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Abstract

A randomisation of the Berele insertion algorithm is proposed, where the insertion of
a letter to a symplectic Young tableau leads to a distribution over the set of symplectic
Young tableaux. Berele’s algorithm provides a bijection between words from an
alphabet and a symplectic Young tableau along with a recording oscillating tableau.
The randomised version of the algorithm is achieved by introducing a parameter
0 < q < 1. The classic Berele algorithm corresponds to letting the parameter q → 0.
The new version provides a probabilistic framework that allows to prove Littlewood-
type identities for a q-deformation of the symplectic Schur functions. These functions
correspond to multilevel extensions of the continuous q-Hermite polynomials. Finally,
we show that when both the original and the q-modified insertion algorithms are
applied to a random word then the shape of the symplectic Young tableau evolves as a
Markov chain on the set of partitions.
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1 Introduction

It is well known (see [Rob38, Sce61, Sta01]) that there is a one-to-one mapping,
namely the Robinson-Schensted correspondence, between the set of words of length
m in the alphabet {1, ..., n} and the set of pairs of Young tableaux (P,Q), where P is a
semistandard Young tableau with entries from the given alphabet and Q is a standard
tableau with entries {1, 2, ...,m}. The two tableaux have the same shape which is a
partition of the length of the word. If the given word is a permutation of {1, ..., n},
then P,Q are both standard Young tableaux with the same shape. Hence the Robinson-
Schensted algorithm provides a bijection between the symmetric group Sn and pairs of
standard Young tableaux with the same shape, which implies the fundamental identity∑

λ`n

|{P : standard Young tableau of shape λ}|2 = n! = |Sn|

where the summation is over partitions of n, i.e. partitions with n boxes.
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q-deformed symplectic Schur functions and the Berele algorithm

Berele in [Ber86] proved that similarly to the Robinson-Schensted algorithm, there
exists a one-to-one correspondence between words of length m from the alphabet
{1, 1̄, ..., n, n̄} and the sets of pairs (P, f), where P is a symplectic tableau and f =

(f0, ..., fm) is a recording sequence of oscillating diagrams such that the shape of P
is given by fm. The Berele correspondence can be used to prove Littlewood-type
identities associated with the symplectic group. For example, Berele’s scheme gives a
combinatorial proof for the following identity ([Sun90b])

(a1 + a−1
1 + ...+ an + a−1

n )m =
∑
λ∈Λn

Qλ
m(n)Sp

(n)
λ (a1, ..., an) (1.1)

where Λn denotes the set of partitions of length at most n. Here we denote by Sp
(n)
λ

the symplectic Schur function, namely the character of an irreducible finite-dimensional
representation of the symplectic group Sp(2n), parametrized by λ and we write Qλ

m(n)

for the number of oscillating sequences of diagrams f0 = ∅, f1, ..., fm = λ with length
at most n. In the thesis of Sundaram [Sun86] more results for the symplectic Schur
functions are proved using Berele’s bijection.

In this paper we will propose a randomisation of Berele’s algorithm introducing a
tuning parameter q ∈ (0, 1). This will enable us to derive a generalisation of identity
(1.1) where the symplectic Schur functions are replaced by a multivariate extension of
the continuous q-Hermite polynomials (for an extensive review on the properties of the
continuous q-Hermite polynomials and their connections with other basic hypergeometric
polynomials we refer the reader to [KLS10]), which we denote, in 6.3, by P (n)

λ (a1, ..., an; q).
In Corollary 6.6 we present the following identity

(a1 + a−1
1 + ...+ an + a−1

n )m =
∑
λ∈Λn

Qλ
m(n; q)P

(n)
λ (a1, ..., an; q)

where the function Qλ
m(n; q) is given as the sum over sequences of diagrams f0 =

∅, f1, ..., fm = λ with length at most n where each such sequence has a weight that
depends on the parameter q. As q → 0, the quantity Qλ

m(n; q) converges to Qλ
m(n).

Later we will also see that the symplectic Schur function Sp
(n)
λ (a1, ..., an) corresponds

to the polynomial P (n)
λ (a1, ..., an; q) with q = 0, recovering identity (1.1). We remark that

although the left hand sides of identity (1.1) and the q-deformed identity are the same
and their right hand sides consist of the same number of terms, these terms do not
coincide with each other.

A randomisation of the column insertion version of the Robinson-Schensted algorithm
was previously proposed by O’Connell-Pei in [OCP13], where the insertion process is
formulated using insertion paths. A randomisation of the Robinson-Schensted algorithm
in the framework of Gelfand-Tsetlin patterns can be found in the work of Borodin-Petrov
[BP13] and Matveev-Petrov [MP16]. In our work, we follow the latter approach.

If the Robinson-Schensted algorithm is applied to a random word from the alphabet
{1, ..., n} then O’Connell proved in [O’C03] that the shape of the Young tableau evolves as
a Markov chain on the set of partitions with length at most n. The transition probabilities
are given in terms of the Schur functions. Similarly, the q-weighted version by O’Connell-
Pei leads to a random walk on Λn with transition probabilities involving q-Whittaker
functions instead. In this paper we will show that if we insert a random word from the
alphabet {1, 1̄, ..., n, n̄} according to the Berele insertion algorithm or its q-deformation
proposed, then the shape of the symplectic Young tableau evolves as a Markov chain on
Λn with transition probabilities given in terms of the symplectic Schur functions and the
functions P (n)(· ; q) respectively.

In the core of the current work lies an intertwining relation stated in Theorem 6.3.
This relation replaces the bijection property of the Berele algorithm. Similar relation is
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q-deformed symplectic Schur functions and the Berele algorithm

proved in [OCP13] for the q-weighted RSK algorithm, but to the author’s knowledge this
is the first intertwining relation in the symplectic setting.

The outline of the paper is the following. In section 2 we introduce all the relevant
notation. In section 3 we present the insertion algorithm proposed by Berele and study
the evolution of the shape of a Young tableau when we insert randomly chosen letters.
In section 4 we describe the algorithm using Gelfand-Tsetlin patterns instead of Young
tableau, which helps us to q-modify the insertion process in section 5. In section 6 we
state the main results obtained using an intertwining argument. In section 7 we study
the shape of the symplectic Young tableau when the q-deformation of the Berele insertion
algorithm is applied to a random word. Finally, the proof of the main intertwining identity
can be found in section 8.

2 Partitions and Young diagrams

A partition is a sequence λ = (λ1, λ2, ...) of integers satisfying λ1 ≥ λ2 ≥ ... ≥ 0 with
finitely many non-zero terms. We call each term λi a part of λ and the number of non-zero
parts the length of the partition λ, denoted by l(λ). Moreover we call |λ| :=

∑
i≥1 λi, the

weight of the partition λ. If |λ| = k, then we say that λ partitions k and we write λ ` k.
The set of partitions of length at most n is denoted by Λn.

We define the natural ordering on the space of partitions called the dominance order.
For two partitions λ, µ we write λ ≥ µ if and only if

λ1 + ...+ λi ≥ µ1 + ...+ µi, for all i ≥ 1.

We also define the notion of interlacing of partitions. Let λ and µ be two partitions
with λ ≥ µ. The partitions λ, µ are said to be interlaced, and we write µ � λ if and only if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... .

A partition λ can be represented in the plane by an arrangement of boxes called a
Young diagram. This arrangement is top and left justified with λi boxes in the i-th row.
We then say that the shape of the diagram, denoted by sh, is λ. For example the partition
λ = (3, 2, 2) can be represented as in figure 1.

Figure 1: A Young diagram of shape (3, 2, 2).

Given two partitions/diagrams λ and µ such that µ ⊂ λ (as a set of boxes), we call the
set difference λ \ µ a skew Young diagram. A skew Young diagram λ \ µ is a horizontal
strip if in each column it has at most one box.

Let us now consider a filling of a Young diagram, namely the symplectic Young tableau,
with entries from an alphabet [n, n̄] := {1 < 1̄ < ... < n < n̄}. For the rest of this paper,
we will refer to the relative position of a letter l in the alphabet [n, n̄] as the order of the
letter and write order(l). Specifically, we have that order(l) = 2l and order(l̄) = 2l − 1,
for l = 1, ..., n.

Definition 2.1 ([Kin71]). A symplectic Young tableau is a filling of a Young diagram with
entries from the alphabet [n, n̄] satisfying the following conditions.
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(S1) The entries are weakly increasing along the rows;
(S2) The entries are strictly increasing down the columns;
(S3) No entry < i occurs in row i, for any i.
We denote the set of symplectic tableaux with entries from [n, n̄] by T[n,n̄].

Example 2.2. The filling of the diagram of shape (4, 3) is a symplectic Young tableau,

1 1̄ 1̄ 2̄

2 2 2̄

whereas the filling

1 1̄ 1̄ 2̄

1̄ 2 2̄

is not since there exists an entry 1̄ at the second row violating condition (S3).

We will now define an oscillating tableau, which plays the role of a recording tableau.

Definition 2.3. An oscillating tableau of length m is a sequence of partitions f =

(f0, ..., fm), with f0 = ∅ such that any two consecutive partitions differ by exactly one
box, i.e. for 1 ≤ i ≤ m, it holds that f i \ f i−1 = � or f i−1 \ f i = �. We say that an
oscillating tableau f of length m has shape λ if fm = λ.

We will denote the set of oscillating tableaux of length m by Om and the set of
oscillating tableau f ∈ Om, which moreover satisfy the property that for each 1 ≤ i ≤ m,
f i ∈ Λn by Om(n). Finally, for λ ∈ Λn we write Qλ

m(n) for the number of oscillating
tableau f ∈ Om(n) of shape λ.

3 The Berele insertion algorithm

We recall that the Robinson-Schensted algorithm has two versions; the row insertion
and the column insertion. The Berele algorithm follows the row insertion version. Before
we describe the insertion algorithm we need to introduce a sliding algorithm called the
jeu de taquin algorithm.

Definition 3.1. A punctured tableau of shape z is a Young diagram of shape z in which
every box except one is filled. We will refer to this special box as the empty box.

Definition 3.2 (jeu de taquin). Let T be a punctured tableau with (α, β)-entry, where α

denotes the row and β the column, tαβ and with empty box in position (i, j). We consider
the transformation jdt : T → jdt(T ) defined as follows

• if T is an ordinary tableau then jdt(T ) = T ;

• while T is a punctured tableau

T →
{

T switching the empty box and ti,j+1 , if ti,j+1 < ti+1,j

T switching the empty box and ti+1,j , if ti,j+1 ≥ ti+1,j .

EJP 23 (2018), paper 79.
Page 4/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP206
http://www.imstat.org/ejp/
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Here we will use the convention that if the empty box has only one right/down
neighbouring box (α, β), then

T → T switching the empty box and tα,β .

Example 3.3.

T =
1 2

2 2

t12 < t21
1 2

2 2

t13 = t22
1 2

2

2
= jdt(T )

We are now ready to describe the Berele insertion algorithm. To insert a letter i from
the alphabet [n, n̄] to a symplectic tableau P , we begin by trying to place the letter at
the end of the first row. If the result is a symplectic tableau we are done. Otherwise, the
smallest entry which is larger than i is bumped and we proceed by inserting the bumped
letter to the second row and so on. Suppose now that at some instance of the insertion
process condition (S3) in Definition 2.1 is violated. This means that we tried to insert a
letter l to the l-th row of the tableau, for some 1 ≤ l ≤ n, and bumped an l̄ letter. Since
we cannot insert l̄ to the (l + 1)-th row we erase both l and l̄, leaving the box formerly
occupied by the l̄ as an empty box. We then apply jeu de taquin algorithm.

Example 3.4. Insert 1̄ to

P =

1 1 2 2̄

2 2̄ 3

3 3̄

+1̄

bump 2

1 1 1̄ 2̄

2 2̄ 3

3 3̄

+2
bump 2̄

1 1 1̄ 2̄

2 2 3

3 3̄ +2̄

cancel 2,2̄

1 1 1̄ 2̄

2 3

3 3̄

jeu de taquin

1 1 1̄ 2̄

2 3

3 3̄

= (P
B← 1̄)

The insertion algorithm can be applied to a word w = w1, ..., wm, with wi ∈ [n, n̄],
starting with an empty tableau. The output, denoted by B(w), is a symplectic Young
tableau along with an oscillating tableau f = (f0, ..., fm) that records the shapes of the
symplectic tableau for all the intermediate steps. More specifically, if we denote by P (i)

the tableau after the insertion of the i-th letter then shP (i) = f i for i = 1, ..,m.

Example 3.5. Applying the Berele algorithm to the word w = 3̄21̄3̄121 yields the pair
B(w) = (P, f = (f0, ..., f7)), where
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P (i) :

f i :

∅

∅

3̄

(1)

2

3̄

(1, 1)

1̄

2

3̄

(1, 1, 1)

1̄

2

3̄

3̄

(2, 1, 1)

2

3̄

3̄

(2, 1)

2

3̄

2

3̄

(2, 2)

1

2

3̄

2

3̄

(2, 2, 1) .

Analogously to the Robinson-Schensted correspondence, Berele proved the following
result.

Theorem 3.6 ([Ber86]). B is a bijection between words w1, ..., wm in the alphabet [n, n̄] =
{1, 1̄, ..., n, n̄} and pairs (P, f) ∈ T[n,n̄] ×Om(n) in which P is a symplectic tableau and f

is an oscillating tableau with shape fm = shP .

O’Connell observed, in [O’C03], that if the Robinson-Schensted algorithm is applied
to a random word, then the shape of the output tableau evolves as a Markov chain on
the set of partitions with transition kernel given in terms of Schur functions.

We will devote the rest of this section to the study of the evolution of the shape of the
symplectic tableau when we Berele-insert a random word from the alphabet [n, n̄]. We
first need to introduce some notation.

Fix n ≥ 1 and a = (a1, ..., an) ∈ Rn
>0. If w = w1, ..., wm is a word from [n, n̄], we write

aw = aw1
...awm

where we use the convention that al̄ = a−1
l , for 1 ≤ l ≤ n.

For a symplectic Young tableau P with entries from [n, n̄], we write

aP =

n∏
l=1

a
#{l’s in P}−#{l̄’s in P}
l .

We can now give a combinatorial definition for the symplectic Schur functions.

Definition 3.7. ([Kin71]) Let λ ∈ Λn be a partition with length at most n. The symplectic
Schur function parametrized by λ is given by

Sp
(n)
λ (a) =

∑
P∈T[n,n̄]:
shP=λ

aP .

The symplectic Schur function satisfies the Pieri rule, i.e for every λ ∈ Λn and a ∈ Rn
>0

the following identity holds ([Sun90a])

Sp
(n)
λ (a)

n∑
i=1

(ai + a−1
i ) =

n∑
l=1

(
Sp

(n)
λ+el

(a)1λ+el∈Λn
+ Sp

(n)
λ−el

(a)1λ−el∈Λn

)
. (3.1)

Let us now consider a sequence of independent random variables {wk, k ≥ 1} taking
values in [n, n̄] with common distribution given, for 1 ≤ l ≤ n, by

ρ(l) := P[wk = l] =
al∑n

i=1(ai + a−1
i )

ρ(l̄) := P[wk = l̄] =
a−1
l∑n

i=1(ai + a−1
i )

. (3.2)

Let (P (m), f(m)) ∈ T[n,n̄] ×Om(n) be the pair of tableau obtained when we apply the
Berele algorithm to the random word w1, ..., wm from [n, n̄] with distribution ρ. Then, due
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to the fact that the Berele insertion algorithm is a bijection between words and pairs of
tableaux, we conclude that for (P, f = (f0, ..., fm)) ∈ T[n,n̄] ×Om(n)

P[(P (m), f(m)) = (P, f)] =
aP

(
∑n

i=1(ai + a−1
i ))m

1shP=fm . (3.3)

Summing (3.3) over (P, f = (f0, ..., fm)) ∈ T[n,n̄] × Om(n) such that shP = fm = λ we
conclude that

P[shP (m) = λ] =
1

(
∑n

i=1(ai + a−1
i ))m

Sp
(n)
λ (a)Qλ

m(n)

where we recall that Qλ
m(n) is the number of oscillating tableaux f ∈ Om(n) with shape

λ. Using the fact that ∑
λ∈Λn

P[shP (m) = λ] = 1

we may recover the following well-known character identity ([Sun90b])

∑
λ∈Λn

Sp
(n)
λ (a)Qλ

m(n) =
( n∑

i=1

(ai + a−1
i )

)m

.

If on the other hand we sum (3.3) over P ∈ T[n,n̄] we obtain a distribution for the whole
evolution of shapes of P , i.e. we conclude that for f = (f0, f1, ..., fm) ∈ Om(n)

P[shP (1) = f1, ..., shP (m) = fm] =
1

(
∑n

i=1(ai + a−1
i ))m

Sp
(n)
fm(a).

Note that, by the definition of conditional probability, we have that

P[shP (m) = fm|shP (1) = f1, ..., shP (m− 1) = fm−1]

=
1∑n

i=1(ai + a−1
i )

Sp
(n)
fm(a)

Sp
(n)
fm−1(a)

1fm−1 fm

where the symbol µ λ means that the partition λ can be obtained from µ by either an
addition or a deletion of a box.

The last observation summarises to the following result.

Theorem 3.8. We fix n ≥ 1 and a = (a1, ..., an) ∈ Rn
>0. Let P (0) be the empty tableau,

w1, w2, ... be a sequence of independent random variables chosen independently from
ρ = {ρ(w), w ∈ [n, n̄]}, given in (3.2), and {P (m),m ≥ 1} be the sequence of symplectic
tableaux obtained from the empty tableau after sequentially inserting the randomly
chosen letters w1, w2, ..., i.e. for m ≥ 1, P (m) is given by

P (m) = (P (m− 1)
B← wm).

Then the shape {shP (m),m ≥ 0} is a Markov chain on the set of partitions Λn, started
from the empty partition, with transition kernel

Π(µ, λ) =
1∑n

i=1(ai + a−1
i )

Sp
(n)
λ (a)

Sp
(n)
µ (a)

1µ λ.

Let us consider the n-dimensional Markov chain X = (Xl(m), 1 ≤ l ≤ n;m ≥ 0) where
for each 1 ≤ l ≤ n, Xl(0) = 0 and for m > 0

Xl(m) = |{k ≤ m : wk = l}| − |{k ≤ m : wk = l̄}|
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where w1, w2, ... are letters from the alphabet [n, n̄] chosen independently with distribu-
tion ρ. Then X is a n-dimensional random walk, started from the origin, in which the l-th
component jumps to the right with probability ρ(l) and to the left with probability ρ(l̄).
Let us denote by ρ̂ the transition kernel of X killed upon leaving Λn.

From the Pieri identity (3.1) for the symplectic Schur function it is easy to check that
the function

hn(x) =

n∏
l=1

a−xl

l Sp(n)x (a)

is harmonic for ρ̂. Moreover, we observe that we may re-write the transition kernel Π as
follows

Π(µ, λ) = ρ̂(µ, λ)
hn(λ)

hn(µ)

therefore we may identify the shape of a Young tableau obtained from sequentially
inserting, randomly chosen with distribution ρ, letters from the alphabet [n, n̄] as the
Doob h-transform of X killed upon leaving Λn.

4 The Berele insertion algorithm for Gelfand-Tsetlin patterns

As we already mentioned, a different way to represent a symplectic Young tableau is
via a symplectic Gelfand-Tsetlin pattern. Let us make this statement more precise. For a
symplectic tableau P with entries from [n, n̄] and k ∈ [n, n̄] let zorder(k) = shP k, where
we recall that order(k) is the relative position of the letter k in the alphabet [n, n̄] i.e.
order(k) = 2l− 1 if k = l and 2l if k = l̄, and P k is the sub-tableau of P that contains only
entries of order less or equal to k. For example, if

P =
1 1̄ 2 2 2̄

2̄ 2̄

then z1 = shP 1 = (1), z2 = shP 1̄ = (2), z3 = shP 2 = (4, 0) and z4 = shP 2̄ = (5, 2). By the
definition of the symplectic Young tableau it follows that zk−1 � zk, for 1 ≤ k ≤ 2n. This
observation motivates the definition of the symplectic Gelfand-Tsetlin pattern.

Definition 4.1. Let N be a positive integer. A (symplectic) Gelfand-Tsetlin pattern Z =

(z1, ..., zN ) with N levels is a collection of partitions with z2l−1, z2l ∈ Λl, for 1 ≤ l ≤
[
N+1
2

]
,

which satisfy the interlacing conditions

z1 � z2 � ... � zN .

We denote the set of Gelfand-Tsetlin patterns with N levels by KN .

Schematically, a symplectic Gelfand-Tsetlin pattern is represented as in figure 2. In
this paper we will only focus on patterns with even number of levels N = 2n.

Before we describe the effect of Berele’s insertion algorithm on the particles of a
GT pattern, let us “translate” the changes that may occur to a Young tableau in the
language of particles. Suppose that a letter of order k is added at the i-th row of a Young
tableau, this means that zki will increase by 1. In the language of particles this increase
corresponds to a right jump of the particle at position zki by one step. Similarly, if a letter
of order k is removed from the i-th row of a Young tableau then zki will decrease by 1

which represents a left jump for the corresponding particle.
Inserting a letter l ∈ [n, n̄] leads to an attempted right jump of the particle zk1 ,

where k = order(l) is the relative position of the letter l in the alphabet [n, n̄], at the
corresponding Gelfand-Tsetlin pattern.
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z11

z21

z31z32

z41z42

z2n1z2n2z2nn

Figure 2: An element of K2n. Both levels with indices 2l, 2l − 1 contain l particles. At
each level the particles satisfy the interlacing property, i.e. z2l−1

l ≤ z2ll ≤ z2l−1
l−1 ≤ ... ≤

z2l−1
1 ≤ z2l1 and z2l+1

l+1 ≤ z2ll ≤ z2l+1
l ≤ ... ≤ z2l1 ≤ z2l+1

1 .

If a particle zki , for some 1 ≤ i ≤ [k+1
2 ], 1 ≤ k ≤ 2n, attempts a right jump, then

i) if zki = zk+1
i the jump is performed and zk+1

i is pushed one step to the right. This
means that the letter of order k is either added at the end of the i-th row or causes a
letter of order greater than k+1 being bumped from the i-th row of the corresponding
tableau;

ii) if zki < zk+1
i we have two different cases

a. if i = k+1
2 , with k odd, the jump is suppressed and zk+1

i is pulled to the left instead.
The transition described here corresponds to the cancellation step in Berele’s
algorithm;

b. for all the other particles, the jump is performed and the particle zk+1
i+1 is pulled

to the right. This means that a letter of order k is added at the i-th row of the
corresponding tableau and bumps another letter of order k+1 to the row beneath.

If zki performs a left jump, then it triggers the leftward move of exactly one of its
nearest lower neighbours; the left, zk+1

i+1 , if z
k
i = zk+1

i+1 and therefore the jump would lead

to violation of the interlacing condition and the right, zk+1
i , otherwise. The transition we

describe here corresponds to the jeu de taquin step of Berele’s algorithm. Let us explain
why.

We assume without loss of generality that k = 2l and z2li , for some 1 ≤ i ≤ l, jumps to
the left. This means that a letter ≤ l̄ is removed from a box in the i-th row of the tableau.
Note that the empty box can now have only letters ≥ l+1 to its right. If z2li = z2l+1

i+1 , then
beneath the empty box there is a letter ≤ l + 1, therefore according to the jeu de taquin
algorithm we should swap the empty box with the box beneath. Therefore, the (i+ 1)-th
row now contains one less box with entry ≤ l + 1, causing z2l+1

i+1 to jump to the left.

Let us close this section by giving an example.

Example 4.2. Suppose n = 2. Inserting a letter 1̄, in step a) the particle z21 performs a
rightward jump. Since z21 < z31 , z

2
1 triggers the move of z32 . In b) z32 attempts to jump to

the right, but since z32 < z42 , the jump is suppressed. Finally, in step c) since the jump of
the particle z32 was suppressed, z42 performs a leftward jump instead.
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a) 1

2 3

31

42

b) 1

3

31

42

c) 1

3

31

421

5 A q-deformation of Berele’s insertion algorithm

In this section we consider a generalization of Berele’s insertion algorithm that
depends on a parameter q ∈ (0, 1). The q-deformed algorithm can be thought as a
randomization of the usual algorithm, as inserting a letter to a given tableau results to a
distribution over a set of tableaux. The proposed q-deformation has the property that
the shape of the Young tableau again evolves as a Markov chain on Λn.

Since a symplectic tableau is equivalent to a symplectic Gelfand-Tsetlin pattern we
will present the algorithm in terms of dynamics on the pattern.

For q ∈ (0, 1) and (x, y) ∈ Λn × Λn or (x, y) ∈ Λn−1 × Λn satisfying the interlacing
condition x � y, we define the quantities

ri(y;x) = qyi−xi
1− qxi−1−yi

1− qxi−1−xi
, li(y;x) = qxi−yi+1

1− qyi+1−xi+1

1− qxi−xi+1
(5.1)

for 1 ≤ i ≤ n, with the convention that if x = (x1, ..., xn) ∈ Λn, we set xn+1 ≡ 0 and
x0 ≡ ∞ (similarly for y) and the quantities li(y;x), ri(y;x) are modified accordingly. A
version of the quantities ri, li first appeared in the work of Borodin-Petrov [BP13]. The
particle-particle and particle-wall interaction we will consider in this section are similar
to the particle-particle interactions of the RSK-type dynamics studied in [BP13] (see
Dynamics 8 on section 8.2.1).

Inserting a letter l ∈ [n, n̄] leads to an attempted right jump of the particle zk1 , where
k denotes the order of the letter l, at the corresponding Gelfand-Tsetlin pattern.

If a particle zki attempts a rightward jump, then

i) if i = k+1
2 , with k odd, then with probability ri(z

k+1; zk), the jump is performed and
zk+1
i is pushed to the right. Otherwise, with probability 1− ri(z

k+1; zk) the jump is
suppressed and zk+1

i is pulled to the left instead;

ii) for all the other particles, the jump is performed and either the particle zk+1
i is

pushed to the right with probability ri(z
k+1; zk) or the particle zk+1

i+1 is pulled to the
right with probability 1− ri(z

k+1; zk).

If zki performs a left jump, then it triggers the leftward move of exactly one of its
nearest lower neighbours; the left, zk+1

i+1 , with probability li(z
k+1; zk) and the right, zk+1

i ,
with probability 1− li(z

k+1; zk).

Remark 5.1. The processes considered in [BP13] have the characteristic that the edge
of the pattern evolves in a Markovian way. From the description of the dynamics we
see that this is not the case in the processes we defined. For example, if the particle zk1
jumps to the left, it will pull the particle zk+1

1 to the left with probability 1− l1(z
k+1; zk),

which depends on the position of particles zk2 and zk+1
2 . Nevertheless, different type

of dynamics on symplectic Gelfand-Tsetlin patterns with this characteristic exist in the
q = 0 setting (e.g. [WW09]). The author is not aware of dynamics with this charactestic
for q ∈ (0, 1).
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By the description of the algorithm, we see that any transition or attempted transition
propagates all the way to the end of the pattern. Multiplying all the probabilities obtained
till we reach the bottom of the pattern we obtain a probability distribution over the
set K2n of symplectic Gelfand-Tsetlin patterns with 2n levels. Let us denote by Il(Z, Z̃)

the probability of obtaining a Gelfand-Tsetlin pattern Z̃ for Z after inserting the letter
l ∈ [n, n̄].

The q-insertion Berele algorithm can be applied to a word w = w1...wm ∈ [n, n̄]m

starting from a Gelfand-Tsetlin pattern initialised at the origin, i.e. a Gelfand-Tsetlin
pattern with all its coordinates equal to zero, which we denote by 0. Successively
inserting the letters w1, ..., wm we obtain a distribution of weights φw(·, ·) on K2n×Om(n)

recursively as follows. Set

φl(Z, f) =

{
1 if zki = 1{i=1,k≥order(l)} and f = (∅, (1))
0 otherwise

where we recall that order(l) denotes the order of the letter l in the alphabet [n, n̄].

For w ∈ [n, n̄]m, l ∈ [n, n̄] and (Z̃, f̃ = (f0, ..., fm, fm+1)) ∈ K2n ×Om+1(n) we set

φwl(Z̃, f̃) =
∑

Z∈K2n

φw(Z, f)Il(Z, Z̃)

where f = (f0, ..., fm).

6 Main results

Before we present the main results, let us introduce some more notation.

The q-Pochhammer symbol is written as (q; q)n and defined via the product

(q; q)n =

n∏
k=1

(1− aqk), (q; q)∞ =
∏
k≥1

(1− qk).

The q-factorial is written as n!q and is defined as

n!q =
(q; q)n
(1− q)n

.

The q-binomial coefficients are defined in terms of q-factorials as follows(
n

k

)
q

=
n!q

k!q(n− k)!q
.

We finally record some properties of the q-binomial coefficient that we will use later(
n+ 1

k

)
q

=

(
n

k

)
q

1− qn+1

1− qn−k+1

(
n− 1

k

)
q

=

(
n

k

)
q

1− qn−k

1− qn(
n

k + 1

)
q

=

(
n

k

)
q

1− qn−k

1− qk+1

(
n

k − 1

)
q

=

(
n

k

)
q

1− qk

1− qn−k+1

(6.1)

Definition 6.1. The continuous q-Hermite polynomials are defined for ` ∈ Z≥0 as

H`(x|q) =
∑̀
m=0

(
`

m

)
q

eiθ(2m−`), x = cos θ.
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In this paper we will only work with a = eiθ ∈ R>0.
We now need to define some special Laurent polynomials that generalise the continu-

ous q-Hermite polynomials to higher dimensions. Let n ≥ 1, then for a = (a1, ..., an) ∈ Rn
>0

and each symplectic Gelfand-Tsetlin pattern Z ∈ K2n, we define

aZ =

n∏
i=1

a
2|z2i−1|−|z2i|−|z2i−2|
i

and

κn(Z) =

n∏
k=1

k−1∏
i=1

(
z2k−1
i − z2k−1

i+1

z2k−1
i − z2k−2

i

)
q

(
z2ki − z2ki+1

z2ki − z2k−1
i

)
q

(
z2kk

z2kk − z2k−1
k

)
q

. (6.2)

For a partition λ = (λ1 ≥ ... ≥ λn) we consider the function

P
(n)
λ (a; q) :=

∑
Z∈K2n[λ]

aZκn(Z) (6.3)

where K2n[λ] denotes the set of Gelfand-Tsetlin patterns with shape z2n = λ.

Remark 6.2. The deformed hyperoctahedral q-Whittaker functions are five-parameter
functions that are invariant under the action of permutation and inversion. They contain
as special cases the q-Whittaker functions of type B and type C. A branching formula
for these polynomials, for general choice of parameters, was proved by van Diejen and
Emsiz in [vDE16]. In the author’s PhD thesis, [Nte17], an attempt was made to identify
the polynomials Pλ with the q-Whittaker functions of type B, comparing them with the
polynomials in [vDE16]. Unfortunately, proving this was only possible in the special case
where the partition λ is a single row or a single column partition.

When q = 0, κn(Z) = 1, for every Z ∈ K2n, therefore

P
(n)
λ (a; q = 0) =

∑
Z∈K2n[λ]

aZ = Sp
(n)
λ (a).

The last equality follows from Definition 3.7 and the mapping between Gelfand-Tsetlin
patterns and Young tableaux described in section 4.

For a Gelfand-Tsetlin pattern Z ∈ K2n, let Z1:2(n−1) be a Gelfand-Tsetlin pattern
consisting of the top 2(n−1) levels of Z. We then note that the weight κn(Z) decomposes
as follows

κn(Z) = κn−1(Z
1:2(n−1))

n−1∏
i=1

(
z2n−1
i − z2n−1

i+1

z2n−1
i − z2n−2

i

)
q

(
z2ni − z2ni+1

z2ni − z2n−1
i

)
q

(
z2nn

z2nn − z2n−1
k

)
q

=: κn−1(Z
1:2(n−1))κ̂n

n−1(z
2n−2, z2n−1, z2n).

(6.4)

Therefore, the function P (n) exhibits a recursive structure as follows

P
(n)
λ (a; q) =

∑
a2|z

2n−1|−|z2n|−|z2n−1|
n κ̂n

n−1(z
2n−2, z2n−1, z2n)Pn−1

z2n−2(ã; q)

where the summation is over (z2n−2, z2n−1, z2n) ∈ Λn−1 × Λn × Λn satisfying z2n−2 �
z2n−1 � z2n ≡ λ and ã = (a1, ..., an−1) is the vector consisting of the first n−1 coordinates
of a.

Let us consider the kernel operator Ln acting on functions on Λn as follows

(Lnf)(λ) =
∑
µ∈Λn

Ln(λ, µ)f(µ)
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where

Ln(λ, µ) =


u+
n,i(λ) if µ = λ+ ei, 1 ≤ i ≤ n

u−
n,i(λ) if µ = λ− ei, 1 ≤ i ≤ n

0 otherwise
(6.5)

and

u+
n,i(λ) =

{
1− qλi−1−λi if 1 < i ≤ n

1 if i = 1
(6.6)

u−
n,i(λ) =

{
1− qλi−λi+1 if 1 ≤ i < n

1− qλn if i = n
(6.7)

We also define the operator Mn which acts on functions of Young tableaux as follows

(Mnf)(Z) =
∑

Z∈K2n

Mn(Z, Z̃)f(Z̃)

with

Mn(Z, Z̃) =
∑

l∈[n,n̄]

alIl(Z, Z̃)

where al̄ = a−1
l , for 1 ≤ l ≤ n.

Finally, we define the operator Kn which acts on functions on the space of Young
tableaux, K2n, as follows

(Knf)(λ) =
∑

Z∈K2n

Kn(λ,Z)f(Z)

where

Kn(λ,Z) = aZκn(Z)1z2n=λ.

The operator Ln acts on partitions, whereas the operator Mn acts on Young tableaux.
The kernel Kn can be used as a link between a Young tableau and its shape as follows.

Theorem 6.3. The following intertwining relation holds

KnMn = LnKn.

The proof of Theorem 6.3 can be found in section 8. The above intertwining relation
implies that the polynomials P

(n)
λ (a; q) are eigenfunctions of the operator Ln. More

specifically the following result holds.

Proposition 6.4. The following identity holds

LnP
(n)
λ (a; q) =

n∑
i=1

(ai + a−1
i )P

(n)
λ (a; q)

for all λ ∈ Λn and a ∈ Rn
>0.

Proof. We observe that the function P
(n)
λ (a; q) can be re-written using the kernel Kn as

follows

P
(n)
λ (a; q) =

∑
Z∈K2n

aZκn(Z)1z2n=λ =
∑

Z∈K2n

Kn(λ,Z)

therefore we have the following

LnP
(n)
λ (a; q) = Ln

∑
Z∈K2n

Kn(λ,Z) =
∑

Z∈K2n

(LnKn)(λ,Z)

EJP 23 (2018), paper 79.
Page 13/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP206
http://www.imstat.org/ejp/


q-deformed symplectic Schur functions and the Berele algorithm

using the intertwining identity from Theorem 6.3 the last quantity equals∑
Z∈K2n

(KnMn)(λ,Z) =
∑

Z∈K2n

∑
Z̃∈K2n

Kn(λ, Z̃)Mn(Z̃, Z)

=
∑

Z̃∈K2n

Kn(λ, Z̃)
∑

Z∈K2n

∑
l∈[n,n̄]

alIl(Z̃, Z).

We recall that Il(Z̃, Z) denotes the probability of obtaining the Gelfand-Tsetlin pattern Z

from Z̃ after inserting the letter l, therefore for each l ∈ [n, n̄] and Z̃ ∈ K2n, we have∑
Z∈K2n

Il(Z̃, Z) = 1

and hence we conclude that

LnP
(n)
λ (a; q) =

∑
Z̃∈K2n

Kn(λ, Z̃)
∑

l∈[n,n̄]

al =

n∑
i=1

(ai + a−1
i )P

(n)
λ (a; q)

as required.

The intertwining relation also leads to an expression for the distribution over K2n ×
Om(n) when we average over all the words of length m.

Theorem 6.5. Let (Z, f = (f0, ..., fm)) ∈ K2n ×Om(n) such that z2n = fm. Then

∑
w∈[n,n̄]m

awφw(Z, f) = aZκn(Z)

m∏
i=1

Ln(f
i−1, f i) (6.8)

where we recall that aw =
∏m

i=1 awi with al̄ = a−1
l , for 1 ≤ l ≤ n.

Proof. Let us denote by Z(i) the Gelfand-Tsetlin pattern obtained after inserting the i-th
letter to the corresponding Young tableau. For (Z, f) ∈ K2n×Om(n) with f = (f0, ..., fm)

and z2n = fm we have∑
w∈[n,n̄]m

awφw(Z, f)

=
∑

w∈[n,n̄]m

aw
∑

(Z(i))mi=1:

z2n(i)=fi

Iw1
(0, Z(1)) ... Iwm

(Z(m− 1), Z)

=
∑

(Z(i))mi=1:

z2n(i)=fi

( ∑
w1∈[n,n̄]

aw1
Iw1

(0, Z(1))
)
...
( ∑

wm∈[n,n̄]

awm
Iwm

(Z(m− 1), Z)
)

=
∑

(Z(i))mi=1:

z2n(i)=fi

Mn(0, Z(1)) ...Mn(Z(m− 1), Z)

Since Z(1) is the Gelfand-Tsetlin pattern obtained after inserting a single letter
l ∈ [n, n̄] to an empty tableau, it holds that

zkj (1) =

{
1 if j = 1, k ≥ order(l)

0 otherwise

therefore
Mn(0, Z(1)) = al = Kn(f

1, Z(1)).
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Thus, for the summation over Z(1) ∈ K2n such that z2n(1) = f1 we have that∑
Z(1):

z2n(1)=f1

Mn(Z(1), Z(2))Mn(0, Z(1)) =
∑
Z(1):

z2n(1)=f1

Mn(Z(1), Z(2))Kn(f
1, Z(1))

= Ln(f
1, f2)Kn(f

2, Z(2))

where for the last equality we used the intertwining relation from Theorem 6.3 along
with the fact that inside the summation for Z(2) we have that z2n(2) = f2.

Applying repeatedly the intertwining relation we conclude that

∑
w∈[n,n̄]m

awφw(Z, f) =

m−1∏
i=1

Ln(f
i, f i+1)Kn(f

m, Z)

which concludes the result observing that Ln(∅, f1) = 1.

Summing (6.8) over Z ∈ K2n and f ∈ Om(n) such that z2n = fm gives the following

∑
f∈Om(n)

m∏
i=1

Ln(f
i−1, f i)

∑
Z∈K2n[fm]

aZκn(Z) =
∑

w∈[n,n̄]m

aw
∑

(Z,f)∈K2n×Om(n):

z2n=fm

φw(Z, f)

∑
f∈Om(n)

m∏
i=1

Ln(f
i−1, f i)P

(n)
fm (a; q) =

∑
w∈[n,n̄]m

aw

therefore the following result holds.

Corollary 6.6. For a = (a1, ..., an) ∈ Rn
>0, let P

(n)
λ (a; q) denote the function defined in

(6.3) and

Qλ
m(n; q) =

∑
f∈Om(n)
fm=λ

m∏
i=1

Ln(f
i−1, f i) (6.9)

then the following Littlewood-type identity holds

(a1 + a−1
1 + ...+ an + a−1

n )m =
∑
λ∈Λn

Qλ
m(n; q)P

(n)
λ (a; q). (6.10)

Since f ∈ Om(n) we have that for every 1 ≤ i ≤ m, f i−1 \ f i = (1) or f i \ f i−1 = (1)

therefore there exists 1 ≤ j ≤ n such that Ln(f
i−1, f i) = u+

n,j(f
i−1) or u−

n,j(f
i−1),

therefore as q → 0 we have that Ln(f
i−1, f i)→ 1. Hence as q → 0

Qλ
m(n; q)→

∑
f∈Om(n):

fm=λ

1 = Qλ
m(n)

where we recall that Qλ
m(n) denotes the set of oscillating sequences f = (f0, ..., fm) ∈

Om(n) with fm = λ. Therefore, the identity (6.10) generalises identity (1.1) for q ∈ (0, 1).

7 A Markov chain on Gelfand-Tsetlin patterns

In section 5 we proposed a q-deformation of the Berele insertion algorithm on Gelfand-
Tsetlin patterns. Let us now assume that the inserted letters are chosen randomly. More
specifically, for a word w = w1, ..., wm we assume that wi is chosen independently of the
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other letters from [n, n̄] with distribution ρ, defined in (3.2). The probability of obtaining
a pair (Z, f) ∈ K2n ×Om(n) is given by

P(Z, f) =
∑

w∈[n,n̄]m

m∏
i=1

ρ(wi)φw(Z, f)

=
∑

w∈[n,n̄]m

aw

(
∑n

i=1(ai + a−1
i ))m

φw(Z, f)

where aw =
∏m

i=1 awi
with al̄ = a−1

l . Using identity (6.8) we conclude that

P(Z, f) =
1

(
∑n

i=1(ai + a−1
i ))m

aZκn(Z)

m∏
i=1

Ln(f
i−1, f i)

and summing over Z ∈ K2n with z2n = fm we obtain a distribution over the sequence of
shapes for all the intermediate steps

P(f1, ..., fm) =
1

(
∑n

i=1(ai + a−1
i ))m

P
(n)
fm (a; q)

m∏
i=1

Ln(f
i−1, f i).

We moreover have

P(fm|f1, ..., fm−1) =
1∑n

i=1(ai + a−1
i )

P
(n)
fm (a; q)

P
(n)
fm−1(a; q)

Ln(f
m−1, fm)

therefore the sequence of shapes {fm,m ≥ 0} evolves as a Markov chain on Λn with
transition kernel

Π(µ, λ) =
1∑n

i=1(ai + a−1
i )

P
(n)
λ (a; q)

P
(n)
µ (a; q)

Ln(µ, λ).

We summarise the results of this section to the following theorem which generalises
Theorem 7.1 for q ∈ (0, 1).

Theorem 7.1. When applying the q-version of the Berele insertion algorithm to a random
word w1, w2, ..., where each wi is chosen independently at random from [n, n̄] with
distribution ρ defined in (3.2), the sequence of tableaux {Z(m),m ≥ 0} obtained evolves
as a Markov chain on K2n with transition kernel

M(Z, Z̃) =
∑

l∈[n,n̄]

ρ(l)Il(Z, Z̃).

The sequence of shapes fm = z2n(m) evolves as a Markov chain on Λn with transition
kernel

Π(µ, λ) =
1∑n

i=1(ai + a−1
i )

P
(n)
λ (a; q)

P
(n)
µ (a; q)

Ln(µ, λ).

The conditional law of Z(m), given {f1, ..., fm; fm = λ} is

P(Z(m) = Z|f1, ..., fm; fm = λ) =
Kn(λ,Z)

P
(n)
λ (a; q)

.

The distribution of fm is given by

ν(λ) := P(fm = λ) =
1

(
∑n

i=1(ai + a−1
i ))m

P
(n)
λ (a; q)Qλ

m(n; q).
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Remark 7.2. The quantity ν(λ) defines a probability measure on Λn, therefore we obtain

the following identity for the function P
(n)
λ (·; q)

∑
λ∈Λn

P
(n)
λ (a; q)Qλ

m(n; q) =
( n∑

i=1

(ai + a−1
i )

)m

.

An analogous identity also holds for the q-Whittaker functions and can be found in [BC11]
and in [OCP13].

8 Proof of intertwining relation

In this section we will prove the intertwining relation of Theorem 6.3. Let us consider
the set Tn = {(x, y, z) ∈ Λn−1×Λn×Λn : x � y � z} and define the kernel K̂ : Λn×Tn 7→
R≥0 as follows

K̂n(z̃, (x, y, z)) = a2|y|−|x|−|z|
n κ̂n(x, y, z)1z=z̃

where

κ̂n(x, y, z) =

n−1∏
i=1

(
zi − zi+1

zi − yi

)
q

(
yi − yi+1

yi − xi

)
q

(
zn

zn − yn

)
q

.

We moreover consider the kernel M̂n : Tn × Tn 7→ R≥0 given as follows where the

(x̃, ỹ, z̃) M̂n((x, y, z), (x̃, ỹ, z̃))

(x+ ei, y + ei, z + ei), 1 ≤ i ≤ n− 1 ri(y;x)ri(z; y)u
+
n−1,i(x)

(x+ ei, y + ei, z + ei+1), 1 ≤ i ≤ n− 1 ri(y;x)(1− ri(z; y))u
+
n−1,i(x)

(x+ ei, y + ei+1, z + ei+1), 1 ≤ i ≤ n− 1 (1− ri(y;x))ri+1(z; y)u
+
n−1,i(x)

(x+ ei, y + ei+1, z + ei+2), 1 ≤ i ≤ n− 2 (1− ri(y;x))(1− ri+1(z; y))u
+
n−1,i(x)

(x+ en−1, y, z − en) (1− rn−1(y;x))(1− rn(z; y))u
+
n−1,n−1(x)

(x, y + e1, z + e1) anr1(z; y)

(x, y + e1, z + e2) an(1− r1(z; y))

(x, y, z + e1) a−1
n

(x− ei, y − ei, z − ei), 1 ≤ i ≤ n− 1 (1− li(y;x))(1− li(z; y))u
−
n−1,i(x)

(x− ei, y − ei, z − ei+1), 1 ≤ i ≤ n− 1 (1− li(y;x))li(z; y)u
−
n−1,i(x)

(x− ei, y − ei+1, z − ei+1), 1 ≤ i ≤ n− 2 li(y;x)(1− li+1(z; y))u
−
n−1,i(x)

(x− ei, y − ei+1, z − ei+2), 1 ≤ i ≤ n− 2 li(y;x)li+1(z; y)u
−
n−1,i(x)

(x− en−1, y − en, z − en) ln−1(y;x)u
−
n−1,n−1(x)

probabilities ri, and li are defined in (5.1) and u±
n−1,i are as in (6.6) and (6.7). We

moreover assume that M̂n((x, y, z), (x̃, ỹ, z̃)) = 0 for any choice of (x̃, ỹ, z̃) not listed
above.

We will prove that the kernels M̂n and Ln, defined in (6.5), are intertwined via the
kernel K̂n. This relation involves only a part of the Gelfand-Tsetlin pattern and hence
proving it will be substantially easier to handle than the general intertwining relation.

Proposition 8.1. The following intertwining relation holds

K̂nM̂n = LnK̂n.

Proof. Since K̂n is supported on {z = z̃} we have that

(K̂nM̂n)(z, (x̃, ỹ, z̃)) =
∑

(x,y)∈Λn−1×Λn:
(x,y,z)∈Tn

K̂n(z, (x, y, z))M̂n((x, y, z), (x̃, ỹ, z̃)) (8.1)
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and

(LnK̂n)(z, (x̃, ỹ, z̃)) = Ln(z, z̃)K̂n(z̃, (x̃, ỹ, z̃)). (8.2)

We observe that both sides of the intertwining relation vanish unless z̃ = z ± ei for some
1 ≤ i ≤ n hence we only need to confirm the equality of the two sides of the intertwining
relation for z ∈ Λn, (x̃, ỹ, z̃) ∈ Tn such that z̃ = z ± ei, for 1 ≤ i ≤ n.

Let us start with the case z̃ = z+e1 for which we provide full details of the calculations.
The other cases can be checked in a similar manner. In this case the summation in (8.1)
consists of the following terms.

I. If (x, y, z) = (x̃, ỹ, z̃ − e1) then

κ̂n(x̃, ỹ, z̃ − e1)

κ̂n(x̃, ỹ, z̃)
=

(
(z̃1 − 1)− z̃2
(z̃1 − 1)− ỹ1

)
q(

z̃1 − z̃2
z̃1 − ỹ1

)
q

=
1− qz̃1−ỹ1

1− qz̃1−z̃2

where we used properties of the q-binomial coefficient given in (6.1). We then have the
following

K̂n(z̃ − e1, (x̃, ỹ, z̃ − e1))M̂n((x̃, ỹ, z̃ − e1), (x̃, ỹ, z̃))

=a2|ỹ|−|x̃|−|z̃−e1|
n κ̂n(x̃, ỹ − e1, z̃ − e1)a

−1
n

=a2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)

1− qz̃1−ỹ1

1− qz̃1−z̃2
.

II. If (x, y, z) = (x̃, ỹ − e1, z̃ − e1) then

κ̂n(x̃, ỹ − e1, z̃ − e1)

κ̂n(x̃, ỹ, z̃)
=

(
(ỹ1 − 1)− ỹ2
(ỹ1 − 1)− x̃1

)
q(

ỹ1 − ỹ2
ỹ1 − x̃1

)
q

(
(z̃1 − 1)− z̃2

(z̃1 − 1)− (ỹ1 − 1)

)
q(

z̃1 − z̃2
z̃1 − ỹ1

)
q

=
1− qỹ1−x̃1

1− qỹ1−ỹ2

1− qỹ1−z̃2

1− qz̃1−z̃2
.

We then have the following

K̂n(z̃ − e1, (x̃, ỹ − e1, z̃ − e1))M̂n((x̃, ỹ − e1, z̃ − e1), (x̃, ỹ, z̃))

=a2|ỹ−e1|−|x̃|−|z̃−e1|
n κ̂n(x̃, ỹ − e1, z̃ − e1)anr1(z̃ − e1; ỹ − e1)

=a2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)

1− qỹ1−x̃1

1− qỹ1−ỹ2

1− qỹ1−z̃2

1− qz̃1−z̃2
qz̃1−ỹ1 .

III. If (x, y, z) = (x̃− e1, ỹ − e1, z̃ − e1) then

κ̂n(x̃− e1, ỹ − e1, z̃ − e1)

κ̂n(x̃, ỹ, z̃)
=

(
(ỹ1 − 1)− ỹ2

(ỹ1 − 1)− (x̃1 − 1)

)
q(

ỹ1 − ỹ2
ỹ1 − x̃1

)
q

(
(z̃1 − 1)− z̃2

(z̃1 − 1)− (ỹ1 − 1)

)
q(

z̃1 − z̃2
z̃1 − ỹ1

)
q

=
1− qx̃1−ỹ2

1− qỹ1−ỹ2

1− qỹ1−z̃2

1− qz̃1−z̃2
.
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Therefore we conclude that

K̂n(z̃ − e1, (x̃− e1, ỹ−e1, z̃ − e1))M̂n((x̃− e1, ỹ − e1, z̃ − e1), (x̃, ỹ, z̃))

=a2|ỹ−e1|−|x̃−e1|−|z̃−e1|
n κ̂n(x̃− e1, ỹ − e1, z̃ − e1)

× r1(ỹ − e1; x̃− e1)r1(z̃ − e1; ỹ − e1)u
+
n,1(x̃− e1)

=a2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)

1− qx̃1−ỹ2

1− qỹ1−ỹ2

1− qỹ1−z̃2

1− qz̃1−z̃2
qz̃1−x̃1 .

Adding the three terms together we conclude that

(K̂nM̂n)(z̃ − e1, (x̃, ỹ, z̃)) = K̂n(z̃, (x̃, ỹ, z̃))

which, since Ln(z̃ − e1, z̃) = u+
n,1(z̃ − e1) = 1, equals (LnK̂n)(z̃ − e1, (x̃, ỹ, z̃)). Therefore

for this case the two sides of the intertwining relation are equal.
If z̃ = z − e1 then the summation in (8.1) consists of a single term corresponding to

(x, y, z) = (x̃+ e1, ỹ + e1, z̃ + e1) and equals

K̂n(z̃ + e1,(x̃+ e1, ỹ + e1, z̃ + e1))M̂n((x̃+ e1, ỹ + e1, z̃ + e1), (x̃, ỹ, z̃))

=a2|ỹ+e1|−|x̃+e1|−|z̃+e1|
n κ̂n(x̃+ e1, ỹ + e1, z̃ + e1)

× (1− l1(ỹ + e1; x̃+ e1))(1− l1(z̃ + e1; ỹ + e1))u
−
n,1(x̃+ e1)

=a2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃1−z̃2+1).

The last quantity equals u−
n,1(z̃ + e1)K̂n(z̃, (x̃, ỹ, z̃)) which gives (8.2) for z̃ = z − e1, as

required.
If z̃ = z + ei, with 2 ≤ i ≤ n, the right-hand side of (8.1) of terms corresponding to

the following choices for (x, y, z)

i) a. (x, y, z) = (x̃− ei−2, ỹ − ei−1, z̃ − ei) if i > 2,

b. (x, y, z) = (x̃, ỹ − e1, z̃ − e2) if i = 2;

ii) (x, y, z) = (x̃− ei−1, ỹ − ei−1, z̃ − ei);

iii) (x, y, z) = (x̃− ei−1, ỹ − ei, z̃ − ei);

iv) (x, y, z) = (x̃− ei, ỹ − ei, z̃ − ei) for i < n.

The corresponding terms are

i) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−1−z̃i+1)

(1− qỹi−1−x̃i−1)(1− qz̃i−ỹi)

(1− qz̃i−z̃i+1)(1− qỹi−1−ỹi)
;

ii) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−1−z̃i+1)

qỹi−1−x̃i−1(1− qx̃i−1−ỹi)(1− qz̃i−ỹi)

(1− qz̃i−z̃i+1)(1− qỹi−1−ỹi)
;

iii) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−1−z̃i+1)

qz̃i−ỹi(1− qỹi−x̃i)(1− qỹi−z̃i+1)

(1− qz̃i−z̃i+1)(1− qỹi−ỹi+1)
;

iv) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−1−z̃i+1)

qz̃i−x̃i(1− qỹi−z̃i+1)(1− qx̃i−ỹi+1)

(1− qz̃i−z̃i+1)(1− qỹi−ỹi+1)
.

Gathering all the terms together we conclude that if z̃ = z + ei, then (8.1) equals
(1− qz̃i−1−z̃i+1)K̂n(z̃, (x̃, ỹ, z̃)) = (LnK̂n)(z̃ − ei, (x̃, ỹ, z̃)).

Finally, we conclude the proof of the Proposition confirming the intertwining relation
for z̃ = z − ei, for some 2 ≤ i ≤ n. In this case, we have the contribution of four terms
corresponding to the following
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i) (x, y, z) = (x̃+ ei−2, ỹ + ei−1, z̃ + ei), for i > 2;

ii) (x, y, z) = (x̃+ ei−1, ỹ + ei−1, z̃ + ei);

iii) (x, y, z) = (x̃+ ei−1, ỹ + ei, z̃ + ei);

iv) a) (x, y, z) = (x̃+ ei, ỹ + ei, z̃ + ei), if i < n

b) (x, y, z) = (x̃− en−1, ỹ, z̃ + en), if i = n.

The corresponding terms are given by

i) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−z̃i+1+1)

qx̃i−2−z̃i(1− qy
′
i−2−x̃i−2)(1− qz̃i−1−ỹi−1)

(1− qz̃i−1−z̃i)(1− qy
′
i−2−ỹi−1)

;

ii) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−z̃i+1+1)

qỹi−1−z̃i(1− qx̃i−2−ỹi−1)(1− qz̃i−1−ỹi−1)

(1− qz̃i−1−z̃i)(1− qy
′
i−2−ỹi−1)

;

iii) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−z̃i+1+1)

qx̃i−1−ỹi(1− qỹi−1−x̃i−1)(1− qỹi−1−z̃i)

(1− qz̃i−1−z̃i)(1− qỹi−1−ỹi)
;

iv) a
2|ỹ|−|x̃|−|z̃|
n κ̂n(x̃, ỹ, z̃)(1− qz̃i−z̃i+1+1)

(1− qỹi−1−z̃i)(1− qx̃i−1−ỹi)

(1− qz̃i−1−z̃i)(1− qỹi−1−ỹi)
.

Adding the four terms together we conclude that if z̃ = z − ei, for 2 ≤ i ≤ n, then the
right-hand side of (8.1) equals (1−qz̃i−z̃i+1+1)K̂n(z̃, (x̃, ỹ, z̃)) = (LnK̂n)(z̃+ei, (x̃, ỹ, z̃)).

Let us now proceed to the proof of Theorem 6.3. We will prove the result by induction
on n.

Base Case: We start by establishing the result for n = 1. For two Gelfand-Tsetlin
patterns Z, Z̃ ∈ K2 let us write z11 = x, z21 = y and z̃11 = x̃, z̃21 = ỹ. Then the kernels K1

and M1 are as follows

K1(λ,Z) = a2x−y
1

(
y

y − x

)
q

1y=λ

and

M1((x, y), (x̃, ỹ)) =


a1r1(y;x) if (x̃, ỹ) = (x+ 1, y + 1)

a1(1− r1(y;x)) if (x̃, ỹ) = (x, y − 1)

a−1
1 if (x̃, ỹ) = (x, y + 1)

0 otherwise

.

We then need to prove, for every y ∈ Z≥0 and (x̃, ỹ) ∈ T1 := {x̃, ỹ ∈ Z≥0 : x̃ ≤ ỹ}, the
following identity

(K1M1)(y, (x̃, ỹ)) = (L1K1)(x̃, ỹ)

which simplifies to∑
x∈Z≥0:
(x,y)∈T1

K1(y, (x, y))M1((x, y), (x̃, ỹ)) = L1(y, ỹ)K1(ỹ, (x̃, ỹ)) (8.3)

We observe that both sides of (8.3) are equal to zero, unless y = ỹ ± 1, therefore we
need to confirm the intertwining for every (x̃, ỹ) ∈ T1 and y = ỹ ± 1.

Starting with the case y = ỹ − 1 we have two non-zero terms. Using the properties of
the q-binomial coefficient, we recorded in (6.1), we calculate the contribution of each
term to the sum at the left-hand side of (8.3).
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I. if (x, y) = (x̃, ỹ − 1) then

K1(ỹ − 1, (x̃, ỹ − 1))M1((x̃, ỹ − 1), (x̃, ỹ))

= a2x̃−ỹ+1
1

(
ỹ − 1

ỹ − x̃− 1

)
q

a−1
1

= a2x̃−ỹ
1

(
ỹ

ỹ − x̃

)
q

1− qỹ−x̃

1− qỹ

= K1(ỹ, (x̃, ỹ))
1− qỹ−x̃

1− qỹ
.

II. if (x, y) = (x̃− 1, ỹ − 1) we have

K1(ỹ − 1, (x̃− 1, ỹ − 1))M1((x̃− 1, ỹ − 1), (x̃, ỹ))

= a2x̃−ỹ−1
1

(
ỹ − 1

ỹ − x̃

)
q

a1(1− r1(ỹ − 1; x̃− 1))

= a2x̃−ỹ
1

(
ỹ

ỹ − x̃

)
q

(1− qx̃)qỹ−x̃

1− qỹ

= K1(ỹ, (x̃, ỹ))
(1− qx̃)qỹ−x̃

1− qỹ
.

These two cases together sum up toK1(ỹ, (x̃, ỹ)) which, since L1(ỹ−1, ỹ) = u+
1,1(ỹ−1) = 1,

equals the right-hand side of (8.3).
For the case y = ỹ+1. The left-hand side of (8.3) involves a single term corresponding

to (x, y) = (x̃, ỹ + 1) which equals

a2x̃−ỹ−1
1

(
ỹ + 1

ỹ − x̃+ 1

)
q

a1(1− qỹ−x̃+1) = K1(ỹ, (x̃, ỹ))(1− qỹ+1)

where the last quantity gives the right-hand side of (8.3) for y = ỹ + 1.

General Case: In order to avoid heavy notation we will write (x, y, z) instead of (z2n−2,

z2n−1, z2n) for the bottom three levels of a Gelfand-Tsetlin pattern Z ∈ K2n.
Let us assume that the intertwining relation holds for n− 1, i.e.

Kn−1Mn−1 = Ln−1Kn−1.

We observe that the kernel Kn can be decomposed as follows

Kn(λ,Z) = Kn−1(x,Z
1:2(n−1))K̂n(λ, (x, y, z)).

Regarding the kernel Mn we have

Mn(Z, Z̃) =
( ∑
l∈[n,n̄]\{n,n̄}

+
∑

l∈{n,n̄}

)
alIl(Z, Z̃).

Inserting a letter n or n̄ affects only the bottom two levels of the Gelfand-Tsetlin pattern
and the second summation equals

anr1(z; y) if (ỹ, z̃) = (y + e1, z + e1)

an(1− r1(z; y)) if (ỹ, z̃) = (y + e1, z + e2)

a−1
n if (ỹ, z̃) = (y, z − e1)

which is equal to
M̂n((x, y, z), (x̃, ỹ, z̃))1x̃=x.
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Let us now denote by Px→x̃

(
(ỹ, z̃)|(y, z)

)
the probability that the bottom two levels

of the Gelfand-Tsetlin pattern performed the transition (y, z)→ (ỹ, z̃) as a result of the
transition of the particles at level 2n− 2 from x to x̃. It is easy to see that if x̃ 6= x then

Px→x̃

(
(ỹ, z̃)|(y, z)

)
=

M̂n((x, y, z), (x̃, ỹ, z̃))

Ln−1(x, x̃)
.

Therefore, if l ∈ [n, n̄] \ {n, n̄} then Il(Z, Z̄) can be decomposed as follows

Il(Z, Z̄) = Il(Z
1:2(n−1), Z̃1:2(n−1))

M̂n((x, y, z), (x̃, ỹ, z̃))

Ln−1(x, x̃)

and the first summation equals∑
l∈[n,n̄]\{n,n̄}

alIl(Z, Z̃) = Mn−1(Z
1:2(n−1), Z̃1:2(n−1))

M̂n((x, y, z), (x̃, ỹ, z̃))

Ln−1(x, x̃)
1x̃ 6=x.

For λ ∈ Λn and Z̃ ∈ K2n we have

(KnMn)(λ, Z̃) =
( ∑
Z∈K2n:
x=x̃

+
∑

Z∈K2n:
x 6=x̃

)
Kn(λ,Z)Mn(Z, Z̃) := I1 + I2.

If x = x̃ then this implies that Z1:2(n−1) = Z̃1:2(n−1) therefore the first summation equals

I1 =
∑

(x,y,z)∈Tn:
x=x̃

Kn−1(x̃, Z̃
1:2(n−1))K̂n(λ, (x, y, z))M̂n((x, y, z), (x̃, ỹ, z̃)).

For the second summation we have

I2 =
∑

Z∈K2n:
x 6=x̃

M̂n((x, y, z), (x̃, ỹ, z̃))

Ln−1(x, x̃)
K̂n(λ, (x, y, z))

×Kn−1(x,Z
1:2(n−1))Mn−1(Z

1:2(n−1), Z̃1:2(n−1))

=
∑

(x,y,z)∈Tn:
x 6=x̃

M̂n((x, y, z), (x̃, ỹ, z̃))

Ln−1(x, x̃)
K̂n(λ, (x, y, z))

× (Kn−1Mn−1)(x, Z̃
1:2(n−1))

using the induction hypothesis we then conclude that

I2 =
∑

(x,y,z)∈Tn:
x6=x̃

Kn−1(x̃, Z̃
1:2(n−1))K̂n(λ, (x, y, z))M̂n((x, y, z), (x̃, ỹ, z̃)).

Combining the two sums I1 and I2 leads to the following

(KnMn)(λ, Z̃) = Kn−1(x̃, Z̃
1:2(n−1))(K̂nM̂n)(λ, (x̃, ỹ, z̃)).

Finally, using Proposition 8.1 we conclude that

(KnMn)(λ, Z̃) = Kn−1(x̃, Z̃
1:2(n−1))(LnK̂n)(λ, (x̃, ỹ, z̃))

=
∑
µ∈Λn

Ln(λ, µ)K̂n(µ, (x̃, ỹ, z̃))Kn−1(x̃, Z̃
1:2(n−1))

=
∑
µ∈Λn

Ln(λ, µ)Kn(µ, Z̃)

= (LnKn)(λ, Z̃)

as required.
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