C∗v (i, j; k, `), C∗h(m;n)

and C∗v (m;n) for the corresponding events for the dual model.
To abbreviate the notation, we will henceforth say that G satisfies the RSW property

if the random-cluster model on G with β = 1 satisfies this property. It will be easier to
work with the crossing events defined above, rather than the one of the introduction,
hence the following lemma.

Lemma 3.1. Fix ρ > 1 and ν > 0. Then, G has the RSW property if and only if there
exists δ := δ1(ρ, ν) > 0 such that for all n > 1,

φ0
R((ρ+ν)n,(1+ν)n)

[
Ch(ρn;n)

]
> δ,

φ0
R((1+ν)n,(ρ+ν)n)

[
Cv(n; ρn)

]
> δ,

φ1
R((ρ+ν)n,(1+ν)n)

[
C∗h(ρn;n)

]
> δ,

φ1
R((1+ν)n,(ρ+ν)n)

[
C∗v (n; ρn)

]
> δ.

(BXP(ρ, ν))

In other words, crossing estimates for Euclidean rectangles and rectangles in G�

imply each other. Moreover, the aspect ratio ρ and distance νn to the boundary conditions
is irrelevant; indeed it is a by-product of the lemma that the conditions (BXP(ρ, ν)) with
different values of ρ > 1 and ν > 0 are equivalent (obviously with different values for
δ > 0).

In general, one would also require crossing estimates as those of (BXP(ρ, ν)) for trans-
lates of the rectangles R(n; ρn) and R(ρn;n). This is irrelevant here due to periodicity.

The proof of the lemma is elementary. It emploies the quasi-isometry between
Euclidean distance and the graph distance of G�, the FKG inequality and the comparison
between boundary conditions. A similar statement was proved in [27, Prop. 4.2] for
Bernoulli percolation. Since the boundary conditions matter, additional care is needed
here, and the proof is slightly more technical. Details are skipped here and are given
in [33, App. B].

It is straightforward (as will be seen in Section 3.4) that the RSW property implies
the rest of the points of Theorem 1.1 for 1 6 q 6 4. The following two sections will thus
focus on proving the RSW property for isoradial square lattices (Section 3.2), then on
general doubly-periodic isoradial graphs (Section 3.3), when 1 6 q 6 4.
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2n 2(1 + ν)n

2ρn

2(ρ+ ν)n

2(ρ+ ν)n2ρn

2n

2(1 + ν)n

Figure 16: Crossing events in the condition (BXP(ρ, ν)). The dotted lines represent the
tracks enclosing the domain in which the event takes place, the dashed lines represent
the domain in which the random-cluster measure is defined.

3.2 Isoradial square lattices

The relevant result for the first stage of the proof (the transfer from regular to
arbitrary square lattices) is the following.

Proposition 3.2. Let G(1) = Gα,β(1) and G(2) = Gα,β(2) be two isoradial square lattices

in G(ε). If G(1) satisfies the RSW property, then so does G(2).

The proposition is proved in the latter subsections of this section. For now, let us see
how it implies the following corollary.

Corollary 3.3. For any 1 6 q 6 4 and any isoradial square lattice G ∈ G(ε), G satisfies
the RSW property.

Proof of Corollary 3.3. For the regular square lattice G0,π2
, the random-cluster measure

associated by isoradiality (see (1.1)) is that with edge-parameter pe =
√
q

1+
√
q . It is then

known by [20] that G0,π2
satisfies the RSW property.

It follows from the application of Proposition 3.2 that for any sequence β ∈ [ε, π− ε]Z,
the graph G0,β also satisfies the RSW property.

Let Gα,β ∈ G(ε) be an isoradial square lattice. Below β0 stands for the constant
sequence equal to β0. Then, Gα,β0 is the rotation by β0 of the graph G0,α̃−β0+π, where α̃

is the sequence α with reversed order. By the previous point, G0,α̃−β0+π satisfies the
RSW property, and hence so does Gα,β0 . Finally, apply again Proposition 3.2 to conclude
that Gα,β also satisfies the RSW property.

The rest of the section is dedicated to proving Proposition 3.2.

3.2.1 RSW: an alternative definition

Fix an isoradial square lattice G = Gα,β ∈ G(ε) for some ε > 0. Recall that q ∈ [1, 4] is
fixed; the estimates below depend only on q and ε. Let xi,j be the vertex of G� between
tracks si−1, si and tj−1, tj . Suppose that G is such that its vertices are those xi,j with
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i+ j even. The base of G is then the set {(xi,0 : i ∈ Z}. Moreover, G is translated so that
x0,0 is the origin 0 of the plane.

Define C(m1,m2;n) to be the event that there exists an open (primal) circuit contained
in R(m2;n) that surrounds the segment of the base between vertices x−m1,0 and xm1,0

1.
Write C∗(., .; .) for the same event for the dual model. See figure 17 for an illustration.

t0

tn

t−n

s−m2
s−m1

sm1
sm2

Figure 17: The event C(m1,m2;n). Such a circuit should not cross the bold segment.

The following two results offer a convenient criterion for the RSW property. The
advantage of the conditions of (3.1) is that they are easily transported between different
isoradial square lattices, unlike those of (BXP(ρ, ν)). The main reason is that, due
to the last case of Figure 6, paths may shrink at their endpoints during star-triangle
transformations. Circuits avoid this problem.

Lemma 3.4. Suppose G is as above and suppose that the following conditions hold.
There exists δv > 0 such that for any δh > 0, there exist constants a > 3 and b > 3a such
that for all n large enough, there exist boundary conditions ξ on Λ(bn) such that

φξ
Λ(bn)

[
C(3an, bn; bn)

]
> 1− δh and φξ

Λ(bn)

[
C∗(3an, bn; bn)

]
> 1− δh,

φξ
Λ(bn)

[
Cv(an; 2n)

]
> δv and φξ

Λ(bn)

[
C∗v (an; 2n)

]
> δv,

φξ
Λ(bn)

[
C(an, 3an;n)

]
> δv and φξ

Λ(bn)

[
C∗(an, 3an;n)

]
> δv.

(3.1)

Then G has the RSW property.

Let us mention that the boundary conditions ξ above may be random, in which case
φξ
Λ(bn) is simply an average of random-cluster measures with different fixed boundary

conditions. The only important requirement is that they are the same for all the bounds.

Again, if we were to consider also non-periodic graphs G, we would require (3.1) also
for all translates of the events above.

The conditions of the lemma above should be understood as follows. The last two lines
effectively offer lower bounds for the probabilities of vertical and horizontal crossings
of certain rectangles. For Bernoulli percolation, these estimates alone would suffice to
prove the RSW property; for the random-cluster model however, boundary conditions
come into play. The first line is then used to shield the crossing events from any
potentially favorable boundary conditions. Notice that the fact that δv > 0 is fixed and δh
may be taken arbitrarily small ensures that events such as those estimated in the first
and second (or third) lines must occur simultaneously with positive probability. This is
the key to the proof.

Even though the proof is standard (and may be skipped by those familiar with the
RSW techniques for the random-cluster measure), we present it below.

1Formally, we allow the circuit to visit vertices of the base, but it is not allowed to cross the base between
x−m1,0 and xm1,0.
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Proof. Suppose to start that the condition (3.1) is satisfied. Let δv > 0 be fixed. Choose
δh 6 δv/2. Fix a, b as given by the condition. Then, for n large enough, by assumption
and the inclusion-exclusion formula, there exists ξ such that

φξ
Λ(bn)

[
C∗(3an, bn; bn) ∩ Cv(an; 2n)

]
> δv − δh > δh.

Notice that the vertical path defining Cv(an; 2n) is necessarily inside the dual circuit
defining C∗(3an, bn; bn), since the two may not intersect. Also, notice that Cv(an; 2n)
induces a vertical crossing of R(an; 2n). Thus, we can use the following exploration
argument to compare boundary conditions.

For a configuration ω, define Γ∗(ω) to be the outmost dually-open circuit as in the
definition of C∗(3an, bn; bn) if such a circuit exists. Let Int(Γ∗) be the region surrounded
by Γ∗, seen as a subgraph of G. We note that Γ∗ can be explored from the outside and as
a consequence, the random-cluster measure in Int(Γ∗), conditionally on Γ∗, is given by
φ0
Int(Γ∗). Thus,

φξ
Λ(bn)

[
C∗(3an, bn; bn) ∩ Cv(an; 2n)

]
=

∑
γ∗

φξ
Λ(bn)

[
Cv(an; 2n)

∣∣Γ∗ = γ∗]φξ
Λ(bn)

[
Γ∗ = γ∗]

=
∑
γ∗

φ0
Int(Γ∗)

[
Cv(an; 2n)

]
φξ
Λ(bn)

[
Γ∗ = γ∗]

6
∑
γ∗

φ0
Λ(bn)

[
Cv(an; 2n)

]
φξ
Λ(bn)

[
Γ∗ = γ∗]

6 φ0
Λ(bn)

[
Cv(an; 2n)

]
,

where the summations are over all possible realisations γ∗ of Γ∗. The first inequality is
based on the comparison between boundary conditions and on the fact that Int(γ∗) ⊂
Λ(bn) for all γ∗. Hence, we deduce that,

φ0
Λ(bn)

[
Cv(an; 2n)

]
> δh.

Similarly, observe that

φξ
Λ(bn)

[
C∗(3an, bn; bn) ∩ C(an, 3an;n)

]
> δh.

Again, the circuit defining C(an, 3an;n) is necessarily inside the dual circuit defining
C∗(3an, bn; bn) and it therefore induces a horizontal crossing of R(an;n). Using the same
exploration argument as above, we deduce that

φ0
Λ(bn)

[
Ch(an;n)

]
> δh. (3.2)

The same may be performed for the dual model. Since these computations hold for
arbitrary n large enough, we obtain for all n > 1

φ0
Λ(bn)

[
Cv(an; 2n)

]
> δh, φ0

Λ(bn)

[
Ch(an;n)

]
> δh and

φ1
Λ(bn)

[
C∗v (an; 2n)

]
> δh, φ1

Λ(bn)

[
C∗h(an;n)

]
> δh.

We claim that (BXP(ρ, ν)) follows from the above. Indeed, the inequalities above
for horizontal crossing are of the desired form. However, vertical crossings are only
bounded for short and potentially wide rectangles. Notice however that, by combining
crossings as in Figure 18 and using the FKG inequality,

φ0
Λ(abn)

[
Cv(an; a2n)

]
> φ0

Λ(bn)

[
Cv(an; 2n)

]a2−1
φ0
Λ(bn)

[
Ch(an;n)

]a2−1
> δ2a

2−2
h (3.3)

Equations (3.2) and (3.3) imply (BXP(ρ, ν)) with ρ = a and ν = a(b−a), and Lemma 3.1
may be used to conclude.

EJP 23 (2018), paper 96.
Page 27/70

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP223
http://www.imstat.org/ejp/


Universality for the random-cluster model on isoradial graphs

2an

2a2n

Figure 18: A vertical crossing in R(an; a2n) created by superimposing shorter vertical
and horizontal crossings. The distance between two consecutive horizontal dotted lines
is 2n.

As the next lemma suggests, condition (3.1) is actually equivalent to the RSW property.
The following statement may be viewed as a converse to Lemma 3.4.

Lemma 3.5. Assume that G has the RSW property. Fix a > 1. Then, there exists δv > 0

such that for any δh > 0, there exist b > 3a such that for all n large enough, the following
condition holds,

φ0
Λ(bn)

[
C(3an, bn; bn)

]
> 1− δh/2 and φ1

Λ(bn)

[
C∗(3an, bn; bn)

]
> 1− δh/2,

φ0
Λ(bn)

[
Cv(an2 ; an

2 )
]
> 2δv and φ1

Λ(bn)

[
C∗v (an2 ; an

2 )
]
> 2δv,

φ0
Λ(bn)

[
C(an, 2an; n

a )
]
> 2δv and φ1

Λ(bn)

[
C∗(an, 2an; n

a )
]
> 2δv.

(3.4)

The proof is a standard application of the RSW theory and readers are referred to [33,
App. C]. Let us only mention that it uses the fact that

φ0
Λ(bn)

[
C(3an, bn; bn)

]
−−−→
b→∞

1, uniformly in n.

This is a typical consequence of the strong RSW property; it appears in other forms in
various applications.

3.2.2 Transporting RSW: proof of Proposition 3.2

Fix G(1) = Gα,β(1) and G(2) = Gα,β(2) two isoradial square lattices in G(ε). Suppose G(1)

satisfies the RSW property.
Let Gmix be the symmetric mixed graph of G(1) and G(2) constructed in Section 2.4.1,

where the width of each strip is 2M + 1 and the height is N = N1 = N2 (for M and
N to be specified below). We here use the construction both above and below the
base, where each side is convexified separately. Let G̃mix = Σ↑(Gmix) = Σ↓(Gmix) be
the graph obtained after exchanging the tracks t0, . . . , tN of Gmix with tN+1, . . . , t2N+1

and t−1, . . . , t−N with t−(N+1), . . . , t−2N . Write φGmix
and φG̃mix

for the random-cluster

measures on Gmix and G̃mix, respectively, with parameters q ∈ [1, 4], β = 1 and free
boundary conditions.

The estimates below are the key to the proof of Proposition 3.2. They correspond to
similar statements in [27] for Bernoulli percolation.
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Proposition 3.6 (Prop. 6.4 of [27]). There exist λ, n0 > 1, depending on ε only, such that,
for all ρout > ρin > 0, n > n0 and sizes M > (ρout + λ)n and N > λn,

φG̃mix

[
C(ρinn, (ρout + λ)n;λn)

]
> (1− ρoute

−n)φGmix

[
C(ρinn, ρoutn;n)

]
.

Proposition 3.7 (Prop. 6.8 of [27]). There exist δ ∈ (0, 1
2 ) and cn > 0 satisfying cn → 1

as n→∞ such that, for all n and sizes M > 4n and N > n,

φG̃mix

[
Cv(4n; δn)

]
> cnφGmix

[
Cv(n;n)

]
.

The proofs of the above two statements are similar to those of [27]. They do not
rely on the independence of the percolation measure, they do however use crucially the
independence of the randomness appearing in the star-triangle transformations. More
details about this step are given in Section 5.2 when we will treat the quantum case,
since more explicit estimates will be needed. However, we will not provide full proofs
since they are very similar to the corresponding statements in [27]; the sketches of
proofs will be given later in Section 3.2.3.

Let us admit the two propositions above for now and finish the proof of Proposition 3.2.

Proof of Proposition 3.2. Fix parameters n0, λ > 1 and δ > 0 as in Propositions 3.6
and 3.7. Since G(1) satisfies the RSW property, Lemma 3.5 applies to it. Choose
a = max{λ, 2

δ , 1} and an arbitrary δh > 0. By Lemma 3.5, there exist b > 3a and δv > 0

such that, for all n large enough,

φ0
Λ(bn)

[
C(3an, bn; bn)

]
> 1− δh/2,

φ0
Λ(bn)

[
Cv(an2 ; an

2 )
]
> 2δv,

φ0
Λ(bn)

[
C(an, 2an; n

a )
]
> 2δv.

(3.5)

We will prove that G(2) satisfies (3.1) for these values of a, δv and δh, with b replaced by
b̃ = (1 + λ)b. The boundary conditions ξ will be fixed below. We start by proving (3.1) for
the primal events.

Take M = N > (λ+ 1)bn for constructing Gmix. Then, since the balls of radius bn in
Gmix and in G(1) are identical, we deduce from the above that

φGmix

[
C(3an, bn; bn)

]
> 1− δh/2,

φGmix

[
Cv(an2 ; an

2 )
]
> 2δv,

φGmix

[
C(an, 2an; n

a )
]
> 2δv.

We used here that the boundary conditions on Λ(bn) in (3.5) are the least favorable for
the existence of open paths.

For n > an0, Propositions 3.6 and 3.7 then imply

φG̃mix

[
C(3an, (λ+ 1)bn;λbn)

]
> (1− e−bn)(1− δh/2),

φG̃mix

[
Cv(an; δ

2an)
]
> 2cnδv,

φG̃mix

[
C(an, (2a+ λ

a )n;
λ
an)

]
> 2(1− 2a2e−n/a)δv.

Now, take n large enough so that 2e−bn < δh, 2cn > 1 and a2e−n/a < 1/4. These bounds
ultimately depend on ε only. Observe that this implies (3.1) for the primal model. Indeed,
set b̃ = (λ+ 1)b, then, due to the choice of a,

φG̃mix

[
C(3an, b̃n; b̃n)

]
> (1− δh/2)

2 > 1− δh,

φG̃mix

[
Cv(an;n)

]
> δv,

φG̃mix

[
C(an, 3an;n)

]
> δv.
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The same procedure may be applied for the dual model to obtain the identical bounds
for C∗(., .; , ) and C∗v (.; .).

By choice of M and N , the region Λ(̃bn) of G̃mix is also a subgraph of G(2). This
implies (3.1) for G(2). The boundary conditions ξ appearing in (3.1) are those induced on
Λ(̃bn) by the free boundary conditions on G̃mix. These are random boundary conditions,
but do not depend on the events under study. In particular, they are the same for all the
six bounds of (3.1).

3.2.3 Sketch of proof for Propositions 3.6 and 3.7

The proofs of Propositions 3.6 and 3.7 are very similar to those of Propositions 6.4
and 6.8 in [27], with only minor differences. Nevertheless, we sketch them below for
completeness. The estimates in the proofs are specific to the random-cluster model and
will be important in Section 5.

We keep the notations Gmix and G̃mix introduced in the previous section.

Proof of Proposition 3.6. We adapt the proof from Proposition 6.4 (more precisely, Lemma
6.7) of [27] to our case.

Recall the definition of Σ↓, the sequence of star-triangle transformations to consider
here: above the base level, we push down tracks of G(2) below those of G(1) one by one,
from the bottom-most to the top-most; below the base level, we proceed symmetrically.
Let P be a probability measure defined as follows. Pick a configuration ω on Gmix

according to φGmix
; apply the sequence of star-triangle transformations Σ↓ to it using

the coupling described in Figure 4, where the randomness potentially appearing in each
transformation is independent of ω and of all other transformations. Thus, under P we
dispose of configurations on all intermediate graphs in the transformation from Gmix to
G̃mix. Moreover, in light of Proposition 2.3, Σ↓(ω) has law φG̃mix

.

We will prove the following statement

P
[
Σ↓(ω) ∈ C(ρinn, (ρout + λ)n;λn)

∣∣ω ∈ C(ρinn, ρoutn;n)] > 1− ρoute
−n, (3.6)

for any values ρout > ρin > 0, n > n0, M > (ρout + λ)n and N > λn, where λ, n0 > 1 will
be chosen below. This readily implies Proposition 3.6.

Fix ρout, ρin, n,M and N as above. Choose ω0 ∈ C(ρinn, ρoutn;n) and let γ be an
ω0-open circuit as in the definition of C(ρinn, ρoutn;n). As the transformations of Σ↓ =

σK ◦ · · · ◦ σ1 are applied to ω0, the circuit γ is transformed along with ω0. Thus, for
each 0 6 k 6 K, (σk ◦ · · · ◦ σ1)(γ) is an open path in (σk ◦ · · · ◦ σ1)(ω0) on the graph
(σk ◦ · · · ◦ σ1)(Gmix).

Since no star-triangle transformation of Σ↓ affects the base, Σ↓(γ) remains a circuit
surrounding the segment of the base between x−ρinn,0 and xρinn,0. Therefore, the only
thing that is left to prove is that

P
[
Σ↓(γ) ∈ R

(
(ρout + λ)n;λn

) ∣∣ω = ω0

]
> 1− ρoute

−n. (3.7)

Set

γ(k) = (Σ↓
N1+k ◦ Σ

↓
−(N1+k)) ◦ · · · ◦ (Σ

↓
N1+1 ◦ Σ

↓
−(N1+1)),

where Σ↓
i = Σt0,ti ◦ · · · ◦ ΣtN1

,ti for i > 0 and Σ↓
i = Σt−1,ti ◦ · · · ◦ Σt−N1

,ti for i < 0. The

path γ(k) thus defined is the transformation of γ after the first k tracks of G(2) above the
base were sent down, and the symmetric procedure was applied below the base.
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In [27], the vertices of Gmix visited by γ(k) were shown to be contained in a region
whose evolution with k = 0, . . . , N2 + 1 is explicit. This is done separately above and
below the base level, and we focus next on the upper half-space.

Let H0 = {(i, j) ∈ Z × N : −(ρout + 1)n 6 i − j and i + j 6 (ρout + 1)n and j 6 n}.
Then, Hk+1 is defined from Hk as follows. If (i, j) ∈ Z×N is such that (i, j), (i− 1, j) or
(i+ 1, j) are in Hk, then (i, j) ∈ Hk+1. Otherwise, if (i, j − 1) ∈ Hk, then (i, j) is included
in Hk with probability η ∈ (0, 1), independently of all previous choices. We will see later
how the value of η is chosen using the bounded-angles property.

In consequence, the sets (Hk)06k6N are interpreted as a growing pile of sand, with a
number of particles above every i ∈ Z. At each stage of the evolution, the pile grows
laterally by one unit in each direction; additionally, each column of the pile may increase
vertically by one unit with probability η (see Figure 19).

Figure 19: One step of the evolution of H: Hk is drawn in black, Hk+1 contains the
additional blue points (since they are to the left or right of vertices in Hk) and the red
points (these are added due to the random increases in height).

Loosely speaking, [27, Lem. 6.6] shows that, if η is chosen well, then all vertices
xi,j visited by γ(k) have (i, j) ∈ Hk 2. More precisely, the process (Hk)06k6N may be
coupled with the evolution of (γ(k))06k6N so that the above is true. This step is proved by
induction on k, and relies solely on the independence of the star-triangle transformations
and on the estimates of Figure 13. Then, (3.7) is implied by the following bound on the
maximal height of HN :

P
[
max{j : (i, j) ∈ Hλn} > λn

]
< ρoute

−n (3.8)

for some λ > 0 and all n large enough. The existence of such a (finite) constant λ is
guaranteed by [25, Lem. 3.11]. It depends on η, and precisely on the fact that η < 1 [27,
Lem. 6.7]. The choice of η < 1 that allows the domination of (γ(k))06k6N by (Hk)06k6N

is done as follows.

We proceed in the same way as in the proofs of Lemmas 6.6 and 6.7 of [27]. We shall
analyze the increase in height of portions of γ(k) as given by Figure 13. Essentially, the
only cases in which γ(k) increases significantly in height are depicted in the third and
the last line of Figure 13.

Let us examine the situation which appears in the third line of Figure 13 and consider
the notations as in Figure 20. Using the notation of Figure 20 for the angles A and B,
the probability that the height of such a γ(k) increases by 1 is given by

ηA,B =
yπ−Ayπ−(B−A)

q
=

sin(rA) sin(r(B −A))

sin(r(π −A)) sin(r(π − (B −A)))

=
cos(r(2A−B))− cos(rB)

cos(r(2A−B))− cos(r(2π −B))
,

where we recall that r = cos−1(
√
q

2 ) 6 1
3 and that, due to the BAP (ε), A,B ∈ [ε, π − ε].

2This is not actually true, since there is a horizontal shift to be taken into account; let us ignore this technical
detail here.
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A

B
t

t′

γ(k)

Figure 20: Star-triangle transformations between tracks t and t′ corresponding to the
third line of Figure 13. The tracks t and t′ have transverse angles A and B respectively.
We assume that a portion of the path γ(k) reaches between the tracks t and t′ as
shown in the figure. Moreover, if the dashed edge is open on the left, with probability
ηA,B = yπ−Ayπ−(B−A)/q, the path γ(k) drifts upwards by 1 after the track exchange.

The same computation also applies to the last line of Figure 13. Then, η may be
chosen as

η := sup
A,B∈[ε,π−ε]

ηA,B < 1. (3.9)

The domination of the set of vertices of γ(k) by Hk is therefore valid for this value of η,
and (3.7) is proved for the resulting constant λ.

Remark 3.8. When we deal with the quantum model in Section 5, it will be important
to have a more precise estimate on η(ε). In particular, we will show that, in this special
case, 1− η(ε) ∼ τ(q)ε as ε→ 0 for some constant τ := τ(q) depending only on q ∈ [1, 4].

Proof of Proposition 3.7. We adapt Proposition 6.8 of [27] to our case. Fix n and N,M >
2n, and consider the graph Gmix as described in the previous section. We recall the
definition of Σ↑, the sequence of star-triangle transformations we consider here: above
the base level, we pull up tracks of G(1) above those of G(2) one by one, from the top-most
to the bottom-most; below the base level, we proceed symmetrically.

As in the previous proof, write P for the measure taking into account the choice of a
configuration ω0 according to the random-cluster measure φGmix

as well as the results of
the star-triangle transformations in Σ↑ applied to the configuration ω0.

The events we are interested in only depend on the graph above the base level, hence
we are not concerned with what happens below. For 0 6 i 6 N , recall from Section 2.4.1
the notation

Σ↑
i = Σti,t2N+1

◦ · · · ◦ Σti,tN+1
,

for the sequence of star-triangle transformations moving the track ti of G(1) above G(2).
Then Σ↑ = Σ↑

0 ◦ · · · ◦ Σ
↑
N .

First, note that if ω ∈ Cv(n;n), we also have Σ↑
n+1 ◦ · · · ◦ Σ

↑
N (ω) ∈ Cv(n;n), since

the two configurations are identical between the base and tn. We will now write, for
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0 6 k 6 n+ 1,

Gk = Σ↑
n−k+1 ◦ · · · ◦ Σ

↑
N (Gmix),

ωk = Σ↑
n−k+1 ◦ · · · ◦ Σ

↑
N (ω),

Dk = {xu,v ∈ Gk : |u| 6 n+ 2k + v, 0 6 v 6 N + n},

hk = sup{h 6 N : ∃u, v ∈ Z with xu,0
Dk,ωk

←−−−→ xv,h}.

That is, hk is the highest level that may be reached by an ωk-open path lying in the
trapezoid Dk. We note that Gn+1 = G̃mix and ωn+1 follows the law of φG̃mix

.
With these notations, in order to prove Proposition 3.7, it suffices to show the

equivalent of [27, (6.23)], that is

P
[
hn+1 > δn

]
> cnP

[
h0 > n

]
, (3.10)

for some δ ∈ (0, 1
2 ) to be specified below and explicit constants cn with cn → 1 as n→∞.

Indeed,

P[h0 > n] > P[ω0 ∈ Cv(n;n)] = φGmix [Cv(n;n)].

Moreover, if hn+1 > δn, then ωn+1 ∈ Cv(4n; δn), and therefore we have φG̃mix
[Cv(4n; δn)] >

P(hn+1 > δn).
We may now focus on proving (3.10). To do that, we adapt the corresponding step

of [27] (namely Lemma 6.9). It shows that (hk)06k6n+1 can be bounded stochastically
from below by the Markov process (Hk)06k6n+1

3 given by

Hk = H0 +
k∑

i=1

∆i, (3.11)

where H0 = n and the ∆i are independent random variables with common distribution

P(∆ = 0) = 2δ, P(∆ = −1) = 1− 2δ, (3.12)

for some parameter δ to be specified later. Once the above domination is proved, the
inequality (3.10) follows by the law of large numbers.

The proof of (3.12) in [27] (see equation (6.24) there) uses only the independence
between different star-triangle transformations and the finite-energy property of the
model. Both are valid in our setting. We sketch this below.

Fix 0 6 k 6 n and let us analyse the (N − (n− k)+ 1)th step of Σ↑, that is Σ↑
n−k. Write

Ψj := Σtn−k,tN+j
◦ · · · ◦ Σtn−k,tN+1

for 0 6 j 6 N . In other words, Ψj is the sequence of
star-triangle transformations that applies to Gk and moves the track tn−k above j tracks
of G(2), namely tN+1, . . . , tN+j . Moreover, ΨN = Σ↑

n−k; hence, ΨN (Gk) = Gk+1.
Let Dk

j be the subgraph of Ψj(G
k) induced by vertices xu,v with 0 6 v 6 N + n and

|u| 6


n+ 2k + v + 2 if v 6 j̃,

n+ 2k + v + 1 if v = j̃ + 1,

n+ 2k + v if v > j̃ + 2.

,

where we let j̃ = n − k + j. Note that Dk ⊆ Dk
0 ⊆ · · · ⊆ Dk

N ⊆ Dk+1, see Figure 21 for
an illustration. Let ωk

j = Ψj(ω
k). If γ is a ωk

j -open path living in Dk
j , then Σtn−k,tN+j+1

(γ)

3To be precise, it is shown that for any k, the law of hk dominates that of Hk. It is not true that the law of
the whole process (hk)06k6n+1 dominates that of (Hk)06k6n+1. This step uses [25, Lem. 3.7].
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N + n

0

n− k + j =: j̃

2(n+ 2k)

2(2(n+ k) +N)

Dk
j

Dk+1

Dk

Figure 21: The evolution of Dk (red) to Dk+1 (blue) via intermediate steps Dk
j (black).

is a ωk
j+1-open path living in Dk

j+1. This is a consequence after a careful inspection of
Figure 13, where blue points indicate possible horizontal drifts. Define also

hk
j = sup{h 6 N : ∃u, v ∈ Z with xu,0

Dk
j ,ω

k
j←−−−→ xv,h}.

Then, hk 6 hk
0 and hk

n 6 hk+1. As in [27], we need to prove that for 0 6 j 6 N − 1,

hk
j+1 = hk

j if hk
j 6= j̃, j̃ + 1, (3.13)

hk
j+1 − hk

j = 0 or 1 if hk
j = j̃, (3.14)

hk
j+1 − hk

j = −1 or 0 if hk
j = j̃ + 1, (3.15)

P(hk
j+1 > h |hk

j = h) > 2δ if h = j̃ + 1. (3.16)

The four equations above imply the existence of a process Hk as in (3.12).
As explained in [27], (3.13), (3.14) and (3.15) are clear because the upper endpoint

of a path is affected by Σ := Σtn−k,tN+j+1
only if it is at height j̃ or j̃ + 1. The behavior of

the upper endpoint can be analyzed using Figure 14. More precisely,

• when it is at height j̃+1, the upper endpoint either stays at the same level or drifts
downwards by 1;

• when it is at height j̃, it either stays at the same level or drifts upwards by 1.

Hence, the rest of the proof is dedicated to showing (3.16).
We start with a preliminary computation. Fix j and let Pj be the set of paths γ of

Ψj(G
k), contained in Dk

j , with one endpoint at height 0, the other at height h(γ), and all
other vertices with heights between 1 and h(γ)− 1.

Assume that in Σ, the additional rhombus is slid from left to right and define Γ to be
the left-most path of Pj reaching height hk

j
4. (Such a path exists due to the definition of

hk
j .) This choice is relevant since later on, we will need to use negative information in

the region on the left of the path γ. Moreover, for γ, γ′ ∈ Pj , we write γ′ < γ if γ′ 6= γ,
h(γ′) = h(γ) and γ′ does not contain any edge strictly to the right of γ.

Denote by Γ = Γ(ωk
j ) the ωk

j -open path of Pj that is the minimal element of {γ ∈ Pj :

h(γ) = hk
j , γ is ωk

j -open}. Given a path γ ∈ Pj , we can write {Γ = γ} = {γ is ωk
j -open} ∩

Nγ where Nγ is the decreasing event that

(a) there is no γ′ ∈ Pj with h(γ′) > h(γ), all of whose edges not belonging to γ are
ωk
j -open;

(b) there is no γ′ < γ with h(γ′) = h(γ), all of whose edges not belonging to γ are
ωk
j -open.

4Otherwise Γ should be taken right-most.
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Let F be a set of edges disjoint from γ, write CF for the event that all the edges in F

are closed. We find,

P[CF |Γ = γ] =
P[Nγ ∩ CF | γ is open]

P[Nγ | γ is open]

> P[CF | γ is open]

> φ1
K [CF ], (3.17)

where the second line is given by the FKG inequality due to the fact that P[· | γ is open]
is still a random-cluster measure and both Nγ and CF are decreasing events. In the
last line, we compare the boundary conditions, where K is the subgraph consisting of
rhombi containing the edges of F .

z z z

e1e2

e3 e4 z′ z′ z′ z′

e5
1 1

ye1
ye4

q

Figure 22: Three star-triangle transformations contributing to Σ slid the gray rhombus
from left to right. The dashed edges are closed, the bold edges are open and the state of
dotted edge e2 does not really matter. The first and last passages occur with probability
1, and the second with probability ye1ye4/q.

Now, we are ready to show (3.16). Let γ ∈ Pj with h(γ) = j̃+1 and assume Γ(ωk
j ) = γ.

Now, it is enough to show that

P
[
h(Σ(γ)) > j̃ + 1

∣∣Γ = γ
]
> 2δ. (3.18)

Let z = xu,̃j+1 denote the upper endpoint of γ and let z′ denote the other endpoint of
the unique edge of γ leading to z. Either z′ = xu+1,̃j or z

′ = xu−1,̃j . In the second case, it

is always the case that h(Σ(γ)) > j̃ + 1.
Assume that z′ = xu+1,̃j as in Figure 22 and consider edges ei for i = 1, . . . , 4 as

follow,

e1 = 〈xu,̃j+1, xu−1,̃j+2〉, e2 = 〈xu−1,̃j+2, xu−2,̃j+1〉,

e3 = 〈xu−2,̃j+1, xu−1,̃j〉, e4 = 〈xu−1,̃j , xu,̃j+1〉.

Let us now analyse the star-triangle transformations that affect e1, . . . , e4; these are
depicted in Figure 22. We note that conditioning on the event CF ∩ {Γ = γ}, where
F = {e3, e4}, we have:

(a) The edge e1 must be closed due to the conditioning {Γ = γ}.

(b) Whichever the state of e2 is, the edge e5 is always closed.

(c) The second passage occurs with probability ye1ye4/q.

(d) The third passage is deterministic.

Thus,

P
[
h(Σ) > j̃ + 1

∣∣Γ = γ
]
>

ye1ye4
q
· P[CF |Γ = γ].

Moreover, the preliminary computation (3.17) gives that

P[CF |Γ = γ] > φ1
K [CF ] = (1− pe3)(1− pe4),
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where K consists only of the two rhombi containing e3 and e4 and we use the fact that in
the random-cluster measure φ1

K , these edges are independent (the number of clusters is
always equal to 1). Finally,

P
[
h(Σ) > j̃ + 1

∣∣Γ = γ
]
>

ye1pe4(1− pe3)

q
>

yπ−εpπ−ε(1− pε)

q
> 2δ, (3.19)

where

δ =
1

2
min

{
yπ−εpπ−ε(1− pε)

q
, 1

}
> 0. (3.20)

To conclude, we have

P[hn+1 > δn]

P[h0 > n]
>
P[Hn+1 > δn]

P[H0 > n]
> P[Hn+1 > δn |H0 > n] =: cn(δ),

and since Hn/n→ 2δ as n→∞ due to the law of large numbers, we know that cn → 1

as n→∞.

3.3 Doubly-periodic isoradial graphs

Now that the RSW property is proved for isoradial square lattices, we transfer it
to arbitrary doubly-periodic isoradial graphs G. We do this by transforming a finite
part of G (as large as we want) into a local isoradial square lattice using star-triangle
transformations. The approach is based on the combinatorial result Proposition 2.9.

Proposition 3.9. Any doubly-periodic isoradial graph G satisfies the RSW property.

Proof. Let G be a doubly-periodic isoradial graph with grid (sn)n∈Z and (tn)n∈Z. Fix
a constant d > 1 as given by Proposition 2.9 applied to G. In the below formula,
Chph (n;n) denotes the horizontal crossing event in the half-plane rectangular domain
Rhp(n;n) := R(−n, n; 0, n). We will show that

φ0
Λ(6dn)

[
Chph (n;n)

]
= φ0

Λ(6dn)

[
Ch(−n, n; 0, n)

]
> δ, (3.21)

for some constant δ > 0 which does not depend on n. Moreover, a careful inspection of
the forthcoming proof shows that δ only depends the bounded angles parameter ε > 0

and on the size of the fundamental domain of G. The same estimate is valid for the dual
model, since it is also a random-cluster model on an isoradial graph with β = 1.

The two families of tracks (sn)n∈Z and (tn)n∈Z play symmetric roles, therefore (3.21)
may also be written

φ0
Λ(6dn)

[
Cv(0, n;−n, n)

]
> δ. (3.22)

The two inequalities (3.21) and (3.22) together with their dual counterparts imply the
RSW property by Lemma 3.1 5.

The rest of the proof is dedicated to (3.21). In proving (3.21), we will assume n to be
larger than some threshold depending on G only; this is not a restrictive hypothesis.

Let (σk)16k6K be a sequence of star-triangle transformations as in Proposition 2.9
such that in G̃ := (σK ◦ · · · ◦ σ1)(G), the region enclosed by s−4n, s4n, t−2n and t2n has a
square lattice structure. Recall that all the transformations σk act horizontally between
s−6dn and s6dn and vertically between t2n and t−2n.

5The conditions of Lemma 3.1 differ slightly from (3.21) and (3.22) in the position of the rectangle and
the domain where the measure is defined. Getting from one to the other is a standard application of the
comparison between boundary conditions.
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Consider the following events for G̃. Let C̃ be the event that there exists an open
circuit contained in the region between s−2n and s2n and between t−n/2 and tn/2 sur-

rounding the segment of the base between s−n and sn. Let C̃∗ be the event that there
exists an open circuit contained in the region between s−3n and s3n and between t−3n/2

and t3n/2 surrounding the segment of the base between s−2n and s2n.

Let G̃ be the subgraph of G̃ contained between s−4n, s4n, t−2n and t2n. Then G̃ is a
finite section of a square lattice with 4n+ 1 horizontal tracks, but potentially more than
8n+ 1 vertical ones. Indeed, any track of G that intersects the base between s−4n, s4n is
transformed into a vertical track of G̃.

Write (s̃n)n∈Z for the vertical tracks of G̃, with s̃0 coinciding with s0 (this is coherent
with the notation in the proof of Proposition 2.9). Then, the tracks (sn)n∈Z are a
periodic subset of (s̃n)n∈Z, with period bounded by the number of tracks intersecting a
fundamental domain of G. It follows that there exist constants a, b depending only on G,
not on n, such that the number of tracks (s̃n)n∈Z between any two tracks si and sj (with
i 6 j) is between (j − i)a− b and (j − i)a+ b.

By the above discussion, for some constant c > 1 and n large enough (larger than
some n0 depending only on a and b, therefore only on the size of the fundamental domain
of G), the events C̃ and C̃∗ may be created using crossing events as follow:

H̃1 ∩ H̃2 ∩ Ṽ1 ∩ Ṽ2 ⊆ C̃ and H̃∗
1 ∩ H̃∗

2 ∩ Ṽ∗
1 ∩ Ṽ∗

2 ⊆ C̃∗,

where

H̃1 = Ch(−(c+ 1)n, (c+ 1)n; 0, n
2 ), H̃∗

1 = C∗h(−(2c+ 1)n, (2c+ 1)n;n, 3n
2 ),

H̃2 = Ch(−(c+ 1)n, (c+ 1)n;−n
2 , 0), H̃∗

2 = C∗h(−(2c+ 1)n, (2c+ 1)n;− 3n
2 ,−n),

Ṽ1 = Cv(−(c+ 1)n,−cn;−n
2 ,

n
2 ), Ṽ∗

1 = C∗v (−(2c+ 1)n,−2cn;− 3n
2 , 3n

2 ),

Ṽ2 = Cv(cn, (c+ 1)n;−n
2 ,

n
2 ), Ṽ∗

2 = C∗v (2cn, (2c+ 1)n;− 3n
2 , 3n

2 ),

are defined in terms of the tracks (s̃n)n∈Z and (tn)n∈Z. These horizontal and vertical
crossing events are shown in Figure 23.

tn

2

tn

t
−

n

2

t
−n

s
−3n s

−2n s
−n sn s2n s3n

t0

t
−

3n

2

t 3n

2

Figure 23: The crossing events H̃1, H̃2, Ṽ1 and Ṽ2 are depicted in red; they induce a
circuit around the segment of the base between s−n and sn. The events H̃∗

1, H̃∗
2, Ṽ∗

1 and
Ṽ∗
2 are represented in blue.

Notice that all events above depend only on the configuration in G̃. Let φ
G̃
denote

some infinite-volume measure on G̃. By the RSW property for the square lattice G̃ (that is,
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by Corollary 3.3), the comparison between boundary conditions and the FKG inequality,

φ
G̃

[
C̃∗

]
> φ1

G̃

[
H̃∗

1

]
φ1
G̃

[
H̃∗

2

]
φ1
G̃

[
Ṽ∗
1

]
φ1
G̃

[
Ṽ∗
2

]
> δ1,

for some δ1 > 0 independent of n. Moreover, by the same reasoning,

φ
G̃

[
C̃
∣∣ C̃∗] > φ0

R̃

[
H̃1

]
φ0
R̃

[
H̃2

]
φ0
R̃

[
Ṽ1

]
φ0
R̃

[
Ṽ2

]
> δ2,

for some δ2 > 0 independent of n, where R̃ = R̃(2cn;n) is defined with respect to the
tracks (s̃n)n∈Z and (tn)n∈Z. We conclude that

φ
G̃

[
C̃ ∩ C̃∗

]
> δ1δ2 > 0.

Let P be the probability that consists of choosing a configuration ω̃ on G̃ according to
φ
G̃
, then applying the inverse transformations σ−1

K , . . . , σ−1
1 to it. Thus, ω := (σ−1

1 ◦ · · · ◦
σ−1
K )(ω̃) is a configuration on G chosen according to some infinite-volume measure φG.

Let ω̃ ∈ C̃ ∩ C̃∗, and write γ̃ and γ̃∗ for two circuits as in the definitions of C̃ and C̃∗
respectively. The two circuits γ̃ and γ̃∗ are transformed by (σ−1

1 ◦ · · · ◦ σ
−1
K ) into circuits

on G; call γ = (σ−1
1 ◦ · · · ◦ σ

−1
K )(γ̃) and γ∗ = (σ−1

1 ◦ · · · ◦ σ
−1
K )(γ̃∗) their respective images.

Then, γ is ω-open and γ∗ is ω∗-open.
Since the transformations σ−1

1 , . . . , σ−1
K only affect the region between s−6dn, s6dn,

t−2n and t2n, both γ and γ∗ are contained in this region of G, that is in R(6dn; 2n).
Additionally, since the transformations do not affect the base, γ∗ surrounds the segment
of the base between s−2n and s2n while γ surrounds the segment of the base between
s−n and sn but only traverses the base between s−2n and s2n.

Write C for the event that a configuration on G has an open circuit contained in
R(6dn; 2n), surrounding the segment of the base between s−n and sn and traversing the
base only between s−2n and s2n. Also, set C∗ to be the event that a configuration on G
has a dually-open circuit contained in R(6dn; 2n), surrounding the segment of the base
between s−2n and s2n.

Both C and C∗ are reminiscent of the events C̃ and C̃∗, in spite of small differences.
Indeed, the discussion above shows that if ω̃ ∈ C̃ ∩ C̃∗, then ω ∈ C ∩ C∗. Thus,

φG
[
C ∩ C∗

]
= P

[
ω ∈ C ∩ C∗

]
> P

[
ω̃ ∈ C̃ ∩ C̃∗

]
= φ

G̃

[
C̃ ∩ C̃∗

]
> δ1δ2.

For a configuration ω on G, write Γ∗(ω) for the exterior-most dually-open circuit as in
the definition of C∗ (that is contained in R(6dn; 2n) and surrounding the segment of the
base between s−2n and s2n), if such a circuit exists. Let Int(Γ∗) be the region surrounded
by Γ∗, seen as a subgraph of G.

It is standard that Γ∗ may be explored from the outside and therefore that, condition-
ally on Γ∗, the random-cluster measure in Int(Γ∗) is φ0

Int(Γ∗).
Observe that for ω ∈ C ∩ C∗, due to the restrictions over the intersections with the

base, any circuit in the definition of C is surrounded by any in the definition of C∗.
Thus, if for ω ∈ C∗, the occurence of C only depends on the configuration inside Int(Γ∗).
Therefore,

φG
[
C ∩ C∗

]
= φG

[
C
∣∣ C∗]φG[C∗]

=
∑
γ∗

φG
[
C
∣∣Γ∗ = γ∗]φG[Γ∗ = γ∗]

=
∑
γ∗

φ0
Int(γ∗)

[
C
]
φG

[
Γ∗ = γ∗]

6
∑
γ∗

φ0
R(6dn;2n)

[
C
]
φG

[
Γ∗ = γ∗]

= φ0
R(6dn;2n)

[
C
]
φG

[
C∗

]
,
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where the sum above is over all deterministic circuits γ∗ on G∗, as in the definition of
C∗. In the before last line, we used the fact that Int(γ∗) ⊆ R(6dn; 2n), where R(6dn; 2n) is
defined using tracks in G, and the comparison between boundary conditions to say that
the free boundary conditions on ∂ Int(γ∗) are less favorable to the increasing event C
than those on the more distant boundary ∂R(6dn; 2n).

Due to the previous bound on φG
[
C ∩ C∗

]
, we deduce that

φ0
R(6dn;2n)

[
C
]
> δ1δ2.

Finally, notice that any circuit as in the definition of C contains a horizontal crossing of
Rhp(n;n). We conclude from the above that

φ0
R(6dn;2n)

[
Rhp(n;n)

]
> δ1δ2.

This implies (3.21) by further pushing away the unfavorable boundary conditions.

3.4 Tying up loose ends

As mentioned already, Theorem 1.1 and Corollary 1.3 for 1 6 q 6 4 follow directly
from the RSW property (i.e., from Proposition 3.9). We mention here the necessary
steps. They are all standard for those familiar with the random-cluster model; details
are provided in [33, App. C].

Fix G a doubly-periodic isoradial graph and q ∈ [1, 4]. We start with the following
lemma which is the key to all the proofs.

Lemma 3.10. For j > 1, define the annuli Aj = [−2j+1, 2j+1]2 \ [−2j , 2j ]2. Then, there
exists c > 0 such that for all j > 1 and ξ = 0, 1, we have

φξ
Aj

[
there exists an open circuit surrounding 0 in Aj

]
> c. (3.23)

By duality, the same also holds for a dually-open circuit.

Proof. This is proved by combining crossings of rectangles via the FKG inequality, as in
Figure 23.

The estimates of Lemma 3.10 for the dual model imply an upper bound on the one-arm
probability under φ1

G, as that in the second point of Theorem 1.1. Indeed, if a dually-open
circuit occurs in Aj for some j 6 log2 n− 2, then the event {0↔ ∂Bn} fails. The fact that
(3.23) is uniform in the boundary conditions on Aj allows us to “decouple” the events of
(3.23), and proves that the probability of no circuit occurring in any of A1, . . . , Alog2 n−2

is bounded above by (1− c)log2 n−2.
The converse bound is obtained by a straightforward construction of a large clus-

ter using crossings of rectangles of the form [0, 2j ] × [0, 2j+1] and their rotation by π
2 ,

combined using the FKG inequality.
From the above, we deduce that φ1

G(0 ↔ ∞) = 0. The uniqueness of the critical
infinite volume measure (the first point of Theorem 1.1) follows using a standard coupling
argument.

Finally, to prove Corollary 1.3, we use the differential inequality of [22], as done
in [16].

3.5 Universality of arm exponents: Theorem 1.4

The proof of universality of arm exponents (Theorem 1.4) follows exactly the steps
of [27, Sec. 8]. Arm events will be transferred between isoradial graphs using the same
transformations as in the previous sections. As already discussed in Section 2, these
transformations alter primal and dual paths, especially at their endpoints. When applied
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to arm events, this could considerably reduce the length of the arms. To circumvent
such problems and shield the endpoints of the arms from the effect of the star-triangle
transformations, we define a variation of the arm events. It roughly consists in “attaching”
the endpoints of the arms to a track which is not affected by the transformations. Some
notation is necessary.

Fix ε > 0 and a doubly-periodic isoradial graph G ∈ G(ε) with grid (sn)n∈Z and
(tn)n∈Z. Recall that the vertices of G� that are below and adjacent to t0 form the base
of G. Also, recall the notation x ↔ y and write x

∗←→ y for connections in the dual
configuration.

For n < N and k ∈ {1} ∪ 2N, define the event Ãk(n,N) as

1. for k = 1: there exist primal vertices x1 ∈ Λ(n) and y1 /∈ Λ(N), both on the base,
such that x1 ↔ y1;

2. for k = 2: there exist x1, x
∗
1 ∈ Λ(n) and y1, y

∗
1 /∈ Λ(N), all on the base, such that

x1 ↔ y1 and x∗
1

∗←→ y∗1 ;

3. for k = 2j > 4: Ãk(n,N) is the event that there exist x1, . . . , xj ∈ Λ(n) and
y1, . . . , yj /∈ Λ(N), all on the base, such that xi ↔ yi for all i and xi = xj for all
i 6= j.

Notice the resemblance between Ãk(n,N) and Ak(n,N), where the latter is defined
just before the statement of Theorem 1.4. In particular, observe that in the third point,
the existence of j disjoint clusters uniting ∂Λ(n) to ∂Λ(N) indeed induces 2j arms of
alternating colours in counterclockwise order. Two differences between Ãk(n,N) and
Ak(n,N) should be noted: the fact that in the former arms are forced to have extremities
on the base and that the former is defined in terms or graph distance while the latter in
terms of Euclidean distance. As readers probably expect, this has only a limited impact
on the probability of such events.

For the rest of the section, fix q ∈ [1, 4] and write φG for the unique infinite-volume
random-cluster measure on G with parameters β = 1 and q.

Lemma 3.11. Fix k ∈ {1} ∪ 2N. There exists c > 0 depending only on ε, q, k and the
fundamental domain of G such that

c φG[Ak(n,N)] 6 φG[Ãk(n,N)] 6 c−1φG[Ak(n,N)] (3.24)

for all N > n large enough.

The above is a standard consequence of what is known in the field as the arm
separation lemma [33, Lem. D.1]. The proofs of the separation lemma and Lemma 3.11
are both fairly standard but lengthy applications of the RSW theory of Theorem 1.1;
they are discussed in [33, App. D] (see also [35, Prop. 5.4.2] for a version of these for
Bernoulli percolation). Readers may check Figures 24 and 25 for a sketch of proof in the
case k = 2.

We obtain Theorem 1.4 in two steps, first for isoradial square lattices, then for
doubly-periodic isoradial graphs. The key to the first step is the following proposition.

Proposition 3.12. Let G(1) = Gα,β(1) and G(2) = Gα,β(2) be two isoradial square lattices
in G(ε). Fix k ∈ {1} ∪ 2N. Then

φξ
G(1) [Ãk(n,N)] = φξ

G(2) [Ãk(n,N)],

for all n < N .

Proof. Fix k ∈ {1} ∪ 2N and take N > n > 0 and M > N (one should imagine M much
larger than N ). Let Gmix be the symmetric mixed graph of Section 2.4.1 formed, above
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t0

Λ(n)

Λ(N)

t0

Λ(n)

Λ(N)

Figure 24: We assume that both A2(n,N) and Ã2(n,N) are defined using Euclidean
distance, which just introduces a constant factor for the probability of events. Left:
The event Ã2(n,N), where primal paths are in red. Note that in the definition they
are not connected. Right: We explore the clusters containing the paths defined in
Ã2(n,N) and their outer borders induce dual paths connecting ∂Λ(n) to ∂Λ(N). Thus,
the event Ã2(n,N) implies the event A2(n,N) up to the change between graph distance
and Euclidean distance.

the base, of a block of M rows and 2M +1 columns of G(2) superposed on an equal block
of G(1), then convexified; and, below the base, of symmetric blocks. Construct G̃mix in
the same way, with the role of G(1) and G(2) inversed. Recall, from Section 2.4.1, the
series of star-triangle transformations Σ↓ that transforms Gmix into G̃mix.

Write φGmix and φG̃mix
for the random-cluster measures onGmix and G̃mix, respectively,

with β = 1 and free boundary conditions. The events Ãk(n,N) are also defined on Gmix

and G̃mix.

Let ω be a configuration on Gmix such that Ãk(n,N) occurs. Then, under the configu-
ration Σ↓(ω) on G̃mix, Ãk(n,N) also occurs. Indeed, the vertices xi and yi (and x∗

1 and y∗1
when k = 2) are not affected by the star-triangle transformations in Σ↓ and connections
between them are not broken nor created by any star-triangle transformation. Thus,
φGmix

[Ãk(n,N)] 6 φG̃mix
[Ãk(n,N)]. Since the roles of Gmix and G̃mix are symmetric, we

find

φGmix [Ãk(n,N)] = φG̃mix
[Ãk(n,N)] (3.25)

Observe that the quantities in (3.25) depend implicitly on M . When taking M →∞, due
to the uniqueness of the infinite-volume random-cluster measures in G(1) and G(2), we
obtain

φGmix
[Ãk(n,N)] −−−−→

M→∞
φG(1) [Ãk(n,N)] and

φG̃mix
[Ãk(n,N)] −−−−→

M→∞
φG(2) [Ãk(n,N)].

Thus, (3.25) implies the desired conclusion.

Corollary 3.13. Let G = Gα,β be an isoradial square lattice in G(ε) and fix k ∈ {1} ∪ 2N.
Then, there exists c > 0 depending only on ε, q and k such that,

c φG[Ak(n,N)] 6 φZ2 [Ak(n,N)] 6 c−1φG[Ak(n,N)],

for any n < N .
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t0

Λ(n)

Λ(N)

t0

Λ(n)

Λ(N)

Figure 25: Left: The event A2(n,N), where primal paths are in red and dual ones in
blue. The arm separation lemma [33, Lem. D.1] states that one can keep certain distance
between endpoints of paths on ∂Λ(n) and ∂Λ(N). Right: We apply RSW property to each
of endpoints (conditioning is necessary) to make them land on the base line t0. In the
figure, only the example of an outer primal endpoint is drawn, where we make a crossing
in the annulus, then a horizontal crossing and a vertical crossing.

Proof. Fix Gα,β and k as in the statement. The constants ci below depend on ε, q and k

only.
Let β̃k = α−k − β0 + π and write β̃ for the sequence (β̃k)k∈Z. Due to the choice of

Gα,β, we have β̃ ∈ [ε, π − ε]Z. Proposition 3.12 and Lemma 3.11 applied to Z2 = G0,π2
and G0,β̃ yield a constant c1 > 0 such that

c1 φG
0,β̃

[Ak(n,N)] 6 φZ2 [Ak(n,N)] 6 c−1
1 φG

0,β̃
[Ak(n,N)]. (3.26)

As in the proof of Corollary 3.3, Gα,β0 is the rotation by β0 of the graph G0,β̃. This
does not imply that the arm events have the same probability in both graphs (since they
are defined in terms of square annuli). However, [33, Prop. D.2] about arms extension
provides a constant c2 > 0 such that

c2 φGα,β0
[Ak(n,N)] 6 φG

0,β̃
[Ak(n,N)] 6 c−1

2 φGα,β0
[Ak(n,N)]. (3.27)

Finally apply Proposition 3.12 and Lemma 3.11 to Gα,β0
and Gα,β to obtain a constant

c3 > 0 such that

c3 φGα,β0
[Ak(n,N)] 6 φGα,β

[Ak(n,N)] 6 c−1
3 φGα,β0

[Ak(n,N)]. (3.28)

Writing (3.26), (3.27) and (3.28) together yields the conclusion with c = c1c2c3.

Theorem 1.4 is now proved for isoradial square lattices. To conclude, we extend the
result to all doubly-periodic isoradial graphs.

Proof of Theorem 1.4. Consider a doubly-periodic graph G ∈ G(ε) for some ε > 0, with
grid (sn)n∈Z and (tn)n∈Z. Fix k ∈ {1} ∪ 2N. The constants ci below depend on ε, q, k and
the size of the period of G.

Choose n < N and M > N (one should think of M as much larger than N ). Propo-
sition 2.9 (the symmetrized version) provides star-triangle transformations (σk)16k6K

such that, in G̃ = (σK ◦ · · · ◦ σ1)(G), the region Λ(M) has a square lattice structure.
Moreover, each σk acts between s−dM and sdM (for some fixed d > 1) and between tM
and t−M , none of them affecting any rhombus of t0.

In a slight abuse of notation (since (sn)n∈Z, (tn)n∈Z is not formally a grid in G̃) we
define Ãk(n,N) for G̃ as for G.
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Let ω be a configuration on G such that Ãk(n,N) occurs. Then, the image configura-
tion (σK ◦ · · · ◦ σ1)(ω) on G̃ is such that Ãk(n,N) occurs. Indeed, the transformations do
not affect the endpoints of any of the paths defining Ãk(n,N). Thus,

φG[Ãk(n,N)] 6 φ
G̃
[Ãk(n,N)].

The transformations may be applied in reverse order to obtain the converse inequality.
In conclusion,

φG[Ãk(n,N)] = φ
G̃
[Ãk(n,N)]. (3.29)

The right-hand side of the above depends implicitly on M . Write Gsq for the isoradial
square lattice such that the region Λ(M) of G̃ is a centered rectangle of Gsq. (It is easy to
see that there exists a lattice that satisfies this condition for all M simultaneously). The
vertical tracks sk of G̃ correspond to vertical tracks in Gsq with an index between k and
dk, where d is the maximal number of track intersection on t0 between two consecutive
tracks sj , sj+1 in G.

In conclusion, takingM →∞ and using the uniqueness of the infinite-volume measure
on Gsq, we find

φGsq [Ãk(n, dN)] 6 lim
M→∞

φ
G̃
[Ãk(n,N)] 6 φGsq [Ãk(dn,N)]. (3.30)

Due to Lemma 3.11 and to the extension of arms ([33, Prop. D.2]),

c1φGsq [Ak(n,N)] 6 φGsq [Ãk(n, dN)] 6 φGsq [Ãk(dn,N)] 6 c−1
1 φGsq [Ak(n,N)],

for some constant c1 > 0. Using this, (3.30) and Lemma 3.11, we find

c2φGsq [Ak(n,N)] 6 φG[Ak(n,N)] 6 c−1
2 φGsq [Ak(n,N)],

for some c2 > 0. Using Corollary (3.13), we obtain the desired result.

4 Proofs for q > 4

Fix q > 4 and G a doubly-periodic isoradial graph with grid (sn)n∈Z, (tn)n∈Z. Unless
otherwise stated, write φξ

G for the isoradial random-cluster measure on G with parame-
ters q, β = 1 and free (ξ = 0) or wired (ξ = 1) boundary conditions. We will use the same
notation as in Sections 3.1 and 3.2.1.

The main goal of this section is to prove that there exist constants C, c > 0 such that

φ0
G

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n > 1. (4.1)

As we will see in Section 4.3, Theorem 1.2 and Corollary 1.3 follow from (4.1) through
standard arguments 6.

The strategy used to transfer (4.1) from the regular square lattice to arbitrary
isoradial graphs is similar to that used in the previous section. However, note that the
hallmark of the regime q > 4 is that boundary conditions influence the model at infinite
distance. The arguments in the previous section were based on local modifications of
graphs; in the present context, the random-cluster measure in the modified regions is
influenced by the structure of the graph outside. This generates additional difficulties
that require more careful constructions.

We start with a technical result that will be useful throughout the proofs. For
N,M > 1, write Rhp(N ;M) = R(−N,N ; 0,M) for the half-plane rectangle which is the
subgraph of G contained between t−N , tN , s0 and sM .

6When the graph is not periodic, a condition similar to (4.1) should be shown for all vertices of G, not just 0.
It will be apparent from the proof that the values of c and C only depend on the parameter in the bounded
angles property and on the distance between the tracks of the grid. It is then straightforward to adapt the
proof to graphs with the conditions of [27].
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Proposition 4.1. Suppose that there exist constants C0, c0 > 0 such that for all N > n,

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n). (4.2)

Then, there exist constants C, c > 0 such that (4.1) is satisfied. The constants C, c depend
only on C0, c0, on the parameter ε such that G ∈ G(ε) and on the size of the fundamental
domain of G.

Observe that (4.2) may seem weaker than (4.1). Indeed, while φ0
G is the limit of φ0

Λ(N)

as N → ∞, the limit of the measures φ0
Rhp(N ;N) is what would naturally be called the

half-plane infinite-volume measure with free boundary conditions. Connections departing
from 0 in the latter measure are (potentially) considerably less likely than in φ0

G due to
their proximity to a boundary with the free boundary conditions.

Xmin(ω)0

C(ω)

0

Figure 26: Left: The event of (4.2). Right: If Xmin is the lowest point of the cluster of 0
in Λ(N), then the environment around Xmin is less favourable to connections than that
of the left image.

Proof. Fix N > 1. We will prove (4.1) for the measure φ0
Λ(N) instead of φ0

G. It will be
apparent from the proof that the constants c, C do not depend on N . Thus N may be
taken to infinity, and this will provide the desired conclusion.

For simplicity of notation, let us assume that the grid (sn), (tn) of G is such that
R(0, 1; 0, 1) is a fundamental domain of G. Recall that xi,j denotes the vertex of G just to
the left of si and just below tj . Then, all vertices xi,j are translates of 0 by vectors that
leave G invariant. Write ‖xi,j‖ = max{|i|, |j|}, in accordance with the notation Λ(·).

For a random-cluster configuration ω on Λ(N), let C(0) denote the connected com-
ponent of the origin. Let Xmin = Xmin(ω) be a point xi,j of minimal index j such that
C(0) intersects xi,j + R(0, 1; 0, 1). If several such points exist, choose one according
to some rule (e.g., that of minimal i). We will estimate the connection probability
φ0
Λ(N)

[
0↔ ∂Λ(n)

]
by studying the possible values of Xmin(ω):

φ0
Λ(N)

[
0↔ ∂Λ(n)

]
=

∑
−N6i6N
−N6j60

φ0
Λ(N)

[
0↔ ∂Λ(n) and Xmin = xi,j

]
. (4.3)

Fix i, j as in the sum and write C(xi,j) for the connected component of xi,j . By the finite
energy property, there exists η depending only on the bounded angles property and the
size of the fundamental domain of G such that

φ0
Λ(N)

[
0↔ ∂Λ(n) and Xmin = xi,j

]
6 η φ0

Λ(N)

[
0↔ xi,j ↔ ∂Λ(n) and Xmin = xi,j

]
.

In the above equation, we have an inequality due to the following reason. The event
Xmin = xi,j simply means that C(0) intersects xi,j + R(0, 1; 0, 1), whereas the event
0 ↔ xi,j asks C(0) to contain xi,j . This is why we use the finite energy property to
open all the edges inside xi,j + R(0, 1; 0, 1) to create the connection. Notice that if the
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event on the right-hand side above occurs, then xi,j is connected to 0 at “distance”
r := max{‖xi,j‖, n

2 }; that is xi,j ↔ xi,j + ∂Λ(r). Moreover, the connected component
of xi,j is contained above track tj . By the translation invariance and the comparison
between boundary conditions,

φ0
Λ(N)

[
xi,j ↔ xi,j + ∂Λ(r) and C(xi,j) contained above tj

]
6 φ0

Λ(2N)

[
0↔ ∂Λ(r) and C(0) contained above t0

]
.

Let Γ∗ be the lowest dual left-right crossing of Λ(2N) contained above t0 (actually we
allow Γ∗ to use the faces of G� below t0 but adjacent to it). If C(0) is contained above t0,
then Γ∗ passes under C(0). By conditioning on the values γ∗ that Γ∗ may take and using
the comparison between boundary conditions we find

φ0
Λ(2N)

[
0↔ ∂Λ(r) and C(0) contained above t0

]
6

∑
γ∗

φ0
Λ(2N)

[
0↔ ∂Λ(r) and C(0) contained above γ∗ |Γ∗ = γ∗]φ0

Λ(2N)

[
Γ∗ = γ∗]

6
∑
γ∗

φ0
Rhp(2N ;2N)

[
0↔ ∂Λ(r)

]
φ0
Λ(2N)

[
Γ∗ = γ∗] 6 C exp(−cr).

The last inequality is due to (4.2). Inserting this into (4.3) (recall that r = max{‖xi,j‖, n
2 })

we find

φ0
Λ(N)

(
0↔ ∂Λ(n)

)
=

∑
−N6i6N
−N6j60

ηC exp(−cmax{‖xi,j‖;n/2})

6 n2

2 ηC exp(− c
2n) +

∑
k>n

2kηC exp(−ck)

6 C ′ exp(−c′n),

for some adjusted constants c′, C ′ > 0 that do not depend on n or N . Taking N →∞, we
obtain the desired conclusion.

The following result will serve as the input to our procedure. It only concerns the
regularly embedded square lattice and is a consequence of [20] and [15]. For coherence
with the notation above, we consider the square lattice as having edge-length

√
2 and

rotated by π
4 with respect to its usual embedding. This is such that the diamond graph

has vertices {(a, b) : a, b ∈ Z}, with those with a + b even being primal vertices. In a
slight abuse of notation, write Z2 for the lattice thus embedded.

Write φ
1/0

Rhp(N ;N)
for the random-cluster measure on the domain Rhp(N ;N) of Z2 with

β = 1, free boundary conditions on [−N,N ]× {0} and wired boundary conditions for the
rest of the boundary. Also define H = Z × N to be the upper-half plane of Z2. Write
φ
1/0
H for the half-plane random-cluster measure which is the weak (decreasing) limit of

φ
1/0

Rhp(N ;N)
for N →∞.

Proposition 4.2. For the regular square lattice and q > 4, there exist constants C0, c0 >

0 such that, for all n > 1,

φ
1/0
H

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n). (4.4)

Proof. Fix q > 4. It is shown in [15] that the phase transition of the random-cluster mea-
sure on Z2 is discontinuous and that the critical measure with free boundary conditions
exhibits exponential decay. That is, φ0

Z2 satisfies (4.1) for some constants C, c > 0. To
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prove (4.4), it suffices to show that the weak limit φ1/0
H of the measures φ1/0

Rhp(N ;N)
has no

infinite cluster almost surely. Indeed, then φ
1/0
H is stochastically dominated by φ0

Z2 .

The rest of the proof is dedicated to showing that φ1/0
H

[
0↔∞

]
= 0, and we do so by

contradiction. Assume the opposite. By ergodicity of φ1/0
H , for any ε > 0, there exists

N > 0 such that

φ
1/0
H

[
Λ(N)↔∞

]
> 1− ε. (4.5)

Furthermore, φ1/0
H is also the decreasing limit of the measures φ1/0

S`
, where S` = Z× [0, `]

and 1/0 refers to the boundary conditions which are wired on the top and free on the
bottom of the strip S` (boundary conditions at infinity on the left and right are irrelevant
since the strip is essentially one dimensional). Therefore,

φ
1/0
S4N

[
Λ(N)↔ top of S4N

]
> 1− ε. (4.6)

In [20], Lemma 2 7 shows that

φ
1/0
S4N

[
C∗h(−4N, 4N ;N, 3N)

]
> c1,

for some constant c1 > 0 not depending on N . If C∗h(−4N, 4N ;N, 3N) occurs, denote by
Γ∗ the top-most dual crossing in its definition. Moreover, let A be the event that Γ∗ is
connected to the line Z× {0} by two dually-open paths contained in R(−4N,−N ; 0, 3N)

and R(N, 4N ; 0, 3N), respectively (see Figure 27). Then, using the comparison between
boundary conditions and the self-duality of the model, we deduce the existence of c2 > 0

such that

φ
1/0
S4N

[
A
∣∣ C∗h(−4N, 4N ;N, 3N)

]
> c2. (4.7)

0

2N

N

3N

Γ∗

Figure 27: The strip S4N with wired boundary conditions on the top and free on the
bottom. If C∗h(−4N, 4N ;N, 3N) ∩ A occurs, then Λ(N) is disconnected from the top
of the strip. Due to the self-duality, both C∗h(−4N, 4N ;N, 3N) and A conditionally on
C∗h(−4N, 4N ;N, 3N) occur with positive probability.

Notice that, if C∗h(−4N, 4N ;N, 3N) and A both occur, then Λ(N)may not be connected
to the top of S4N by an open path. Thus

φ
1/0
S4N

[
Λ(N)↔ top of S4N

]
6 1− c1c2.

This contradicts (4.6) for ε < c1c2, and the proof is complete.

The proof of (4.2) is done in two stages, first it is proved for isoradial square lattices,
then for arbitrary doubly-periodic isoradial graphs.

7Actually a slight adaptation of [20, Lem. 2] is necessary to account for the rotation by π
4
of the lattice.
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4.1 Isoradial square lattices

The proof of (4.2) for isoradial embeddings of square lattices follows the procedure
of Section 3.2. That is, two lattices with same transverse angles for the vertical tracks
are glued along a horizontal track. Track exchanges are performed, and estimates as
those of (4.2) are transported from one lattice to the other.

Transforming the regular lattice Z2 into an arbitrary isoradial one is done in two
steps: first Z2 is transformed into a lattice with constant transverse angles for vertical
tracks; then the latter (or rather its rotation) is transformed into a general isoradial
square lattice. For technical reasons, we will perform the two parts separately.

We should mention that some significant difficulties arise in this step due to the
long-range effect of boundary conditions. Indeed, recall that in order to perform track
exchanges, the graph needs to be convexified. This completion affects boundary condi-
tions in an uncontrolled manner, which in this case is crucial. Two special arguments are
used to circumvent these difficulties; hence the two separate stages in the proof below.

Recall the notation Gα,β for the isoradial square lattice with transverse angles
α = (αn)n∈Z for the vertical train tracks (sn)n∈Z and β = (βn)n∈Z for the horizontal
train tracks (tn)n∈Z. Write 0 (also written x0,0) for the vertex of Gα,β just below track
t0 and just to the left of s0. We will always assume that Gα,β is indexed such that 0 is a
primal vertex.

The result of the first part is the following.

Proposition 4.3. Let G0,β be an isoradial square lattice in G(ε) for some ε > 0, with
transverse angles 0 for all vertical tracks. Then, there exist constants C, c > 0 depending
on ε only such that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (4.8)

Proof. Fix a lattice G0,β as in the statement. For integers 2n < N , let Gmix be the
mixture of G0,β and Z2, as described in Section 2.4. Notice that here the order of the
regular block (that of Z2) and the irregular one (that of G0,β) is opposite to that in the
previous section.

In this proof, the mixed graph is only constructed above the base level; it has
2N + 1 vertical tracks (si)−N6i6N of transverse angle 0 and 2N + 2 horizontal tracks
(tj)06j62N+1, the first N + 1 having transverse angles β0, β1, . . . , βN , respectively and
the following N + 1 having transverse angles π

2 . Finally, Gmix is a convexification of the
piece of square lattice described above.

Set G̃mix to be the result of the inversion of the regular and irregular blocks of Gmix

using the sequence of transformations Σ↑. Let φGmix
and φG̃mix

be the random-cluster

measures with the free boundary conditions on Gmix and G̃mix respectively. The latter is
then the push-forward of the former by the sequence of transformations Σ↑.

Let δ0 ∈ (0, 1) be a constant that will be set below; it will be chosen only depending
on ε and q. Write ∂L, ∂R and ∂T for the left, right and top boundaries, respectively, of a
rectangular domain Rhp(.; .).

Consider a configuration ω on Gmix such that the event {0↔ ∂Λ(n)} occurs. Then, 0
is connected in ω to either ∂LRhp(n; δ0n), ∂RRhp(n; δ0n) or ∂TRhp(n; δ0n). Thus,

φGmix

[
0↔ ∂Λ(n)

]
6φGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂LR
hp(n; δ0n)

]
+φGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂RR
hp(n; δ0n)

]
+φGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂TR
hp(n; δ0n)

]
.

(4.9)
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Moreover, since the graph Gmix and G0,β are identical in the ball of radius N around 0

for the graph-distance,

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 φGmix

[
0↔ ∂Λ(n)

]
, (4.10)

where in the left-hand side Rhp(N ;N) denotes the rectangular domain of G0,β. We used
above the comparison between boundary conditions.

In conclusion, in order to obtain (4.8), it suffices to prove that the three probabilities
of the right-hand side of (4.9) are bounded by an expression of the form Ce−cn, uniformly
in N . We concentrate on this from now on.

Let us start with the last line of (4.9). Recall Proposition 3.7; a straightforward
adaptation reads:

Adaptation of Proposition 3.7. There exist δ > 0 and cn > 0 satisfying cn → 1 as
n→∞ such that, for all n and sizes N > 4n,

φG̃mix

[
0

Rhp(4n;δδ0n)←−−−−−−−→ ∂TR
hp(4n; δδ0n)

]
> cnφGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂TR
hp(n; δ0n)

]
. (4.11)

The proof of the above is identical to that of Proposition 3.7. The constant δ and the
sequence (cn)n only depend on ε and q.

By the comparison between boundary conditions,

φG̃mix

[
0

Rhp(4n;δδ0n)←−−−−−−−→ ∂TR
hp(4n; δδ0n)

]
6 φ

1/0

Rhp(N ;N)

[
0←→ ∂Λ(δδ0n)

]
6 C0 exp(−c0δδ0n).

The second inequality is due to Proposition 4.2 and to the fact that the rectangle
Rhp(N ;N) of G̃mix is fully contained in the regular block. Thus, from (4.11) and the
above, we obtain,

φGmix

[
0

Rhp(4n;δ0n)←−−−−−−→ ∂TR
hp(4n; δ0n)

]
6

C0

cn
exp(−c0δδ0n). (4.12)

For n large enough, we have cn > 1/2, and the left-hand side of (4.12) is smaller than
2C0 exp(−c0δδ0n). Since the threshold for n and the constants c0, δ and δ0 only depend
on ε and q, the bound is of the required form.

We now focus on bounding the probabilities of connection to the left and right

boundaries of Rhp(n; δ0n). Observe that, for a configuration in the event
{
0

Rhp(n;δ0n)←−−−−−−→
∂RR

hp(n; δ0n)
}
, it suffices to change the state of at most δ0n edges to connect 0 to the

vertex x0,n (we will assume here n to be even, otherwise x0,n should be replaced by
x0,n+1). By the finite-energy property, there exists a constant η = η(ε, q) > 0 such that

φGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂RR
hp(n; δ0n)

]
6 exp(ηδ0n)φGmix

[
0↔ x0,n

]
.

The points 0 and x0,n are not affected by the transformations in Σ↑, therefore

φGmix

[
0↔ x0,n

]
= φG̃mix

[
0↔ x0,n

]
6 φG̃mix

[
0↔ ∂Λ(n)

]
6 φ

1/0

Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n),
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where in the last line, Rhp(N ;N) is a subgraph of G̃mix, or equivalently of Z2 since these
two are identical. The last inequality is given by Proposition 4.2. We conclude that,

φGmix

[
0

Rhp(n;δ0n)←−−−−−−→ ∂RR
hp(n; δ0n)

]
6 C0 exp

[
− (c0 − δ0η)n

]
. (4.13)

The same procedure also applies to {0 Rhp(n;δ0n)←−−−−−−→ ∂LR
hp(n; δ0n)}.

Suppose now that δ0 = c0
c0δ+η is chosen such that

c := c0 − δ0η = c0δδ0 > 0.

Note that δ0 ∈ (0, 1) since η > c0 and that c depends only on ε and q. Then, (4.9), (4.12)
and (4.13) imply that for n larger than some threshold depending only on ε,

φGmix

[
0↔ ∂Λ(n)

]
6 4C0 exp(−cn).

Finally, by (4.10), we deduce (4.8) for all N > 2n and n large enough. The condition on n

may be removed by adjusting the constant C; the bound on N is irrelevant, since the
left-hand side of (4.8) is increasing in N .

The same argument may not be applied again to obtain (4.8) for general isoradial
square lattices since it uses the bound (4.4), which we have not proved for lattices of the
form G0,β. Indeed, (4.4) is not implied by (4.8) when no rotational symmetry is available.
A different argument is necessary for this step.

We draw the attention of the reader to the fact that the lattice of Proposition 4.3 was
not assumed to be doubly-periodic, neither will be the following one.

Proposition 4.4. Let Gα,β be an isoradial square lattice in G(ε) for some ε > 0. Then,
there exist constants C, c > 0 depending only on ε, such that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (4.14)

Proof. Fix a lattice Gα,β as in the statement. The proof follows the same lines as that of
Proposition 4.3, with certain small alterations.

Set θ = 1
2 (inf{βn : n ∈ Z} + sup{αn : n ∈ Z}) and write Gα,θ for the lattice with

transverse angles α for vertical tracks and constant angle θ for all horizontal tracks. We
will refer to this lattice as regular.

For integers 2n 6 N < M , define Gmix to be the mixture of Gα,β and Gα,θ as in the
previous proof, with the exception that, while both blocks have width 2N + 1 and the
irregular block (that is that of Gα,β) has height N + 1, the regular block (that of Gα,θ)
has height M +1. Precisely, Gmix is the convexification of the lattice with 2N +1 vertical
tracks (si)−N6i6N of transverse angles (α−N , . . . , αN ) and M +N + 2 horizontal tracks
(tj)06j6M+N+1, the first N + 1 having transverse angles β0, . . . , βN and the following
M + 1 having transverse angle θ.

Recall that G̃mix, which is the result of the inversion of the regular and irregular
blocks of Gmix by Σ↑, may be chosen to be an arbitrary convexification of the lattice
G(α−N ,...,αN ),(θ,...,θ,β0,...,βN ). More precisely, once such a convexification G̃mix is chosen, a
series of star-triangle transformations Σ↑ may be exhibited. This fact will be useful later.

Write as before φGmix and φG̃mix
for the random-cluster measures with free boundary

conditions on Gmix and G̃mix, respectively. Then, by the comparison between boundary
conditions,

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 φGmix

[
0↔ ∂Λ(n)

]
,

where Rhp(N ;N) refers to the domain in Gα,β, or equivalently in Gmix since the two are
equal. Notice that the above inequality is valid for all M .
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Let δ0 ∈ (0, 1) be a constant that will be set below. Using the same notation and
reasoning as in the previous proof, we find

φGmix

[
0↔ ∂Λ(n)

]
6 1

cn
φG̃mix

[
0

Rhp(2n;δδ0n)←−−−−−−−→ ∂TR(2n; δδ0n)
]
+ 2 exp(ηδ0n)φG̃mix

[
0↔ x0,n

]
6 2φG̃mix

[
0↔ ∂Λ(δδ0n)

]
+ 2 exp(ηδ0n)φG̃mix

[
0↔ ∂Λ(n)

]
, (4.15)

where δ > 0 and η > 0 are constants depending only on ε and q. The latter inequality is
only valid for n above a threshold also only depending on ε and q.

At this point, the previous proof used (4.4) to bound the right-hand side. Since this is
no longer available, we will proceed differently.

As previously stated, we may choose the convexification for G̃mix. Let it be such that
the tracks with transverse angle θ are as low as possible. That is, G̃mix is such that, for
any track t with transverse angle θ, any intersection below t involves one track with
transverse angle θ. The existence of such a convexification is easily proved; rather than
writing a formal proof, we prefer to direct the reader to the example of Figure 28.

2N + 1 tracks

N
+
1
track

s

M
+
1
tr
ac
ks

Gmix G̃mix

Figure 28: Left: The diamond graph G�
mix obtained by superposing a block of G�

α,θ to

one of G�
α,β. The convexification is drawn in gray. Right: The diamond graph G̃�

mix with

convexification (gray) chosen such that the tracks t̃0, . . . , t̃M (blue) are as low as possible.
This ensures that the region below t̃M (delimited in bold) has a square lattice structure.

Write t̃0, . . . , t̃M for the tracks of transverse angle θ of G̃mix, indexed in increasing
order. Call s̃−2N−1, . . . , s̃N the tracks intersecting t̃0, ordered by their intersection points
from left to right. Denote by α̃−2N−1, . . . , α̃N their transverse angles.

The family s̃−2N−1, . . . , s̃N contains all vertical tracks of the original graph Gα,β (that
is those denoted by s−N , . . . , sN ) but also the horizontal tracks of Gα,β with transverse
angles different from θ. Since θ < βj for all 0 6 j 6 N , the latter intersect t0 left of the
former. Thus, s̃i = si for −N 6 i 6 N , hence the indexing.

The region of G̃mix contained below t̃M is a (finite part of a) square lattice. Precisely,
it is the square lattice G(α̃i)−2N−16i6N ,(θ)06j6M

. Complete the sequence (α̃i)−2N−16i6N

into a bi-infinite sequence α̃ = (α̃i)i∈Z by declaring all additional terms equal to α̃0.
Write R̃(., .; ., .) for the domains of Gα̃,θ defined in terms of the tracks (s̃i)i∈Z and (t̃j)j∈Z.
Also write R(., .; ., .) for the domains of the original lattice Gα,β.

By the comparison between boundary conditions, for any increasing event A depend-
ing only on the region of G̃mix below t̃M ,

φG̃mix
[A] 6 φξ

R̃(−2N−1,N ;0,M)
[A],
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where ξ are the boundary conditions which are wired on the top of R̃(−2N − 1, N ; 0,M)

and free on the rest of the boundary. Thus, (4.15) implies that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 2φξ

R̃(−2N−1,N ;0,M)

[
0↔ ∂Λ(δδ0n)

]
+ 2 exp(ηδ0n)φ

ξ

R̃(−2N−1,N ;0,M)

[
0↔ ∂Λ(n)

]
.

Since the above is true for all M , we may take M to infinity. Then, the measures
φξ

R̃(−2N−1,N ;0,M)
tend decreasingly to the measure φ0

R̃(−2N−1,N ;0,∞)
with free boundary

conditions in the half-infinite strip. 8. We conclude that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 2φ0

R̃(−2N−1,N ;0,∞)

[
0↔ ∂Λ(δδ0n)

]
+ 2 exp(ηδ0n)φ

0
R̃(−2N−1,N ;0,∞)

[
0↔ ∂Λ(n)

]
6 2φ0

Gα̃,θ

[
0↔ ∂Λ(δδ0n)

]
+ 2 exp(ηδ0n)φ

0
Gα̃,θ

[
0↔ ∂Λ(n)

]
. (4.16)

Finally, the square lattice Gα̃,θ has constant transverse angle θ for all its horizontal
tracks and, by choice of θ, is in G(ε/2). Thus, Proposition 4.3 applies to it (or rather to
its rotation G0,(α̃−j−θ+π)j ). We conclude the existence of constants C0, c0 > 0 depending
on ε only, such that

φ0
Gα̃,θ

[
0↔ ∂Λ(k)

]
6 C0 exp(−c0k), ∀k > 1.

Set δ0 = c0
c0δ+η and

c = c0 − δ0η = c0δδ0 > 0.

Then c only depends on ε and q and the right hand side of (4.16) is bounded by
4C exp(−cn), which provides the desired conclusion.

The second proposition (Proposition 4.4) appears to use a weaker input than the first.
One may therefore attempt to use the same argument for Proposition 4.3, so as to avoid
using the more involved bound (4.4). Unfortunately, this is not possible, as the sequence
of angles α̃ in the second proof may never be rendered constant, since it contains all the
horizontal and vertical tracks of Gα,β.

4.2 Doubly-periodic isoradial graphs

Let G be an arbitrary doubly-periodic isoradial graph in some G(ε), with grid (sn)n∈Z,
(tn)n∈Z. Denote by 0 the vertex just below and to the left of the intersection of t0 and s0.
We will assume that it is a primal vertex. The goal of this section is the following.

Proposition 4.5. There exist constants c, C > 0 depending only on ε and on the size of
the fundamental domain of G, such that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C exp(−cn), ∀n < N. (4.17)

8This step is standard. Let A be an increasing event depending only on the state of edges in R̃(−2N −
1, N ; 0,M0) for some M0. Then, for any M > M0, denote by Γ∗ the highest dually-open horizontal crossing of
R̃(−2N − 1, N ; 0,M) and set H to be the event that Γ∗ does not intersect R̃(−2N − 1, N ; 0,M0). Then, Γ∗

may be explored from above, and standard arguments of comparison between boundary conditions imply that

φξ

R̃(−2N−1,N ;0,M)
[A] 6 φ0

R̃(−2N−1,N ;0,∞)
[A]φξ

R̃(−2N−1,N ;0,M)
[H] + φξ

R̃(−2N−1,N ;0,M)
[Hc].

By the finite energy property and the fact that R̃(−2N−1, N ; 0,∞) has constant width, φξ

R̃(−2N−1,N ;0,M)
[H] →

1 as M → ∞. This suffices to conclude.
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Again, some care is needed when handling boundary conditions. Rather than working
with G and modifications of it, we will construct a graph that locally resembles G, but
that allows us to control boundary conditions.

Proof. For ρ ∈ [0, π), write T (ρ)
G for the set of tracks of G with asymptotic direction

ρ (recall the existence of an asymptotic direction from the proof of Lemma 2.8). By
periodicity, there exists a finite family 0 6 ρ0 < · · · < ρT < π such that

TG =

T⊔
`=0

T (ρ`)
G .

Assume that the lattice is rotated such that the horizontal tracks (tn)n∈Z have asymptotic
direction ρ0 = 0. Fix constants n < N .

Let τL be the right-most track in T (ρT )
G that intersects t0 left of 0 and does not intersect

Rhp(N ;N). Similarly, define τR as the left-most track in T (ρ1)
G that intersects t0 right of 0

and does not intersect Rhp(N ;N). Denote by D0 the domain of G bounded by t0 below,
above by tN , to the left by τL and to the right by τR. One may imagine D0 as a trapezoid
with base t0 and top tN . By definition of τL and τR,

Rhp(N ;N) ⊂ D0. (4.18)

Complete D0 to form a bigger, finite graph D as follows. Let s̃K− , . . . , s̃K+ be the
tracks of D0 that intersect t0, ordered from left to right, with s̃0 = s0. Orient these tracks
upwards. Orient the remaining tracks t0, . . . , tN from left to right.

In D, we will make sure that t1, . . . , tN intersect all tracks (s̃i)K−6i6K+
, but that no

additional intersections between tracks (s̃i)K−6i6K+
are introduced. One should imagine

that the track t1, after exiting D0, “slides down” on the side of D0; t2 does the same:
it slides down along the side of D0 until reaching t1, then continues parallel to t1, etc.
The same happens on the left side. Finally, on top of the graph obtained above add a
number of parallel tracks tN+1, . . . , tM adjacent to each other, with constant transverse
angle, for instance, that of tN , for some M > N . Call the resulting graph D. In D, each
track tj with 0 6 j 6 M intersects all tracks (s̃i)K−6i6K+

. We do not give a more formal
description of the construction of D; we rather direct the readers attention to Figure 29
for an illustration.

In light of (4.18),

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 φ0

D
[
0↔ ∂Λ(n)

]
, (4.19)

where Rhp(N ;N) refers to the region of the graph G.
Next, we transform D to create a square lattice. Call a black point of D any in-

tersection of two tracks s̃i and s̃j . Then, by a straightforward modification of Proposi-
tion 2.9, there exist star-triangle transformations σ1, . . . , σK applied to D such that, in
(σK ◦ · · · ◦σ1)(D), there is no black point between t0 and t1. Moreover, all transformations
σ1, . . . , σK act between t0 and t1.

The existence of σ1, . . . , σK is proved by eliminating one by one the back points of D
between t0 and t1, starting with the top most. The main thing to observe is that, by the
construction of D, any black point between t0 and t1 is the intersection of two tracks s̃i
and s̃j , both of which intersect t1 above.

Set Σ1 = σK ◦ · · · ◦σ1. Then, one may define recurrently sequences of transformations
(Σj)16j6M such that

• each Σj acts on (Σj−1 ◦ · · · ◦ Σ1)(G) between tj−1 and tj;
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0

τL τR

tN

Figure 29: A graph D0 (the delimited region) and the completion D – only the diamond
graph is depicted. The vertical tracks (si) are red, horizontal tracks (tj) blue, and the
others purple. The rectangle Rhp(N ;N) (in reality it should be wider) is delimited by
dotted lines. The tracks delimiting D0 are τL, τR and tN ; they are marked in bold.

• in (Σj ◦ · · · ◦ Σ1)(G), there are no black points below tj .

Let D = (ΣM ◦ · · · ◦Σ1)(G). Below tM , D is a rectangular part of a square lattice with
width K+ −K− + 1 and height M .

Let α̃ = (α̃i)K−6i6K+ be the transverse angles of the tracks (s̃i)K−6i6K+ . Also,

denote by β̃ = (β̃j)j>0 the sequence of angles constructed as follows: for 0 6 j 6 N ,

β̃j = βj which is the transverse angles of tj; for j > N , set β̃j = βN . Then, the part of D
below tM is a rectangular domain of the vertical strip of square lattice Gα̃,β̃. Moreover,
also let us denote by Gα̃,β̃ any completion of Gα̃,β̃ into a full plane square lattice. We note

that the angles α̃ and β̃ also are transverse angles of tracks in G, therefore Gα̃,β̃ ∈ G(ε)
as does G.

By the same argument as for (4.16), for any fixed j 6 N ,

lim sup
M→∞

φ0
D

[
0↔ ∂Λ(j)

]
6 φ0

G
α̃,β̃

[
0↔ ∂Λ̃(j)

]
. (4.20)

In the above inequality, Λ denotes a square domain defined in terms of tracks (si) and
(tj) whereas Λ̃ is defined in terms of tracks (s̃i) and (tj). We also notice that the box
defined in terms of (si) is larger than that of (s̃i). Proposition 4.4 applies to Gα̃,β̃ and we
deduce the existence of constants c, C > 0, depending only on ε, such that, for all j 6 N ,

lim sup
M→∞

φ0
D

[
0↔ ∂Λ(j)

]
6 φ0

G
α̃,β̃

[
0↔ ∂Λ(j)

]
6 C exp(−cj). (4.21)

Let us now come back to connections in D. These can be transformed into connections
in D via the sequence of star-triangle transformations (Σj)16j6M . We use the same
decomposition as in the proofs of Section 4.1 to transfer the exponential decay in D to
that in D.

Let ω be a configuration on D such that 0 ↔ ∂Λ(n). Then, either 0 is connected to
the left or right sides of Rhp(n; δ0n) or it is connected to the top of Rhp(n; δ0n) inside
Rhp(n; δ0n). The constant δ0 used in this decomposition will be chosen below and will
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only depend on ε and q. Thus, we find,

φ0
D
[
0↔ ∂Λ(n)

]
6φ0

D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂LR
hp(n; δ0n)

]
+φ0

D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂RR
hp(n; δ0n)

]
+φ0

D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂TR
hp(n; δ0n)

]
.

(4.22)

Let us now bound the three terms above separately. We start with the first two.
By the finite-energy property, there exist a constant η > 0 depending only on ε and
the fundamental domain of G and primal vertices x− and x+ just below t0 (thus on the
boundary of D) left of s−n and right of sn, respectively, such that

φ0
D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂LR
hp(n; δ0n)

]
6 exp(ηδ0n)φ

0
D(0←→ x−) and

φ0
D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂RR
hp(n; δ0n)

]
6 exp(ηδ0n)φ

0
D(0←→ x+).

(4.23)

Since the transformations Σ1, . . . ,ΣM preserve connections between points on the bound-
ary of D,

φ0
D
[
0←→ x−

]
= φ0

D

[
0←→ x−

]
6 φ0

D

[
0↔ ∂Λ(n)

]
. (4.24)

The same holds for φ0
D
[
0←→ x+

]
.

Since each sequence of transformations Σk only acts below tk, an open path con-
necting 0 to ∂TR

hp(n; δ0n) in D is transformed into an open path connecting 0 to tδ0n−1

(Figure 13).

φ0
D
[
0

Rhp(n;δ0n)←−−−−−−→ ∂TR
hp(n; δ0n)

]
6 φ0

D

[
0←→ tδ0n−1

]
6 φ0

D

[
0←→ ∂Λ(δ0n− 1)

]
6 C exp(−c(δ0n− 1)). (4.25)

By injecting (4.23), (4.24) and (4.25) into (4.22), then further into (4.19), we find

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 2 exp(ηδ0n)φ

0
D

[
0↔ ∂Λ(n)

]
+ φ0

D

[
0←→ ∂Λ(δ0n− 1)

]
.

The above is true for all M , and we may take M →∞. Using (4.21), we find

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 2C exp

[
− (c− ηδ0)n

]
+ C exp

[
− c(δ0n− 1)

]
.

Set δ0 = c
c+η so that c′ := c− δ0η = cδ0 > 0. Then, we deduce that

φ0
Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 3C ec exp(−c′n).

Since c and η only depend on ε, q and the size of the fundamental domain of G, we obtain
the desired result.

4.3 Conclusion

Below, we show how the previous two parts imply Theorem 1.2 and Corollary 1.3 for
q > 4. Fix a doubly-periodic isoradial graph G and one of its grids.

Proof of Theorem 1.2. Due to (4.17) and Proposition 4.1, G satisfies (4.1). Since G
satisfies the bounded angles property for some ε > 0 and due to its periodicity, there
exists a constant α > 0 such that Λ(n) ⊆ Bαn for all n > 1. Then, (4.1) implies

φ0
G[0↔ ∂Bn] 6 φ0

G[0↔ ∂Λ(nα )] 6 C exp
(
− c

αn
)
. (4.26)
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This implies the second point of Theorem 1.2 with an adjusted value for c.
Let us now consider the model with wired boundary conditions. Recall that if ω is

sampled according to φ1
G, then its dual configuration follows φ0

G∗ . Since G∗ is also a
doubly-periodic isoradial graph, (4.26) applies to it.

For a dual vertex y ∈ G∗, let C(y) be the event that there exists a dually-open circuit
going through y and surrounding the origin. The existence of such a circuit implies that
the dual-cluster of y has radius at least |y|. Thus,

φ1
G

[
C(y)

]
6 φ0

G∗

[
y ↔ y + ∂B|y|

]
6 C exp(−c|y|),

for some c, C > 0 not depending on y 9. Since the number of vertices in G∗ ∩ Bn is
bounded by a constant times n2, the Borel-Cantelli lemma applies and we obtain

φ1
G

[
C(y) for infinitely many y ∈ G∗] = 0.

The finite-energy property of φ1
G then implies φ1

G

[
0↔∞

]
> 0.

Proof of Corollary 1.3 for q > 4. It is a well known fact that φ0
G,β,q = φ1

G,β,q for all but
countably many values of β (see for instance [14, Thm 1.12] for a recent short proof
that can be adapted readily to isoradial graphs). Thus, by the monotonicity of the
measures φ0

G,β,q, for any β < 1, φ0
G,1,q dominates φ1

G,β,q. Theorem 1.2 then implies
φ1
G,β,q(0↔∞) = 0 and [23, Thm. 5.33] yields φ1

G,β,q = φ0
G,β,q. This proves the uniqueness

of the infinite volume measure for all β < 1. The first point of the corollary follows
directly from Theorem 1.2 by the monotonicity mentioned above.

Since measures with β > 1 are dual to those with β < 1, the uniqueness of the infinite
volume measure also applies when β > 1. The second point of the corollary follows from
Theorem 1.2 by monotonicity.

5 Proofs for the quantum random-cluster model

5.1 Discretisation

Fix ε > 0 and consider the isoradial square lattice Gε := Gα,β where αn = 0 for all n
and βn = ε if n is even and βn = π − ε if n is odd. See Figure 30 for an illustration.

Recall the notation xi,j with i+ j even for the primal vertices of Gε (while xi,j with
i+ j odd are the dual vertices). Also, recall the notation R(i, j; k, `) for the domains of Gε

contained between the vertical tracks si and sj and the horizontal tracks tk and t`.
Observe that Gε contains two types of edges: those of length 2 sin( ε2 ) and those of

length 2 cos( ε2 ). As we will take ε to 0, we call the first short edges and the latter long
edges. The parameters used to define φGε are given by (1.1): for short edges they are
obtained by taking θe = ε, call the resulting value pε; for long edges θe = π − ε, call the
resulting value pπ−ε.

When ε→ 0, we have the following asymptotics,

if 1 6 q < 4, 1− pε ∼
2rε√

q(4− q)
, pπ−ε ∼

2rε
√
q

√
4− q

;

if q = 4, 1− pε ∼
ε

2π
, pπ−ε ∼

2

π
ε;

if q > 4, 1− pε ∼
2rε√

q(q − 4)
, pπ−ε ∼

2rε
√
q

√
q − 4

.

9We implicitly used here that (4.26) applies to φ0
G∗ and to any translate of it. This is true due to the

periodicity of G∗. A multiplicative constant depending on the size of the fundamental domain is incorporated
in C.
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ε

1

t0

Figure 30: A piece of the deformed square lattice Gε = Gα,β. Left: The diamond graph.
Right: The primal lattice with dual vertices.

Moreover, the length of a long edge converges to 2, while that of short edges
decreases as ε+ o(ε). Thus, in the limit ε→ 0, the measure converges to the quantum
FK model on a dilated lattice 2Z×R with parameters

if 1 6 q < 4, λ0 =
2r√

q(4− q)
, µ0 =

2r
√
q

√
4− q

;

if q = 4, λ0 =
1

2π
, µ0 =

2

π
;

if q > 4, λ0 =
2r√

q(q − 4)
, µ0 =

2r
√
q

√
q − 4

.

Note that λ0 and µ0 are continuous in q: when q goes to 4 either from above or from
below, the common limits of λ0 and µ0 are exactly the values given by q = 4. A precise
statement is given below in Proposition 5.1.

For the rest of the section, unless otherwise stated, we consider the quantum random-
cluster model φξ

Q on Z×R with parameters λ = 2λ0 and µ = 2µ0 and boundary conditions
ξ = 0, 1. This is simply the limiting model discussed above rescaled by a factor 1/2. The
infinite-volume measures with free and wired boundary conditions can be defined via
weak limits as in the classical case. The quantum model with these parameters enjoys a
self-duality property similar to that of the discrete model on Gε with β = 1.

To distinguish the subgraphs of Gε from those of Z × R, we shall always put a
superscript ε for those of Gε and those of Z×R are always written in calligraphic letters.

For any subgraphR of Z×R, we write φξ
Q,R for the quantum random-cluster measure

on R with boundary conditions ξ = 0, 1.

For 1 6 q 6 4, we will consider the counterparts of the horizontal and vertical
crossing events given in Lemma 3.1. They are related to their discrete versions via the
following convergence.

Proposition 5.1. For a, b, c, d > 0, let Rε = R(2c, 2d
ε ) be a subgraph of Gε and R =

[−c, c]× [−d, d] be a subgraph of Z×R. Consider ξ = 0, 1, then

φξ
Rε

[
Ch(2a; 2b

ε )
]
−−−→
ε→0

φξ
Q,R

[
Ch(a; b)

]
, (5.1)

φξ
Rε

[
Cv(2a; 2b

ε )
]
−−−→
ε→0

φξ
Q,R

[
Cv(a; b)

]
. (5.2)
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For q > 4, the event to consider is that given by (4.2), which is related to the discrete
models as follows.

Proposition 5.2. For any N,n > 0, let Rε = R(2N, 2N
ε ) be a subgraph of Gε and R =

Λ(N) = [−N,N ]2 be a subgraph of Z×R. Then,

φξ
Rε

[
0↔ ∂R(2n; 2n

ε )
]
−−−→
ε→0

φξ
Q,R

[
0↔ ∂Λ(n)

]
(5.3)

Proof of Propositions 5.1 and 5.2. As we described above, short edges in Gε are of
length 2 sin( ε2 ), each of whom is closed with probability λ0ε, where λ0 = 2r√

q(4−q)
. Given

L > 0, consider a collection of N = L
ε such consecutive edges. Consider (Xi)16i6N a

sequence of i.i.d. Bernoulli random variables of parameter λ0ε: Xi = 1 if the i-th edge is
closed and Xi = 0 otherwise. Denote S =

∑N
i=1 Xi, which counts the number of closed

edges in this collection of edges.

Then, for any fixed k > 0 and ε→ 0, we have that

P[S = k] =

(
N

k

)
(λ0ε)

k(1− λ0ε)
N−k

∼ Nk

k!
(λ0ε)

ke−Nλ0ε

= e−Lλ0
(Lλ0)

k

k!
,

where the quantity in the last line is the probability that a Poisson variable of parameter
Lλ0 takes the value k. As a consequence, when ε → 0, the N vertical short edges will
converge to a vertical segment of length L, among which closed edges will give us cut
points that can be described by a Poisson point process with parameter λ0.

The same reasoning applies to the long edges too. This shows that the measures φξ
Rε

converge weakly to φξ
Q,R, up to a scaling factor of 1/2.

Let us briefly discuss the strategy for proving Theorem 1.5, we restrict ourselves to
the case q 6 4 for illustration. In order to prove the RSW property for φQ, one needs to
uniformly bound the left hand sides of (5.1) and (5.2) for a = n and b = ρn for any fixed
quantity ρ. By duality, we may focus only on lower bounds.

Notice that for any fixed ε > 0, the RSW property obtained in Theorem 1.1 provides us
with bounds for φξ

Rε

[
Ch(2n; 2ρn

ε )
]
and φξ

Rε

[
Cv(2n; 2n

ε )
]
which are uniform in n. However,

these are not necessarily uniform in ε. Indeed, all estimates of Section 3 crucially depend
on angles being bounded uniformly away from 0.

Removing this restriction in general is an interesting but difficult problem. However,
in the simple case of the lattices Gε, this is possible, and is done below.

5.2 The case 1 6 q 6 4

To show Theorem 1.5 for 1 6 q 6 4, it is enough to show the RSW property for the
quantum model, the rest of the proof follows as in Section 3.4. To this end, we proceed
in the similar way as for isoradial graphs. More precisely, the following proposition
provides us with uniform bounds in ε ∈ (0, π) for crossing probabilities in Gε. Then
Proposition 5.1 transfers these results to the quantum model and the same argument as
in Lemma 3.4 yields the RSW property for the quantum model.

Proposition 5.3. There exist δ > 0, constants a > 3 and b > 3a and n0 such that, for all
ε ∈ (0, π) and n > n0, there exist boundary conditions ξ on the region Rε = R(bn; bn

ε ) of
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Gε such that

φξ
Rε

[
Ch(3an, bn; bn

ε )
]
> 1− δ/2 and φξ

Rε

[
C∗h(3an, bn; bn

ε )
]
> 1− δ/2,

φξ
Rε

[
Cv(an; 2n

ε )
]
> δ and φξ

Rε

[
C∗v (an; 2n

ε )
]
> δ,

φξ
Rε

[
Ch(an, 3an; n

ε )
]
> δ and φξ

Rε

[
C∗h(an, 3an; n

ε )
]
> δ.

(5.4)

For the rest of the section, we focus on proving Proposition 5.3; the rest of the
arguments used to obtain the RSW property for φQ are standard.

By symmetry, we may focus on ε 6 π/2; thus, difficulties only appear as ε→ 0. Fix
ε > 0. We shall follow the same ideas as in Section 3.2. Recall the construction of the
mixed lattice Gmix: for M,N1, N2 > 0, consider the graph obtained by superimposing a
horizontal strip of Gε of height N2+1 and width 2M +1 over a horizontal strip of regular
square graph G0,π2

of height N1 + 1 and same width. Let the lower vertices of this graph
be on the line R × {0}, with x0,0 at 0. Convexify this graph. The graph thus obtained,
together with its reflection with respect to R× {0}, form Gmix.

Write G̃mix for the graph with the regular and irregular blocks reversed. See Sec-
tions 2.4.1 and 3.2 for details on this construction and the track exchanging procedure
that allows us to transform Gmix into G̃mix. Figure 31 contains an illustration of Gmix

and G̃mix.
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...
...

N2 + 1

N1 + 1

...
...

...
...

...
...

N2

N1

...
...

...
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N1 + 1

N2 + 1

N1

N2

...
...

...
...

...
...

...
...

...
...

...
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Gε

Z2

Z2

Z2

...
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...
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...
...Gε
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...
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...Gε

...
...

...
...

...
... Gε

Figure 31: Left: The graph Gmix. Right: The transformed graph G̃mix.

Write φGmix and φG̃mix
for the random-cluster measures with β = 1 on Gmix and G̃mix,

respectively, with free boundary conditions. The following adaptations of Propositions 3.6
and 3.7 imply Proposition 5.3 as in Section 3.2.2.

Proposition 5.4. There exist λ0 := λ0(q) > 0 and n0 > 1 such that for all λ > λ0,
ε ∈ (0, π/2], ρout > ρin > 0, n > n0 and sizes M > (ρout +

λ
ε )n, N1 > n and N2 > λ

εn,

φG̃mix

[
Ch(ρinn, (ρout + λ

ε )n;λ
n
ε )
]
> (1− ρoute

−n)φGmix

[
Ch(ρinn, ρoutn;n)

]
. (5.5)

The quantities λ0 and λ above have no relation to the intensity of the Poisson point
process used in the definition of φQ.

Proposition 5.5. There exists η > 0 and a sequence (cn)n ∈ (0, 1]N with cn → 1 such
that, for all ε ∈ (0, π/2], n > 1 and sizes M > 3n, N1 > N and N2 > n

ε ,

φG̃mix

[
Cv(3n; η n

ε )
]
> cnφGmix

[
Cv(n;n)

]
. (5.6)
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Proposition 5.4 controls the upward drift of a crossing: it claims that with high
probability (independently of ε), this drift (in the graph distance) is bounded by a
constant times 1

ε . As a result, due to the particular structure of Gε, the upward drift in
terms of the Euclidean distance is bounded by a constant independent of ε. The proof
follows the same idea as that of Proposition 3.6 with the difference that it requires a
better control of (3.8), which is obtained by a coarse-graining argument.

Proposition 5.5 controls the downward drift of a vertical crossing. The proof follows
the same lines as that of Proposition 3.7, with a substantial difference in the definition
(3.11) of the process H which bounds the decrease in height of a vertical crossing when
performing a series of track exchanges. In the proof of Proposition 3.7, H was a sum of
Bernoulli random variables; here the Bernoulli variables are replaced by geometric ones.
This difference may seem subtle, but is essential in obtaining a bound on the Euclidean
downward drift which is uniform in ε.

Proof of Proposition 5.4. We keep the same notations as in the proof of Proposition 3.6.
We remind that the process (Hk)06k6n is coupled with the evolution of (γ(k))06k6n in
such a way that all vertices xi,j visited by γ(k) have (i, j) ∈ Hk. Moreover, (Hk) can be
seen as a growing pile of sand which grows laterally by 1 at each time step and vertically
by 1 independently at each column with probability η. The goal here is to estimate η in
the special case of Gmix as illustrated in Figure 31. More precisely, we want to improve
the bound given in (3.9). Let λ > 0 denote a (large) value, we will see at the end of the
proof how it needs to be chosen.

t

t′

B

A

γ(k)

Figure 32: Figure 20 adapted to the case of Gmix defined above. When we perform
star-triangle transformations, we exchange two tracks, one of transverse angle π

2 and
the other π − ε or ε. We assume that we are in the case A = π

2 and B = π − ε.

In the special case of Gmix described above, a track exchange is always between
tracks with transverse angles A = π

2 and B = π − ε or ε. This is illustrated in Figure 32.
The parameter ηA,B is the probability that the path γ(k), as shown in the figure, drifts
upwards by 1 when the dashed edge on the left of the figure is open. This can be
estimated as follows for 1 6 q < 4,

ηA,B =
yπ−Ayπ−(B−A)

q
=


sin(r(

π
2−ε))

sin(r(
π
2 +ε))

if 1 6 q < 4,
π
2−ε
π
2 +ε

if q = 4.

A quick computation then shows that we have

η := sup
A,B∈[ε,π−ε]

ηA,B = 1− ζ(q)ε, where ζ(q) =
2
√

2 +
√
q

π2
.

Thus, this value η may be used in the process (Hk) bounding the evolution of (γ(k)).
Hence, we obtain, for 0 6 k 6 λ

ε ,

P
[
h(γ(k)) < λ

εn
]
> P

[
max{j : (i, j) ∈ Hk} < λ

εn
]
.

EJP 23 (2018), paper 96.
Page 59/70

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP223
http://www.imstat.org/ejp/


Universality for the random-cluster model on isoradial graphs

A straightforward application of (3.8) is not sufficient to conclude, as it would provide
a value of λ of order log( 1ε ) rather than of constant order. We will improve (3.8) slightly
by revisiting its proof (given in [25, Lem. 3.11]).

We are interested in the time needed to add a neighboring block from those which
are already included by Hk. To be more precise, with each edge e of Z×N, we associate
a time te: if e is horizontal, set te = 1; if e is vertical, set te to be a geometric random
variable with parameter ζ(q)ε. Moreover, we require that the random variables (te) are
independent.

For x, y ∈ Z×N, define P(x, y) to be the set of paths going from x to y, containing
no downwards edge. For a path γ ∈ P(x, y), write τ(γ) =

∑
e∈γ te, which is the total time

needed to go through all the edges of γ. Also write τ(x, y) = inf{τ(γ) : γ ∈ P(x, y)}. As
such, the sets (Hk)k>0 can be described by

Hk = {y ∈ Z×N : ∃x ∈ H0, τ(x, y) 6 k}, (5.7)

where we recall the definition of H0:

H0 = {(i, j) ∈ Z×N : −(ρout + 1)n 6 i− j and i+ j 6 (ρout + 1)n and j 6 n}.

Thus, our goal is to prove that the time needed to reach any point at level λ
εn is greater

than λ
εn with high probability.

Let Pn be set of all paths of P(x, y) with x ∈ H0, y = (i, j) with j = λ
εn and which

contain at most n horizontal edges. Then, (5.7) implies

P
[
max{j : (i, j) ∈ H

λ
ε n} > λ

εn
]
= P

[
∃γ ∈ Pn : τ(γ) 6 λ

εn
]
. (5.8)

Next comes the key ingredient of the proof. We define the notion of boxes as follows.
For (k, `) ∈ Z×N, set

B(k, `) = {(k, j) ∈ Z×N : `−1
ε 6 j < `

ε}.

We note that different boxes are disjoint and each of them contains 1
ε vertical edges. A

sequence of adjacent boxes is called a box path. Note that such a path is not necessarily
self-avoiding. Set P̃n to be the set of box paths from some B(k, n) to some B(`, λn),
where k and ` are such that −(ρout + 1)n 6 k 6 (ρout + 1)n and |k − `| 6 n, and in which
at most n pairs of consecutive boxes are adjacent horizontally.

With any path γ ∈ Pn, we associate the box path γ̃ ∈ P̃n of boxes visited by γ (above
level n/ε). Notice that, since γ has at most n horizontal edges, so does γ̃.

Given a box path γ̃ = (γ̃i) ∈ Pn, call γ̃i a vertical box if γ̃i−1, γ̃i and γ̃i+1 have the
same horizontal coordinate. Since any path γ̃ ∈ P̃n can only have at most n pairs of
consecutives boxes that are adjacent horizontally, there are at least (λ − 3)n vertical
boxes in γ̃. See Figure 33 for an illustration of the above notions.

A box is called bad if it contains a vertical edge e such that te > 2. We can estimate
the probability that a box is bad:

P[a given box is bad] = 1− (1− ζε)1/ε → 1− e−ζ as ε→ 0.

Notice that for a path γ ∈ Pn such that τ(γ) 6 λ
εn, there are at most n vertical bad boxes

in γ̃. Indeed, due to the definition, in any bad vertical box of γ̃, γ crosses an edge e with
te > 2. Therefore,

P
[
∃γ ∈ Pn : τ(γ) 6 λ

εn
]
6 P

[
∃γ̃ ∈ P̃n : there are at most n vertical bad boxes in γ̃

]
6

∑
γ̃∈P̃n

P
[
there are at most n vertical bad boxes in γ̃

]
. (5.9)
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Figure 33: A path γ ∈ Pn and its associated box path γ̃ ∈ P̃n. Note that the box path γ̃

might not be self-avoiding. The blue box in the figure is a vertical box for γ̃.

Let us now bound the above. First, note that any path γ̃ ∈ P̃n has length at most λn
and can have at most n horizontal displacements, which gives

|P̃n| 6 2(ρout + 1)n2n
(
λn

n

)
6 ρout(cλ)

n, (5.10)

for a constant c > 0 independent of all the other parameters. Secondly, recall that any
γ̃ ∈ P̃n has at least (λ− 3)n vertical boxes. Let X1, . . . , X(λ−3)n be i.i.d. Bernoulli random
variables with parameter δ = 1 − (1 − ζε)1/ε that indicate whether the (λ − 3)n first
vertical boxes of γ̃ are bad (Xi = 1 if the ith vertical box of γ̃ is bad and Xi = 0 otherwise).
Then,

P
[
there are at most n vertical bad boxes in γ̃

]
6 P

[
X1 + · · ·+X(λ−3)n 6 n

]
6

[( (λ− 3)δ

λ− 4

)λ−4

(λ− 3)(1− δ)
]n

.

(5.11)

The last inequality is obtained by large deviation theory.
Finally, put (5.8)–(5.11) together, as in [25, Lem. 3.11]. It follows that if λ is chosen

larger than some threshold λ0 > 4−3δ
1−δ that only depends on δ, then

P
[
max{j : (i, j) ∈ H

λ
ε n} > λ

εn
]
6 ρoute

−n.

Recall that δ −−−→
ε→0

1− e−ζ is uniformly bounded in ε > 0, hence λ0 may also be chosen

uniform in ε.

Remark 5.6. We point out that the coarse-graining argument above is essential to the
proof due to the reduced combinatorial factor (5.10). In effect, the computation in [25,
Lem. 3.11] would have given us a combinatorial factor (cλ/ε)n, and due to the additional
ε in the denominator, one can only show that λ should grow as log( 1ε ). This improvement
is made possible because when, ε goes to 0, paths in the directed percolation take 1

ε more
vertical edges than horizontal ones, and bad edges (those with passage-time greater
than 2) are of density proportional to ε. We can therefore “coarse grain” a good number
of paths to a unique one, which improves the bound.

Proof of Proposition 5.5. We will adapt the proof of Proposition 3.7 to our special setting.
The goal is to have a better control of the downward drift of paths when track exchanges
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are performed. There are two significant differences: (i) a better description of the
regions Dk in which vertical paths are contained; (ii) a (stochastic) lower bound on hk

by a sum of geometric random variables rather than a sum of Bernoulli variables as in
the aforementioned proof.

In this proof we are only interested in events depending on the graph above the base
level, and we will only refer to the upper half-plane henceforth.

Fix ε > 0 and n ∈ N. Let M > 4n, N1 > n and N2 > n
ε where, as illustrated in

Figure 31, 2M + 1 is the width of the blocks of G(1) = Z2 and G(2) = Gε, N1 + 1 is the
height of the block of Z2 and N2 that of Gε. Recall that the sequence of star-triangle
transformations we consider here is Σ↑, which consists of pulling up tracks of G(1) one
by one above those of G(2), from the top-most to the bottom-most. We write P for the
measure taking into account the choice of a configuration ω according to the random-
cluster measure φGmix

as well as the results of the star-triangle transformations in Σ↑

applied to the configuration ω.
For 0 6 i 6 N1, recall from Section 2.4.1 the notation

Σ↑
i = Σti,tN1+N2+1

◦ · · · ◦ Σti,tN1+1
,

for the sequence of star-triangle transformations moving the track ti of G(1) above G(2).
Then, Σ↑ = Σ↑

0 ◦ · · · ◦ Σ
↑
N1
.

We note that ω ∈ Cv(n;n) if and only if Σ↑
n+1 ◦ · · · ◦ Σ

↑
N1

(ω) ∈ Cv(n;n), since the
two configurations are identical between the base t0 and tn. Thus, we can assume
that Σ↑

N1
, · · · ,Σ↑

n+1 are performed and look only at the effect of Σ↑
n, · · · ,Σ

↑
0 on such a

configuration. Let us define for 0 6 k 6 n+ 1,

Gk = Σ↑
n−k+1 ◦ · · · ◦ Σ

↑
N1

(Gmix),

ωk = Σ↑
n−k+1 ◦ · · · ◦ Σ

↑
N1

(ω),

Dk = {xu,v ∈ Gk : |u| 6 n+ 2k, 0 6 v 6 N2 + n},

hk = sup{h 6 N2 + n− k : ∃u, v ∈ Z with xu,0
Dk,ωk

←−−−→ xv,h}.

That is, hk is the highest level that may be reached by an ωk-open path lying in the
rectangle Dk. These notions are illustrated in Figure 34.

Due to the above definitions, if ω0 ∈ Cv(n;n), then h0 > n. Hence,

P[h0 > n] > P[ω0 ∈ Cv(n;n)] = φGmix [Cv(n;n)].

Moreover, using the fact that ωn+1 follows the law of φG̃mix
and the definitions of Dn+1

and hn+1 above, we obtain

φG̃mix
[Cv(3n; η n

ε )] > P(h
n+1 > η n

ε ).

Therefore, it is enough to show

P
[
hn+1 > η n

ε

]
> cnP

[
h0 > n

]
, (5.12)

for some η ∈ (0, 1
2 ) to be specified below and constants cn with cn → 1 as n → ∞, all

independent of ε.

Fix 0 6 k 6 n and let us examine the (N1−(n−k)+1)th step of Σ↑, that is Σ↑
n−k. Write

Ψj := Σtn−k,tN1+j
◦ · · · ◦Σtn−k,tN1+1

for 0 6 j 6 N2 +1. In other words, Ψj is the sequence
of star-triangle transformations that applies to Gk and moves the track tn−k above j

tracks of G(2), namely tN1+1, . . . , tN1+j . Moreover, ΨN2
= Σ↑

n−k; hence, ΨN2
(Gk) = Gk+1

and ΨN2
(ωk) = ωk+1.
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Gk+1
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n
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N
1
≥
n

..
.

..
.

..
.

tn

..
.

..
.

tn−k

..
.

..
.

tn−k

Σ↑n+1
◦ · · · ◦Σ↑N1 Ψj

j

j̃

tn−k

Σ↑n−k+1
◦ · · · ◦ Σ↑n

..
.

..
.

..
.

..
.

G̃mix

Σ↑0
◦ · · · ◦Σ↑n−k−1

Σ↑n−k

..
.

2n 2n+ 4k

2n+ 4k

2n+ 4k + 4

hk+1

G0 Gk+1Gmix

Figure 34: Several stages in the transformation of Gmix (only the outlines of the diamond
graphs are depicted). Pulling up the topN1−n tracks of the regular lattice does not affect
the event Cv(n;n). The red vertical crossing is then affected by the track exchanges.
However, it remains in the hashed domains (Dk)06k6n+1, and (Dk

j )06j6N2
. Its height

evolves according to (3.13)–(3.15), (5.13) and (5.14). Notice the asymmetric shape of
Dk

j in the fourth diagram, where j is even.

For 0 6 j 6 N2 write j̃ := n− k + j and define Dk
j as the subgraph of Ψj(G

k) induced
by vertices xu,v with 0 6 v 6 N2 + n and

|u| 6 n+ 2k + 2 if v 6 j̃,

−(n+ 2k) 6 u 6 n+ 2k + 1 if v = j̃ + 1 and j odd,

−(n+ 2k + 1) 6 u 6 n+ 2k if v = j̃ + 1 and j even,

|u| 6 n+ 2k if v > j̃ + 1.

We note that Dk ⊆ Dk
0 ⊆ · · · ⊆ Dk

N2
⊆ Dk+1. Let ωk

j = Ψj(ω
k) and

hk
j = sup{h 6 N2 + n− k : ∃u, v ∈ Z with xu,0

Dk
j ,ω

k
j←−−−→ xv,h}.

Due to inclusions between the domains, we have hk 6 hk
0 and hk

N2
6 hk+1. Next, we aim

to obtain similar equations to (3.13)–(3.16).

Fix 0 6 j 6 N2 and let Σ := Σtn−k,tN1+j+1
be the track exchange to be applied to

Ψj(G
k). Moreover, let Pj be the set of paths γ of Ψj(G

k), contained in Dk
j , with one

endpoint at height 0, the other at height h(γ), and all other vertices with heights between
1 and h(γ)− 1.

First we claim that, if γ is an ωk
j -open path of Pj , then Σ(γ) is ωk

j+1-open and contained
in Dk

j+1 (hence contains a subpath of Pj+1 reaching the same height as Σ(γ)). Due to
the specific structure of Gε, we prove this according to the parity of j. For j even, the
transverse angle of the track tN1+j+1 is π − ε. Thus, as shown by the blue points in
Figure 13, Σ induces a possible horizontal drift of γ of +2 at level j̃ and +1 at level j̃ + 1.
By its definition, Dk

j+1 indeed contains Σ(γ). For j odd, the figure is symmetric, thus we

get horizontal drifts of −2 and −1 at levels j̃ and j̃ + 1, respectively.
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Let us briefly comment on the differences between the above and the general case
appearing in Proposition 3.7. In Proposition 3.7, since the directions of the track
exchanges are not necessarily alternating, we may repeatedly obtain horizontal drifts
of the same sign. This is why the domains Dk

j in Proposition 3.7 grow with slope 1 (see
Figure 21), and eventually induce a different definition of Dk than the one above. In the
present case, due to alternating transverse angles which create alternating positive and
negative drifts, Dk may be chosen with vertical sides and Dk+1 is obtained by adding two
columns on the left and right of Dk. While this may seem an insignificant technicality, it
allows to bound the horizontal displacement of the vertical crossing by 2n rather than a
quantity of order n

ε , and this is essential for the proof.

As a consequence of the discussion above, equations (3.13)–(3.15) hold as in the
classical case. For this proof, we will improve (3.14) and (3.16) to

P[hk
j+1 > h+ 1 |hk

j = h] > 1− Cε if h = j̃, (5.13)

P[hk
j+1 > h |hk

j = h] > 1− Cε if h = j̃ + 1, (5.14)

for some constant C > 0 that does not depend on ε, only on q.

Before going any further, let us explain the meaning of (3.13)–(3.15), (5.13) and (5.14)
through a non-rigorous illustration. In applying Σ↑

n−k, the track tn−k (of transverse angle
π/2) is moved upwards progressively. Let us follow the evolution of a path γ reaching
height hk throughout this process. As long as the track tn−k does not reach height hk,
the height reached by γ is not affected. When tn−k reaches height hk (as in Figure 35;
left diagram), the height of γ may shrink by 1 or remain the same; (5.14) indicates that
the former arises with probability bounded above by Cε. If γ shrinks, the following track
exchanges do not influence γ any more, and we may suppose hk+1 = hk − 1. Otherwise,
the top endpoint of γ at the following step is just below tn−k (as in Figure 35; centre
diagram). In the following track exchange, γ may increase by 1 in height. By (5.13),
this occurs with probability 1− Cε. If the height of γ does increase, then it is again just
below tn−k, and it may increase again. In this fashion, γ is “dragged” upwards by tn−k.
This continues until γ fails once to increase. After this moment, γ is not affected by any
other track exchange of Σ↑

n−k.

The reasoning above would lead us to believe that hk+1 > hk − 2 + Y stochastically,
where Y is a geometric random variable with parameter Cε. This is not entirely true
since the conditioning in (5.13) and (5.14) is not on ωk

j , but only on hk
j . However, this

difficulty may be avoided as in the proof of Proposition 3.7. Let us render this step
rigorous and obtain the desired conclusion (5.12), before proving (5.13) and (5.14).

Let (Yk)06k6n be i.i.d. geometric random variables of parameter Cε. Define the
Markov process (Hk)06k6n+1 by H0 = h0 and Hk+1 = min{Hk+Yk−2, n−k+N2}. Then,
the comparison argument of [25, Lem. 3.7] proves that hk dominates Hk stochastically
for any k. Precisely, for any k, the processes (Hj)06j6n+1 and (hj)06j6n+1 may be
coupled such that Hk 6 hk a.s.. We insist that we do not claim that there exists a
coupling that satisfies the above inequality simultaneously for all k. We do not provide
details on how to deduce this inequality from (3.13)–(3.15), (5.13) and (5.14), since this
step is very similar to the corresponding argument in [27, Lem. 6.9]. Let us simply
mention that the cap of n− k +N2 imposed on Hk comes from the fact that a path may
not be dragged upwards above the highest track of the irregular block.

By comparing hn+1 and Hn+1, we find

cn :=
P
[
hn+1 > η n

ε

][
h0 > n

] > P
[
Hn+1 > η n

ε

∣∣H0 > n
]
> P

[
Y0 + · · ·+ Yn − (n+ 2) > η n

ε

]
.
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The last inequality is due to that, if Hk + Yk − 2 = n − k + N2 at any point during the
process, then hn+1 > η n

ε is sure to arises. Finally notice that E[Yk − 1] = 1−Cε
Cε > η/ε for

η < 1/C and ε small enough. The same large deviation argument as in the final step of
the proof of Proposition 3.7 allows us to conclude that cn → 1, uniformly in ε. Thus, we
are only left with proving (5.13) and (5.14), which we do next.

First we prove (5.14). This is similar to the argument proving (3.16), with a slight
improvement on the estimate of the parameter δ. Fix 0 6 j 6 N2 and use the notation
introduced above. Without loss of generality, assume also that j is even so that the track
exchange Σ = Σtn−k,tN1+j+1

is performed from left to right. Denote by Γ = Γ(ωk
j ) the

ωk
j -open path of Pj that is the minimal element of {γ ∈ Pj : h(γ) = hk

j , γ is ωk
j -open} as

in Proposition 3.7.

z′ z′ z′

e1

e2

e1

e2
e3

e4

Figure 35: Three star-triangle transformations contributing to Σ slide the gray rhombus
from left to right. If the three edges in the middle diagram are all closed, then e4 is open
with probability

ye1
ye3

q .

Fix some γ ∈ Pj of height j̃ +1. Let z = xu,̃j+1 denote the upper endpoint of γ and let
z′ denote the other endpoint of the unique edge of γ leading to z. Then either z′ = xu+1,̃j

or z′ = xu−1,̃j .

Conditioning on Γ = γ. If z′ = xu−1,̃j , then it is always the case that h(Σ(Γ)) > j̃ + 1.
Assume that z′ = xu+1,̃j as in Figure 35 and consider the edges e1, . . . , e4 depicted in the

image. If e1 is open in ωk
j then it is easy to see that hk

j+1 = j̃ + 1, for any outcome of the
star-triangle transformations. The same is valid for the edge e3 appearing in the second
diagram of Figure 35. Assume that both e1 and e3 are closed in the second diagram.
Then, if in addition e2 is also closed, by the randomness appearing in the star-triangle
transformation leading to the fourth diagram,

P[e4 is open | e1, e2, e3 are closed] >
ye1ye3

q
.

This is due to the transition probabilities of Figure 4. Finally, if e4 is open in the last
diagram, then the height of Γ remains at least j̃ + 1 for the rest of Σ. In conclusion,

P[hk
j+1 > j̃ + 1 |Γ = γ] >

ye1ye3
q

P[e2 is closed |Γ = γ and e1, e3 closed]

Notice that the edge e2 is above level j̃, hence the conditioning Γ = γ and e1, e3 closed
affects it negatively. Thus, P[e2 is closed |Γ = γ and e1, e3 closed] > 1− pe2 . Using the
fact that ye1 =

√
q, ye3 →

√
q and pe2 ∼ C ′ε as ε → 0, with C ′ > 0 depending only on q,

and summing over all possibilities on γ, we obtain

P[hk
j+1 > j̃ + 1 |hk

j = j̃ + 1] > 1− Cε,

for some constant C depending only on q.

Now let us prove (5.13). The argument is very similar to the above. Assume again that
the track exchange Σ = Σtn−k,tN1+j+1

is performed from left to right. Let Γ be defined as

above and call z its top endpoint. Condition on hk
j = j̃. Then, as the vertical rhombus is

slid through tn−k, tN1+j+1, it arrives above z as in the second diagram of Figure 35. Let
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e1, e2, e3 and e4 be defined as in Figure 35. If e1 or e3 are open in the second diagram,
then hk

j+1 = j̃ +1 for any outcome of the star-triangle transformations 10. Assume that e1
and e3 are both closed at this stage. Moreover, since the conditioning only depends on
edges below level j̃ + 1, it influences the state of e2 only via boundary conditions. Hence,
P[e2 is closed |Γ and e1, e3 closed] > 1− pe2 . As discussed above, when e1, e2 and e3 are
all closed, the final star-triangle transformation of Figure 35 produces an open edge e4
with probability bounded below by 1− Cε. We conclude as above.

5.3 The case q > 4

We will adapt the proof of the exponential decay of Section 4 to the quantum case.
More precisely, we only need to do so for the case of isoradial square lattices, that is
Section 4.1. The argument is very similar to that of Section 4.1, with the exception that
Propositions 5.4 and 5.5 are used instead of Propositions 3.6 and 3.7.

We recall the notation Rhp for half-plane rectangles and the additional subscript ε for
domains defined in Gε. The key result is the following.

Proposition 5.7. There exist constants C, c > 0 depending only on q such that, for any
ε > 0 small enough,

φ0
Rhp,ε(N ;Nε )

[
0↔ ∂Rhp,ε(n; n

ε )
]
6 C exp(−cn), ∀n < N. (5.15)

The above has the following direct consequences.

Corollary 5.8. There exist constants C, c > 0 depending only on q such that for ε small
enough,

φ0
Rε(N ;Nε )

[
0↔ ∂Rε(n; n

ε )
]
6 C exp(−cn), ∀n < N. (5.16)

Corollary 5.9. There exist constants C, c > 0 depending only on q such that,

φ0
Q,Λ(N)

[
0↔ ∂Λ(n)

]
6 C exp(−cn). (5.17)

Corollary 5.8 is a straightforward adaptation of Proposition 4.1. Corollary 5.9 is a
consequence of the fact that the constants in (5.16) are uniform, thus we can take ε→ 0

and apply Proposition 5.2.

To conclude, as in Section 4.3, Corollary 5.9 implies Theorem 1.5 for q > 4.

We will not give more details on the proofs of Corollaries 5.8 and 5.9 and Theorem 1.5.
For the rest of the section, we focus on showing Proposition 5.7.

Proof of Proposition 5.7. We follow the idea of the proof of Proposition 4.3.

Fix ε > 0 as in the statement. For N > n, let Gmix be the mixture of G(1) = Gε and
G(2) = Z2, as described in Section 2.4. In this proof, the mixed lattice is only constructed
above the base level; it has 2N + 1 vertical tracks (si)−N6i6N of transverse angle 0 and
N
ε + N + 2 horizontal tracks (tj)06j6N

ε +N+1, the first N
ε + 1 having alternate angles ε

and π − ε (we call this the irregular block) and the following N + 1 having transverse
angle π

2 (we call this the regular block). Finally, Gmix is a convexification of the piece of
square lattice described above.

Set G̃mix to be the result of the inversion of the regular and irregular blocks of Gmix

using the sequence of transformations Σ↑. Let φGmix and φG̃mix
be the random-cluster

measures with free boundary conditions on Gmix and G̃mix, respectively. The latter is
then the push-forward of the former by the sequence of transformations Σ↑.

10Due to the conditioning, e1 or e3 may only be open if their top endpoint lies outside Dk
j .
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Let δ0 ∈ (0, 1) be a constant that will be set below; it will be chosen only depending
on q. Write ∂L, ∂R and ∂T for the left, right and top boundaries, respectively, of a
rectangular domain Rhp,ε(.; .).

Consider a configuration ω on Gmix such that 0←→ ∂Rhp,ε(n; n
ε ). Then, as in (4.9), we

have

φGmix

[
0↔ ∂Rhp,ε(n; n

ε )
]
6φGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂LR
hp,ε(n; δ0

n
ε )
]

+φGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂RR
hp,ε(n; δ0

n
ε )
]

+φGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂TR
hp,ε(n; δ0

n
ε )
]
.

(5.18)

Moreover, since the graphs Gmix and Gε are identical in Rhp,ε(N ; N
ε ), we obtain,

φ0
Rhp,ε(N ;Nε )

[
0↔ ∂Rhp,ε(n; n

ε )
]
6 φGmix

[
0↔ ∂Rhp,ε(n; n

ε )
]
, (5.19)

where we use the comparison between boundary conditions.
In conclusion, in order to obtain (5.15) it suffices to prove that the three probabilities

of the right-hand side of (5.18) are bounded by an expression of the form Ce−cn, where
the constants C and c depend only on q. We concentrate on this from now on.

Let us start with the last line of (5.18). Recall Proposition 5.5; a straightforward
adaptation reads:

Adaptation of Proposition 5.5. There exist τ > 0 and cn > 0 satisfying cn → 1 as
n→∞ such that, for all n and sizes N > 4n,

φG̃mix

[
0

Rhp,ε(4n;δ0τn)←−−−−−−−−→ ∂TR
hp,ε(4n; δ0τn)

]
> cnφGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂TR
hp,ε(n; δ0

n
ε )
]
.

(5.20)

Indeed, the proof of the above is identical to that of Proposition 5.5 with the only
difference that the position of the two graphs are switched, thus the factor ε−1 becomes
ε. The constant τ and the sequence (cn)n only depend on q.

Observe that, in G̃mix, the domain Rhp(N ;N) is fully contained in the regular block
and contains Rhp(4n; δ0τn) if δ0τ 6 1. Thus, by comparison between boundary conditions,

φG̃mix

[
0

Rhp(4n;δ0τn)←−−−−−−−→ ∂TR
hp(4n; δ0τn)

]
6 φ

1/0

Rhp(N ;N)

[
0

Rhp(4n;δ0τn)←−−−−−−−→ ∂TR
hp(4n; δ0τn)

]
6 φ

1/0

Rhp(N ;N)

[
0←→ ∂Λ(δ0τn)

]
6 C0 exp(−c0δ0τn).

where Rhp(N ;N) is the subgraph of Z2 and the last inequality is given by Proposition 4.2.
Note that c0 and τ depend only on q. Thus, from (5.20) and the above we obtain,

φGmix

[
0

Rhp(4n;δ0τn)←−−−−−−−→ ∂TR
hp(4n; δ0τn)

]
6

1

cn
C0 exp(−c0δ0τn). (5.21)

For n large enough, we have cn > 1/2, and the left-hand side of (5.21) is smaller than
2C0 exp(−c0δ0τn). Since the threshold for n and the constants c0, τ and δ0 only depend
on q, the bound is of the required form.

We now focus on bounding the probabilities of connection to the left and right
boundaries of Rhp,ε(n; δ0

n
ε ).
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Observe that, for a configuration such that the event {0
Rhp,ε(n;δ0

n
ε )

←−−−−−−−→ ∂RR
hp,ε(n; δ0

n
ε )}

occurs, it suffices to change the state of at most δ0
n
ε edges to connect 0 to the vertex

x0,n (we will assume here n to be even, otherwise x0,n should be replaced by x0,n+1).
Moreover, these edges can be chosen to be vertical ones in the irregular block, thus they
are all “short” edges with subtended angle ε. By the finite-energy property, there exists
a constant τ = τ(ε, q) ∈ (0, 1) such that

φGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂RR
hp,ε(n; δ0

n
ε )
]
6 τ−δ0

n
ε φGmix

[
0↔ x0,n

]
,

where τ can be estimated as follows,

τ =
pε

pε + (1− pε)q
=

yε
q + yε

> 1− c1ε,

where c1 > 0 is a constant depending only on q.
The points 0 and x0,n are not affected by the transformations in Σ↑, therefore

φGmix

[
0↔ x0,n

]
= φG̃mix

[
0↔ x0,n

]
6 φG̃mix

[
0↔ ∂Λ(n)

]
6 φ

1/0

Rhp(N ;N)

[
0↔ ∂Λ(n)

]
6 C0 exp(−c0n),

where in the last line, Rhp(N ;N) is the subgraph of G̃mix, or equivalently of Z2 since
these two are identical. The last inequality is given by Proposition 4.2. We conclude that,

φGmix

[
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂RR
hp,ε(n; δ0

n
ε )
]
6 C0 exp

[
− (c0 +

δ0
ε log τ)n

]
6 C0 exp

[
− (c0 +

δ0
ε log(1− c1ε))n

]
. (5.22)

The same procedure also applies to the event
{
0

Rhp,ε(n;δ0
n
ε )

←−−−−−−−→ ∂LR
hp,ε(n; δ0

n
ε )
}
.

Now let δ1 = c0ε
c0τε−log(1−c1ε)

and δ0 = min{δ1, 1
2}. Notice that δ1 → c0

c0τ+c1
> 0 when

ε→ 0, which gives the following relation,

c0 +
δ0
ε
log(1− c1ε) > c0 +

δ1
ε
log(1− c1ε) = c0δ1τ −→

c20τ

c0τ + c1
> 0,

as ε→ 0. Thus, for ε small enough, we can pick a uniform constant δ0 such that

c0 +
δ0
ε
log(1− c1ε) >

1

2
c0δ1τ =: c.

Then, Equations (5.18), (5.21) and (5.22) imply that for n larger than some threshold
depending only on q,

φGmix

[
0↔ ∂Λ(n)

]
6 4C0 exp(−cn).

Finally, by (5.19), we deduce (5.15) for all N > 4n and n large enough. The condition on
n may be removed by adjusting the constant C.
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