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Abstract

We construct the Dirichlet form associated with the dynamical Φ4
3 model obtained in

[23, 7] and [37]. This Dirichlet form on cylinder functions is identified as a classical
gradient bilinear form. As a consequence, this classical gradient bilinear form is
closable and then by a well-known result its closure is also a quasi-regular Dirichlet
form, which means that there exists another (Markov) diffusion process, which also
admits the Φ4

3 field measure as an invariant (even symmetrizing) measure.
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1 Introduction

Recall that the usual continuum Euclidean Φ4
d-quantum field theory on a torus is

heuristically described by the following probability measure:

µ(dx) = N−1Πξ∈Tddx(ξ) exp

(
−
∫
Td

(|∇x(ξ)|2 +mx2(ξ) +
λ

2
x4(ξ))dξ

)
, (1.1)

where N is the normalization constant, m is a real constant, λ ≥ 0 is the coupling
constant and x is the real-valued field and Td is the d-dimensional torus. There have
been many approaches to the problem of giving a meaning to the above heuristic measure
for d = 2 and d = 3 (see [21, 15] and references therein). The construction of this Φ4

3

field measure µ has been achieved in [12] for λ small enough, which was one of the
major achievements of the programme of constructive quantum field theory. In [40]
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Parisi and Wu proposed a program for Euclidean quantum field theory of getting Gibbs
states of classical statistical mechanics as limiting distributions of stochastic processes,
especially as solutions to non-linear stochastic differential equations. Then one can use
the stochastic differential equations to study the properties of the Gibbs states. This
procedure is called stochastic field quantization (see [29]). The Φ4

d model is the simplest
non-trivial Euclidean quantum field (see [15] and the references therein). The issue
of the stochastic quantization of the Φ4

d model on the d-torus is to solve the following
equation:

dΦ =(∆Φ− λΦ3 −mΦ)dt+ dW (t) Φ(0) = Φ0. (1.2)

where W is a cylindrical Wiener process on L2(Td). In the following we take λ small
enough (weak coupling) as in [6] and in the following when we analyze (1.2) we omit λ
for simplicity if there is no confusion. The solution Φ is also called dynamical Φ4

d model.
The main difficulty in this case is that W and hence the solutions Φ are so singular that
the non-linear term is not well-defined in the classical sense.

In two spatial dimensions, the dynamical Φ4
2 model was first treated in [2] by using

the Dirichlet form approach: The authors considered the following bilinear form on
L2(E;µ) with E being a separable Banach space and µ(E) = 1:

E(u, v) := 1

2

∫
〈Du,Dv〉L2dµ,

where Du means L2-derivative, which is defined in Section 4. By the corresponding
integration by parts formula for µ they obtained that the bilinear form is closable and
its closure (E , D(E)) is a quasi-regular Dirichlet form. Then according to a general
result in [34] (see Theorem D.4), we know that there exists a (Markov) diffusion process
M = (Ω,F , X(t), (P x)x∈E) on E properly associated with (E , D(E)). The sample paths of
the associated process satisfy (1.2) in the (probabilistically) weak sense for quasi-surely
every Φ0.

Later in [10] and [36], the authors split Φ as Φ = Φ1 + v, where

dΦ1 = ∆Φ1dt+ dW,

∂tv = ∆v − (v3 + 3v2Φ1 + 3v : Φ2
1 : + : Φ3

1 :)−m(Φ1 + v), (1.3)

where : Φ2
1 :, : Φ3

1 : are defined as Wick products. Then the nonlinear terms are well
defined in the classical sense and they obtained a (probabilistically) strong solution to
(1.3).

In three spatial dimensions both techniques break down. For the Dirichlet form
approach we cannot directly obtain that the bilinear form:

E(u, v) := 1

2

∫
E

〈Du,Dv〉L2dµ, u, v ∈ FC∞
b ,

is closable since the measure µ is more singular and may be not quasi-invariant along
smooth direction (see [1]). Here for the definition of FC∞

b we refer to section 4. No-
body has constructed the Dirichlet form associated with Φ4

3 model successfully and the
closability of the corresponding bilinear form has been a long-standing open problem
for more than 25 years ([2]). For the second approach (1.3) is also not well defined in
the classical sense since the noise is more rough. It was a long-standing open problem
to give a meaning to the equation (1.2) in the three dimensional case. A breakthrough
result was achieved recently by Martin Hairer in [23], where he introduced a theory
of regularity structures and gave a meaning to equation (1.2) successfully. Also by
using the paracontrolled distributions proposed by Gubinelli, Imkeller and Perkowski
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in [17] existence and uniqueness of local solutions to (1.2) have been obtained in [7].
Recently, these two approaches have been successful in giving a meaning to a lot of
ill-posed stochastic PDEs like the Kardar-Parisi-Zhang (KPZ) equation ([30, 4, 22]), the
stochastic 3D-Navier-Stokes equation driven by space-time white noise ([49, 51]), the
dynamical sine-Gordon equation ([27]) and so on (see [26] for more other interesting
examples). These two approaches are inspired by the theory of rough paths [33]. In
[31] the author also uses renormalization group techniques to make sense of the dy-
namical Φ4

3 model. Recently in [37] the authors obtained global well-posedness of the
solution to (1.2) in the three dimensional case based on the paracontrolled distribution
method.

The aim of this paper is to construct the Dirichlet form associated to the Φ4
3 model.

Dirichlet form techniques have developed into a powerful method to combine analytic
and functional analysis, as well as potential theoretic and probabilistic methods to
study the properties of stochastic processes. In [44, 45] M. Röckner and the authors of
this paper combine the Dirichlet form approach and the SPDE approach to obtain new
properties in the two dimensional case (such as restricted Markov uniqueness and the
characterization of the Φ4

2 field). We hope this paper is a start to study the dynamical Φ4
3

model combining Dirichlet form techniques and the theory of regularity structures as
well as the paracontrolled distributions approach.

Different from [2], our idea is to construct the Dirichlet form from the global solution
Φ(t) obtained in [37]. It has been proved in [24] that Φ(t) satisfies the Markov property.
Moreover, it is easy to obtain that Φ(t) satisfies the Feller property (see Lemma 4.1),
which implies that Φ(t) satisfies the strong Markov property. Then we prove Φ(t) is
reversible with respect to µ by the lattice approximations obtained in [50] (see Lemma
4.2). Hence we obtain our first main result of this paper:

Theorem 1.1. There exists a quasi-regular Dirichlet form (E , D(E)) associated with
Φ(t). Moreover, Φ is properly associated with (E , D(E)) in the sense that the Markovian
transition semigroup for Φ is a quasi-continuous version of the semigroup associated
with (E , D(E)). Furthermore, FC∞

b ⊂ D(E) and 〈l, ·〉 ∈ D(E) for any l ∈ E∗.

For definitions of quasi-regular Dirichlet form we refer to Appendix D. Here FC∞
b

denotes all the smooth with all derivatives bounded cylinder functions on the state space
E, E∗ is the dual space of E and 〈·, ·〉 is the dualization between E and E∗. For the
explicit definition we refer to Section 4. Moreover, we can identify the Dirichlet form on
the cylinder functions as a gradient Dirichlet form:

Theorem 1.2. For f, g ∈ FC∞
b , E(f, g) = 1

2

∫
〈Df,Dg〉dµ with 〈·, ·〉 being the inner prod-

uct of L2(T3) and Df is L2-derivative defined in Section 4.

As a byproduct of Theorem 1.2 we can also deduce that Φ is an energy solution in the
stationary case (see Remark 5.2). Energy solution is a notion of weak solutions for KPZ
equation to describe the large scale fluctuations of a wide class of weakly asymmetric
particle systems (see [16, 18, 20]). For the dynamical Φ4

3 case we can also introduce the
notion of energy solution.

As a consequence of Theorem 1.2, we obtain that the bilinear form is closable, which
we cannot directly obtain as we mentioned before:

Theorem 1.3. The bilinear form Ē(f, g) = 1
2

∫
〈Df,Dg〉dµ, f, g ∈ FC∞

b , is closable and its
closure (Ē , D(Ē)) is a quasi-regular Dirichlet form. Then there exists a (Markov) diffusion
process properly associated with (Ē , D(Ē)), which admits µ as an invariant measure.

By using Theorem 1.3 and Dirichlet form theory (see [14, Theorem 1.6.3]) we obtain
the following result easily:

Corollary 1.4. (Ē , D(Ē)) and (E , D(E)) are recurrent in the sense that their associated

EJP 23 (2018), paper 78.
Page 3/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP207
http://www.imstat.org/ejp/


Dirichlet form associated with the Φ4
3 model

semigroups (T i
t )t>0, i = 1, 2, satisfy for i = 1, 2∫ ∞

0

T i
t fdt = 0 or ∞ a.e. for any f ∈ L1(E;µ) with f ≥ 0.

Here we use (T i
t )t>0 to denote the semigroup associated with the above Dirichlet forms

respectively.

Recently a new uniform estimate for the solution Φ has been obtained in [38], which
combined with the strong Feller property for Φ obtained in [25] and a support theorem
in [28] for Φ, may imply the exponential convergence to equilibrium in this case. By this
result we can deduce the following estimate by using Dirichlet form constructed above.

Corollary 1.5. Suppose that the exponential convergence in the L2-sense hold for the
semigroup P̄t associated with the solution Φ. Then the following Poincaré inequality
holds:

µ(f2) ≤ CE(f, f) + µ(f)2, f ∈ D(E)

for some C > 0. Moreover, there exists c0 > 0 such that∫
ec0‖x‖Eµ(dx) < ∞, (1.4)

where E is the state space we introduced in Section 4.

Remark 1.6. (i) In fact (1.4) can be obtained by using [6] and further calculations.
However, the construction of Dirichlet form only need an uniform moment estimate of
the lattice field measures. Here we use Dirichlet form theory to give a new proof of (1.4).

(ii) We recall the following result from Dirichlet form theory: Poincaré inequality
implies the irreducibility of the Dirichlet form (E , D(E)). Then by Corollary 1.4 and [14,
Theorem 4.7.1], for any nearly Borel non-exceptional set B,

P x(σB ◦ θn < ∞,∀n ≥ 0) = 1, for q.e. x ∈ E.

Here σB = inf{t > 0 : Φt ∈ B}, θ is the shift operator for the Markov process Φ, and for
the definition of any nearly Borel non-exceptional set we refer to [14]. Moreover by [14,
Theorem 4.7.3] we obtain the following strong law of large numbers: for f ∈ L1(E, µ)

lim
t→∞

1

t

∫ t

0

f(Φs)ds =

∫
fdµ, P x − a.s.,

for q.e. x ∈ E.

Remark 1.7. From Theorem 1.3 we know that there exists another Markov process
which admits µ as an invariant measure. Is this Markov process the same as the solution
Φ to (1.2) obtained in [37]? In Dirichlet form theory it corresponds to the problem of
the relations between the domains of the Dirichlet forms D(E) and D(Ē). In the two
dimensional case, they are the same (corresponding to restricted Markov uniqueness,
see [44]). In the three dimensional case we do not know the answer until now, since the
measure is more singular and we do not know along which vector fields the integration
by parts formula holds. This is also a major problem in Dirichlet form theory, which is
related to the long-standing open problem whether Markov uniqueness holds for the
associated generator.

The structure of this paper is as follows. In Section 2 we prove some useful estimates
for the solutions to (1.2). In Section 3 we recall the lattice approximations, which is
required to prove Φ is reversible w.r.t. µ. In Section 4 we give the proof of our first
main result. In Section 5 we identify the Dirichlet form on the cylinder functions. In
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Appendix A, we recall some basic notions and results for the paracontrolled distribution
method. In Appendix B, we calculate the convergence of the stochastic terms. We recall
the paracontrolled analysis for the solutions to the lattice approximations in Appendix C.
We also recall the definitions of Markov processes and quasi-regular Dirichlet forms in
Appendix D.

Notations: Let S ′(Td) be the space of distributions on Td = [−1, 1]d. For α ∈ R, the
Hölder-Besov space Cα is given by Cα = Bα

∞,∞(Td) and for p > 1 we use the notation
Bα

p := Bα
p,∞. For the definition of the general Besov spaces Bα

p,q and the paraproduct

see Appendix A. For β > 0, α ∈ R we write ‖ · ‖α, CTCα and Cβ
TCα instead of ‖ · ‖Bα

∞,∞
,

C([0, T ]; Cα) and Cβ([0, T ]; Cα), respectively in the following for simplicity. For a Banach
space E, B(E) denotes the Borel-algebra on E and Cb(E) and Bb(E) denote the bounded
continuous function and the bounded measurable functions on E, respectively. The
Fourier transform and the inverse Fourier transform are denoted by F and F−1. The
heat semigroup is denoted by Pt := et∆. To simplify the arguments below, when we
analyze the equations, we assume that FW (0) = 0 and this can be easily removed by
adding a linear term on the right hand side of equation.

For f ∈ S ′(T3) we write ρε ∗ f :=
∑

k g(εk)〈f, ek〉ek with g being a smooth radical
function with compact support and g(0) = 1, g(εk) = Fρε(k). Here and in the following
〈·, ·〉 denotes L2(T3)-inner product and ek(ξ) = 2−3/2eιπk·ξ for k = (k1, k2, k3) ∈ Z3, ξ =

(ξ1, ξ2, ξ3) ∈ T3. We also use |k|∞ = max(|k1|, |k2|, |k3|) and δstf := f(t)− f(s). To make
our paper better readable we summarize the graph notation used in the paper in the
following table. The definition of them will be introduced below.

Φ1 Φ̄ε
1 −Φ2 −Φ̄ε

2 −ρε ∗ Φ2 (Φ1)
�,2 (Φ̄ε

1)
�,2

K K̄ε ρε ∗K (ρε ∗ Φ1)
�,3 Φ1 � Φ2 (Φ1)

�,2 � Φ2

− −

2 A uniform estimate

In this section we give an uniform estimate of the solution to (1.2). In the following
we assume that Φ0 ∈ C−z and z ∈ ( 12 ,

2
3 ). We fix κ, γ > 0 satisfying

z − 1

2
> 2κ, 6κ < γ, 10κ+ 3γ < 2− 3z.

Parameters κ, γ satisfying the above conditions can always be found. Indeed, we first
choose γ < 2−3z

3 . Then the conditions are satisfied if we choose κ > 0 small enough
satisfying κ < γ

6 ∧ 2z−1
4 ∧ 2−3z−3γ

10 .

Now we recall that the solution obtained by [7] and [37]: (1.2) can be split as follows:
Φ = Φ1 +Φ2 +Φ3 and

Φ1(t) =

∫ t

−∞
Pt−sdW = ,

Φ2(t) = − lim
ε→0

∫ t

0

Pt−s ds := − ,
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and

Φ3(t) = Pt(Φ0 − Φ1(0))−
∫ t

0

Pt−s

[
Φ3

3 + 3Φ2
3( − ) + Φ3(3( )2 − 6 ) + 3 � Φ3

+ 3( � ( )2 − )− ( )3 − (9ϕ−m)Φ

]
ds.

(2.1)

Here Φ2 does not depend on ε (see [7]) and we use to denote Φ1 and to denote

ρε ∗ Φ1 and introduce , to represent Φ�2
1 ,−Φ2, respectively.

, , , � ( )2, , ϕ

involve a renormalization procedure and are defined in Appendix B. Throughout this
paper we do not use the explicit formulation of these stochastic terms, but only use their
regularity. We will introduce their regularity in (2.2) below. The most difficult part for

renormalization is � Φ3. For this term we define

K(t) :=

∫ t

0

Pt−s(Φ1)
�,2ds := .

We have the following paracontrolled ansatz

Φ3 = −3π<(− +Φ3, ) + Φ]

with Φ](t) ∈ C1+3κ for t > 0. Here Φ] is the regular term in the paracontrolled ansatz.
Then

� Φ3 :=π0(Φ
], )− 3C(− +Φ3, , )

− 3(− +Φ3)π0,�( , ) + π<,>(Φ3, ),

where C(− +Φ3, , ) is defined in Lemma A.3 and π0,�( , ) is defined
in Appendix B. Now we introduce the following notations:

CW (T ) := sup
t∈[0,T ]

[
‖ ‖− 1

2−2κ + ‖ ‖−1−2κ + ‖ ‖ 1
2−2κ + ‖π0,�( , )‖−2κ

+ ‖π0,�( , )‖− 1
2−2κ + ‖π0,�( , )‖−2κ

]
+ ‖ ‖

C
1
8
T C

1
4
−2κ

,

(2.2)

and

ρL := inf{t ≥ 0 : CW (t) ≥ L}.

By [7] P (CW (T ) < ∞,∀T > 0) = 1 and by [7] on this set there exists a unique local
solution Φ3 to (2.1). Recently in [37] the authors proved that the solution to (2.1) does
not blow up in finite time. In fact we can check that the solution obtained in [37] satisfies
(2.1) by smooth approximation. In the following we consider the solution Φ obtained in
[7] and [37].

Then we have the following estimate for Φ:
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Proposition 2.1. For any T > 0 there exist C0, m̄ > 0 depending on L, T such that on
the set {ρL > T}

sup
t∈[0,T ]

[‖Φ‖−z + t
γ+z+κ

2 ‖Φ3‖γ + t
1
2
+z+5κ

2 ‖Φ3‖ 1
2+4κ] ≤ C0(‖Φ0‖m̄−z + 1).

Remark 2.2. Here we obtain the estimate on the set {ρL > T}, since on this set we can
choose t∗ below and the bound is independent of ω.

Proof. Set

Q(t) := t
γ+z+κ

2 ‖Φ3‖γ + t
1
2
+z+5κ

2 ‖Φ3‖ 1
2+4κ + t

3(γ+z+κ)
2 ‖Φ]‖1+3κ + 1.

By similar calculations as in [50, Section 4] there exists q > 1 such that for t ≤ ρL ∧ T

Q(t)q ≤ C̄(‖Φ0‖q−z + 1) + C̄

∫ t

0

Q(s)3qds,

where the constant C̄ depends on L, T, q. Then Bihari’s inequality implies that on the set
{ρL > T} for t∗ := C̄−1[2C̄(‖Φ0‖q−z + 1)]−2 ∧ T

sup
t∈[0,t∗]

Q(t)q ≤ C(‖Φ0‖q−z + 1).

Here and in the following the constant C depends on L, T, q. Then we obtain that

sup
t∈[0,t∗]

[t
γ+z+κ

2 ‖Φ3‖γ + t
1
2
+z+5κ

2 ‖Φ3‖ 1
2+4κ] ≤ C(‖Φ0‖−z + 1). (2.3)

Moreover, by similar calculations as in [50, Section 4] there exists m0 > 0 such that

sup
t∈[0,t∗]

‖Φ3(t)‖−z ≤ C(‖Φ0‖m0
−z + 1).

By the main result in [38] we have on the set {ρL > T} for t∗ < t ≤ T

‖Φ3(t)‖−z ≤ Ct−1/2 ≤ C(t∗)−1/2 ≤ C(‖Φ0‖q−z + 1).

Combining the above estimates we obtain that on the set {ρL > T} there exists m1 > 0

such that
sup

t∈[0,T ]

‖Φ3(t)‖−z ≤ C(‖Φ0‖m1
−z + 1). (2.4)

Let t̄∗ = C̄−1[2C̄(‖Φ0‖m1q
−z + 1)]−2 ∧ t∗. Consider the solution to (2.1) at time t > t̄∗, then

it can be viewed as a solution starting from t− t̄∗

2 . A similar argument as above implies
that on the set {ρL > T} for t̄∗ < t ≤ T

(
t̄∗

2
)

γ+z+κ
2 ‖Φ3(t)‖γ + (

t̄∗

2
)

1
2
+z+5κ

2 ‖Φ3(t)‖ 1
2+4κ

≤C(‖Φ3(t−
t̄∗

2
)‖−z + 1)

≤C(‖Φ0‖m1
−z + 1).

Then we have for t̄∗ < t ≤ ρL ∧ T

t
γ+z+κ

2 ‖Φ3(t)‖γ + t
1
2
+z+5κ

2 ‖Φ3(t)‖ 1
2+4κ

≤C‖Φ3(t)‖ 1
2+4κ

≤(t̄∗)−
1
2
+z+5κ

2 C(‖Φ0‖m1
−z + 1) ≤ C(‖Φ0‖m−z + 1),

(2.5)

where m > 0 is a constant.
Thus the result follows from (2.3) (2.4) and (2.5).
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3 Lattice approximation

In this section we will recall the lattice approximation in [50] for later use. For N ≥ 1,
let ΛN = {−N,−(N−1), ..., N}3. Set ε = 2

2N+1 . Every point k ∈ ΛN can be identified with
ξ = εk ∈ Λε = {ξ = (ξ1, ξ2, ξ3) ∈ εZ3 : −1 < ξ1, ξ2, ξ3 < 1}. We view Λε as a discretisation
of the continuous three-dimensional torus T3 identified with [−1, 1]3. Then for n ≥ 1 we
set L2n(Λε) := {‖f‖2nL2n(Λε) :=

∑
x∈Λε ε3|f(x)|2n < ∞}. (1.1) can be approximated by the

following lattice Φ4
3-field measure µε(dx):

N−1
ε Πξ∈Λε

dxξ exp

(
− ε

∑
|ξ1−ξ2|=ε,ξ1,ξ2∈Λε

(x(ξ1)− x(ξ2))
2 + (3Cε

0 − 9Cε
1 −m)

∑
ξ∈Λε

ε3x2(ξ)

− 1

2

∑
ξ∈Λε

ε3x4(ξ)

)
,

where Nε is a normalization constant and we choose Cε
0 , C

ε
1 as in [50, Section 1]. The

following stochastic PDEs on Λε are the stochastic quantizations associated with the
lattice Φ4

3-field measure:

dΦε(t) =(∆εΦ
ε(t)− (Φε)3(t) + (3Cε

0 − 9Cε
1 −m)Φε(t))dt

+ dWN (t)

Φε(0) =Φε
0,

(3.1)

where we fix a cylindrical Wiener process in (1.2) on L2(T3) given by
∑

k βkek(ξ) for
ξ ∈ T3 and restrict it to L2(Λε) as WN (ξ) =

∑
|k|∞≤N βkek(ξ) for ξ ∈ Λε, which is also a

cylindrical Wiener process on L2(Λε). Here {βk} is a family of independent Brownian
motions on (Ω,F , P ). Also we take Φε

0 independent of W . For ξ ∈ Λε define

∆εf(ξ) := ε−2
∑

y∈Λε,y∼ξ

(f(y)− f(ξ)),

where the nearest neighbor relation ξ ∼ y is to be understood with periodic boundary
conditions on Λε. For Φε

0 satisfying E‖Φε
0‖2L2(Λε)

< ∞ by [43, Theorem 3.1.1] there exists
a unique solution Φε to (3.1).

Following [35, 50] we define a suitable extension of functions defined on Λε onto all
of the torus T3 (which we identify with the interval [−1, 1]3) in the following way:

ExtY (ξ) :=
1

23

∑
k∈{−N,...,N}3

∑
y∈Λε

ε3eıπk·(ξ−y)Y (y). (3.2)

Now we extend the solutions of (3.1) to all of T3. Let uε = ExtΦε for simplicity. We have
the following equation:

uε(t) = P ε
t ExtΦ

ε
0 −

∫ t

0

P ε
t−sQN [(uε)3 − (3Cε

0 − 9Cε
1 −m)uε]ds+

∫ t

0

P ε
t−sPNdW. (3.3)

where P ε
t = Extet∆ε and QNu(x) = PNu(x) + ΠNu(x) with

PN = F−11|k|∞≤NF ,

and ΠN is defined for u satisfying suppFu ⊂ {k : |k|∞ ≤ 3N}

ΠNu(x) =
∑

i1,i2,i3∈{−1,0,1},
∑3

j=1 i2j 6=0

ei1i2i3N F−11k∈P i1i2i3Fu(x)

=
∑

i1,i2,i3∈{−1,0,1},
∑3

j=1 i2j 6=0

PN [ei1i2i3N u]
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with P i1i2i3 = {k : kjij > N if ij = −1, 1; |kj | ≤ N, if ij = 0} is a rectangular division of

Z3\{k ∈ Z3, |k|∞ ≤ N}, ei1i2i3N (ξ) = Π3
j=1e

−ıπ(2N+1)ijξ
j

.
As in [50] we split (3.3) into the following three equations:

uε
1(t) =

∫ t

−∞
P ε
t−sPNdW,

uε
2(t) = −

∫ t

0

P ε
t−sQN [(uε

1)
�,3]ds

and

uε
3(t) =P ε

t (ExtΦ
ε
0 − uε

1(0))−
∫ t

0

P ε
t−s

[
QN [6uε

1u
ε
2u

ε
3 + 3uε

1(u
ε
3)

2 + 3uε
1(u

ε
2)

2 + (uε
2 + uε

3)
3]

+ PN [3(uε
1)

�,2 � (uε
2 + uε

3) + 3ei1i2i3N (uε
1)

�,2 � (uε
2 + uε

3)− (9ϕε −m)uε]

]
ds.

(3.4)
Here the terms containing � are defined as in [50, Section 4]. For (3.4) we can do
paracontrolled analysis as in [50, Section 4] and define the corresponding regular term
uε,] in the paracontrolled ansatz. Also we define

Cε
W (T ), Eε

W (T ), AN (T ), DN (T ), δCε
W (T )

similarly as the corresponding stochastic terms in [50]. Here for the completeness of
the paper we include the definition of all these terms in Appendix C. Now we introduce
the following definition:

ρεL := inf{t ≥ 0 : Cε
W (t) + Eε

W (t) +AN (t) +DN (t) ≥ L}, (3.5)

and

τεC0
:= inf{t ≥ 0 : t

γ+z+κ
2 ‖uε

3‖γ + t
1
2
+z+5κ

2 ‖uε
3‖ 1

2+4κ ≥ C0(‖Φ0‖m̄−z + 1) + 1}, (3.6)

with C0, m̄ obtained in Proposition 2.1.
Now we obtain the following estimate for the lattice approximations:

Proposition 3.1. We have for any T > 0 on the set {ρL > T} there exists C1,m > 0 such
that

sup
t∈[0,T∧ρε

L∧τε
C0

]

[‖uε − Φ‖−z + t
γ+z+κ

2 ‖uε
3 − Φ3‖γ + t

1
2
+z+5κ

2 ‖uε
3 − Φ3‖ 1

2+4κ]

≤C1(ε
κ
2 + δCε

W (T ) + Eε
W (T ) +AN (T ) +DN (T ) + ‖ExtΦε

0 − Φ0‖−z)e
C1(‖Φ0‖m

−z+1),

where the constant C1 depends on L, T .

Proof. Let

Lε(t) := t
γ+z+κ

2 ‖uε
3 − Φ3‖γ + t

1
2
+z+5κ

2 ‖uε
3 − Φ3‖ 1

2+4κ + t
3(γ+z+κ)

2 ‖uε,] − Φ]‖1+3κ.

Since the nonlinear terms are given by polynomials, by similar calculations as in [50]
and Proposition 2.1 we have that on the set {ρL > T} there exists q,m > 1 such that for
t ∈ [0, T ∧ ρL ∧ ρεL ∧ τεC0

]

Lε(t)q ≤C(‖Φ0‖m−z + 1)(εκ/2 + δCε
W (T ) + Eε

W (T ) +AN (T ) +DN (T ) + ‖ExtΦε
0 − Φ0‖−z)

q

+ C(‖Φ0‖m−z + 1)

∫ t

0

Lε(s)qds,
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which by Gronwall’s inequality implies that for t ∈ [0, T ∧ ρL ∧ ρεL ∧ τεC0
]

Lε(t) ≤ (εκ/2 + δCε
W (T ) + Eε

W (T ) +AN (T ) +DN (T ) + ‖ExtΦε
0 − Φ0‖−z)e

C(‖Φ0‖m
−z+1),

on {ρL > T}. Moreover, by similar calculations as in [50] we obtain that on {ρL > T} for
t ∈ [0, T ∧ ρL ∧ ρεL ∧ τεC0

]

‖uε(t)− Φ(t)‖−z ≤ (εκ/2 + δCε
W (T ) + Eε

W (T ) +AN (T ) +DN (T )

+ ‖ExtΦε
0 − Φ0‖−z)e

C(‖Φ0‖m
−z+1).

Similarly as in the proof of [24, Proposition 7.7] we obtain the following estimate for
the measure µ̄ε := µε ◦ Ext−1. Since µε is a measure on L2(Λε) and Ext is an isometry
from L2(Λε) to PNL2(T3), µ̄ε has full support on PNL2(T3):

Lemma 3.2. Let n ∈ N. Then there exists a constant C independent of ε such that∫
‖x‖2n−zµ̄

ε(dx) ≤ C.

Moreover, µ̄ε weakly converges to µ on C−z.

Remark 3.3. The proof of this lemma depends on the results in [6]. In fact the results
in [6] are established for the whole space based on the calculations for the correlation
functions, which can be extended to the torus case (see the argument in [6, Section 2]
and [42, Theorem 2.1]). Therefore, we use these results for the torus as was done in [24,
Proposition 7.7].

Proof. The following calculations on Λε essentially follow [35, Lemma 8.4]. Suppose
suppθ ⊂ {a ≤ |k| ≤ b} for θ as in Appendix A and a, b > 0. If 2ja >

√
3N , then∫

‖∆jx‖2nL2n(T3)µ̄
ε(dx) = 0. For x ∈ suppµ̄ε we have

∆jx =
∑

|k|∞≤N

θj(k)〈x, ek〉ek =
∑

|k|∞≤N

θj(k)〈Ext−1x, ek〉εek,

where θj(·) := θ(2−j ·) and 〈·, ·〉, 〈·, ·〉ε denote the inner products in L2(T3) and L2(Λε),
respectively. Here we can take Ext−1 since Ext is an isometry from L2(Λε) to PNL2(T3).
If 2jb < N − 1, then by changing variables we have∫

‖∆jx‖2nL2n(T3)µ̄
ε(dx)

=

∫
‖

∑
|k|∞≤N

θj(k)〈x, ek〉εek‖2nL2n(T3)µ
ε(dx)

=2−3n

∫ ∑
yi∈Λε,i=1,...,2n

ε6n
∑

|ki|∞≤N,i=1,...,2n

(
Π2n

i=1θj(ki)eki
(ξ − yi)

)
Sε
2n(y1, ..., y2n)dξ

=C

∫ ∑
yi∈2jΛε,i=1,...,2n

ε6n26nj
∑

|ki|∞≤2−jN,ki∈2−jZ3,i=1,...,2n

2−6jn
(
Π2n

i=1θ(ki)e
πιki(2

jξ−yi)
)

Sε
2n(

y1
2j

, ...,
y2n
2j

)dξ

=C

∫ ∑
yi∈2jΛε,i=1,...,2n

ε6n26jn
(
Π2n

i=1

1

[1 + 22j
∑3

l=1 2(1− cos(π2−j(2jξl − yli)))]
2

)
Sε
2n(

y1
2j

, ...,
y2n
2j

)
∑

|ki|∞≤2−jN,ki∈2−jZ3,i=1,...,2n

2−6jn
(
Π2n

i=1θ(ki)(1−∆j)
2eπιki(2

jξ−yi)
)
dξ
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=C

∫ ∑
yi∈2jΛε,i=1,...,2n

ε6n26jn
(
Π2n

i=1

1

[1 + 22j
∑3

l=1 2(1− cos(π2−j(2jξl − yli)))]
2

)
Sε
2n(

y1
2j

, ...,
y2n
2j

)
∑

|ki|∞≤2−jN,ki∈2−jZ3,i=1,...,2n

2−6jn
(
Π2n

i=1(1−∆j)
2θ(ki)e

πιki(2
jξ−yi)

)
dξ

≤C

∫
(

∑
y1,y2∈2jΛε

ε626j
1

(1 + |2jξ − y1|2)2
1

(1 + |2jξ − y2|2)2
(Cε(

y1
2j

,
y2
2j

) + λ2))ndξ

.2jn,

where Sε
2n(y1, ..., y2n) is the 2n point function for µε from [6] and Cε is the covariance for

the corresponding Gaussian measure on the lattice and

∆jf(k) = 22j
∑

k′∈2−jZ3,k∼k′

(f(k′)− f(k)).

Here in the last equality we use the integration by parts formula, since on the boundary
θ vanishes and in the first inequality we used that the support of θ is contained in an
annulus to count the number of non-zero terms and deduce∣∣ ∑

|ki|∞≤2−jN,ki∈2−jZ3,i=1,...,2n

2−6jn
(
Π2n

i=1(1−∆j)
2θ(ki)e

πιki(2
jξ−yi)

)∣∣ . 1.

In addition, we use (8.2) and Theorem 6.1 in [6] to control Sε
2n and the following: when

ξ1 ∈ [−1, 1], 1
1−cos(πξ1) ≤ C

(ξ1)2 and when ξ1 ∈ [1, 2], 1
1−cos(πξ1) = 1

1−cos(π(ξ1−2)) ≤ C
(ξ1−2)2

and when ξ1 ∈ [−2,−1], 1
1−cos(πξ1) = 1

1−cos(π(ξ1+2)) ≤ C
(ξ1+2)2 . Furthermore, in the last

step we use that the covariance Cε(y1, y2) of the Gaussian measure is of order |y1− y2|−1.

If 2ja√
3
≤ N ≤ 2jb+1, we choose a smooth function χ which equals 1 on {a

2 ≤ |k| ≤ 4b}
and vanishes outside the annulus {a

3 ≤ |k| ≤ 5b}. Let χj = χ(2−j ·). We have∫
‖∆jx‖2nL2n(T3)µ̄

ε(dx)

=

∫
‖
∑
k

θj(k)χj(k)〈x, ek〉ek‖2nL2n(T3)µ̄
ε(dx) ≤ C

∫
‖
∑
k

χj(k)〈x, ek〉ek‖2nL2n(T3)µ̄
ε(dx)

.N3

∫
‖
∑
k

χj(k)〈x, ek〉εek‖2nL2n(Λε)
µε(dx)

.23j
∑
ξ∈Λε

ε3
∑

yi∈Λε,i=1,...,2n

∑
|ki|∞≤N,i=1,...,2n

ε6n
(
Π2n

i=1χj(ki)eki(ξ − yi)
)
Sε
2n(y1, ..., y2n)

.23j+jn.

Here in the second inequality we used Lemma C.2 and the estimate in the last inequality
can be obtained by a similar argument as above and the integration by parts formula
holds for the periodic boundary conditions. Thus, the first result holds by choosing n

large enough and because of Lemma A.1. In fact, for any α < − 1
2 ,

∫
‖x‖2nα µ̄ε(dx) ≤ C.

The second result follows from the tightness of the µ̄ε and from the fact that the
corresponding Schwinger functions converge (see [41] and [24, Prop. 7.7]).

4 Existence of the Dirichlet form

Consider the normal filtration (Ft)t≥0 generated by W . As we mentioned in Section
2, by [23, 7, 37] for every x ∈ C−z there exists a unique solution Φ(x) to (1.2) starting
from x. By [24] we have that Φ satisfies the Markov property on C−z with respect to the
filtration (Ft)t≥0. Define

P x(A) := P (Φ(x) ∈ A).
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P x is a measure on Ω′ := C([0,∞); C−z) and we use Ex to denote the expectation under
P x. We use X to denote the canonical process on Ω′ and equip Ω′ by the natural filtration
(Mt)t≥0 generated byX (cf. [34, Chapter IV, (1.7)]). We knowX has the same distribution
as Φ. By the Markov property of Φ we know (Ω′,M := ∨t≥0Mt, (Mt)t≥0, X, P x)x∈C−z is
also a Markov process (cf. Definition D.2). Here iii) in Definition D.2 follows from the
measurablity of x 7→ Φ(x). Now we prove the following:

Lemma 4.1. (Ω′,M, (Mt)t≥0, X, P x)x∈C−z is a Feller process on C−z.

Proof. It suffices to check that Exf(X(t)) is a continuous function on C−z for f ∈ Cb(C−z).
We have

|Ex1f(X(t))− Ex2f(X(t))| = |Ef(Φ(t, x1))− Ef(Φ(t, x2))|
≤E|f(Φ(t, x1))− f(Φ(t, x2))|1t≤ρL

+ CP (t > ρL).

Here Φ(x) denotes the solution to (1.2) starting from x and ρL is defined as in Section 2.
The first term goes to zero as x1 goes to x2 in C−z by [23] and the second term goes to
zero as L goes to infinity since ECW (t) ≤ C with CW defined in (2.2).

By P x(X ∈ C([0,∞); C−z)) = 1 for x ∈ C−z and by [9, Section 2.3 Theorem 1] we
know that the Feller process (Ω′,M, (Mt)t≥0, X, P x)x∈C−z satisfies the corresponding
strong Markov property (cf. iii) in Definition D.3).

To construct the Dirichlet form associated with X, we first extend the Markov process
to starting points from a larger space, which contains L2(T3) as a subspace. Choose
E = H−z−ε := B−z−ε

2,2 with ε > 0 and H = L2(T3). By Lemma A.1 we have C−z ⊂ E and
the following relation holds:

E∗ ⊂ H∗ w H ⊂ E.

In the following we use 〈·, ·〉, | · | to denote the inner product and norm on H respectively
and 〈·, ·〉 also denotes the dual relation between E∗ and E if there is no confusion. Now
we would like to extend X to a process X ′ with state space E in such a way that each
x ∈ E\C−z is a trap for X ′ (see [34, page 118]). For notation’s simplicity we still use
(Ω′,M, (Mt)t≥0, X, P x)x∈E to denote X ′. In the following (Ω′,M, (Mt)t≥0, X, P x)x∈E is
a continuous strong Markov process with state space E. Define the associated semigroup
for f ∈ Bb(E), x ∈ E

P̄tf(x) := Exf(X(t)).

We also introduce the following cylinder functions

FC∞
b = {f1(〈l1, ·〉, ..., 〈lm, ·〉)|m ∈ N, f1 ∈ C∞

b (Rm), l1, ..., lm ∈ E∗}.

Define for f ∈ FC∞
b and l ∈ H,

∂f

∂l
(z) :=

d

ds
f(z + sl)|s=0, z ∈ E,

that is, by the chain rule,

∂f

∂l
(z) =

m∑
j=1

∂jf1(〈l1, z〉, 〈l2, z〉, ..., 〈lm, z〉)〈lj , l〉H .

Let Df denote the H-derivative of f ∈ FC∞
b , i.e. the map from E to H such that

〈Df(z), l〉 = ∂f

∂l
(z) for all l ∈ H, z ∈ E.

In the following we prove that P̄t is a symmetric semigroup with respect to µ. For this
we use lattice approximation in Section 3 and let Φε(x) be the solution to (3.1) obtained
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in Section 3 starting from x ∈ L2(Λε). By existence and uniqueness of the solutions to
(3.1) and similar arguments as in [43, 32, Section 4.3] we obtain that Φε satisfies the
Markov property w.r.t. {Ft}t≥0. We define the semigroup of the lattice approximation:
for f ∈ Cb(L

2(Λε)), x ∈ L2(Λε),

P̃ ε
t f(x) = E(f(Φε(t, x))).

Since (3.1) is a gradient system, by [11, Theorem 12.3.2] we have for f, g ∈ Cb(L
2(Λε))∫

P̃ ε
t f(x)g(x)µ

ε(dx) =

∫
f(x)P̃ ε

t g(x)µ
ε(dx). (4.1)

We also define the semigroup for the extension of the lattice approximation on PNE: for
f ∈ Cb(PNE), x ∈ PNE,

P̄ ε
t f(x) = E(f(uε(t, x))),

where PN is as introduced in Section 3 and uε(x) is the solution to (3.3) starting from x.
Then we prove that P̄ ε

t is symmetric with respect to µ̄ε. Since the extension operator Ext
defined in (3.2) is an isometry from L2(Λε) to PNE, we view µ̄ε as a measure on PNE.

Lemma 4.2. For ε = 2
2N+1 and f, g ∈ FC∞

b we have∫
P̄ ε
t (f |PNE)(x)g|PNE(x)µ̄

ε(dx) =

∫
f |PNE(x)P̄

ε
t (g|PNE)(x)µ̄

ε(dx),

where we used that PNE ⊂ E.

Proof. Without loss of generality we assume that f(x) = f1(〈x, l〉), g(x) = g1(〈x, h〉) with
f1, g1 ∈ C∞

b . Then we have that for l1 =
∑

|k|∞≤N 〈l, ek〉ek, h1 =
∑

|k|∞≤N 〈h, ek〉ek,∫
P̄ ε
t (f |PNE)(x)g|PNE(x)µ̄

ε(dx) =

∫
E(f1(〈uε(t, x), l1〉))g1(〈x, h1〉)µ̄ε(dx)

=

∫
E(f1(〈Φε(t,Ext−1x), l1〉ε))g1(〈Ext−1x, h1〉ε)µ̄ε(dx)

=

∫
E(f1(〈Φε(t, x), l1〉ε))g1(〈x, h1〉ε)µε(dx)

=

∫
E(g1(〈Φε(t, x), h1〉ε))f1(〈x, l1〉ε)µε(dx) =

∫
E(g1(〈uε(t, x), h1〉))f1(〈x, l1〉)µ̄ε(dx)

=

∫
P̄ ε
t (g|PNE)(x)f |PNE(x)µ̄

ε(dx).

Here in the second equality we used 〈x, l1〉 = 〈Ext−1x, l1〉ε for x ∈ PNE to deduce
〈Φε

t , l1〉ε = 〈uε
t , l1〉 and in the forth equality we used (4.1).

By Lemma 4.2 and [34, Chapter II Prop. 4.3] we know that (P̄ ε
t )t>0 can be extended

as a strongly continuous Markovian semigroup of contractions on L2(PNE; µ̄ε). By [34,
Chap I] there exists a corresponding Dirichlet form for (P̄ ε

t )t>0. In Proposition 4.4 we
will give the explicit formula for this Dirichlet form. Now we prove that P̄t is symmetric
with respect to µ.

Proposition 4.3. For f, g ∈ FC∞
b we have for t ≥ 0∫

P̄tf(x)g(x)µ(dx) =

∫
f(x)P̄tg(x)µ(dx).
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Proof. By Lemma 4.2 it suffices to prove that for f, g ∈ FC∞
b

lim
ε→0

∫
P̄ ε
t (f |PNE)(x)g|PNE(x)µ̄

ε(dx) =

∫
P̄tf(x)g(x)µ(dx). (4.2)

Lemmas 3.2 and 4.1 imply that

lim
ε→0

∫
P̄tf(x)g(x)µ̄

ε(dx) =

∫
P̄tf(x)g(x)µ(dx).

We also have∫
|P̄ ε

t (f |PNE)(x)− P̄tf(x)||g(x)|µ̄ε(dx)

≤C

∫
E
(
|f(uε(t, x))− f(Φ(t, x))|1{t<ρε

L∧ρL}
)
µ̄ε(dx) + CP (t ≥ ρL ∧ ρεL),

(4.3)

where ρL, ρ
ε
L are as introduced in Section 2 and (3.5), respectively. The second term in

(4.3) is bounded by a constant times

P ((Cε
W + Eε

W +AN +DN )(t) > L) + P (CW (t) > L)

≤C/L,

which uniformly goes to zero as L goes to ∞. For some δ0 > 0 the first term in (4.3) is
bounded by

εδ0C

∫
P (‖uε(t, x)− Φ(t, x)‖−z < εδ0)µ̄ε(dx)

+ C

∫
P (t < ρεL ∧ ρL, ‖uε(t, x)− Φ(t, x)‖−z > εδ0)µ̄ε(dx).

(4.4)

Then the first term is bounded by Cεδ0 and the second integral in (4.4) is bounded by∫
[P (t < ρεL ∧ ρL, t < τ εC0

, ‖uε(t, x)− Φ(t, x)‖−z > εδ0) + P (t < ρεL ∧ ρL, t ≥ τεC0
)]µ̄ε(dx)

≤2

∫
P ( sup

s∈[0,ρε
L∧ρL∧t∧τε

C0
]

[‖uε(x)− Φ(x)‖−z + s
γ+z+κ

2 ‖uε
3 − Φ3‖γ

+ s
1
2
+z+5κ

2 ‖uε
3 − Φ3‖ 1

2+4κ] > εδ0)µ̄ε(dx)

≤2

∫
P (2C1ε

κ0eC1(‖x‖m
−z+1) > εδ0)µ̄ε(dx)

+ 2

∫
P (δCε

W (t) +AN (t) + Eε
W (t) +DN (t) > εκ0)µ̄ε(dx)

≤2

∫
1{‖x‖m

−z>
1

C1
ln εδ0−κ0

2C1
−1}µ̄

ε(dx) + 2Cεκ1−κ0

≤2

∫
1

1
C1

ln εδ0−κ0

2C1
− 1

‖x‖m−zµ̄
ε(dx) + 2Cεκ1−κ0 → 0, as ε → 0,

where uε
3,Φ3 correspond to uε(x),Φ(x) respectively and τεC0

is defined in (3.6) and in the
first inequality we used Proposition 2.1 and the definition of τεC0

to deduce

sup
s∈[0,ρε

L∧ρL∧t∧τε
C0

]

[‖uε − Φ‖−z + s
γ+z+κ

2 ‖uε
3 − Φ3‖γ + s

1/2+z+5κ
2 ‖uε

3 − Φ3‖ 1
2+4κ] > εδ0 .

In the second inequality we used Proposition 3.1 and in the third inequality we used
Proposition C.1 and in the last step we used Lemma 3.2. Here we choose 0 < δ0 <

κ0 < κ1 ∧ κ
2 for κ

2 , κ1 coming from Proposition 3.1 and Proposition C.1, respectively.
Summarizing, we obtain the result.
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Now we identify the Dirichlet form associated with (P̄ ε
t )t>0 on L2(PNE, µ̄ε).

Proposition 4.4. The Dirichlet form associated with (P̄ ε
t )t>0 can be written as the

closure of the following bilinear form

Eε(f, g) =
1

2

∑
|k|∞≤N

∫
PNE

∂f

∂ek

∂g

∂ek
dµ̄ε, f, g ∈ C∞

b (PNE),

where C∞
b (PNE) means smooth functions on PNE with bounded derivatives.

Proof. It is standard to obtain that the closure of (Eε, C∞
b (PNE)) is a quasi-regular Dirich-

let form (cf. Definition D.1, [34, Chap IV Section 4]), which is denoted by (Eε, D(Eε)).
By Theorem D.4 there exists a Markov process with continuous sample paths properly
associated with (Eε, D(Eε)). Now we want to prove that the associated Markov process
has the same distribution as uε.

We can easily conclude that the log-derivative of µε along ek for |k|∞ ≤ N is given by

bk(x) = 2〈x,∆εek〉ε − 2〈x3 − (3Cε
0 − 9Cε

1 −m)x, ek〉ε for x ∈ L2(Λε),

which implies that for f ∈ C∞
b (PNE) and |k|∞ ≤ N∫

∂f

∂ek
(x)dµ̄ε =

∫
∂

∂ek
(f ◦ Ext)(x)dµε = −

∫
f(Extx)bk(x)dµ

ε = −
∫

f(x)bk(Ext
−1x)dµ̄ε,

we obtain that the log-derivative of µ̄ε is

βk(x) = bk(Ext
−1x) = 2〈x,∆εek〉L2(T3) − 2〈QN (x3 − (3Cε

0 − 9Cε
1 −m)x), ek〉L2(T3),

for x ∈ PNE, |k|∞ ≤ N, where we used that Ext(Ext−1x)3 = QN (x3) for x ∈ PNE. This
implies that the associated Markov process is a probabilistically weak solution to the
equation (3.3). On the other hand, the equation (3.3) is a finite dimensional stochastic
differential equation and we can easily obtain the pathwise uniqueness of the solutions
to the equation (3.3), which implies the uniqueness in law of the solutions to (3.3). This
implies that uε has the same distribution as the Markov process given by the Dirichlet
form (Eε, D(Eε)), since uε is also a solution to (3.3). By Theorem D.4 we know that the
semigroup (P̄ ε

t )t>0 of uε is properly associated with (Eε, D(Eε)).

Proof of Theorem 1.1. By Proposition 4.3 we have that
∫
P̄tfdµ =

∫
fdµ for f ∈ FC∞

b .
Since σ(FC∞

b ) = B(E), we deduce that µ is an invariant measure for the semigroup P̄t,
which implies that ∫

P̄tfdµ =

∫
fdµ for f ∈ Bb(E). (4.5)

By Proposition 4.3 and using (4.5) and the fact that FC∞
b is dense in L2(E;µ), we have

that for f, g ∈ Bb(E) ∫
P̄tf(x)g(x)µ(dx) =

∫
f(x)P̄tg(x)µ(dx).

Since (P̄t)t>0 is sub-Markovian, by [34, Chapter II Proposition 4.1] it can be extended
to L2(E, µ). This extension is still denoted by (P̄t)t>0. On the other hand, since Φ has
continuous path in E, we can deduce that P̄tf →t→0 f in µ-measure for f ∈ FC∞

b . Then
by [34, Chapter II Proposition 4.3] (P̄t)t>0 is a strongly continuous contraction semigroup
on L2(E;µ). Then there exists a corresponding Dirichlet form (E , D(E)) associated with
(P̄t)t>0.

We know that (Ω′,M, (Mt)t>0, X, P z)z∈E is a right process in the sense of Definition
D.3, which implies that (E , D(E)) is a quasi-regular Dirichlet form by Theorem D.4.
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In the following we prove that FC∞
b ⊂ D(E). By (4.2) and since µ̄ε converges weakly

to µ we know that for f ∈ FC∞
b ,

sup
t>0

1

t

∫
(P̄tf − f)fdµ =sup

t>0
lim
ε→0

1

t

∫
(P̄ ε

t (f |PNE)− f |PNE)f |PNEdµ̄
ε

≤ lim inf
ε→0

sup
t>0

1

t

∫
(P̄ ε

t (f |PNE)− f |PNE)f |PNEdµ̄
ε

= lim inf
ε→0

Eε(f |PNE , f |PNE) < ∞,

where in the last inequality we used Proposition 4.4. This implies that FC∞
b ⊂ D(E) and

for f ∈ FC∞
b ,

E(f, f) ≤ 1

2

∫
|Df |2dµ. (4.6)

For l ∈ E∗ by (4.6) we can easily find fn ∈ FC∞
b such that fn → 〈l, ·〉 in L2(E, µ) and

fn is a Cauchy sequence in D(E), which implies 〈l, ·〉 ∈ D(E) since (E , D(E)) is a closed
form.

5 Identification of the Dirichlet form

In this section we identify the Dirichlet form (E , D(E)) on FC∞
b . To complete this,

we first write the nonlinear term as an additive functional of the solution. Here we use
paracontrolled analysis to prove the solution Φ to (1.2) satisfies the following equation
in the analytic weak sense:

Φ(t) = Φ0 +

∫ t

0

∆Φds− lim
ε→0

∫ t

0

[(ρε ∗ Φ)3 − (3C̄ε
0ρε ∗ Φ− 9C̃ε

1Φ−mΦ)]ds+W (t), (5.1)

where C̄ε
0 and C̃ε

1 are defined below. For this we consider the following approximation:
Let Φ̄ε be the solutions to the following equation:

dΦ̄ε = ∆Φ̄εdt+ ρε ∗ dW − (Φ̄ε)3dt+ (3C̄ε
0 − 9C̄ε

1 −m)Φ̄εdt, (5.2)

Φ̄ε(0) = Φ0.

Here C̄ε
0 and C̄ε

1 are the corresponding constants defined in Appendix B. For this equation
we can also write Φ̄ε = Φ̄ε

1+Φ̄ε
2+Φ̄ε

3 and define Φ̄ε
1, Φ̄

ε
2, Φ̄

ε
3, K̄

ε, Φ̄ε,] similarly as in Section

2. Here we also introduce graph notations for them. We use to denote Φ̄ε
1 and

to denote −Φ̄ε
2. Moreover, is used to denote K̄ε. The corresponding renormalized

terms , , π0,�( , ), π0,�( , ) are defined as in Appendix B. Fur-

thermore, we use and to denote −ρε∗Φ2 and ρε∗K, respectively. We summarise
the graph notations after the introduction. We also introduce the following:

π0,�( , ) := π0( , )− 3(C̃ε
1 + ϕ̃ε) ,

π0,�( , ) := π0( , )− (C̃ε
1 + ϕ̃ε),

with

C̃ε
1 = 2−7

∫ ∫
g(εk1)g(εk2)g(εk[12])

|k1|2|k2|2(|k1|2 + |k2|2 + |k[12]|2)π6
dk1dk2,
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and

ϕ̃ε(t) = −2−7

∫ ∫
e−tπ2(|k1|2+|k2|2+|k[12]|2)g(εk1)g(εk2)g(εk[12])

|k1|2|k2|2(|k1|2 + |k2|2 + |k[12]|2)π6
dk1dk2.

Here k[12] = k1 + k2 and the integral is on the set Z3\{0}.
We also define

δC̄ε
W (T ) := sup

t∈[0,T ]

[
‖π0( , )− π0( , )‖−2κ

+ ‖π0,�( , )− π0,�( , )‖− 1
2−2κ

+ ‖π0,�( , )− π0,�( , )‖−2κ + ‖ − ‖− 1
2−2κ

+ ‖ − ‖−1−2κ + ‖ − ‖ 1
2−2κ + ‖π0( , )− π0( , )‖−2κ

+ ‖π0,�( , )− π0,�( , )‖− 1
2−2κ

+ ‖π0,�( , )− π0,�( , )‖−2κ

]
+ ‖ − ‖

C
1
8
T C

1
4
−2κ

.

By Appendix B we can find a subsequence of ε going to zero such that for any T >

0 limε→0 δC̄
ε
W (T ) = 0, limε→0

∫ T

0
ds exists P -a.s.. Here and in the following for

simplicity we still use the notation ε to denote this subsequence. Set

Ω0 = { lim
ε→0

δC̄ε
W (T ) = 0, CW (T ) < ∞, lim

ε→0

∫ T

0

ds exists, for any T > 0}.

Then P (Ω0) = 1.

Lemma 5.1. Φ satisfies (5.1) in the analytically weak sense on Ω0.

Proof. First we prove the following:

lim
ε→0

∫ t

0

[(ρε ∗ Φ)3 − (3C̄ε
0ρε ∗ Φ− 9C̃ε

1Φ−mΦ)]ds = lim
ε→0

∫ t

0

[(Φ̄ε)3 − (3C̄ε
0 − 9C̄ε

1 −m)Φ̄ε]ds.

(5.3)

In fact,∫ t

0

[(Φ̄ε)3 − (3C̄ε
0 − 9C̄ε

1 −m)Φ̄ε]ds

=

∫ t

0

[(Φ̄ε
3)

3 + 3( − )(Φ̄ε
3)

2 + (3( )2 − 6 )Φ̄ε
3 + 3 � Φ̄ε

3

+ + 3 ( )2 − ( )3 − 3 � − (9ϕ̄ε −m)Φ̄ε]ds,

(5.4)

and
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∫ t

0

[(ρε ∗ Φ)3 − (3C̄ε
0ρε ∗ Φ− 9C̃ε

1Φ−mΦ)]ds

=

∫ t

0

[(ρε ∗ Φ3)
3 + 3( − )(ρε ∗ Φ3)

2 + (3( )2 − 6 )ρε ∗ Φ3 + 3 � ρε ∗ Φ3

+ + 3 ( )2 − ( )3 − 3 � − (9ϕ̃ε −m)Φ]ds, (5.5)

where

� := − 3(C̃ε
1 + ϕ̃ε) ,

� ρε ∗ Φ3 :=ρε ∗ Φ3 + 3(C̃ε
1 + ϕ̃ε)(− +Φ3),

and the other terms containing � and ϕ̄ε are defined in Appendix B and Φ3 satisfies
equation (2.1). Now we only need to prove that each term converges. First we check the

relations between , ρε ∗ Φ3 and , Φ̄ε
3. We have that on Ω0 for any T > 0 and ε > 0

small enough

sup
t∈[0,T ]

‖ − ‖ 1
2−2κ−ε ≤ sup

t∈[0,T ]

(‖ − ‖ 1
2−2κ + ‖ − ‖ 1

2−2κ−ε) → 0.

Now we consider ρε ∗ Φ3 − Φ̄3. We define C̄ε
W (T, ω) for (5.2) similarly as CW (T, ω) in

(2.2) and we have that for ω ∈ Ω0, there exists a constant C1(T, ω) such that C̄ε
W (T, ω) ≤

C1(T, ω) for the subsequence of ε. Since Φ̄ε
3 satisfies a similar equation as Φ3, by a similar

argument as in Proposition 2.1 we obtain that

sup
t∈[0,T ]

[t
γ+z+κ

2 (‖Φ3‖γ + ‖Φ̄ε
3‖γ) + t

1
2
+z+5κ

2 (‖Φ3‖ 1
2+4κ + ‖Φ̄ε

3‖ 1
2+4κ)] ≤ C(T, ω, ‖Φ0‖−z).

Then a similar argument as in Proposition 3.1 yields that on Ω0

sup
t∈[0,T ]

[t
γ+z+κ

2 ‖Φ3 − Φ̄ε
3‖γ + t

1
2
+z+5κ

2 ‖Φ3 − Φ̄ε
3‖ 1

2+4κ + t
3(γ+z+κ)

2 ‖Φ] − Φ̄ε,]‖1+3κ] → 0,

which combined with the fact the ‖ρε ∗ Φ3 − Φ3‖β−κ . ε
κ
2 ‖Φ3‖β implies that on Ω0 for

ε > 0 small enough

sup
t∈[0,T ]

[t
γ+z+κ

2 ‖ρε ∗ Φ3 − Φ̄ε
3‖γ−ε + t

1
2
+z+5κ

2 ‖ρε ∗ Φ3 − Φ̄ε
3‖ 1

2+4κ−ε

+ t
3(γ+z+κ)

2 ‖ρε ∗ Φ] − Φ̄ε,]‖1+3κ−ε] → 0.

(5.6)

Hence by Lemma A.2 we obtain that the terms which do not need to be renormalized
in (5.4) and (5.5) converge. Now we concentrate on the renormalization terms. For the

renormalized terms , � , ( )2 by Lemmas A.2, A.3 it is sufficient to
consider the following terms: Since δC̄ε

W → 0 on Ω0, we have on Ω0

π0( , )− π0( , ) → 0 in CTC−2κ,

and

π0,�( , )− π0,�( , ) → 0 in CTC− 1
2−2κ.
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Now we focus on the convergence of � ρε ∗ Φ3. It is sufficient to consider π0,�(ρε ∗

Φ3, ) := π0(ρε ∗ Φ3, ) + 3(− +Φ3)π0,�( , ). We have

Φ3 = −3π<(− +Φ3, ) + Φ].

Then we obtain that

π0(ρε ∗ Φ3, ) = −3π0(ρε ∗ π<(− +Φ3, ), ) + π0(ρε ∗ Φ], ).

For the second term we can easily obtain the convergence by (5.6). For the first term we
have

π0(ρε ∗ π<(− +Φ3, ), )

=π0(ρε ∗ π<(− +Φ3, ), )− π0(π<(− +Φ3, ), )

+ C(− +Φ3, , ) + (− +Φ3)π0( , ),

where the first two terms converge to zero as ε → 0 by Lemma A.5 and the third
term converges to the corresponding term by Lemma A.3 and the last term should be

renormalized and converges to the corresponding term on Ω0. Since limε→0

∫ t

0
ds

exists, combining the above arguments (5.3) follows. Moreover, on Ω0 we know that for
any t > 0,

Φ̄ε(t) = Φ0 +

∫ t

0

∆Φ̄εds−
∫ t

0

[(Φ̄ε)3 − (3C̄ε
0 − 9C̄ε

1 −m)Φ̄ε]ds+ ρε ∗W (t).

Then taking the limit on both sides we obtain the result.

Proof of Theorem 1.2. The idea is to prove that the drift term in (5.1) is the zero-energy
part in the Fukushima decomposition (cf. [14, Theorem 5.2.2]). In the proof we take
the space of continuous paths C([0,∞);E) as the sample paths Ω̄ and we denote the t-th
coordinate of the path ω by X̄t(ω). For t ∈ [0,∞) let (F̄t) be the natural filtration for X̄
given in [34, Chapter IV, (1.7)]. Set F̄ := ∪t≥0F̄t and define on Ω̄

P x(X̄ ∈ A) := P (Φ(x) ∈ A),

for A ∈ B(Ω̄). Here for x ∈ C−z, Φ on the right hand side is the solution from Section 2
starting from x. Then for x ∈ C−z under P x, X̄ is the solution to (1.2) starting from x. For
x ∈ E\C−z the process X̄ is a trap under P x as in Section 4. Let θ be the associated shift
operator. By Theorem D.4 the (Markov) diffusion process (Ω, F̄ , (F̄t)t>0, θt, X̄, P x)x∈E is
properly associated with (E , D(E)). Define

Ω1 := {ω : lim
ε→0

∫ ·

0

〈(ρε∗X̄)3−(3C̄ε
0ρε∗X̄−9C̃ε

1X̄−mX̄), ϕ〉dr exists in C([0,∞);R),∀ϕ ∈ D}.

and for ϕ ∈ C∞(T3),

Hϕ
t :=

{
limε→0

∫ t

0
〈(ρε ∗ X̄)3 − (3C̄ε

0ρε ∗ X̄ − 9C̃ε
1X̄ −mX̄), ϕ〉ds, for ω ∈ Ω1

0 otherwise.

EJP 23 (2018), paper 78.
Page 19/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP207
http://www.imstat.org/ejp/


Dirichlet form associated with the Φ4
3 model

Now we would like to check that Hϕ
t is an additive functional (AF) in the sense of [14,

Section 5.1]:
i) It’s obvious that Hϕ

t is F̄t-measurable;
ii) For ω ∈ Ω, Hϕ

· (ω) is continuous, H0(ω) = 0. Since P x(X̄ ∈ C([0,∞); C−z)) = 1 for
x ∈ C−z and µ(C−z) = 1, it is sufficient to check that for x ∈ C−z P x(Ω1) = 1, θtΩ1 ⊂ Ω1,
and for ω ∈ Ω1

Hϕ
t+s(ω) = Hϕ

t (ω) +Hϕ
s (θtω). (5.7)

P (Ω0) = 1 implies that P x(Ω1) = 1 by Lemma 5.1. Since X̄(t+ s) = X̄(s) ◦ θt, we can
easily deduce that θtΩ1 ⊂ Ω1 and that∫ t+s

0

〈(ρε ∗ X̄)3 − (3C̄ε
0ρε ∗ X̄ − 9C̃ε

1X̄ −mX̄), ϕ〉dr

=

∫ t

0

〈(ρε ∗ X̄)3 − (3C̄ε
0ρε ∗ X̄ − 9C̃ε

1X̄ −mX̄), ϕ〉dr

+

∫ s

0

〈(ρε ∗ X̄)3 − (3C̄ε
0ρε ∗ X̄ − 9C̃ε

1X̄ −mX̄), ϕ〉dr ◦ θt,

which implies that (5.7) holds for ω ∈ Ω1.
Now we know that Hϕ

t is an AF. Define

Mϕ
t := 〈X̄(t)− X̄(0), ϕ〉 −

∫ t

0

〈X̄,∆ϕ〉ds+Hϕ
t .

We know that Mϕ is also an AF, since 〈X̄(t)− X̄(0), ϕ〉 and
∫ t

0
〈X̄,∆ϕ〉ds are AFs (see [14,

Section 5.2]. Moreover, by Lemma 5.1 we have

ExMϕ
t = 0, Ex(Mϕ

t )
2 = |ϕ|2t < ∞,

which implies that Mϕ is also a martingale additive functional (MAF) in the sense of [14,
Chapter V]. Here | · | denotes the L2-norm.

Let us fix an arbitrary T > 0 and consider the space ΩT of all continuous paths from
[0, T ] to E. We also use (F̄t) to denote the natural filtration generated by the canonical
process. We introduce the time reversal operator rT on ΩT defined by

rTω(t) = ω(T − t), 0 ≤ t ≤ T, ω ∈ ΩT .

By [14, Lemma 5.7.1] and the symmetry of the semigroup P̄t we have that for any
F̄T -measurable set A on ΩT

Pµ(rTω ∈ A) = Pµ(A), (5.8)

where Pµ =
∫
P xµ(dx). Now we have

〈X̄(t)− X̄(0), ϕ〉 = Mϕ
t + H̄ϕ

t Pµ − a.s.,

with H̄ϕ
t =

∫ t

0
〈X̄,∆ϕ〉ds−Hϕ

t . By (5.8) we have for 0 ≤ t ≤ T

〈X̄(T − t)− X̄(T ), ϕ〉 = Mϕ
t (rT ) + H̄ϕ

t (rT ) Pµ − a.s.. (5.9)

Moreover, under Pµ,

H̄ϕ
t (rT )

=

∫ t

0

〈X̄ ◦ rT ,∆ϕ〉ds− lim
ε→0

∫ t

0

〈((ρε ∗ X̄) ◦ rT )3 − (3C̄ε
0ρε ∗ X̄ − 9C̃ε

1X̄ −mX̄) ◦ rT , ϕ〉ds
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=

∫ T

T−t

〈X̄,∆ϕ〉ds− lim
ε→0

∫ T

T−t

〈(ρε ∗ X̄)3 − (3C̄ε
0ρε ∗ X̄ − 9C̃ε

1X̄ −mX̄), ϕ〉ds

=H̄ϕ
T − H̄ϕ

T−t. (5.10)

By (5.9), (5.10) we have

Mϕ
t (rT ) = 〈X̄(T − t)− X̄(T ), ϕ〉 − H̄ϕ

T + H̄ϕ
T−t,

which implies that

Mϕ
T−t(rT )−Mϕ

T (rT )

=〈X̄(t)− X̄(T ), ϕ〉 − H̄ϕ
T + H̄ϕ

t − 〈X̄(0)− X̄(T ), ϕ〉+ H̄ϕ
T

=2〈X̄(t)− X̄(0), ϕ〉 −Mϕ
t .

Now we know that

〈X̄(t)− X̄(0), ϕ〉 = 1

2
(Mϕ

t −Mϕ
t ◦ rt) Pµ − a.s.∀t > 0.

By [13, Theorem 2.2] we have that Mϕ ≡ M [ϕ], where M [ϕ] is the MAF from the
Fukushima decomposition for 〈·, ϕ〉 (see [14, Section 5.2]. Hence, we have that H̄ϕ

t = N
[ϕ]
t

is the associated zero-energy additive functional (NAF), which implies that Φ is a Dirichlet
process.

Now for f = f1(〈·, l1〉, 〈·, l2〉, ..., 〈·, lk〉) with li, f1 smooth, denote the MAF in the
Fukushima decomposition associated with 〈·, li〉 by M li . By Itô’s formula for Dirich-
let process in [8, Theorem 4.7] and [39, Theorem 4.1], we have

f(X̄(t))− f(X̄(0)) =

k∑
i=1

∫ t

0

∂if(X̄(s))dM li
t +

k∑
i=1

∫ t

0

∂if(X̄(s))dH̄ li
t

+
1

2

k∑
i,j=1

∫ t

0

∂ijf(X̄(s))〈li, lj〉ds

:=
k∑

i=1

∫ t

0

∂if(X̄(s))dM li
t + H̄f

t ,

where ∂if := ∂if1(〈·, l1〉, 〈·, l2〉, ..., 〈·, lk〉) and the stochastic integral
∫ t

0
∂if(X̄(s))dH̄ li

t w.r.t.

NAF is defined in [8]. We know that
∑k

i=1

∫ t

0
∂if(X̄(s))dM li

t is an MAF and H̄f
t is an NAF,

which implies that
k∑

i=1

∫ t

0

∂if(X̄(s))dM li
t ≡ M

[f ]
t , (5.11)

where M
[f ]
t is the MAF obtained in the Fukushima decomposition.

By (5.11) we know that

E(f, f) = e(M
[f ]
t ) := lim

t↓0

1

2t
Eµ(M

[f ]
t )2 =

1

2

∫
|Df |2dµ.

Then for g ∈ FC∞
b we can use the above f ’s to approximate it and obtain E(g, g) =

1
2

∫
|Dg|2dµ.

Remark 5.2. From the above proof we can check that Φ starting from µ is an energy
solution in the sense that (Φ, N)0≤t≤T has continuous paths in E such that

i) the law of Φ is µ for all t ∈ [0, T ];
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ii) for any test function ϕ ∈ C∞(T3) the process t → Nt is a.s. of zero quadratic
variation, N0(ϕ) = 0 and the pair (Φ, N)0≤t≤T satisfies the equation

〈Φt, ϕ〉 = 〈Φ0, ϕ〉+
∫ t

0

〈Φs,∆ϕ〉ds+ 〈Nt, ϕ〉+ 〈Mt, ϕ〉,

where (〈Mt, ϕ〉)0≤t≤T is a martingale with respect to the filtration generated by
(Φ, N)0≤t≤T with quadratic variation |ϕ|2t.

iii) the reversed processes Φ̂t = ΦT−t, N̂t = NT −NT−t satisfies the same equation
with the associated martingale M̂t with respect to its own filtration and the quadratic
variation of 〈M̂, ϕ〉 is also |ϕ|2t.

iv) Nt = − limε→0

∫ t

0
[(ρε ∗Φ)3−(3C̄ε

0ρε ∗Φ−9C̃ε
1Φ−mΦ)]ds a.s. with C̄ε

0 , C̃
ε
1 introduced

at the beginning of Section 5.
The concept of energy solutions has been introduced in [16] and has been extended

in [18] for the stochastic Burger’s equation, which is equivalent to the KPZ equation.
In their case, the energy solutions satisfy the corresponding i)-iv) with the invariant
distribution given by the Gaussian white noise and Nt related to the nonlinear terms in
the Burger’s equation. The main difference in the definition is that N̂t should be given
by −(NT −NT−t), since their case are non-reversible while in our case the process is
reversible.

Proof of Theorem 1.3. By Theorem 1.2 we know that for f, g ∈ FC∞
b as elements in

L2(E, µ),
∫
〈Df,Dg〉dµ is well defined, which implies that (Ē ,FC∞

b ) is a well-defined
symmetric bilinear form. Since the Dirichlet form (E , D(E)) is an extension of (Ē ,FC∞

b ),
it is obvious that (Ē ,FC∞

b ) is closable. We denote its closure by (Ē , D(Ē)). Then by
similar arguments as in [34, Chapter II Proposition 3.5] we obtain that for u ∈ D(Ē),
v = u ∨ 0 ∧ 1 ∈ D(Ē) and Ē(v, v) ≤ Ē(u, u). Moreover, by similar arguments as in the
proof of [34, Chapter IV Proposition 4.2] i) in Definition D.1 follows, which implies that
(Ē , D(Ē)) is a quasi-regular Dirichlet form (cf. Definition D.1). Then existence of the
Markov process follows from Theorem D.4.

Proof of Corollary 1.5. By general theory of Markov semigroup and Dirichlet form (cf.
[48]) we know the following Poincaré inequality holds:

µ(f2) ≤ CE(f, f) + µ(f)2, f ∈ D(E) (5.12)

for some C > 0. In the following we follows essentially the same argument from [48,
Section 1.2] to deduce (1.4). Since

‖x‖2E =
∑
k

λk〈x, êk〉2,

where λk ∈ R satisfies λk → 0, k → ∞ and {êk} is a real smooth eigenbasis on L2(T3). We

first prove that for r ≥ 0, n ∈ N, fn(·) := e
r
2 ((

∑
k λk〈·,êk〉2+1)

1
2 ∧n) ∈ D(E). By approximation

we can easily check that fn,N := e
r
2 ((

∑
|k|∞≤N λk〈·,êk〉2+1)

1
2 ∧n) ∈ D(E). Moreover, by direct

computation we know that

E1(fn,N − fn, fn,N − fn) → 0, N → ∞,

with E1(·, ·) := E(·, ·) + (·, ·)L2(E;µ). We also have

E(fn,N , fn,N ) ≤ r2

4

∫
f2
n,Ndµ,
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which implies the following by letting N → ∞

E(fn, fn) ≤
r2

4

∫
f2
ndµ.

Let hn(r) := µ(f2
n). By (5.12) we know that

hn(r) ≤
Cr2

4
hn(r) + hn(r/2)

2.

Thus, for any r ∈ (0, 2/
√
C) we have

hn(r) ≤
4

4− Cr2
hn(r/2)

2. (5.13)

Next, for any m > 0, let pm = µ(x : (
∑

k λk〈x, êk〉2 + 1)1/2 ≥ m). We have

hn(r/2)
2 ≤

[
emr/2 + µ(1{(

∑
k λk〈x,êk〉2+1)1/2≥m}fn)

]2
≤ 2emr + 2pmhn(r).

Substituting this into (5.13) we have

hn(r) ≤
8

4− Cr2
emr +

8

4− Cr2
pmhn(r), 0 < r < 2/

√
C.

By Lemma 3.2 we know that pm → 0 as m → ∞, which implies that there exists m0 > 0

such that
8pm0

4−Cr2 ≤ 1
2 . Therefore,

hn(r) ≤
16

4− Cr2
em0r.

Letting n → ∞ we arrive at∫
er‖x‖Eµ(dx) ≤

∫
er(

∑
k λk〈x,êk〉2+1)

1
2 µ(dx) < ∞, r ∈ (0, 2/

√
C).

A Besov spaces and paraproduct

In this appendix we recall the definitions and some properties of Besov spaces and
paraproducts. For a general introduction to these theories we refer to [3, 17]. First
we introduce the following notations. The space of real valued infinitely differentiable
functions of compact support is denoted by D(Rd) or D. The space of Schwartz functions
is denoted by S(Rd). Its dual, the space of tempered distributions is denoted by S ′(Rd).

Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
i. the support of χ is contained in a ball and the support of θ is contained in an

annulus;
ii. χ(z) +

∑
j≥0 θ(2

−jz) = 1 for all z ∈ Rd.

iii. supp(χ) ∩ supp(θ(2−j ·)) = ∅ for j ≥ 1 and supp(θ(2−i·)) ∩ supp(θ(2−j ·)) = ∅ for
|i− j| > 1.

We call such a pair (χ, θ) a dyadic partition of unity, and for the existence of dyadic
partitions of unity we refer to [3, Proposition 2.10]. The Littlewood-Paley blocks are now
defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j ·)Fu).

We point out that everything above and everything that follows can be applied to
distributions on the torus (see [46]). More precisely, Besov spaces on the torus with
general indices p, q ∈ [1,∞] are defined as the completion of C∞(Td) with respect to the
norm

‖u‖Bα
p,q

:= (
∑
j≥−1

(2jα‖∆ju‖Lp(Td))
q)1/q.

We will need the following Besov embedding theorem on the torus (c.f. [17, Lemma 41]):
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Lemma A.1. i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then Bα
p1,q1(T

d)

is continuously embedded in B
α−d(1/p1−1/p2)
p2,q2 (Td).

ii) (Besov embedding [47, Chapter 6]) Let α1 < α2, 1 ≤ p1 ≤ p2 ≤ ∞, and 1 ≤ q1 ≤
q2 ≤ ∞. Then

Bα2
p1,q2(T

d) ⊂ Bα1
p1,q1(T

d); Bα1
p1,q1(T

d) ⊂ Bα1
p1,q2(T

d), Bα1
p2,q1(T

d) ⊂ Bα1
p1,q1(T

d).

iii) ([36, Remarks 3.5, 3.6]) For p > 1

B0
p,1(T

d) ⊂ Lp ⊂ B0
p,∞(Td).

Now we recall the following paraproduct introduced by Bony (see [5]). In general,
the product fg of two distributions f ∈ Cα, g ∈ Cβ is well defined if and only if α+ β > 0.
In terms of Littlewood-Paley blocks, the product fg can be formally decomposed as

fg =
∑
j≥−1

∑
i≥−1

∆if∆jg = π<(f, g) + π0(f, g) + π>(f, g),

with
π<(f, g) = π>(g, f) =

∑
j≥−1

∑
i<j−1

∆if∆jg, π0(f, g) =
∑

|i−j|≤1

∆if∆jg.

The basic result about these bilinear operations is given by the following estimates:

Lemma A.2 (Paraproduct estimates, [5, 37, Proposition A.7]). Let α, β ∈ R and p, p1, p2, q

∈ [1,∞] be such that
1

p
=

1

p1
+

1

p2
.

Then we have
‖π<(f, g)‖Bβ

p,q
. ‖f‖Lp1 ‖g‖Bβ

p2,q
f ∈ Lp1 , g ∈ Bβ

p2,q,

and for α < 0, furthermore,

‖π<(f, g)‖Bα+β
p,q

. ‖f‖Bα
p1,q

‖g‖Bβ
p2,q

f ∈ Bα
p1,q, g ∈ Bβ

p2,q.

For α+ β > 0 we have

‖π0(f, g)‖Bα+β
p,q

. ‖f‖Bα
p1,q

‖g‖Bβ
p2,q

f ∈ Bα
p1,q, g ∈ Bβ

p2,q.

The following basic commutator lemma is important for our use:

Lemma A.3 ([17, Lemma 5], [37, Proposition A.9]). Assume that α ∈ (0, 1), β, γ ∈ R and
p, p1, p2, p3 ∈ [1,∞] are such that

α+ β + γ > 0, β + γ < 0,
1

p
=

1

p1
+

1

p2
+

1

p3
.

Then for smooth f, g, h, the trilinear operator

C(f, g, h) = π0(π<(f, g), h)− fπ0(g, h)

satisfies the bound

‖C(f, g, h)‖Bα+β+γ
p,∞

. ‖f‖Bα
p1,∞

‖g‖Bβ
p2,∞

‖h‖Bγ
p3,∞ .

Thus, C can be uniquely extended to a bounded trilinear operator from Bα
p1,∞ ×Bβ

p2,∞ ×
Bγ

p3,∞ to Bα+β+γ
p,∞ .

Now we recall the following estimate for the heat semigroup Pt := et∆.
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Lemma A.4 ([17, Lemma 47], [37, Proposition A.13]). Let u ∈ Bα
p,q for some α ∈ R, p, q ∈

[1,∞]. Then for every δ ≥ 0

‖Ptu‖Bα+δ
p,q

. t−δ/2‖u‖Bα
p,q

.

Lemma A.5 ([7, Lemma A.1]). Let α < 1 and β ∈ R. Let ϕ ∈ S(Rd), let u ∈ Cα, and
v ∈ Cβ . Then for every ε > 0 and every δ ≥ −1 we have

‖ϕ(εD)π<(u, v)− π<(u, ϕ(εD)v)‖α+β+δ . ε−δ‖u‖α‖v‖β .

where ϕ(D)u = F−1(ϕFu).

Lemma A.6 ([7, Lemma 2.5], [37, Proposition A.13]). Let u ∈ Bα+δ
p,q for some α ∈ R, 0 ≤

δ ≤ 2, p, q ∈ [1,∞]. Then for every t ≥ 0

‖(Pt − I)u‖Bα
p,q

. tδ/2‖u‖Bα+δ
p,q

.

B Convergence of the stochastic terms

We first recall the definition of the stochastic terms from [7] we use in the paper:

:= lim
ε→0

:= lim
ε→0

(
2

− C̄ε
0),

:=
3

− 3C̄ε
0 ,

:= lim
ε→0

,

:= lim
ε→0

� := lim
ε→0

( − 3(C̄ε
1 + ϕ̄ε) ),

� ( )2 := lim
ε→0

( )2

π0,�( , ) := lim
ε→0

π0,�( , ) := lim
ε→0

(π0( , )− 3(C̄ε
1 + ϕ̄ε) ),

π0,�( , ) := lim
ε→0

π0( , ),

π0,�( , ) := lim
ε→0

π0,�( , ) := lim
ε→0

(π0( , )− 3(C̄ε
1 + ϕ̄ε)),

� Φ̄ε
3 :=Φ̄ε

3 + 3(C̄ε
1 + ϕ̄ε)(− + Φ̄ε

3),

where C̄ε
0 , C̄

ε
1 , ϕ̄

ε are terms for renormalization and are defined in [7]. Here the notations
� are not the usual Wick products and we used them for the reromalization terms. We do
not recall the explicit formula of them since this is not used in our paper. The convergence
above is in the corresponding space (see (2.2)). The convergence of δC̄ε

W → 0 can be
obtained partially from [7] and a similar argument as in [7]. In this part we consider the

convergence of
∫ T

0
ds. We follow the notations from [19, Section 9]. We represent

the white noise in terms of its spatial Fourier transform. More precisely, let E0 = Z3\{0}
and let W (s, k) = 〈W (s), ek〉 and we view W (s, k) as a Gaussian process on R× E with
covariance given by

E

[ ∫
R×E0

f(η)W (dη)

∫
R×E0

g(η′)W (dη′)

]
=

∫
R×E0

g(η1)f(η−1)dη1,
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where ηa = (sa, ka), s−a = sa, k−a = −ka and the measure dηa = dsadka is the product of
the Lebesgue measure dsa on R and of the counting measure dka on E0. Denote by∫

(R×E0)n
f(η1...n)W (dη1...n)

a generic element of the n-th chaos of W on R× E0. Recall that∫ t

0

dσ = 2−3

∫
(R×E)3

ek[123]

∫ t

0

P ε
σ−s1(k1)P

ε
σ−s2(k2)P

ε
σ−s3(k3)dσW (dη123).

Here P ε
t (k) = e−|k|2tπ2

1{t≥0}g(εk) and k[123] = k1 + k2 + k3. By a straightforward calcula-
tion we obtain that

E|∆q(

∫ t

s

(Φ̄ε1
1 )�,3dσ −

∫ t

s

(Φ̄ε2
1 )�,3dσ)|2

.
∫
(R×E)2

θ(2−qk[123])
2

∣∣∣∣ ∫ t

s

[Π3
i=1P

ε1
σ−si(ki)−Π3

i=1P
ε2
σ−si(ki)]dσ

∣∣∣∣2dη123
.(εκ1 + εκ2 )

∫
θ(2−qk[123])

2

∫ t

s

∫ t

s

e−π2(|k1|2+|k2|2+|k3|2)|σ−σ̄| ∑3
i=1 |ki|κ

|k1|2|k2|2|k3|2
dσdσ̄dk123

.(εκ1 + εκ2 )

∫
θ(2−qk[123])

|t− s|
∑3

i=1 |ki|κ

|k1|2|k2|2|k3|2[|k1|2 + |k2|2 + |k3|2]
dk123

.(εκ1 + εκ2 )

∫
E

θ(2−qk)
|t− s|
|k|2−κ

dk . (εκ1 + εκ2 )2
q(1+κ)|t− s|.

Then by Gaussian hypercontractivity and Lemma A.1 we obtain that for any δ > 0, p > 1,∫ t

0
ds converges in Lp(Ω;CTC− 1+δ

2 ).

C Paracontrolled analysis for the solution to the lattice approxi-
mation

In this appendix we recall paracontrolled analysis for the solution to (3.4) in [50]. To
avoid confusion we do not use the graph notation for the lattice approximation in this
paper. For the graph notation for uε we refer to [50]. We define

Kε(t) :=

∫ t

0

P ε
t−s(u

ε
1)

�,2ds, K̃ε(t) :=

∫ t

0

P̃ ε
t−s(u

ε
1)

�,2ds,

and

Kε
1(t) :=

∫ t

0

P ε
t−s[e

i1i2i3
N (uε

1)
�,2]ds, K̃ε

1(t) :=

∫ t

0

P̃ ε
t−s[e

i1i2i3
N (uε

1)
�,2]ds,

with
P̃ ε
t := F−1e−t|k|2f(εk)ϕ0(εk)F ,

where ϕ0 is a smooth function and equals to 1 on {|x|∞ ≤ 1} with suppϕ0 ⊂ {|x| ≤ 1.8}
and for k = (k1, k2, k3) ∈ R3

f(k) =
4

|k|2
(sin2

k1π

2
+ sin2

k2π

2
+ sin2

k3π

2
).

Then we write the paracontrolled ansatz for the solution to (3.4) as follows:

uε
3 = −3PN [π<(u

ε
2 + uε

3, K̃
ε + K̃ε

1)] + uε,]
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with uε,](t) ∈ C1+3κ. Now we introduce the stochastic terms for the lattice approximation:
for T > 0

Cε
W (T ) := sup

t∈[0,T ]

[
‖uε

1‖− 1
2−2κ + ‖(uε

1)
�,2‖−1−2κ + ‖uε

2‖ 1
2−2κ + ‖π0(u

ε
2, u

ε
1)‖−2κ

+ ‖π0,�(u
ε
2, (u

ε
1)

�,2)‖− 1
2−2κ + ‖π0,�(K

ε, (uε
1)

�,2)‖−2κ

]
+ ‖uε

2‖
C

1
8
T C

1
4
−2κ

,

Eε
W (T )

:= sup
t∈[0,T ]

[
‖(uε

1)
�,2ei1i2i3N ‖−1−2κ + ‖π0(u

ε
2, e

i1i2i3
N uε

1)‖−2κ + ‖π0,�(u
ε
2, e

i1i2i3
N (uε

1)
�,2)‖− 1

2−2κ

+ ‖π0(K
ε, ei1i2i3N (uε

1)
�,2)‖−2κ + ‖π0(K

ε
1 , (u

ε
1)

�,2)‖−2κ + ‖π0,�(K
ε
1 , e

i1i2i3
N (uε

1)
�,2)‖−2κ

]
,

and

δCε
W (T ) := sup

t∈[0,T ]

[
‖uε

1 − ‖− 1
2−2κ + ‖(uε

1)
�,2 − ‖−1−2κ + ‖uε

2 + ‖ 1
2−2κ

+ ‖π0(u
ε
2, u

ε
1) + π0,�( , )‖−2κ + ‖π0,�(u

ε
2, (u

ε
1)

�,2) + π0,�( , )‖− 1
2−2κ

+ ‖π0,�(K
ε, (uε

1)
�,2)− π0,�( , )‖−2κ

]
+ ‖uε

2 + ‖
C

1
8
T C

1
4
−2κ

.

Here the terms containing � are renormlized terms defined in [50, Section 4]. Moreover,
we introduce the following operators

A1
N (g, h)(f) := −π0((I − PN )π<(f, PNg), h),

and

A2
N (g, h)(f) := π0(PNπ<(f, (P3N − PN )g), h).

Then we define

AN (T ) :=‖(A1
N +A2

N )(K̃ε + K̃ε
1 , (u

ε
1)

�,2 + ei1i2i3N (uε
1)

�,2)‖
CTL(C1−3κ,C− 1

2
−5κ)

and

DN (T ) := sup
t∈[0,T ]

(‖ − π0((I − PN )π<(u
ε
2,K

ε +Kε
1), (u

ε
1)

�,2 + ei1i2i3N (uε
1)

�,2)

+ π0(PNπ<(u
ε
2, (P3N − PN )(K̃ε + K̃ε

1)), (u
ε
1)

�,2 + ei1i2i3N (uε
1)

�,2)‖−κ).

By the calculations in [50] we obtain the following result.

Proposition C.1. There exists κ1, C > 0 such that

E[δCε
W (T ) +AN (T ) + Eε

W (T ) +DN (T )] ≤ Cεκ1 .

Moreover, by a similar argument as in [36, Lemma A.6] we obtain the following
estimate on the extension operator defined in (3.2):

Lemma C.2. Let f be a function on Λε. Then we have

‖Extf‖L2n(T3) . N
3
2n ‖f‖L2n(Λε),

where the implicit constant depends on n.
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Proof. By (3.2) we have

Extf(x) =
∑
z∈Λε

ε3

8
f(z)Π3

j=1

sin π
2 (2N + 1)(xj − zj)

sin π
2 (x

j − zj)
.

Then we have

|Extf(x)|2n .
∑
z∈Λε

ε3

8
|f(z)|2n[

∑
z∈Λε

ε3

8
Π3

j=1

∣∣ sin π
2 (2N + 1)(xj − zj)

sin π
2 (x

j − zj)

∣∣ 2n
2n−1 ]2n−1.

By the proof of [36, Lemma A.6] we obtain that

[
∑
z∈Λε

ε3

8
Π3

j=1

∣∣ sin π
2 (2N + 1)(xj − zj)

sin π
2 (x

j − zj)

∣∣ 2n
2n−1 ]2n−1 . N3,

where the implicit constant does not depend on x, which implies the result.

D Symmetric quasi regular Dirichlet forms andMarkov processes

In this section we recall some general Dirichlet form results from [34]. Let E be a
Hausdorff topological space, m a σ-finite measure on E, and let B the smallest σ-algebra
of subsets of E with respect to which all continuous functions on E are measurable.
Let E be a symmetric Dirichlet form acting in the real L2(m)-space, i.e. E is a positive,
symmetric, bilinear, closed form with domain D(E) dense in L2(m), and such that
E(Φ(u),Φ(u)) ≤ E(u, u), for any u ∈ D(E), where Φ(t) = (0 ∨ t) ∧ 1, t ∈ R. The latter
condition is known to be equivalent with the condition that the associated C0-contraction
semigroup Tt, t ≥ 0, is submarkovian (i.e. 0 ≤ u ≤ 1 m-a.e. implies 0 ≤ Ttu ≤ 1 m-a.e., for
all u ∈ L2(m)); association means that limt↓0

1
t 〈u− Ttu, v〉L2(m) = E(u, v),∀u, v ∈ D(E).

Definition D.1 (cf. [34, Chap. IV, Defi. 3.1]). A symmetric Dirichlet form is called
quasi-regular if the following holds:

i) There exists a sequence (Fk)k∈N of compact subsets of E such that ∪kD(E)Fk
is

E1/2
1 -dense in D(E) (where D(E)Fk

:= {u ∈ D(E)|u = 0 m-a.e. on E − Fk}; E1/2
1 is the

norm given by the scalar product in L2(m) defined by E1, where E1(u, v) := E(u, v)+〈u, v〉,
〈, 〉 being the scalar product in L2(m). Such a sequence (Fk)k∈N is called an E-nest.

ii) There exists an E1/2
1 -dense subset of D(E) whose elements have E-quasi continuous

m-versions. A real function u on E is called quasi continuous when there exists an E-nest
(Fk) s.t. u restricted to Fk is continuous.

iii) There exists un ∈ D(E), n ∈ N, with E-quasi continuous m-versions ũn and there
exists an E-exceptional subset N of E s.t. {ũn}n∈N separates the points of E −N . An
E-exceptional subset of E is a subset N ⊂ ∩k(E − Fk) for some E-nest (Fk).

To recall the main results in [34] we recall the definitions of a Markov process and a
right process. Here we consider only Markov processes with life time ∞.

Definition D.2 (cf. [34, Chap. IV Defi. 1.5]). A collection M := (Ω,M, (Xt)t≥0, (P
z)z∈E)

is called a Markov process (with state space E) if it has the following properties.
i) There exists a filtration (Mt) on (Ω,M) such that (Xt)t≥0 is an (Mt)t≥0 adapted

stochastic process with state space E.
ii) For each t ≥ 0 there exists a shift operator θt : Ω → Ω such that Xs ◦ θt = Xs+t for

all s, t ≥ 0

iii) P z, z ∈ E, are probability measures on (Ω,M) such that z 7→ P z(Γ) is B(E)∗-mea-
surable for each Γ ∈ M resp. B(E)-measurable if Γ ∈ σ{Xs|s ∈ [0,∞)}, where B(E)∗ :=

∩P∈P(E)BP (E) for P(E) denoting the family of all probability measures on (E,B(E)) and
BP (E) denotes the completion of the σ-algebra B(E) w.r.t. a probability P .

EJP 23 (2018), paper 78.
Page 28/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP207
http://www.imstat.org/ejp/


Dirichlet form associated with the Φ4
3 model

iv) (Markov property) For all A ∈ B(E) and any t, s ≥ 0

P z[Xs+t ∈ A|Ms] = PXs [Xt ∈ A] P z − a.s., z ∈ E.

Definition D.3 (cf. [34, Chap. IV Defi. 1.8]). Let M := (Ω,M, (Xt)t≥0, (P
z)z∈E) be a

Markov process with state space E and corresponding filtration (Mt). M is called a
right process if it has the following additional properties.

i) (Normal property) P z(X0 = z) = 1 for all z ∈ E.
ii) (Right continuity) For each ω ∈ Ω, t 7→ Xt(ω) is right continuous on [0,∞).
iii) (Strong Markov property) (Mt) is right continuous and for every (Mt)-stopping

time σ and every ν ∈ P(E)

P ν [Xσ+t ∈ A|Mσ] = PXσ [Xt ∈ A] P ν − a.s.

for all A ∈ B(E), t ≥ 0.

Theorem D.4 (cf. [34, Chap. IV Thm 6.7]). Let E be a metrizable Lusin space. Then a
Dirichlet form (E , D(E)) on L2(E,m) is quasi-regular if and only if there exists a right
process M associated with (E , D(E)), i.e. the semigroup of M is an m-version of the
semigroup associated with (E , D(E)). In this case M is always properly associated with
(E , D(E)).
Remark D.5. The results in [34, Chap. IV] are more general and can be applied for
general Hausdorff topological spaces and more general Markov processes. Lusin spaces
are enough for our use in this paper.
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