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Abstract

We study the frog model on Zd with drift in dimension d ≥ 2 and establish the
existence of transient and recurrent regimes depending on the transition probabilities.
We focus on a model in which the particles perform nearest neighbour random walks
which are balanced in all but one direction. This gives a model with two parameters.
We present conditions on the parameters for recurrence and transience, revealing
interesting differences between dimension d = 2 and dimension d ≥ 3. Our proofs
make use of (refined) couplings with branching random walks for the transience, and
with percolation for the recurrence.
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1 Introduction and main results

The frog model is a model of interacting random walks or, more generally, Markov
chains on a graph G = (V,E) in discrete time N0. It can be described as follows: There
is one distinguished vertex x0 ∈ V , called the origin, and at time 0 there is exactly one
active particle (awake frog) at x0. At every other vertex x, there is a (possibly zero)
number ηx of sleeping frogs. The frog at x0 now starts walking randomly on the graph
and each time it visits a site with sleeping frogs, they immediately become active and
start performing random walks and waking up sleeping frogs themselves, independently
of each other and of all other frogs. The transition mechanism of the individual frogs
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Frogs with drift on Zd

is the same for all frogs. The frog model is called recurrent if the probability that the
origin x0 is visited infinitely often equals 1, otherwise the model is called transient. The
frog model with V = Zd, E the set of nearest-neighbour edges on Zd, x0 := 0, ηx = 1

for each x ∈ Zd \ {0} and the underlying random walk being simple random walk (SRW)
on Zd was studied by Telcs and Wormald [19] who, however, called it egg model. The
name frog model was only later suggested by Durrett. In [19], it is in particular shown
that the frog model is recurrent for each dimension d. See also [17]. Note that the
frog model on Zd with SRW is trivially recurrent for d = 1, 2, due to Pólya’s theorem.
Thus, in [7] Gantert and Schmidt considered the frog model on Z with the underlying
random walk having a drift to the right. They considered both fixed and i.i.d. random
initial configurations (ηx)x∈Z\{0} of sleeping frogs and derived a criterion separating
transience from recurrence. In the case of an i.i.d. initial configuration of sleeping frogs
they also proved a zero-one law, which says that the probability of infinitely many returns
to 0 equals 1 if E[log+(η)] = ∞, and equals 0 otherwise. Remarkably, this result only
depends on the distribution of η and does, in particular, not depend on the value of
the drift. The recurrence part of the latter result was generalised to any dimension d

by Döbler and Pfeifroth in [4]. They proved that the frog model on Zd with underlying
(irreducible) random walk which has an arbitrary drift to the right is recurrent provided
that E[log+(η)

d+1
2 ] = ∞. Another sufficient recurrence condition involving the tail

behaviour of η is derived in [14]. Kosygina and Zerner proved in [14] a zero-one law
under the general condition that the frog trajectories are given by a transitive Markov
chain. Recurrence and transience for the frog model on the d-ary tree have recently
been investigated in [10] and [11] by Hoffman, Johnson and Junge. Other publications
on the frog model include [2], [5], [8], [9], [12] and [13] and [18] and references therein
(the list is not exhaustive).

In the present article we study recurrence and transience of the frog model on Zd for
d ≥ 2 when the underlying transition mechanism is not symmetric. We assume that at
each vertex in Zd \{0} there is exactly one sleeping frog at time 0. Given this assumption,
and using the zero-one law proved in [14], one can now classify the transition laws of
the particles in a recurrent and a transient class. Our proofs show that both regimes
exist. In order to give more quantitative statements, we focus on a model in which the
particles perform nearest neighbour random walks which are balanced in all but one
direction. More precisely, set Ed = {±ej : 1 ≤ j ≤ d} where ej denotes the j-th standard
basis vector in Rd, j = 1, . . . , d. The particles move according to the following transition
probabilities, which depend on two parameters w ∈ [0, 1] and α ∈ [0, 1]:

πw,α(e) =


w(1+α)

2 for e = e1
w(1−α)

2 for e = −e1
1−w

2(d−1) for e ∈ {±e2, . . . ,±ed}
(1.1)

The parameter w is the weight of the drift axis e1, i.e. the random walk chooses to go in
direction ±e1 with probability w. The parameter α describes the strength of the drift,
i.e. if the random walk has chosen to move in drift direction, it takes a step in direction
e1 with probability 1+α

2 and in direction −e1 with probability 1−α
2 . All other directions

are balanced and equally probable. Sometimes we need to consider the corresponding
one-dimensional model where we have to demand w = 1, i.e. the transition probabilities
are defined by πα(e1) = 1 − πα(−e1) = 1+α

2 . We denote the frog model on Zd with
parameters w and α by FM(d, πw,α).

First, let us discuss the extreme cases. For w = 1 the frog model is one-dimensional
and thus transient for any α ∈ (0, 1] and recurrent for α = 0 by [7]. For α = 1 one easily
checks that it is transient for any w ∈ (0, 1]. If w = 0, then FM(d, π0,α) is equivalent to
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Frogs with drift on Zd

the symmetric frog model in d− 1 dimensions and hence recurrent. If α = 0, we are back
in the balanced case and the model is recurrent. This follows from Theorem 1.1 (i) and
Theorem 1.3 below.

In dimension d = 2 the frog model is recurrent whenever α or w are sufficiently small,
i.e. if the underlying transition mechanism is almost balanced. It is transient for α or w
close to 1.

Theorem 1.1. Let d = 2 and w ∈ (0, 1).

(i) There exists αr = αr(w) > 0 such that the frog model FM(d, πw,α) is recurrent for
all 0 ≤ α ≤ αr.

(ii) There exists αt = αt(w) < 1 such that the frog model FM(d, πw,α) is transient for
all αt ≤ α ≤ 1.

Theorem 1.2. Let d = 2 and α ∈ (0, 1).

(i) There exists wr = wr(α) > 0 such that the frog model FM(d, πw,α) is recurrent for
all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1 such that the frog model FM(d, πw,α) is transient for
all wt ≤ w ≤ 1.

In dimension d ≥ 3 the frog model is also recurrent if the transition probabilities are
almost balanced. Further, for any fixed drift parameter α ∈ (0, 1] it is transient if the
weight w is close to 1. However, in contrast to d = 2, for fixed w ∈ [0, 1) there is not
always a transient regime. This follows from Theorem 1.4 (i) below.

Theorem 1.3. Let d ≥ 3 and w ∈ (0, 1). There exists αr = αr(d,w) > 0 such that the frog
model FM(d, πw,α) is recurrent for all 0 ≤ α ≤ αr.

Theorem 1.4. Let d ≥ 3 and α ∈ (0, 1).

(i) There exists wr > 0, independent of d and α, such that the frog model FM(d, πw,α)

is recurrent for all 0 ≤ w ≤ wr.

(ii) There exists wt = wt(α) < 1, independent of d, such that the frog model FM(d, πw,α)

is transient for all wt ≤ w ≤ 1.

The results are graphically summarised in Figure 1. Note that the above theorems
only make statements about the existence of recurrent, respectively transient regimes.
We do not describe their shapes, as might be suggested by the curves depicted in
Figure 1. For a discussion about their shape we refer the reader to Conjecture 4.1 at the
end of this paper.

These results show that, in contrast to d = 1, recurrence and transience do depend
on the drift in every dimension d ≥ 2. This disproves the last conjecture in [7] that some
condition on the moments of η would separate transience from recurrence as in the
one-dimensional case.

The paper is organised as follows. In Section 2 we introduce notation used throughout
the article, and collect some basic facts and results about random walks, percolation
and the frog model, which are needed in the proofs. The proofs of the main results are
presented in Section 3. Further questions and conjectures are discussed in Section 4.

2 Preliminaries

Notation

We refer to the frog model on Zd with transition probabilities π as FM(d, π). For
w,α ∈ [0, 1] and every vertex x ∈ Zd let (Sx

n)n∈N0
be a discrete time random walk on the
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Frogs with drift on Zd

Figure 1: Phase diagram for the frog model FM(d, πw,α): the recurrent regime is marked
by , the transient one by .

lattice Zd starting at x which moves according to the transition function πw,α given by
(1.1). Then (Sx

n)n∈N0 describes the trajectory of the frog initially at vertex x. It starts to
follow this trajectory once it is activated. We assume that the set {(Sx

n)n∈N0 : x ∈ Zd} of
random walks is independent, i.e. active particles do not interact. Notice that this set
of trajectories entirely determines the behaviour of the frog model. A formal definition
of the frog model can be found in [2]. Note that π1/d,0 corresponds to a simple random
walk on Zd. We write πsym in this case.

We refer to the frog that is initially at vertex x ∈ Zd as “frog x”. We write x → y if
frog x (potentially) ever visits y, i.e. y ∈ {Sx

n : n ∈ N0}. For x, y ∈ Zd and A ⊆ Zd we

say that there exists a frog path from x to y in A and write x
A

y if there exist n ∈ N
and z1, . . . , zn ∈ A such that x → z1, zi → zi+1 for all 1 ≤ i < n and zn → y, or if x → y

directly. Note that x, y are not necessarily in A. Also the trajectories of the frogs zi,
1 ≤ i ≤ n, do not need to be in A. For x ∈ Zd we call the set

FCx =
{
y ∈ Zd : x

Zd

y
}

(2.1)

the frog cluster of x. Note that, if frog x ever becomes active, then every frog y ∈ FCx is
also activated. Observe that, as we only deal with recurrence and transience, the exact
activation times are not important, but we are only interested in whether or not a frog is
activated.

Further, we often use (d− 1)-dimensional hyperplanes Hn in Zd defined by

Hn := {x ∈ Zd : x1 = n} (2.2)

for n ∈ Z.

Some facts about random walks

We need to deal with hitting probabilities of random walks on Zd. For x, y ∈ Zd recall
that {x → y} denotes the event that the random walk started at x ever visits the vertex
y. Analogously, for A ⊆ Zd we write {x → A} for the event that the random walk started
at x ever visits a vertex in A.

Lemma 2.1. For d ≥ 3 and w ∈ (0, 1) consider a random walk on Zd with transition
function πw,0. There exists a constant c = c(d,w) > 0 such that for all x ∈ Zd

P(0 → x) ≥ c‖x‖−(d−2)
2 ,

where ‖x‖2 =
(∑d

i=1 x
2
i

)1/2
is the Euclidean norm.
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Frogs with drift on Zd

A proof of the lemma for the simple random walk, i.e. with transition function πsym,
can e.g. be found in [2, Theorem 2.4] and [1, Lemma 2.4]. The proof can immediately be
generalised to our set-up using [15, Theorem 2.1.3].

Lemma 2.2. For d ≥ 1 and α,w ∈ (0, 1) consider a random walk on Zd with transition
function πw,α. Then for each γ > 0 there is a constant c = c(d, γ, w, α) > 0 such that for
all n ∈ N and x ∈ Zd with x1 = −n and |xi| ≤ γ

√
n, 2 ≤ i ≤ d, it holds that

P(x → 0) ≥ cn−(d−1)/2.

For a proof see e.g. [4, Lemma 3.1].

Lemma 2.3. For d ≥ 1 and α,w ∈ (0, 1] consider a random walk on Zd with transition
function πw,α. Then for every n ∈ N and H−n as defined in (2.2)

P(0 → H−n) =
(1− α

1 + α

)n
.

Proof. As P(0 → H−n) = P(0 → H−1)
n for n ∈ N, it suffices to prove the lemma for

n = 1. By the Markov property

P(0 → H−1) =
1− α

2
+

1 + α

2
P(0 → H−2).

The result follows after a straightforward calculation.

Some facts about percolation

To prove recurrence we make use of the theory of independent site percolation
on Zd and therefore give a brief introduction here. Let p ∈ [0, 1]. Every site in Zd

is independently of the other sites declared open with probability p and closed with
probability 1−p. An open cluster is a connected component of the subgraph induced by all
open sites. It is well known that for d ≥ 2 there is a critical parameter pc = pc(d) ∈ (0, 1)

such that for all p > pc (supercritical phase) there is a unique infinite open cluster C

almost surely, and for p < pc (subcritical phase) there is no infinite open cluster almost
surely. Furthermore, denoting the open cluster containing the site x ∈ Zd by Cx, it holds
that P(|Cx| = ∞) > 0 for p > pc, and P(|Cx| = ∞) = 0 for p < pc and all x ∈ Zd. The
following lemma states that the critical probability pc is small for d large.

Lemma 2.4. For independent site percolation on Zd,

lim
d→∞

pc(d) = 0.

Indeed, pc(d) = O
(
d−1

)
holds. A proof of this result can e.g. be found in [3, Chapter 1,

Theorem 7]. Further, in the recurrence proofs we use the fact that an infinite open
cluster is “dense” in Zd. The following weak version of denseness suffices.

Lemma 2.5. Consider supercritical independent site percolation on Zd. There are
constants a, b > 0 such that

P
(
|A ∩ Cx| ≥ a|A|

)
> b

for all A ⊆ Zd and x ∈ Zd.

Proof. For a > 0, A ⊆ Zd and x ∈ Zd the FKG-inequality yields

P
(
|A ∩ Cx| ≥ a|A|

)
≥ P

(
x ∈ C, |A ∩ C| ≥ a|A|

)
≥ P(x ∈ C) · P

(
|A ∩ C| ≥ a|A|

)
.
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Note that γ := P(x ∈ C) ∈ (0, 1) (and γ does not depend on x) since the percolation is
supercritical. By the Markov inequality

P
(
|A ∩ C| ≥ a|A|

)
= 1− P

(
|A ∩ Cc| ≥ (1− a)|A|

)
≥ 1−

E
[
|A ∩ Cc|

]
(1− a)|A|

= 1− 1

(1− a)|A|
∑
y∈A

P(y ∈ Cc)

= 1− 1− γ

1− a
> 0,

for a small enough, which finishes the proof.

Some results about frogs

As mentioned in the introduction, the frog model presented in this paper satisfies
a zero-one law, which is shown in [14, Theorem 1] in a more general set-up. See also
Appendix A in [14] for a comment on the slightly different definition of recurrence used
there.

Theorem 2.6 ([14]). For any d ≥ 1 and any nearest neighbour transition function π, we
have for FM(d, π) that the probability that the origin is visited infinitely many times by
active frogs is either 0 or 1.

Due to this zero-one law, to show recurrence, we only need to prove that the origin is
visited infinitely often with positive probability.

In the symmetric frog model the set of vertices visited by active frogs, rescaled by
time, converges to a convex set. This shape theorem is proven by Alves et al. in [2,
Theorem 1.1] and we use it in one of the proofs concerning recurrence.

Theorem 2.7 ([2]). Consider FM(d, πsym) and let ξn be the set of all sites visited by
active frogs by time n and ξn := {x+(− 1

2 ,
1
2 ]

d : x ∈ ξn}. Then there is a non-empty convex
symmetric set A = A(d) ⊆ Rd, A 6= {0}, such that, for any 0 < ε < 1

(1− ε)A ⊆ ξn
n

⊆ (1 + ε)A

for all n large enough almost surely.

Remark 2.8. The proof of Theorem 2.7 goes through for the “lazy” version of the frog
model, where in each step a frog decides to stay where it is with probability q ∈ (0, 1),
independently of all other frogs.

Further, we need a result on the frog model with death. For s ∈ [0, 1] it is defined
just as the usual frog model, but every active frog dies at every step with probability
1− s independently of everything else. The parameter s is called the survival probability.
We denote this frog model on Zd by FM∗(d, π, s) if the underlying random walk has
transition function π. Further, we denote frog clusters in the frog model with death by
FC∗, analogous to the notation introduced in (2.1) for the frog model without death. In
this paper we only use the frog model with death in the symmetric case, i.e. π = πsym.
We say that the frog model with death survives if at any time there is at least one active
frog. The frog model with death is intensively studied in [1] and also in [5] and [16]. We
need the following lemma in the proofs concerning transience.

Lemma 2.9. For FM(1, π1,α) with α > 0 and FM∗(1, πsym, s) with s < 1 there is c > 0

such that P(0
Z − n) ≤ e−cn for all n ∈ N.
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Frogs with drift on Zd

Proof. Let p be the probability that a frog starting from 0 ever hits the vertex −1. In both
models we have p < 1. Obviously, as s < 1, this is true for FM∗(d, πsym, s). For FM(1, π1,α)

it follows from Lemma 2.3.
For n ∈ N define Yn = |{m > −n : m → −n}| if −n ∈ FC0, respectively −n ∈ FC∗

0 .
Otherwise set Yn = 0. If −n is visited by active frogs, then Yn counts the number of frogs
to the right of −n that potentially ever reach −n. The process (Yn)n∈N is a Markov chain
on N0 with

Yn+1 =

{
0 if Yn = 0,

Binomial(Yn + 1, p) if Yn > 0.

Note that P(0
Z − n) = P(Yn > 0) by definition. A straightforward calculation shows

that there is k0 ∈ N such that P(Yn+1 < Yn | Yn = k) > 2
3 for all k ≥ k0. Hence, we can

dominate the Markov chain (Yn)n∈N by the Markov chain (Ỹn)n∈N on {0, k0, k0 + 1, . . .}
with transition probabilities

P(Ỹn+1 = l | Ỹn = k) =



1
3 if l = k + 1, k > k0,
2
3 if l = k − 1, k > k0,

(1− p)k0+1 if l = 0, k = k0,

1− (1− p)k0+1 if l = k + 1, k = k0,

1 if l = k = 0

for all n ∈ N and starting point Ỹ1 = max{Y1, k0}. Obviously, we have P(Yn > 0) ≤
P(Ỹn > 0) for all n ∈ N. Let Tk = min{n ∈ N : Ỹn = k} and Tk,l = Tl − Tk. Note that

P(Ỹn > 0) = P(T0 > n). For t > 0, we apply the Markov inequality and use the strong
Markov property to get

P(T0 > n) = P

(Ỹ1−1∑
k=k0

Tk+1,k + Tk0,0 > n

)

≤ e−tnE

[
exp

(
t

Ỹ1−1∑
k=k0

Tk+1,k + tTk0,0

)]

= e−tn
∞∑

l=k0

l−1∏
k=k0

E
[
exp(tTk+1,k)

]
E
[
exp(tTk0,0)

]
P(Ỹ1 = l)

= e−tn
∞∑
l=0

E
[
exp(tTk0+1,k0

)
]l
E
[
exp(tTk0,0)

]
P(Ỹ1 = l + k0). (2.3)

Ỹ1 can only be equal to l + k0 if at least one frog to the right of l − 1 reaches −1. Thus,

P(Ỹ1 = l + k0) ≤
∞∑
i=l

pi+1 = pl
p

1− p
. (2.4)

Now, we choose t > 0 small enough such that E
[
exp(tTk0+1,k0)

]
< p−1. Then (2.4) shows

that the sum in (2.3) is finite, which yields the claim.

A lemma on Bernoulli random variables

We will repeatedly use the following simple lemma. Note that the random variables
in this lemma do not have to be independent.
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Frogs with drift on Zd

Lemma 2.10. For i ∈ N let Xi be a Bernoulli(pi) random variable with infi∈N pi =: p > 0.
Then for every a > 0 and n ∈ N

P

(
1

n

n∑
i=1

Xi ≥ a

)
≥ p− a.

Proof. Since E[Xi] ≥ p and 1
n

∑n
i=1 Xi ≤ 1, we have

p ≤ E

[
1

n

n∑
i=1

Xi

]
≤ P

(
1

n

n∑
i=1

Xi ≥ a

)
+ a,

which yields the claim.

3 Proofs

In this section we prove the main results of the paper. To show recurrence we always
compare the frog model with independent site percolation. To show transience we couple
the frog model with branching random walks.

Recurrence for d ≥ 2 and arbitrary weight

In this section we prove Theorem 1.1 (i) and Theorem 1.3. Throughout this section
assume that w < 1 is fixed. To illustrate the basic idea of the proof we first sketch it for
d = 2. We call a site x in Z2 open if the trajectory (Sx

n)n∈N0 of frog x includes the four
neighbouring vertices x ± e1, x ± e2 of x, i.e. if x → x ± e1 and x → x ± e2. Note that
for this definition it does not matter whether frog x is ever activated or not. All sites
are open independently of each other due to the independence of the trajectories of the
frogs. Furthermore, the probability of a site to be open is the same for all sites. Consider
the percolation cluster C0 that consists of all sites that can be reached from 0 by open
paths, i.e. paths containing only open sites. Note that all frogs in C0 are activated as
frog 0 is active in the beginning. In this sense the frog model dominates the percolation.
As we are in d = 2, the probability of a site x being open equals 1 for α = 0 and by
continuity is close to 1 if α is close to 0. Thus, if α is close enough to 0 the percolation
is supercritical. Hence, with positive probability the cluster C0 containing the origin
is infinite. By Lemma 2.5 this infinite cluster contains many sites close to the negative
e1-axis. This shows that many frogs that are initially close to this axis get activated. Each
of them travels in the direction of the e1-axis and has a decent chance of visiting 0 on its
way. Hence, this will happen infinitely many times. This argument shows that the origin
is visited by infinitely many frogs with positive probability. Using the zero-one law stated
in Theorem 2.6 yields the claim.

In higher dimensions the probability of a frog to visit all its neighbours is not close
to 1 however small the drift may be. We can still make the reasoning work by using a
renormalization type argument. To make this argument precise let K be a non-negative
integer that will be chosen later. We tessellate Zd for d ≥ 2 with cubes (Qx)x∈Zd of size
(2K + 1)d. For every x ∈ Zd we define

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K},
(3.1)

where ‖x‖∞ = max1≤i≤d |xi| is the supremum norm. We call a site x ∈ Zd open if for
every e ∈ Ed there exists a frog path from qx to qx+e in Qx. Otherwise, x is said to be
closed. The probability of a site x to be open does not depend on x, but only on the drift
parameter α and the cube size K. We denote it by p(K,α). This defines an independent
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site percolation on Zd, which, as mentioned before, is dominated by the frog model in
the following sense: For any x ∈ C0 the frog at qx will be activated in the frog model,
i.e. qx ∈ FC0 with FC0 as defined in (2.1).

In the next two lemmas we show that the probability p(K,α) of a site to be open is
close to 1 if the drift parameter α is small and the cube size K is large. We first show
this claim for the symmetric case α = 0.

Lemma 3.1. For every w < 1 in the frog model FM(d, πw,0) we have

lim
K→∞

p(K, 0) = 1.

Proof. For d = 2 we obviously have p(K, 0) = 1 for all K ∈ N0 as balanced nearest
random walk on Z2 is recurrent. Therefore, we can assume d ≥ 3. The proof of the
lemma relies on the shape theorem (Theorem 2.7) for the frog model. This theorem
assumes equal weights on all directions. As in our model the e1-direction has a different
weight, we need a workaround. We couple our model with a modified frog model on
Zd−1 in which the frogs in every step stay where they are with probability w and move
according to a simple random walk otherwise. A direct coupling shows that, up to any
fixed time, in the modified frog model on Zd−1 there are at most as many frogs activated
as in the frog model FM(d, πw,0). Note that Theorem 2.7 holds true for the modified frog
model on Zd−1, see Remark 2.8. Let ξK , respectively ξmod

K , be the set of all sites visited
by active frogs by time K in the frog model FM(d, πw,0), respectively the modified frog

model on Zd−1. Further, let ξmod
K := {x + (− 1

2 ,
1
2 ]

d−1 : x ∈ ξmod
K }. By Theorem 2.7 there

exists a non-trivial convex symmetric set A = A(d) ⊆ Rd−1 and an almost surely finite
random variable K such that

A ⊆
ξmod
K

K

for all K ≥ K. This implies that there is a constant c1 = c1(d) > 0 such that |ξmod
K | ≥

c1K
d−1 for all K ≥ K. By the coupling the same statement holds true for ξK . As

ξK ⊆ Q0(K) and any vertex in ξK can be reached by a frog path from 0 in Q0, this
implies ∣∣∣{y ∈ Q0 : 0

Q0
y
}∣∣∣ ≥ |ξK | ≥ c1K

d−1

for allK ≥ K. Thus we have at least c1Kd−1 vertices in the box Q0 that can be reached by
frog paths from 0. Each frog in Q0 has a chance to reach the centre qe of a neighbouring
box. More precisely, by Lemma 2.1 there is a constant c2 = c2(d) > 0 such that

P
(
y → qe

)
≥ c2

Kd−2
(3.2)

for any vertex y ∈ Q0 and e ∈ Ed. Hence, for any e ∈ Ed

P
(
(0

Q0
qe)

c | K ≥ K
)
= P

({
y 6→ qe for all y ∈ Q0 with 0

Q0
y
} ∣∣ K ≥ K

)
≤
(
1− c2

Kd−2

)c1Kd−1

≤ e−c1c2K , (3.3)

where we used for the first inequality the fact that a frog moves independently of all
frogs in Q0 once it will never return to Q0 and the uniformity of the bound in (3.2).
Therefore,
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p(K, 0) ≥ P
( ⋂
e∈Ed

{0 Q0
qe}

∣∣∣ K ≥ K
)
P0(K ≥ K)

≥
[
1− 2d e−c1c2K

]
P(K ≥ K). (3.4)

Since K is almost surely finite, we have limK→∞P0(K ≥ K) = 1. Thus, the right hand
side of (3.4) tends to 1 in the limit K → ∞.

Lemma 3.2. For fixed w < 1, in the frog model FM(d, πw,α) we have for all K ∈ N0

lim inf
α→0

p(K,α) ≥ p(K, 0).

Proof. Let L(a, b, c,K) be the number of possible realizations such that all qx±e, e ∈ Ed,
are visited by frogs in Q0 for the first time after in total (of all frogs) exactly a steps
in e1-direction, b steps in −e1-direction and c steps in all other directions. Note that
L(a, b, c,K) is independent of α. We have

p(K,α) =

∞∑
a,b,c=1

L(a, b, c,K)

(
w(1 + α)

2

)a(
w(1− α)

2

)b(
1− w

2(d− 1)

)c

.

The claim now follows from Fatou’s Lemma.

Proof of Theorem 1.1 (i) and Theorem 1.3. By Lemma 3.1 and Lemma 3.2 we can as-
sume that K is big enough and α > 0 small enough such that p(K,α) > pc(d), i.e. the
percolation with parameter p(K,α) on Zd constructed at the beginning of this section is
supercritical.

Consider boxes Bn = {−n} × [−
√
n,

√
n]d−1 for n ∈ N. By Lemma 2.5 there are

constants a, b > 0 and N ∈ N such that for all n ≥ N

P(|Bn ∩ C0| ≥ an(d−1)/2) > b.

After rescaling, the boxes Bn correspond to the boxes

FBn = {y ∈ Zd : |y1 + (2K + 1)n| ≤ K, |yi| ≤ (2K + 1)
√
n+K, 2 ≤ i ≤ d}.

Recall that FC0 consists of all vertices reachable by frog paths from 0 as defined in (2.1),
and note that x ∈ Bn ∩ C0 implies qx ∈ FBn ∩ FC0. This shows

P(|FBn ∩ FC0|≥ an(d−1)/2) > b (3.5)

for n large enough. Analogously to (3.3), by Lemma 2.2 and (3.5) the probability that at
least one frog in FBn is activated and reaches 0 is at least(

1− (1− cn−(d−1)/2)an
(d−1)/2

)
b ≥

(
1− e−ac

)
b,

where c = c(K, d,w) > 0 is a constant. Altogether we get by Lemma 2.10

P(0 visited infinitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim inf
n→∞

P

( n∑
i=1

1{∃x∈FBi∩FC0 : x→0} ≥ εn

)
≥
(
1− e−ac

)
b− ε > 0

for ε sufficiently small. The claim now follows from Theorem 2.6.
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Recurrence for d = 2 and arbitrary drift

In this section we prove Theorem 1.2 (i). Throughout the section let α < 1 be fixed.
We couple the frog model with independent site percolation on Z2. Let K be an integer
that will be chosen later. We tessellate Z2 with segments (Qx)x∈Z2 of size 2K + 1. For
every x = (x1, x2) ∈ Z2 we define

qx = qx(K) =
(
x1, (2K + 1)x2

)
,

Qx = Qx(K) = {y ∈ Z2 : y1 = x1, |y2 − (2K + 1)x2| ≤ K}.

We call the site x ∈ Z2 open if there are frog paths from qx to qx+e in Qx for all e ∈ E2.
As before, we denote the probability of a site to be open by p(K,w). Note that this
probability does not depend on x.

Lemma 3.3. For α < 1, in the frog model FM(2, πw,α) we have

lim
K→∞

lim inf
w→0

p(K,w) = 1.

Proof. We claim that there is a constant c = c(α) > 0 such that for any K ∈ N0 and
x ∈ Q0

lim inf
w→0

P
( ⋂

e∈E2

{x → qe}
)
≥ c. (3.6)

We can estimate the probability in (3.6) by

P
( ⋂

e∈E2

{x → qe}
)
≥ P

(
x → q−e2

)
P
(
q−e2 → q−e1

)
P
(
q−e1 → qe2

)
P
(
qe2 → qe1

)
.

The probability of moving in ±e2-direction for dw−1e steps is (1− w)dw
−1e. Conditioning

on moving in this way, we just deal with a simple random walk on Z. There exists a
constant c1 > 0 such that this random walk hits −K within dw−1e steps with probability
at least c1 for all w close to 0. Therefore,

P
(
x → q−e2

)
≥ c1(1− w)dw

−1e ≥ c1
4
. (3.7)

The probability of moving exactly once in −e1-direction and otherwise in ±e2-direction
within dw−1e+ 1 steps is

(
dw−1e+ 1

) (1− α)w

2
(1− w)dw

−1e ≥ 1− α

8

for w close to 0. Therefore, analogously to (3.7) there exists a constant c2 > 0 such that

P
(
q−e2 → q−e1

)
≥ c2(1− α)

8

for w sufficiently close to 0. The two remaining probabilities P
(
q−e1 → qe2

)
and P

(
qe2 →

qe1
)
can be estimated analogously, which implies (3.6).
If frog 0 activates all frogs in Q0 and any of these 2K frogs manages to visit the

centres of all neighbouring segments, then 0 is open. By independence of the trajectories
of the individual particles in Q0 this implies

p(K,w) ≥ P
( ⋂
x∈Q0

{0 → x}
)(

1−
(
1− P

( ⋂
1≤i≤4

{x → qei}
))2K)

. (3.8)

As in the proof of Lemma 3.2 one can show that for w → 0 the first factor in (3.8)
converges to 1. Therefore, taking limits in (3.8) and using (3.6) yields the claim.
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Proof of Theorem 1.2 (i). By Lemma 3.3 we can choose K big and w small enough
such that p(K,w) > pc(2), where pc(2) is the critical parameter for independent site
percolation on Z2. As in the proof of Theorem 1.1 (i) and Theorem 1.3 the coupling with
supercritical percolation now yields recurrence of the frog model. As we rescaled the
lattice Z2 slightly different this time, the box Bn defined in the proof of Theorem 1.1 (i)
and Theorem 1.3 now corresponds to the box

FBn = {y ∈ Z2 : y1 = −n, |y2| ≤ (2K + 1)
√
n+K}.

Since only asymptotics in n matter for the proof, it otherwise works unchanged.

Recurrence for arbitrary drift and d ≥ 3

The proof of Theorem 1.4 (i) again relies on the idea of comparing the frog model
with percolation. But instead of looking at the whole space Zd as in the previous proofs,
we consider a sequence of (d − 1)-dimensional hyperplanes (H−n)n∈N0

with H−n as
defined in (2.2). We compare the frogs in each hyperplane with supercritical percolation,
ignoring the frogs once they have left their hyperplane and all the frogs from other
hyperplanes. Within a hyperplane we now deal with a frog model without drift, but allow
the frogs to die in each step with probability w by leaving their hyperplane, i.e. we are
interested in FM∗(d− 1, πsym, 1−w). Hence, the argument does not depend on the value
of the drift parameter α < 1.

We start with one active particle in the hyperplane H0. With positive probability
this particle initiates an infinite frog cluster in H0 if w and therefore the probability to
leave the hyperplane is sufficiently small. Every frog eventually leaves H0 and has for
every n ∈ N a positive chance of activating a frog in the hyperplane H−n, which might
start an infinite cluster there. This is the only time where we need α < 1 in the proof of
Theorem 1.4 (i). Using the denseness of such clusters we can then proceed as before.

We split the proof of Theorem 1.4 (i) into two parts:

Proposition 3.4. There is d0 ∈ N and wr > 0, independent of d and α, such that the frog
model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr, 0 ≤ α < 1 and d ≥ d0.

Proposition 3.5. For every d ≥ 3 there is wr = wr(d) > 0, independent of α, such that
the frog model FM(d, πw,α) is recurrent for all 0 ≤ w ≤ wr and all 0 ≤ α < 1.

We first prove Proposition 3.4. As indicated above we need to study the frog model
with death and no drift in Zd−1. To increase the readability of the paper let us first
work in dimension d instead of d − 1 and with a general survival parameter s, i.e. we
investigate FM∗(d, πsym, s) for d ≥ 2.

We tessellate Zd with cubes (Q′
x)x∈Zd of size 3d. More precisely, for x ∈ Zd we define

Q′
x = {y ∈ Zd : ‖y − 3x‖∞ ≤ 1}.

Further, for technical reasons, for a ∈ ( 23 , 1) we define

Wx = {y ∈ Q′
x : ‖y − 3x‖1 ≤ ad},

where ‖z‖1 =
∑2d

i=1|zi| is the graph distance from z ∈ Zd to 0. Informally, Wx is the set
of all vertices in Q′

x which are “sufficiently close” to the centre of the cube. Consider the
box Q′

x for some x ∈ Zd and let o ∈ Wx. If there are frog paths in Q′
x from o to vertices

close to the centres of all neighbouring boxes, i.e. if the event⋂
e∈Ed

⋃
y∈Wx+e

{o Q′
x y}
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occurs, we call the vertex o good. Note that this event only depends on the trajectories of
all the frogs originating in the cube Q′

x and the choice of o. If o is good and is activated,
then also the neighbouring cubes are visited. We show that the probability of a vertex
being good is bounded from below uniformly in d and this bound does not depend on the
choice of o.

Lemma 3.6. Consider the frog model FM∗(d, πsym, s). There are constants β > 0 and
d0 ∈ N such that for all d ≥ d0, s >

3
4 ,

2
3 < a < 2− 1

s , x ∈ Zd and o ∈ Wx

P(o is good) > β.

To show this we first need to prove that many frogs in the cube are activated. In the
proof of Theorem 1.1 (i) and Theorem 1.3 this is done by means of Lemma 3.1 using the
shape theorem. Here, we use a lemma that is analogous to Lemma 2.5 in [1].

Lemma 3.7. Consider the frog model FM∗(d, πsym, s). There exist constants γ > 0, µ > 1

and d0 ∈ N such that for all d ≥ d0, s >
3
4 ,

2
3 < a < 2− 1

s and o ∈ W0 we have

P
(∣∣{y ∈ W0 : o

Q′
0 y
}∣∣ ≥ µ

√
d
)
≥ γ.

Proof of Lemma 3.7. The proof consists of two parts. In the first part we show that with
positive probability there are exponentially many vertices in Q′

0 reached from o by frog
paths in Q′

0, and in the second part we prove that many of these vertices are indeed in
W0. For the first part we closely follow the proof of Lemma 2.5 in [1] and rewrite the
details for the convenience of the reader.

We examine the frog model with initially one active frog at o and one sleeping frog
at every other vertex in Q′

0 for
√
d steps in time. Consider the sets S0 = {o} and

Sk = {x ∈ Q′
0 : ‖x− o‖1 = k, ‖x− o‖∞ = 1} for k ≥ 1 and let ξk denote the set of active

frogs which are in Sk at time k. We will show that, conditioned on an event to be defined
later, the process (ξk)k∈N0 dominates a process (ξ̃k)k∈N0 , which again itself dominates
a supercritical branching process. The process (ξ̃k)k∈N0 is defined as follows. Initially,
there is one particle at o. Assume that the process has been constructed up to time
k ∈ N0. In the next step each particle in ξ̃k survives with probability s. If it survives, it
chooses one of the neighbouring vertices uniformly at random. If that vertex belongs to
Sk+1 and no other particle in ξ̃k intends to jump to this vertex, the particle moves there,
activates the sleeping particle, and both particles enter ξ̃k+1. Otherwise, the particle is
deleted. In particular, if two or more particles attempt to jump to the same vertex, all of
them will be deleted. Obviously, ξ̃k ⊆ ξk for all k ∈ N0.

First, we show that for d large it is unlikely that two particles in ξ̃k attempt to jump
to the same vertex. To make this argument precise we need to introduce some notation.
For x ∈ Sk and y ∈ Sk+1 with ‖x− y‖1 = 1 define

Dx = {z ∈ Sk+1 : ‖x− z‖1 = 1},
Ay = {z ∈ Sk : ‖z − y‖1 = 1},
Ex = {z ∈ Sk : Dx ∩ Dz 6= ∅}.

Dx denotes the set of possible descendants of x, Ay the set of ancestors of y and
Ex the set of enemies of x. Note that Ex =

⋃
y∈Dx

(Ay \ {x}) is a disjoint union. Let

nx =
∑d

i=1 1{oi=0, xi 6=0}. Then one can check that

|Dx| = 2(d− ‖o‖1 − nx) + ‖o‖1 − (k − nx) = 2d− ‖o‖1 − k − nx, (3.9)

|Ay| = k + 1.
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For x ∈ Sk let χ(x) denote the number of particles of ξ̃k in x. Note that χ(x) ∈ {0, 2} for
any x ∈ Sk with k ∈ N.

Let ζkxy denote the indicator function of the event that there is z ∈ Ex with χ(z) ≥ 1

such that one of the particles at z intends to jump to y at time k + 1. If ζkxy = 1, then a
particle on x cannot move to y at time k + 1.

Further, we introduce the event Ux = {χ(z) = 2 for all z ∈ Ex}. This event describes
the worst case for x, when it is most likely that particles at x will not be able to jump.
For k ≤

√
d we have

P(ζkxy = 1) ≤ P(ζkxy = 1 | Ux) ≤
∑

z∈Ay\{x}

2s

2d
=

ks

d
≤ 1√

d
.

Given σ > 0 we choose d large such that P(ζkxy = 1) < σ for all k ≤
√
d. Now, we consider

the set of all descendants y of x such that there is a particle at some vertex z ∈ Ex that
tries to jump to y at time k + 1. This set contains

∑
y∈Dx

ζkxy elements. Let ζkx denote the

indicator function of the event
{∑

y∈Dx
ζkxy > 2σd

}
. If ζkx = 1, then more than 2σd of the

2d neighbours of x are blocked to a particle at x.
The random variables {ζkxy : y ∈ Dx} are independent with respect to P(· | Ux) as

Ex =
⋃

y∈Dx
(Ay \ {x}) is a disjoint union. Using 2d− ad− 2k ≤ |Dx| ≤ 2d and a standard

large deviation estimate we get for k ≤
√
d

P(ζkx = 1) ≤ P

(∑
y∈Dx

ζkxy > 2σd
∣∣∣ Ux

)

≤ P

(
1

|Dx|
∑
y∈Dx

ζkxy > σ
∣∣∣ Ux

)
≤ e−c1|Dx|

≤ e−c2d

with constants c1, c2 > 0. Next, let us consider the bad event

B =

√
d⋃

k=1

⋃
x∈ξ̃k

{ζkx = 1}.

Then with |ξ̃k| ≤ 2k ≤ 2
√
d we get

P(B) ≤
√
d · 2

√
d · e−c2d.

In particular P(B) can be made arbitrarily small for d large. Conditioned on Bc, in each
step for every particle there are at least

|Dx| − 2σd− 1 ≥ (2− a− 2σ)d− 3
√
d

available vertices in Sk+1, i.e. vertices a particle at x can jump to in the next step. Thus,
conditioned on Bc, the process ξ̃k dominates a branching process with mean offspring at
least (

(2− a− 2σ)d− 3
√
d
)
· 2 · s

2d
.

For σ small and d large the mean offspring is bigger than 1 as we assumed a < 2 − 1
s .

Since a supercritical branching process grows exponentially with positive probability,
there are constants c3 > 1, q ∈ (0, 1) that do not depend on d such that
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P
(
|ξ̃√d| ≥ c

√
d

3

)
≥ q. (3.10)

For the second part of the proof condition on the event
{
|ξ̃√d| ≥ c

√
d

3

}
and choose

0 < ε < a − 2
3 . If ‖o‖1 ≤ (a − ε)d, all particles of ξ̃√d are in W0 for d large. This

immediately implies the claim of the lemma. Otherwise, let n = |ξ̃√d|, enumerate the

particles in ξ̃√d and let S̃i, 1 ≤ i ≤ n, denote the position of the i-th particle. Further, we
define for 1 ≤ i ≤ n

Xi =

{
1 if ‖S̃i‖1 ≤ ‖o‖1,
0 otherwise.

It suffices to show that P(X1 = 1) > 0. Then Lemma 2.10 applied to the random variables
X1, . . . , Xn implies that with positive probability a positive proportion of the particles in
ξ̃√d indeed have L1-norm smaller than o, and are thus in W0. Together with (3.10) this
finishes the proof.

For the proof of the claim let S̃1
k denote the position of the ancestor of S̃1 in Sk, where

0 ≤ k ≤
√
d. Note that S̃1

0 = o and S̃1√
d
= S̃1.

We are interested in the process (‖S̃1
k‖1)1≤k≤

√
d. By the construction of the process

(ξ̃k)k∈N0 it either increases or decreases by 1 in every step. The positions S̃1
k and

S̃1
k+1 differ in exactly one coordinate. If this coordinate is changed from 0 to ±1, then

‖S̃1
k+1‖1 = ‖S̃1

k‖1 + 1. If it is changed from ±1 to 0, then we have ‖S̃1
k+1‖1 = ‖S̃1

k‖1 − 1.

There are at least (a − ε)d −
√
d many ±1-coordinates in S̃1

k that can be changed to
0. As we also know that S̃1

k+1 ∈ DS̃1
k
, we have for all k ≤

√
d by (3.9) and the choice

of ε

P
(
‖S̃1

k+1‖1 = ‖S̃1
k‖1 − 1

)
≥ (a− ε)d−

√
d

|DS̃1
k
|

≥ (a− ε)d−
√
d

2d− (a− ε)d
>

1

2

for d large. Hence, ‖S̃1
k‖1 dominates a random walk with drift on Z started in ‖o‖1.

Therefore,

P(X1 = 1) = P
(
‖S̃1√

d
‖1 ≤ ‖o‖1

)
≥ 1

2
,

which finishes the proof.

Proof of Lemma 3.6. By Lemma 3.7, with probability at least γ there are frog paths in
Q′

x from o to at least µ
√
d vertices in Wx for d large. We divide the frogs on these vertices

into 2d groups of size at least µ
√
d/2d and assign each group the task of visiting one

of the neighbouring boxes Wx+e, e ∈ Ed. Notice that this job is done if at least one of
the frogs in the group visits at least one vertex in the neighbouring box. If all groups
succeed, o is good. Any frog in any group is just three steps away from its respective
neighbouring box Wx+e, e ∈ Ed, and thus has probability at least ( s

2d )
3 of achieving its

group’s goal. Hence,

P(o is good) ≥
(
1−

(
1−

( s

2d

)3)µ√
d/2d)2d

γ ≥ γ

2

for d large.

In the other recurrence proofs we couple the frog model with percolation by calling a
cube open if its centre is good. Here, the choice of a “starting” vertex, like the centre, is
not independent of the other cubes. Therefore, we cannot directly couple the frog model
with independent percolation. However, the following lemma allows us to compare the
distributions of a frog cluster and a percolation cluster.
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Lemma 3.8. Consider the frog model FM∗(d, πsym, s). Let β > 0 and assume that
P(o is good) > β for all o ∈ Wx, x ∈ Zd. Further, consider independent site percolation
on Zd with parameter β. Then for all sets A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣ ⋃

x∈A

Q′
x ∩ FC∗

3v

∣∣∣ ≥ k
)
.

Proof. For technical reasons we introduce a family of independent Bernoulli random
variables (Xo)o∈Zd which are also independent of the choice of all the trajectories of the
frogs and satisfy P(Xo = 1) = P(o is good)−1β. Their job will be justified soon. Further,
we fix an ordering of all vertices in Zd.

Now we are ready to describe a process that explores a subset of the frog cluster
FC∗

3v. Its distribution can be related to the cluster Cv in independent site percolation
with parameter β. The process is a random sequence (Rt, Dt, Ut)t∈N0

of tripartitions
of Zd. As the letters indicate, Rt will contain all sites reached by time t, Dt all those
declared dead by time t, and Ut the unexplored sites. We construct the process in such
a way that for all t ∈ N0, x ∈ Rt and e ∈ Ed there is y ∈ Wx+e such that there is a frog
path from 3v to y in

⋃
x∈Rt

Q′
x. We start with R0 = D0 = ∅ and U0 = Zd. If 3v is good

and X3v = 1, set U1 = Zd \ {v}, R1 = {v}, and D1 = ∅. Otherwise, stop the algorithm. If
the process is stopped at time t, let Us = Ut−1, Rs = Rt−1 and Ds = Dt−1 for all s ≥ t.
Assume we have constructed the process up to time t. Consider the set of all sites in Ut

that have a neighbour in Rt. If it is empty, stop the process. Otherwise, pick the site x

in this set with the smallest number in our ordering. By the choice of x there is y ∈ Wx

such that there is a frog path from 3v to y in
⋃

z∈Rt
Q′

z. Choose any vertex y with this
property. If y is good and Xy = 1, set

Rt+1 = Rt ∪ {x}, Dt+1 = Dt, Ut+1 = Ut \ {x}.

Otherwise, update the sets as follows:

Rt+1 = Rt, Dt+1 = Dt ∪ {x}, Ut+1 = Ut \ {x}

In every step t the algorithm picks an unexplored site x and declares it to be reached or
dead, i.e. added to the set Rt or Dt. The probability that x is added to Rt equals β. This
event is (stochastically) independent of everything that happened before time t in the
algorithm. Note that every unexplored neighbour of a reached site will eventually be
explored due to the fixed ordering of all sites.

In the same way we can explore independent site percolation on Zd with parameter
β. Construct a sequence (R′

t, D
′
t, U

′
t)t∈N0

of tripartitions of Zd as above, but whenever
the algorithm evaluates whether a site x is declared reached or dead we toss a coin
independently of everything else. Note that

⋃
t∈N0

R′
t = Cv, where Cv is the cluster

containing v. This exploration process is well known for percolation, see e.g. [3, Proof of
Theorem 4, Chapter 1].

By construction,
⋃

t∈N0
Rt equals the percolation cluster Cv in distribution. The claim

follows since for every x ∈
⋃

t∈N0
Rt there is a y ∈ Wx such that there is a frog path from

3v to y, i.e. y ∈ FC∗
3v.

Now we can show Proposition 3.4. Note that we are again working with the frog
model FM(d, πw,α) (without death).

Proof of Proposition 3.4. Throughout this proof we assume that d is so large that Lemma
3.6 is applicable for d− 1 and pc(d− 1) < β, where β is the constant introduced in the
statement of Lemma 3.6. This is possible because of Lemma 2.4. These assumptions in
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particular imply that we can use Lemma 3.8 and that the percolation introduced there is
supercritical.

Consider the sequence of hyperplanes (H−n)n∈N0
defined in (2.2) and let A denote

the event that there is at least one frog vn activated in every hyperplane H−n. For
technical reasons we want vn of the form vn = (−n, 3wn) for some wn ∈ Zd−1. We first
show that A occurs with positive probability. To see this consider the first hyperplane H0

and couple the frogs in this hyperplane with FM∗(d− 1, πsym, 1−w) in the following way:
Whenever a frog takes a step in ±e1-direction, i.e. leaves its hyperplane, it dies instead.
By [1, Theorem 1.8] (or Lemma 3.8) this process survives with positive probability if w
is sufficiently small (independent of the dimension d). This means that infinitely many
frogs are activated in H0. Obviously, this implies the claim.

From now on we condition on the event A. Note that FCvn ⊆ FC0 for n ∈ N.
Analogously to the proofs in the last sections we introduce boxes

FB′
n = {−n} × [−(3

√
n+ 1), 3

√
n+ 1]d−1

for n ∈ N. We claim that analogously to Lemma 2.5 there are constants a, b > 0 and
N ∈ N such that for n ≥ N

P
(
|FB′

n ∩ FC0| ≥ an(d−1)/2
)
≥ b. (3.11)

To prove this claim let a, b > 0 and N ∈ N be the constants provided by Lemma 2.5 for
percolation with parameter β. For n ≥ N couple the frog model with FM∗(d−1, πsym, 1−w)

in the hyperplane Hn as above. Let B′
n = [−

√
n,

√
n]d−1 and note that B′

n corresponds to
FB′

n restricted to Hn after rescaling. Then by Lemma 3.8 and Lemma 2.5

P
(
|FB′

n ∩ FCvn | ≥ an(d−1)/2|A
)
≥ P

(
|FB′

n ∩ ({−n} × FC∗
3wn

)| ≥ an(d−1)/2)|A
)

≥ P
(
|B′

n ∩ Cwn
| ≥ an(d−1)/2)|A

)
≥ b.

Here, Cwn
is the open cluster containing wn in a percolation model with parameter β in

Zd−1, independently of the frogs. As FCvn ⊆ FC0, this implies inequality (3.11).
By Lemma 2.2 and (3.11), the probability that there is at least one activated frog in

FB′
n that reaches 0 is at least(

1− (1− c′n−(d−1)/2)an
(d−1)/2

)
b ≥

(
1− e−ac′

)
b,

where c′ > 0 is a constant. Altogether we get by Lemma 2.10

P(0 visited infinitely often) = lim
n→∞

P(0 is visited εn many times )

≥ lim
n→∞

P

( n∑
i=1

1{∃x∈FB′
n∩FC0 : x→0} ≥ εn

)
≥
((

1− e−ac′
)
b− ε

)
> 0

for ε sufficiently small. The claim now follows from Theorem 2.6.

To prove Proposition 3.5 we again first study the frog model with death FM∗(d, πsym, s)

in the hyperplanes and couple it with percolation. This time we use cubes of size (2K+1)d

for some K ∈ N0. By choosing K large we increase the number of frogs in the cubes. In
the proof of the previous proposition this was done by increasing the dimension d. For
x ∈ Zd and K ∈ N0 we define

qx = qx(K) = (2K + 1)x,

Qx = Qx(K) = {y ∈ Zd : ‖y − qx‖∞ ≤ K}.
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Note that this definition coincides with (3.1). In analogy to Lemma 3.8 the frog
cluster dominates a percolation cluster.

Lemma 3.9. For d ≥ 2 consider the frog model FM∗(d, πsym, s) and supercritical site
percolation on Zd. There are constants sr(d) < 1 and K ∈ N0 such that for any s ≥ sr(d),
A ⊆ Zd, v ∈ Zd and for all k ≥ 0

P(|A ∩ Cv| ≥ k) ≤ P
(∣∣∣ ⋃

x∈A

Qx ∩ FC∗
qv

∣∣∣ ≥ k
)
.

Proof. We couple the frog model with percolation as follows: A site x ∈ Zd is called open
if for every e ∈ Ed there exists a frog path from qx to qx+e in Qx. Note that x ∈ Cv now
implies qx ∈ FC∗

qv for any v ∈ Zd. We denote the probability of a site x to be open by
p(K, s). By Lemma 3.1 p(K, 1) is close to 1 for K large. As in the proof of Lemma 3.2 one
can show that lims→1 p(K, s) = p(K, 1). Thus, we can choose K ∈ N and sr > 0 such that
p(K, s) > pc(d) for all s > sr, i.e. the percolation is supercritical.

Proof of Proposition 3.5. Using Lemma 3.9 instead of Lemma 3.8 and boxes Qx instead
of Q′

x, the proof is analogous to the proof of Proposition 3.4.

Proof of Theorem 1.4 (i). Theorem 1.4 (i) follows from Proposition 3.4 and Proposi-
tion 3.5.

Transience for d ≥ 2 and arbitrary drift

Proof of Theorem 1.2 (ii) and Theorem 1.4 (ii). Let the parameters α > 0 and d ≥ 2 be
fixed throughout the proof. For x ∈ Zd we define

Lx = {y ∈ Zd : yi = xi for all 2 ≤ i ≤ d}. (3.12)

Lx consists of all vertices which agree in all coordinates with x except the e1-coordinate.
The key observation used in the proof is that all particles mainly move along these lines
if the weight w is large.

We dominate the frog model by a branching random walk on Zd. At time n = 0 the
branching random walk starts with one particle at the origin. At every step in time every
particle produces offspring as follows: For every particle located at x ∈ Zd consider an
independent copy of the frog model. At any vertex z ∈ Zd \ Lx the particle produces

|{y ∈ Lx : x
Lx

y, y → z}| many children. Notice that this number might be 0 or infinite.
The particle does not produce any offspring at a vertex in Lx. Further, note that the
particles reproduce independently of each other as we use independent copies of the
frog model to generate the offspring.

One can couple this branching random walk with the original frog model. To explain
the coupling, let us briefly describe how to go from the original frog model to the
branching random walk. Recall that the frog model is entirely determined by a set of
trajectories (Sx

n)n∈N0,x∈Zd of random walks. We use this set of trajectories to produce
the particles in the first generation of the branching random walk, i.e. the children of
the particle initially at 0, as explained above. Now, assume that the first n generations
of the branching random walk have been created. Enumerate the particles in the n-th
generation. When generating the offspring of the i-th particle in this generation, delete
all trajectories of the frog model used for generating the offspring of a particle j with
j < i or a particle in an earlier generation, and replace them by independent trajectories.
Otherwise, use the original trajectories.

One can check that the branching random walk dominates the frog model in the
following sense: For every frog in Zd \ L0 that is activated and visits 0 there is a particle
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at 0 in the branching random walk. Thus, the number of visits to the origin by particles
in the branching random walk is at least as big as the number of visits to 0 by frogs in
the frog model, not counting those visits to 0 made by frogs initially in L0. Note that, if
the frog model was recurrent, then almost surely there would be infinitely many frogs
in Zd \ L0 activated that return to 0. In particular, also in the branching random walk
infinitely many particles would return to 0. Therefore, to prove transience of the frog
model it suffices to show that in the branching random walk only finitely many particles
return to 0 almost surely.

Let Dn denote the set of descendants in the n-th generation of the branching random
walk. Further, for i ∈ Dn let Xi

n be the e1-coordinate of the location of particle i. Define
for θ > 0 and n ∈ N0

µ = E
[∑
i∈D1

e−θXi
1

]
and Mn =

1

µn

∑
i∈Dn

e−θXi
n . (3.13)

We claim that µ < 1 for w close to 1 and θ small, which, in particular, implies that
(Mn)n∈N0

is well-defined. We show this claim in the end of the proof. We next show that
(Mn)n∈N0

is a martingale with respect to the filtration
(Fn)n∈N0

with Fn = σ
(
D1, . . . , Dn, (X

i
1)i∈D1

, . . . , (Xi
n)i∈Dn

)
.

Obviously, Mn is Fn-measurable. For a particle i ∈ Dn denote its descendants in
generation n+ 1 by Di

n+1. Since particles branch independently, we get

E[Mn+1|Fn] = E
[ 1

µn+1

∑
i∈Dn+1

e−θXi
n+1

∣∣ Fn

]
=

1

µn

∑
i∈Dn

e−θXi
n · 1

µ
E
[ ∑
j∈Di

n+1

e
−θ

(
Xj

n+1−Xi
n

)]
.

Note that the expectation on the right hand side is independent of i and n and therefore,
by the definition of µ, we conclude

E[Mn+1|Fn] = Mn.

This calculation also yields E[|Mn|] = E[Mn] = E[M0] = 1, and thereforeMn ∈ L1. This in
particular implies that Mn is finite almost surely for every n ∈ N0. Thus, Xi

n = 0 can only
occur for finitely many i ∈ Dn almost surely for every n ∈ N0, i.e. in every generation
only finitely many particles can be at 0. By the martingale convergence theorem, there
exists an almost surely finite random variable M∞, such that limn→∞ Mn = M∞ almost
surely. Combining this with µ < 1, we get limn→∞

∑
i∈Dn

e−θXi
n = 0 almost surely. Hence,

Xi
n = 0 for some i ∈ Dn occurs only for finitely many times n. Overall, this shows that

the branching random walk is transient.
It remains to show µ < 1. Note that the particles in D1 are at vertices in the set

{y ∈ Zd \ L0 : 0
L0

y}. Therefore, for the calculation of µ we first need to consider all
sites in L0 that are reached from 0 by frog paths in L0. The idea is to control the number
of frogs activated on the negative e1-axis using Lemma 2.9 and estimating the number of
frogs activated on the positive e1-axis by assuming the worst case scenario that all of
them will be activated. Then, for every k ∈ Z we have to estimate the number of vertices
with e1-coordinate k visited by each of these active frogs on the e1-axis. Due to the
definition of µ, the sites visited by frogs on the positive e1-axis do not contribute much to
µ. Recall that Hk denotes the hyperplane that consists of all vertices with e1-coordinate
equal to k ∈ Z, see (2.2). For k, i ∈ Z define

Nk,i = |{x ∈ Hk \ L0 : (i, 0, . . . , 0) → x}|.

EJP 23 (2018), paper 88.
Page 19/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP216
http://www.imstat.org/ejp/


Frogs with drift on Zd

As Nk,i equals Nk−i,0 in distribution for all i, k ∈ Z, we get

µ = E
[∑
i∈D1

e−θXi
1

]
=

∞∑
i=−∞

∞∑
k=−∞

P
(
0

L0
(i, 0, . . . , 0)

)
E[Nk,i]e

−θk

=

∞∑
k=−∞

E[Nk,0]e
−θk

∞∑
i=−∞

e−θiP
(
0

L0
(i, 0, . . . , 0)

)
. (3.14)

Note that P
(
0

L0
(i, 0, . . . , 0)

)
is smaller or equal than the probability of the event {0 Z

i}
in the frog model FM(1, 1, α). Hence, by Lemma 2.9, there is a constant c1 > 0 such that

P
(
0

L0
(i, 0, . . . , 0)

)
≤ ec1i for all i ≤ 0. Thus, (3.14) implies that for θ < c1 there is a

constant c2 = c2(θ) < ∞ such that

µ ≤ c2

∞∑
k=−∞

E[Nk,0]e
−θk. (3.15)

Next, we estimate E[Nk,0], the expected number of vertices in Hk \ L0 visited by a
single particle starting at 0. Recall that the trajectory of frog 0 is denoted by (S0

n)n∈N0 .
We define Tk = min{n ∈ N0 : S

0
n ∈ Hk}, the entrance time of the hyperplane Hk, and

T ′
k = max{n ∈ N0 : S

0
n ∈ Hk}, the last time frog 0 is in the hyperplane Hk. Obviously,

Nk,0 = 0 on the event {Tk = ∞}. Hence, assume we are on {Tk < ∞}. The particle can
only visit a vertex in Hk \ L0 at time Tk if the random walk took at least one step in
non-e1-direction up to time Tk. This happens with probability E[1− wTk ]. Furthermore,
the number of vertices visited in Hk after time Tk can be estimated by the number of
steps in non-e1-direction taken between times Tk and T ′

k. This number is binomially
distributed and, thus, its expectation equals (1− w)E[T ′

k − Tk]. Overall, this implies

E[Nk,0] ≤ P(Tk < ∞)
(
E
[
1− wTk | Tk < ∞

]
+ (1− w)E

[
T ′
k − Tk | Tk < ∞

])
.

For k < 0 the probability P(Tk < ∞) decays exponentially in k by Lemma 2.3. Therefore,
we can choose θ small such that P(Tk < ∞)e−θk ≤ e−θ|k| for all k ∈ Z. Thus, (3.15)
implies

µ ≤ c2

∞∑
k=−∞

e−θ|k|
(
E
[
1− wTk | Tk < ∞

]
+ (1− w)E

[
T ′
k − Tk | Tk < ∞

])
. (3.16)

Note that the sum in (3.16) is finite as E
[
T ′
k − Tk | Tk < ∞

]
is independent of k. By

monotone convergence limw→1 µ = 0 and the right hand side of (3.16) is continuous in w.
Therefore, we can choose w close to 1 such that µ < 1, as claimed.

Transience for d = 2 and arbitrary weight

Proof of Theorem 1.1 (ii). Let w > 0 be fixed throughout the proof. As in the proof
of Theorem 1.2 (ii) and Theorem 1.4 (ii) we dominate the frog model by a branching
random walk. This time we use a one-dimensional branching random walk on Z. For the
construction of the process, let ξ be the number of activated frogs in an independent
one-dimensional frog model FM∗(1, πsym, 1 − w) with two active frogs at 0 initially. At
time n = 0, the branching random walk starts with one particle in the origin. At
every time n ∈ N, the process repeats the following two steps. First, every particle
produces offspring independently of all other particles with the number of offspring
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being distributed as ξ. Then, each particle jumps to the right with probability 1+α
2 and to

the left with probability 1−α
2 .

As an intermediate step to understand the relation between the frog model and this
branching random walk on Z, we first couple the frog model with a branching random
walk on Z2 with initially one particle at 0. Partition the lattice Z2 into hyperplanes
(Hn)n∈Z as defined in (2.2). Let the frog model FM(2, πw,α) with initially two active
frogs at 0 ∈ H0 evolve and stop every frog when it first enters H1 or H−1. Every frog
leaves its hyperplane in every step with probability w. Thus, the number of stopped
frogs is distributed according to ξ. A stopped frog is in H1 with probability 1+α

2 and in
H−1 with probability 1−α

2 . The stopped particles form the offspring of the particle at
0 in the branching random walk. We repeat this procedure to generate the offspring
of an arbitrary particle in the branching random walk. Introduce an ordering of all
particles in the branching random walk and let the particles branch one after another.
Before generating the offspring of the i-th particle, refill every vertex which is no longer
occupied by a sleeping frog with an extra independent sleeping frog. Unstop frog i

and let it continue its work as usual, ignoring all other stopped frogs. Note that there
is a sleeping frog at the starting vertex of frog i that is immediately activated. This
explains our definition of ξ. Again stop every frog once it enters one of the neighbouring
hyperplanes. These newly stopped frogs form the offspring of the i-th particle. This
procedure creates a branching random walk with independent identically distributed
offspring. Every vertex visited in the frog model is obviously also visited by the branching
random walk.

Now, project all particles in the intermediate two-dimensional branching random
walk onto the first coordinate. This creates a branching random walk on Z distributed as
the one described above. The construction shows that transience of this one-dimensional
branching random walk implies transience of the frog model.

To prove that the one-dimensional branching random walk is transient for α close to
1, we proceed as in the proof of Theorem 1.2 (ii) and Theorem 1.4 (ii). The proof only
differs in the calculation of the parameter µ defined by

µ = E
[∑
i∈D1

e−θXi
1

]
for θ > 0 with D1 denoting the set of descendants in the first generation of the branching
random walk and Xi

1 the e1-coordinate of the location of particle i ∈ D1. Here, we
immediately get

µ =
1

2

(
(1− α)eθ + (1 + α)e−θ

)
E[ξ].

Lemma 2.9 implies E[ξ] < ∞. Thus, we can choose θ = log
(
2E[ξ]

)
. Then limα→1 µ = 1

2

and by continuity µ < 1 for α close to 1, as required.

4 Open problems

We believe that there is a monotone curve separating the transient from the recurrent
regime in the phase diagram shown in Figure 1.

Conjecture 4.1. For every dimension d there exists a decreasing function fd : [0, 1] →
[0, 1] such that the frog model FM(d, πw,α) is recurrent for all w,α ∈ [0, 1] such that
w < fd(α) and transient for all w,α ∈ [0, 1] such that w > fd(α).

Intuitively, the frog model approximates a binary branching random walk for d → ∞
from below, as each frog activates a new frog in every step if there are ’infinitely’ many
directions to choose from. This leads to the following conjecture.

Conjecture 4.2. The sequence of functions (fd)d∈N is increasing in d.
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In the proof of Theorem 1.4 (i) we use Lemma 3.6 to show that in the frog model
with death a frog cluster is dense with positive probability if the survival probability
is larger than 3

4 and d is large. Indeed, we believe that every infinite frog cluster is
dense. Hence, FM(d, πw,α) would be recurrent for all α < 1 if FM∗(d− 1, πsym, 1−w) has
a positive survival probability. Further, we believe that the critical survival probability is
decreasing in d. See also the discussion in [1, Chapter 1.2]. This would imply that fd(1−)
is increasing in d.

The comparison with a binary branching random walk raises another question. Let

g : [0, 1] → [0, 1], g(α) = min
{
1, (2(1−

√
1− α2))−1

}
.

A binary branching random walk on Zd with transition probabilities as in (1.1) is recur-
rent iff w < g(α), see [6, Section 4].

Question 4.3. Does the sequence of functions (fd)d∈N converge pointwise to g as
d → ∞?
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