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Abstract

We study random band matrices within the framework of traffic probability. As a
starting point, we revisit the familiar case of permutation invariant Wigner matrices
and compare the situation to the general case in the absence of this invariance.
Here, we find a departure from the usual free probabilistic universality of the joint
distribution of independent Wigner matrices. We further prove general Markov-
type concentration inequalities for the joint traffic distribution. We then extend our
analysis to random band matrices and investigate the extent to which the joint traffic
distribution of independent copies of these matrices deviates from the Wigner case.
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1 Introduction and main results

For a self-adjoint N × N matrix AN ∈ MatN (C), let (λk(AN ))1≤k≤N denote the
eigenvalues of AN , counting multiplicity, arranged in a non-increasing order. We write
µ(AN ) for the empirical spectral distribution (or ESD for short) of AN , i.e.,

µ(AN ) =
1

N

N∑
k=1

δλk(AN ), λ1(AN ) ≥ · · · ≥ λN (AN ).

For a random matrix AN , the ESD µ(AN ) then becomes a random probability measure
on the real line (R,B(R)). Wigner initiated the modern study of random matrices by
proving the weak convergence of the ESD in expectation as the dimension N →∞ for a
general class of random real symmetric matrices [28, 29]. We recall the so-calledWigner
matrices, formulated deliberately in such a way below in order to suit our purposes later.

*Research supported by NSF grants DMS-0907630 and DMS-1512933, held by Steven N. Evans, and by a
Julia B. Robinson Graduate Fellowship in Mathematics.

†Department of Mathematics, University of California, Berkeley. E-mail: bensonau@math.berkeley.edu

http://www.imstat.org/ejp/
https://doi.org/10.1214/18-EJP205
http://arXiv.org/abs/1601.02188
mailto:bensonau@math.berkeley.edu


Traffic distributions of random band matrices

Definition 1.1 (Wigner matrix). Let (Xi,j)1≤i<j<∞ and (Xi,i)1≤i<∞ be independent fam-
ilies of i.i.d. random variables: the former, real-valued (resp., complex-valued), centered,
and of unit variance; the latter, real-valued and of finite variance. Taken together, the
two families define a random real symmetric (resp., complex Hermitian) N ×N matrix
XN with entries given by

XN (i, j) =

{
Xi,j if i < j,

Xi,i if i = j.

We call XN an unnormalized real (resp., complex) Wigner matrix.
We introduce the standard normalization via a Hadamard-Schur product. Let JN

denote the N ×N all-ones matrix, and define NN = N−1/2JN . We call the random real
symmetric (resp., complex Hermitian) N ×N matrix WN defined by

WN = NN ◦XN

a normalized real (resp., complex) Wigner matrix. We simply refer to Wigner matrices
when the context is clear, or when considering the definition altogether.

We define the parameter β of a Wigner matrix as the pseudo-variance of its unnor-
malized strictly upper triangular entries, i.e.,

β = E[XN (i, j)2] = E[X2
i,j ], ∀i < j.

Note that a Wigner matrix is a real Wigner matrix iff its parameter β = 1. We further
note that the distribution of a Wigner matrix is invariant under conjugation by the
permutation matrices iff its parameter β ∈ [−1, 1] ⊂ R (in general, β ∈ D ⊂ C). This in
turn is equivalent to the real and imaginary parts of XN (i, j) being uncorrelated.

Wigner identified the standard semicircle distribution µsc as the universal limiting
spectral distribution (or LSD for short) of the Wigner matrices, where

µsc(dx) =
1

2π
(4− x2)1/2+ dx.

Much work has since been done on Wigner matrices and other classical random matrix
ensembles. The recent monographs [4, 1, 24, 5, 12] provide excellent introductions to
this end.

Free probability, introduced by Voiculescu [26], explains the distinguished role of
the semicircle distribution. Motivated by the study of free group factors, Voiculescu
discovered a remarkable analogue of classical independence for non-commuting random
variables, the so-called free independence. Free analogues of classical constructions
from (commutative) probability theory abound: for example, the free central limit
theorem (CLT), free convolution, free cumulants, free entropy, and a free stochastic
calculus. In particular, the semicircle distribution is the attractor in the free CLT.

In the landmark paper [27], Voiculescu showed that free independence describes
the asymptotic behavior of the ESD for a large class of random matrices, such as those
invariant in distribution under conjugation by the orthogonal group (in the real symmetric
case) or the unitary group (in the complex Hermitian case). Wigner’s semicircle law can
thus be seen as a consequence of the free CLT. We refer the reader to [25, 13, 20, 23, 18]
for further reading on the various aspects of free probability.

On the other hand, many random matrix models of interest do not possess the
aforementioned invariance. This consideration led Male to introduce an operadic non-
commutative probability theory based on graph operations that describes the asymptotic
behavior of random matrices invariant in distribution under conjugation by the symmetric
group [14], which includes ensembles outside of the domain of free probability [15, 16, 2].
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Traffic distributions of random band matrices

This additional operad structure admits a corresponding notion of independence, the
so-called traffic independence. At the same time, traffic probability captures certain
aspects of both classical and free probability [14, 9]. An as yet incomplete understanding
of this relationship yields insightful feedback between the different theories.

In a different direction, the universality of non-invariant ensembles constitutes a
major ongoing program of research. We recall one prominent model of interest: random
band matrices.

Definition 1.2 (Band matrix). Let (bN ) be a sequence of nonnegative integers. We write
BN for the corresponding N ×N band matrix of ones with band width bN , i.e.,

BN (i, j) = 1{|i− j| ≤ bN}.

Let XN be an unnormalized Wigner matrix. We call the random matrix ΞN defined by

ΞN = BN ◦XN

an unnormalized random band matrix. We introduce a normalization based on the
growth rate of the band width bN . We say that (bN ) is of slow growth (resp., proportional
growth) if

lim
N→∞

bN =∞ and bN = o(N)

(
resp., lim

N→∞

bN
N

= c ∈ (0, 1]

)
,

in which case we use the normalization

ΥN = (2bN )−1/2JN (resp., ΥN = (2c− c2)−1/2NN ).

We call c the proportionality constant: we say that (bN ) is of full proportion if c = 1

and proper otherwise. For a fixed band width bN ≡ b, we use the normalization ΥN =

(2b+ 1)−1/2JN . In any case, we call the random matrix ΘN defined by

ΘN = ΥN ◦ΞN

a normalized random band matrix. We simply refer to random band matrices (or RBMs
for short) when the context is clear, or when considering the definition altogether.

A long-standing conjecture proposes a dichotomy for the spectral theory of RBMs:
random matrix theory local statistics and eigenvector delocalization for large band
widths; Poisson local statistics and eigenvector localization for small band widths; and a
sharp transition around the critical value bN =

√
N (see [8] and the references therein).

At the macroscopic level, Bogachev, Molchanov, and Pastur proved that the class of
band widths in Definition 1.2 determine the global universality classes of the RBMs: for
slow growth RBMs, µ(ΘN ) converges to the semicircle distribution µsc; for proportional
growth RBMs of proper proportion c ∈ (0, 1), µ(ΘN ) converges to a non-semicircular
distribution µc of bounded support; and for fixed band width RBMs having a symmetric
distribution for the entries, µ(ΘN ) converges to a non-universal symmetric distribution
µb [7]. The authors further proved a continuity result for these distributions, namely,

lim
c→0+

µc = lim
c→1−

µc = µsc and lim
b→∞

µb = µsc. (1.1)

The work above concerns the distribution of a single RBM: naturally, this invites the
question of the joint distribution of such matrices. Shlyakhtenko showed that freeness
with amalgamation in the context of operator-valued free probability governs what he
called Gaussian RBMs [21]; otherwise, to our knowledge, RBMs have not received much
attention from the non-commutative probabilistic perspective. Nevertheless, we show
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Traffic distributions of random band matrices

that the framework of traffic probability allows for tractable computations in multiple
RBMs. Our main result identifies the joint limiting traffic distribution (or LTD for short)
of independent RBMs of possibly mixed band width types under a strong uniform control
on the moments.

Theorem 1.3 (Convergence in traffic distribution). Let XN = (X
(i)
N )i∈I be a family of

independent unnormalized Wigner matrices whose entries have finite moments of all
orders. We assume that the parameters βi ∈ R and write WN = (W

(i)
N )i∈I for the

corresponding family of normalized Wigner matrices. Consider a family of band widths

(b
(i)
N )i∈I = (b

(i)
N )i∈I1 ∪ (b

(i)
N )i∈I2 ∪ (b

(i)
N )i∈I3 ∪ (b

(i)
N )i∈I4

of slow growth, proper proportion, full proportion, and fixed band width respectively,
and form the corresponding family of normalized RBMs ON = (Θ

(i)
N )i∈I . Then the family

ON converges in traffic distribution. In particular, the LTDs of the families (Θ(i)
N )i∈I1∪I3

and (W
(i)
N )i∈I1∪I3 are identical, the latter already being known from [14].

Knowledge of the traffic distribution, which is defined in terms of graph observ-
ables, can often be difficult to interpret. Notwithstanding, the equality of the LTD for
(Θ

(i)
N )i∈I1∪I3 and (W

(i)
N )i∈I1∪I3 allows us to transfer results for the joint distribution of

(W
(i)
N )i∈I1∪I3 to the joint distribution of (Θ(i)

N )i∈I1∪I3 at no additional cost. For example,
we immediately obtain the following corollary.

Corollary 1.4 (A second semicircular system). The mixed family of RBMs (Θ(i)
N )i∈I1∪I3

converges in distribution to a semicircular system.
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Figure 1: A histogram of the ESDs of a pair of random matrices constructed from a
single realization of independent GOE matrices X(1)

N and X
(2)
N for N = 10000. Here, we

consider slow growth RBMs Θ
(i)
N = ΥN ◦BN ◦X(i)

N of band width bN =
√
N and their

Wigner counterparts W
(i)
N = NN ◦X(i)

N . We overlay the eigenvalues of the normalized

anticommutators
{Θ(1)

N ,Θ
(2)
N }√

2
and

{W(1)
N ,W

(2)
N }√

2
, which we plot in blue and red respectively.

The overlapping region is colored blue + red = purple and dominates the graph, as
predicted by Corollary 1.4. The common LSD is given by the so-called tetilla law [19, 10],

which is supported on the interval

[
−

√
11+5

√
5

2 ,
√

11+5
√
5

2

]
, the density of which we plot

in black.
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Traffic distributions of random band matrices

Remark 1.5 (Coarseness of the traffic distribution). We do not make any assumptions
on the relative rates of growth for the band widths (b

(i)
N )i∈I1 . For example, it could be

that (b(i1)N , b
(i2)
N , b

(i3)
N , b

(i4)
N ) are each of slow growth with b(i1)N , b

(i2)
N �

√
N � b

(i3)
N , b

(i4)
N . In

particular, perhaps not surprisingly, we fail to observe any sort of transition around
the conjectured critical value for RBMs at the level of (first-order) freeness. Moreover,
our result shows that the traffic distribution, despite all of its additional structure, falls
short of capturing even other macroscopic features. In particular, Theorem 3 in [7]
implies that λ1(ΘN )

a.s.→ ∞ for slow growth RBMs, whereas Bai and Yin showed that
λ1(WN )

a.s.→ 2 iff the entries of XN have finite fourth moments [3].

Unfortunately, traffic probability has less to say about proportional growth RBMs
and less still about fixed band width RBMs. We show that independent proportional
growth (resp., fixed band width) RBMs are not asymptotically traffic independent unless
c = 1 (resp., b = 0). We also prove the traffic analogue of equation (1.1), showing that
the continuity of the LSD in the band width extends to the LTD as well. Here, we find
a subtle difference in how these limits are attained, leading into our analysis of mixed
band width types.

We organize the paper as follows. Section 2 sets about the necessary background
and notation. Section 3 considers Wigner matrices in the generality of [11], where we
also prove general Markov-type concentration inequalities for the traffic distribution
of independent Wigner matrices. Section 4 then treats the case of RBMs, beginning
with a preliminary version of our main result for periodic RBMs. As an application of
Theorem 1.3, we compute the LSD of the degree matrix of a proportional growth RBM in
the appendix, which we find to be almost Gaussian in the sense of its moments.

2 Background and notation

We give an abbreviated account of free probability (resp., traffic probability). The
reader should consult [25, 13, 20, 18] (resp., [14, 9]) for more details.

Definitions 2.1 (Free probability). A non-commutative probability space is a pair (A, ϕ)
consisting of a unital algebra A over C equipped with a unital linear functional ϕ : A → C.
We refer to elements a ∈ A as non-commutative random variables (or simply random
variables) with ϕ playing the role of the expectation.

The distribution of a family of random variables a = (ai)i∈I in a non-commutative
probability space (A, ϕ) is the linear functional µa : C〈x〉 → C defined by taking the
expectation of a non-commutative polynomial in x = (xi)i∈I evaluated in the random
variables a, i.e.,

µa : P 7→ ϕ(P (a)), ∀P ∈ C〈x〉.

We say that a sequence of families (an) = ((a
(i)
n )i∈I), each living in a non-commutative

probability space (An, ϕn), converges in distribution to a if the corresponding sequence
of distributions (µan

) converges pointwise to µa, i.e.,

lim
n→∞

µan
(P ) = µa(P ), ∀P ∈ C〈x〉.

We say that unital subalgebras (Ai)i∈I of A are classically independent if the (Ai)i∈I
commute (i.e., [Ai,Aj ] = 0 for i 6= j) and ϕ is multiplicative across the (Ai)i∈I in the
following sense: for any k ≥ 1 and distinct indices i(1), . . . , i(k) ∈ I,

ϕ

( k∏
j=1

ai(j)

)
=

k∏
j=1

ϕ(ai(j)), ∀ai(j) ∈ Ai(j).
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Traffic distributions of random band matrices

We say that unital subalgebras (Ai)i∈I of A are freely independent (or simply free) if
for any k ≥ 1 and consecutively distinct indices i(1) 6= i(2) 6= · · · 6= i(k) ∈ I,

ϕ

( k∏
j=1

ai(j)

)
= 0, ∀ai(j) ∈

◦
Ai(j),

where
◦
Ai(j) ⊂ Ai(j) denotes the subspace of centered elements ϕ(ai(j)) = 0.

Example 2.2 (Random matrices). Naturally, we will focus on the non-commutative
probability space (MatN (L∞−(Ω,F ,P)),E 1

N tr) of random N ×N matrices whose entries
have finite moments of all orders. Free probability describes the large N limit behavior
of such matrices in many generic situations [18].

At the combinatorial level, classical independence and free independence simply
amount to rules for calculating mixed moments in independent random variables from
the pure moments. Of course, such a rule should satisfy certain natural properties to
warrant consideration as a probabilistic notion. In the setting of Definitions 2.1, Speicher
showed that if one requires the rule to be suitably universal in an algebraic sense, then
in fact classical independence and free independence are the only candidates [22] (see
also [6] for a categorical axiomatization).

Traffic probability is a recent extension of the framework in Definitions 2.1. To make
this precise, we will need the language of graph theory.

Definitions 2.3 (Graphs). A multidigraph G = (V,E, src, tar) consists of a non-empty
set of vertices V , a set of edges E, and a pair of maps src, tar : E → V specifying the
source src(e) and target tar(e) of each edge e ∈ E. Such a graph G is said to be bi-rooted
if it has a pair of distinguished (not necessarily distinct) vertices (vin, vout) ∈ V 2, the
coordinates of which we call the input and the output respectively. For a bi-rooted
multidigraph g = (G, vin, vout), we define ∆(g) (resp., ∆̃(g)) as the bi-rooted multidigraph
(resp., multidigraph) obtained from g by identifying the input and the output vin ∼ vout
(resp., and further forgetting the information of the roots).

A graph operation is a finite, connected, bi-rooted multidigraph g = (G, vin, vout, o)

together with an ordering of its edges o : E
∼−→ [#(E)]. We interpret g = g(·1, . . . , ·K) as a

function of K = #(E) arguments, one for each edge e ∈ E, with coordinates specified by
the ordering o. In particular, we call such a graph g a K-graph operation. We write GK
for the set of all K-graph operations and G =

⋃
K≥0 GK for the graded set of all graph

operations.
A test graph T = (G, γ) in I is a finite, connected multidigraph G with edge labels

γ : E → I. We write T 〈I〉 for the set of all test graphs in I and CT 〈I〉 for the complex
vector space generated by T 〈I〉. Suppose that I =

⊔
j∈J Ij is a disjoint union, where

we think of each j ∈ J as a different “color”. The graph of colored components
GCC(T ) = (V, E) is the simple bipartite graph obtained from T as follows. For each

j ∈ J , let (Tj,k)`(j)k=1 denote the connected components of the subgraph Tj of T spanned
by the color j. In particular, each Tj,k is a test graph in Ij . Let V1 denote the subset of
vertices of T that belong to more than one of the components V2 = (Tj,k)j∈J,k∈[`(j)]. Then
V = V1 ∪ V2 with edges determined by inclusion, i.e.,

v ∼E Tj,k ⇐⇒ v ∈ Tj,k.

For the sake of brevity, we restrict ourselves to a minimal working definition of the
traffic probability framework.

Definitions 2.4 (Traffic probability). A G-algebra is a complex vector space A together
with an action (Zg)g∈G of the operad of graph operations. In particular, each graph
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Traffic distributions of random band matrices

operation g ∈ GK ⊂ G defines a linear map

Zg : A⊗K → A

satisfying certain natural compatibility conditions. Note that a G-algebra structure on A
defines a unital C-algebra structure on A via the product

a ·G b = Z
·

out

1← · 2← ·
in

(a⊗ b).

An algebraic traffic space is a pair (A, τ) consisting of a G-algebra A equipped with a
G-compatible linear functional τ : CT 〈A〉 → C called the traffic state. The traffic state
induces a tracial unital linear functional ϕτ = τ ◦ ∆̃ : A → C, or, graphically,

ϕτ (a) = ϕτ

(
·

out

a← ·
in

)
= τ

[
a

·

	

]
.

In particular, (A, ϕτ ) is a non-commutative probability space. We define a transform
of the traffic state called the injective traffic state τ0 : CT 〈A〉 → C by the Möbius
convolution

τ0[T ] =
∑

π∈P(V )

µ(0V , π)τ [T
π], ∀T ∈ T 〈A〉, (2.1)

where (P(V ),≤) is the poset of partitions of V with the reversed refinement order ≤,
µ is the corresponding Möbius function, and Tπ is the test graph obtained from T by
identifying the vertices within each block B ∈ π. One recovers the traffic state via the
inversion

τ [T ] =
∑

π∈P(V )

τ0[Tπ], ∀T ∈ T 〈A〉. (2.2)

For example,

ϕτ (ab) = ϕτ

(
·

out

a← · b← ·
in

)
= τ

[
·
a

�
b
·
]
= τ0

[
·
a

�
b
·
]
+ τ0

[ a

·

�

�
b

]
.

The traffic distribution of a family of random variables a = (ai)i∈I in an algebraic
traffic space (A, τ) is the linear functional νa : CT 〈x〉 → C defined by evaluating the
traffic state on test graphs in x = (xi)i∈I under the substitution xi 7→ ai, i.e.,

νa : T 7→ τ(T (a)), ∀T ∈ CT 〈x〉.

We say that a sequence of families (an) = ((a
(i)
n )i∈I), each living in an algebraic traffic

space (An, τn), converges in traffic distribution to a if the corresponding sequence of
traffic distributions (νan

) converges pointwise to νa, i.e.,

lim
n→∞

νan(T ) = νa(T ), ∀T ∈ CT 〈x〉.

We define the injective traffic distribution in the obvious way. Note that convergence in
traffic distribution is equivalent to convergence in injective traffic distribution.

We say that sub-G-algebras (Ai)i∈I of A are traffic independent if

τ0[T ] =

{∏
i∈I

∏k(i)
j=1 τ

0[Ti,j ] if GCC(T ) is a tree,

0 otherwise,
∀T ∈ T 〈

⊔
i∈I
Ai〉,

where the graph of colored components is constructed with respect to the colors i ∈ I.
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Example 2.5 (Graph polynomials). A graph monomial t = (G, γ) in x = (xi)i∈I is a
bi-rooted multidigraph G = (V,E, src, tar, vin, vout) with edge labels γ : E → I. We write
G〈x〉 for the set of all graph monomials in x and CG〈x〉 for the complex vector space
generated by G〈x〉, the so-called graph polynomials in x.

The graph polynomials CG〈x〉 form a G-algebra under the action of composition:

for a K-tuple of graph monomials (t1, . . . , tK) with ti = (Vi, Ei, srci, tari, v
(i)
in , v

(i)
out, γi), we

define Zg(t1 ⊗ · · · ⊗ tK) as the graph monomial obtained by substitution. Formally, one
removes each edge e ∈ E and installs a copy of to(e) in its place by identifying the vertices

src(e) ∼ v
(o(e))
in and tar(e) ∼ v

(o(e))
out . The graph polynomials generalize the usual non-

commutative polynomials. In particular, one obtains an embedding of unital C-algebras
η : C〈x〉 ↪→ CG〈x〉 via the mapping

xi 7→ ·
out

xi←− ·
in

and 1 7→ ·
in/out

. (2.3)

Example 2.6 (Graphs of matrices [17]). Returning to Example 2.2, we define an action
of the operad of graph operations on MatN (L∞−(Ω,F ,P)) by the coordinate formula

Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N )(i, j) =

∑
φ:V→[N ] s.t.

φ(vout)=i, φ(vin)=j

∏
e∈E

A
(o(e))
N (φ(tar(e)), φ(src(e))).

For notational convenience, we often write φ(e) := (φ(tar(e)), φ(src(e))). The reader can
easily verify that the G-algebra structure recovers the usual matrix multiplication. At the
same time, the action of the graph operations also produces matrices of additional linear
algebraic structure. For example, one can obtain the diagonal matrix of row sums as

·
↓
·
AN

in/out

=

( N∑
j=1

AN (i, j)

)
1≤i≤N

,

which we call the degree matrix deg(AN ) of AN .

Note that the trace tr of a graph of matrices Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N ) only depends on

the graph operation g = (V,E, src, tar, vin, vout, o) up to the unrooted graph T = ∆̃(g) =

(Ṽ , E, src, tar, o). Indeed,

tr[Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N )] =

N∑
i=1

Zg(A
(1)
N ⊗ · · · ⊗A

(K)
N )(i, i)

=

N∑
i=1

∑
φ:V→[N ] s.t.

φ(vout)=φ(vin)=i

∏
e∈E

A
(o(e))
N (φ(e))

=
∑

φ:Ṽ→[N ]

∏
e∈E

A
(o(e))
N (φ(e)).

In particular, the traffic state τN : CT 〈MatN (L∞−(Ω,F ,P))〉 → C defined by

τN : T 7→ E

[
1

N

∑
φ:V→[N ]

∏
e∈E

A
(γ(e))
N (φ(e))

]
, ∀T ∈ T 〈MatN (L∞−(Ω,F ,P))〉

recovers the normalized trace ϕτN = E 1
N tr. The injective traffic state τ0N admits an

explicit formula without reference to the Möbius function in the matricial setting, namely,

τ0N : T 7→ E

[
1

N

∑
φ:V→[N ]

s.t. φ is injective

∏
e∈E

A
(γ(e))
N (φ(e))

]
, ∀T ∈ T 〈MatN (L∞−(Ω,F ,P))〉,
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Traffic distributions of random band matrices

whence the name. In the sequel, we use the notation φ : V ↪→ [N ] to indicate an injective
labeling of the vertices.

The setting of Definitions 2.4 allows us to circumvent Speicher’s dichotomy. Notably,
permutation invariant random matrices provide a canonical example of asymptotically
traffic independent random variables [14]. Of course, one can still define the usual
notions of independence in an algebraic traffic space (A, τ) by virtue of the induced
expectation ϕτ . This subsumption allows for an interplay between the different notions
of independence in the traffic framework. Indeed, one finds many striking relationships
between them: for example, general criteria for when traffic independence implies
free independence or classical independence [14, 9]. In particular, we note that the
information of the traffic distribution νa contains the information of the distribution µa.

3 Wigner matrices

We restrict ourselves to Wigner matrices XN = (X
(i)
N )i∈I with a strong uniform control

on the moments in a slight generalization of Definition 1.1, namely,

sup
N∈N

sup
i∈I0

sup
1≤j≤k≤N

E[|X(i)
N (j, k)|`] ≤ m(I0)

` <∞, ∀I0 ⊂ I : #(I0) <∞, (3.1)

where the entries (X(i)
N (j, k))1≤j≤k≤N,i∈I are independent with parameter

E[X
(i)
N (j, k)2] = βi, ∀j < k.

In particular, compared to our original definition, we now allow the random variables
within our matrices to vary with the dimension N ; moreover, we no longer assume that
they are identically distributed. For technical reasons, we assume that the real and
imaginary parts of an off-diagonal entry X

(i)
N (j, k) are uncorrelated so that

E[X
(i)
N (j, k)2] = βi = βi = E[X

(i)
N (k, j)2], ∀j < k. (3.2)

For example, this includes the class of all real Wigner matrices (βi = 1), but also
circularly-symmetric ensembles such as the GUE (βi = 0). We comment on the general
case of βi ∈ D when possible, though the situation becomes much different and often
intractable (especially for RBMs). Thus, unless stated otherwise, we assume that
βi = βi ∈ [−1, 1].

3.1 Limiting traffic distribution

Our first result extends the traffic convergence of the Wigner matrices in [14] to
the generality of Equation (3.1). In order to formulate the LTD, we will need some
definitions.

Definition 3.1 (Colored double tree). Let T = (V,E, γ) be a test graph in x = (xi)i∈I .
We say that T is a fat tree if when disregarding the orientation and multiplicity of the
edges, T becomes a tree. We further say that T is a double tree if there are exactly two
edges between adjacent vertices. We call the pair of edges connecting adjacent vertices
in a double tree twin edges: congruent if they have the same orientation, opposing
otherwise. Finally, we say that T is a colored double tree if T is a double tree such that
each pair of twin edges {e, e′} shares a common label γ(e) = γ(e′) ∈ I. We record the
number ci(T ) of pairs of congruent twin edges with the common label i in a colored
double tree T .
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x

z r

x x

y r

z

y r

x x

y r

x x
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Figure 2: Examples of a fat tree, a double tree, and a colored double tree respectively.

We introduce some notation to emphasize the relevant features of our test graphs.
This notation will greatly simplify our analysis and features prominently in the remainder
of the article. We start with a finite (not necessarily connected) multidigraph G = (V,E).
We partition the set of edges E = L ∪ N to distinguish between the loops L and the
non-loop edges N = Lc. As suggested by Definition 3.1, we define G̃ = (V, Ẽ) as the
undirected graph obtained from G by disregarding the orientation and multiplicity of
the edges. Formally, Ẽ = E/∼ consists of equivalence classes in E, where

e ∼ e′ ⇐⇒ {src(e), tar(e)} = {src(e′), tar(e′)}.

In this case, our partition E = L ∪ N projects down to a partition Ẽ = L̃ ∪ Ñ between
equivalence classes of loops and equivalence classes of non-loops respectively. We may
then write the underlying simple graph G of G = (V,E) as G = (V, Ñ ).

G G̃ G

Figure 3: Examples of the projections G̃ and G starting from a multidigraph G.

Now suppose that our graph G comes with edge labels γ : E → I. We count the
(undirected) multiplicity of a label i in a class of edges [e] = {e′ ∈ E : e ∼ e′} ∈ Ẽ with

mi,[e] = #(γ−1({i}) ∩ [e]) ≥ 0.

Of course, summing this over the labels in I, we obtain the multiplicity of the class [e],

m[e] =
∑
i∈I

mi,[e] = #([e]).

In particular, if T = (G, γ) is a colored double tree, then

mi,[e] ∈ {0, 2} and m[e] = 2, ∀(i, [e]) ∈ I × Ẽ. (3.3)

EJP 23 (2018), paper 77.
Page 10/48

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP205
http://www.imstat.org/ejp/


Traffic distributions of random band matrices

In this case, we write
γ([e]) = γ(e) (3.4)

for the common label γ(e) = γ(e′) of twin edges [e] = {e, e′}. Conversely, if (3.3) and (3.4)
hold for a test graph T whose projection T̃ is a tree, then T is a colored double tree.

Proposition 3.2 (β-semicircular traffics). For any test graph T in x = (xi)i∈I ,

lim
N→∞

τ0N [T (WN )] =

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(3.5)

Proof. Suppose that T = (V,E, γ) ∈ T 〈x〉. By definition,

τ0N [T (WN )] = E

[
1

N

∑
φ:V ↪→[N ]

∏
e∈E

W
(γ(e))
N (φ(e))

]

=
1

N1+
#(E)

2

∑
φ:V ↪→[N ]

E

[ ∏
e∈E

X
(γ(e))
N (φ(e))

]
. (3.6)

We analyze the asymptotics of (3.6) by working piecemeal in order to count the number
of contributing maps φ (i.e., maps such that the summand is nonzero). First, we note
that the independence of the random variables X(i)

N (j, k) and the injectivity of the maps
φ allow us to factor the product over the expectation provided that we take into account
multi-edges. The relevant information is contained precisely in the projected graph
T̃ = (V, Ẽ), which allows us to recast (3.6) as

1

N1+
#(E)

2

∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
. (3.7)

For non-loop edges e′ ∈ N , the independence of the centered random variables
X

(i)
N (φ(e′)) implies that the second expectation in (3.7) vanishes if there exists a lone

edge e0 ∈ [e] with the label γ(e0) = i0. Thus, in order for a summand to be non-zero, each
label i present in a class [e] ∈ Ñ must occur with multiplicity

mi,[e] ≥ 2. (3.8)

This in turn implies that
#(N ) ≥ 2#(Ñ ). (3.9)

The underlying simple graph T = (V, Ñ ) is of course still connected, and so we further
have that

#(Ñ ) ≥ #(V )− 1. (3.10)

Finally, we make use of our strong moment assumption (3.1) to bound the summands in
(3.7) uniformly in φ and N . In particular, our bound only depends on T , i.e.,( ∏

[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
≤ CT <∞. (3.11)

Putting everything together, we arrive at the asymptotic

τ0N [T (WN )] = OT (N
−1−#(E)

2 N#(V )) = OT (N
−(#(N)

2 −(#(V )−1))N−
#(L)

2 ). (3.12)

The inequalities (3.8)-(3.10) then imply that τ0N [T (WN )] vanishes in the limit unless T is
a colored double tree. For such a test graph T , (3.7) becomes

N#(V )

N#(V )

∏
[e]∈Ẽ

(
1{[e] are opposing}+ βγ([e])1{[e] are congruent}

)
, (3.13)
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where N#(V ) denotes the falling factorial N(N − 1) · · · (N − (#(V )− 1)). The limit (3.5)
now follows.

Equation (3.13) explains the apparent asymmetry in the LTD of the Wigner matrices:
if we record the number oi(T ) of pairs of opposing twin edges with the common label i
in a colored double tree T , then we can rewrite the nontrivial part of Equation (3.5) as∏

i∈I
β
ci(T )
i =

∏
i∈I

1oi(T )β
ci(T )
i .

Working directly with this LTD, one can easily prove the asymptotic traffic independence
of the Wigner matricesWN .

The careful reader will notice that we have made use of (3.2) in formulating (3.13).
Indeed, by assuming that βi = βi, we were able to disregard the ordering on the
vertices induced by the maps φ and conclude that congruent twin edges [e] always give a
contribution of βγ([e]). In general, for a colored double tree T , a summand Sφ(T ) of (3.7)
will depend on φ, namely,

Sφ(T ) =
∏

[e]∈Ẽ

(
1{[e] are opposing}+ βγ([e])1{[e] are congruent and φ(tar([e])) < φ(src([e]))}

+ βγ([e])1{[e] are congruent and φ(tar([e])) > φ(src([e]))}
)
.

To compute the limit, we must then keep track of the ordering ψφ on the vertices, where

ψφ : [#(V )]
∼−→ V, φ(ψφ(1)) > · · · > φ(ψφ(#(V ))).

Note that if φ1 : V ↪→ [N1] and φ2 : V ↪→ [N2] induce the same ordering ψφ1
= ψφ2

, then
the corresponding summands are equal, i.e.,

Sφ1
(T ) = E

[ ∏
e∈E

X
(γ(e))
N1

(φ1(e))

]
= E

[ ∏
e∈E

X
(γ(e))
N2

(φ2(e))

]
= Sφ2

(T ).

Thus, for an ordering ψ : [#(V )]
∼−→ V , we write Sψ(T ) for the common value of

{Sφ(T ) : ψφ = ψ}.

In this case, (3.13) becomes

∑
ψ:[#(V )]

∼→V

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
Sψ(T ). (3.14)

One can easily verify that

lim
N→∞

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
=

1

#(V )!
, ∀ψ : [#(V )]

∼−→ V ;

however, in anticipation of Section 4, we give a natural integral representation of this
limit instead. To this end, we introduce a set of indeterminates xV = (xv)v∈V indexed by
the vertices of our graph. A straightforward weak convergence argument then shows
that

lim
N→∞

∑
φ:V ↪→[N ] 1{ψφ = ψ}

N#(V )
=

∫
[0,1]V

1{xψ(1) ≥ · · · ≥ xψ(#(V ))} dxV =
1

#(V )!
. (3.15)
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Indeed, for each N ∈ N, we can scale a labeling φ : V ↪→ [N ] by N to associate the image
φ(V ) = (φ(v))v∈V with a point pφ of the latticed hypercube [0, 1]V , namely,

pφ =

(
φ(v)

N

)
v∈V

.

We imagine integrating the indicator 1{xψ(1) ≥ · · · ≥ xψ(#(V ))} against the atomic
measure

µN =
1

N#(V )

∑
φ:V ↪→[N ]

δpφ

to obtain the expression inside of the limit on the left-hand side of (3.15) (up to an
asymptotically negligible correction factor). The limit N → ∞ then converts this
discretization into the uniform measure on [0, 1]V .

Finally, we arrive at the analogue of (3.5) for general βi ∈ D,

lim
N→∞

τ0N [T (WN )] =


∑

ψ:[#(V )]
∼→V

1

#(V )!
Sψ(T ) if T is a colored double tree,

0 otherwise.

(3.16)

In contrast to Proposition 3.2, the LTD (3.16) does not necessarily describe asymptotically
traffic independent random matrices. In fact, if we divide our index set I into two camps
I = IR ∪ IC = {i ∈ I : βi ∈ [−1, 1]} ∪ {i ∈ I : βi ∈ D \ [−1, 1]}, then the two families

WR
N = (W

(i)
N )i∈IR and WC

N = (W
(i)
N )i∈IC are asymptotically traffic independent, but the

matricesWC
N are not.

For the first statement, we need only to note that the representative value Sψ(T )
does not depend on the ordering of the vertices that are only adjacent to edges with
labels i ∈ IR, for which βi = βi. We can formalize this by considering the subgraphs
TR = (VR, ER) and TC = (VC, EC) of T with edge labels in IR and IC respectively. We
write TC = CC1 ∪ · · · ∪CCk1 for the connected components of TC, each of which is a colored
double tree C` = (V C` , E

C
` ), and similarly for TR = CR1 ∪ · · · ∪ CRk2 . We call such a graph a

forest of colored double trees.

TR TCT

xR1

xR1

xR1

xC2
xC2

xC3xC2

xR1

xR1

xR1

xC2
xC2

xC3xC2

Figure 4: An example of the forest subgraph construction starting from a colored double
tree T . For simplicity, we label twin edges [e] with a single common indeterminate γ([e]).

It follows that a summand Sφ(T ) only depends on the orderings

ψ
(`)
φ : [#(V C` )]

∼−→ V C` , ` ∈ [k1]
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on each component CC` . In particular,

Sφ(T ) =

( k1∏
`=1

S
ψ

(`)
φ

(CC` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

)
.

In this case, for a concatenation of orderings

ψ = ×k1`=1ψ` :
k1×̀
=1

[#(V C` )]
∼−→

k1×̀
=1

V C`

with the restrictions
ψ` : [#(V C` )]

∼−→ V C` ,

we write Sψ for the common value of

{Sφ(T ) : ψ(`)
φ = ψ` for all ` ∈ [k1]}.

We may then write

τ0N [T (WN )] =
∑

ψ:×k1
`=1[#(V C

` )]
∼→×k1

`=1 V
C
`

∑
φ:V ↪→[N ]

∏k1
`=1 1{ψ

(`)
φ = ψ`}

N#(V )
Sψ(T ),

where

lim
N→∞

∑
φ:V ↪→[N ]

∏k1
`=1 1{ψ

(`)
φ = ψ`}

N#(V )
=

∫
[0,1]V

k1∏
`=1

1{xψ`(1) ≥ · · · ≥ xψ`(#(V C
` ))} dxV

=

k1∏
`=1

∫
[0,1]V

C
`

1{xψ`(1) ≥ · · · ≥ xψ`(#(V C
` ))} dxV C

`

=
1∏k1

`=1 #(V C` )!
. (3.17)

We conclude that

lim
N→∞

τ0N [T (WN )] =
∑

ψ:×k1
`=1[#(V C

` )]
∼→×k1

`=1 V
C
`

1∏k1
`=1 #(V C` )!

( k1∏
`=1

Sψ`
(CC` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

)

=

( k1∏
`=1

∑
ψ`:[#(V C

` )]→V C
`

1

#(V C` )!
Sψ`

(CC` )

)( k2∏
`=1

∏
i∈IR

β
ci(C

R
` )

i

)

=

( k1∏
`=1

lim
N→∞

τ0N [CC` (WC
N )]

)( k2∏
`=1

lim
N→∞

τ0N [CR` (WR
N )]

)
,

as was to be shown.
Intuitively, we imagine each pair of twin edges [e] imposing a constraint coming from

the ordering of its adjacent vertices {src([e]), tar([e])}. We gather these constraints in
the ordering ψφ to carry out the calculation of Sφ = Sψ(φ); however, if γ([e]) ∈ IR, the
constraint becomes vacuous and we can disregard it, which corresponds to discarding
the edge [e] (but keeping the adjacent vertices). In this way, we arrive at the integrals in
Equation (3.17) (and, after discarding the isolated vertices, the forest of colored double
trees TC). We return to this notion of a “free” edge [e] in a slightly different context in
Section 4.
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For the second statement (about the lack of asymptotic traffic independence forWC
N ),

we give a simple counterexample, namely, for βC1 , β
C
2 ∈ D \ [−1, 1],

lim
N→∞

τ0N

[
·
W

iC1
N

⇔
W

iC1
N

·
W

iC2
N

⇒
W

iC2
N

·
]
=

1

3
(βC1 β

C
2 + βC1 β

C
2 ) +

1

6
(βC1 β

C
2 + βC1 β

C
2 )

6=
(
1

2
(βC1 + βC1 )

)(
1

2
(βC2 + βC2 )

)

=

(
lim
N→∞

τ0N

[
·
W

iC1
N

⇔
W

iC1
N

·
])(

lim
N→∞

τ0N

[
·
W

iC2
N

⇒
W

iC2
N

·
])
,

where the equalities follow from Equation (3.16).
Yet, we know that free independence describes the asymptotic behavior of the Wigner

matrices regardless of the parameters (βi)i∈I [11]. Naturally, we would like to know how
to extract this information from the LTD (in particular, how this is consistent with the
distinct LTDs (3.5) and (3.16)). To see this, note that the joint distribution µWN

factors
through the traffic distribution νWN

via

µWN
= νWN

◦ ∆̃ ◦ η,

where η is the embedding (2.3) of the non-commutative polynomials C〈x〉 into the
graph polynomials CG〈x〉. This amounts to computing τN [C(WN )] for directed cycles
C = (V,E, γ) ∈ T 〈x〉. We use the injective traffic state to rewrite this as

τN [C(WN )] =
∑

π∈P(V )

τ0N [Cπ(WN )].

In the limit, the only contributions come from (colored) double trees Cπ. We claim that
if Cπ is a double tree, then it can only have opposing twin edges (an opposing double
tree). Indeed, assume that π ∈ P(V ) identifies the sources src(e1)

π∼ src(e2) and targets
tar(e1)

π∼ tar(e2) of two distinct edges e1, e2 ∈ E. We write Cρ for the graph intermediate
to C and Cπ obtained from C by only making these two identifications. If e1 and e2 are
consecutive edges in the cycle C, then Cρ consists of a directed cycle with two loops
coming out of a particular vertex (“rabbit ears”). Otherwise, Cρ consists of two almost
disjoint directed cycles overlapping in the twin edge [e] = {e1, e2} (a “butterfly”). In
both cases, we see that no further identifications can possibly result in a double tree
Cπ. Thus, from the perspective of the joint distribution, we need only to consider the
behavior of the LTD on opposing colored double trees T . In this case, we see that the
LTDs (3.5) and (3.16) agree on the value of

lim
N→∞

τ0N [T (WN )] = 1.

ρ7→ =

Figure 5: An example of a butterfly Cρ starting from a directed cycle C.
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Remark 3.3 (A traffic probability characterization of semicircular systems). An important
application of traffic probability lies in the relationship between traffic independence
and free independence. In certain situations, one can actually deduce free independence
from traffic independence [14, 9], the advantage being that the traffic framework might
be more tractable. Of course, the two notions do not perfectly align, as seen even in the
case of Wigner matrices (Lemma 3.4 in [14] gives yet another example). In this case,
we see that the traffic distribution specifies the behavior of our matrices in situations
that are not relevant to their joint distribution: in a certain sense, traffic independence
asks for too much. Nevertheless, we can still use the traffic framework to make free
probabilistic statements, even when a LTD might not exist! In particular, from our work
above, we see that if a family of random variables an = (a

(i)
n )i∈I in an algebraic traffic

space (An, τn) satisfies

lim
n→∞

τ0n[T (an)] =


1 if T is an opposing colored double tree,

0 if T is an opposing double tree that is not colored,

0 if T is not a double tree,

(3.18)

then an converges in distribution to a semicircular system a = (ai)i∈I . Note that we do
not specify the behavior of τ0n[T (an)] on general double trees T (in particular, we do not
assume that limn→∞ τ0n[T (an)] even exists). We will use this criteria in Section 4 to treat
the case of RBMs of a general parameter βi ∈ D.

3.2 Concentration of the traffic distribution

For a test graph T = (V,E, γ) ∈ T 〈x〉, we define the random variable

tr[T (WN )] :=
∑

φ:V→[N ]

∏
e∈E

(W
(γ(e))
N )(φ(e)).

For natural reasons, we are interested in bounding the deviation of tr[T (WN )] from its
mean. In particular, we would like to emulate the usual approach for Wigner matrices to
show that Var( 1

N tr[T (WN )]) = OT (N
−2), which would allow us to upgrade the conver-

gence in Proposition 3.2 to the almost sure sense. It turns out that this approach will not
work in general, but it will be instructive to see just how it falls short.

For notational convenience, we will consider the deviation of tr[T (XN )] instead, where
XN =

√
NWN are the unnormalized Wigner matrices. To begin,

Var(tr[T (XN )]) = E

[∣∣∣∣ tr[T (XN )]−E tr[T (XN )]

∣∣∣∣2]
= E

[(
tr[T (XN )]−E tr[T (XN )]

)(
tr[T (XN )]−E tr[T (XN )]

)]
=

∑
φ1,φ2:V →[N ]

E

[ 2∏
`=1

( ∏
e∈E

X
(γ(e))
N,` (φ`(e))−E

[ ∏
e∈E

X
(γ(e))
N,` (φ`(e))

])]
, (3.19)

where

X
(i)
N,`(j, k) =

{
X

(i)
N (j, k) if ` = 1,

X
(i)
N (k, j) if ` = 2.

(3.20)

We again make use of our strong moment assumption (3.1), this time to bound our
summands uniformly in φ1, φ2, and N . In particular, our bound only depends on T , i.e.,

E

[ 2∏
`=1

( ∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

[ ∏
e∈E

X
(γ(e))
N,` (φ`(e))

])]
≤ CT <∞. (3.21)
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We are then interested in the number of pairs (φ1, φ2) that actually contribute in
(3.19) (i.e., such that the summand (3.21) is nonzero). To this end, note that the maps φ`
induce maps φ̃` : E → {{a, b} : a, b ∈ [N ]}, where

e 7→ {φ`(src(e)), φ`(tar(e))}.

In particular, if φ̃1(E)∩ φ̃2(E) = ∅, then the independence of theX
(i)
N (j, k) implies that the

outermost product of (3.21) factors over the expectation, resulting in a zero summand.
Thus, we need only to consider so-called edge-matched pairs (φ1, φ2). For our purposes,
it will be convenient to incorporate the data of such a pair into the graph T itself.

For a pair (φ1, φ2), we construct a new graph Tφ1tφ2 by considering two disjoint
copies T1 and T2 of T (associated to φ1 and φ2 respectively), reversing the direction of
the edges of T2, and then identifying the vertices according to their images under the
maps φ1 and φ2; formally, the vertices of Tφ1tφ2 are given by

Vφ1tφ2
= (φ−11 (m) ∪ φ−12 (m) : m ∈ [N ]).

An edge match between φ1 and φ2 then corresponds to an overlay of edges, though not
necessarily in the same direction. Note that

(φ1, φ2) is edge-matched =⇒ Tφ1tφ2
is connected.

(T1, φ1) (T2, φ2) (Tφ1tφ2
, φ1 t φ2)

1 2

43

12

53

1

3

4 5

2

Figure 6: An example of Tφ1tφ2
for an edge-matched pair (φ1, φ2). Here, we omit the

edge labels to emphasize the vertex labels φ`(v). Recall that we reverse the direction of
the edges of the second copy T2 before identifying the vertices.

The sum over the set of edge-matched pairs (φ1, φ2) can then be decomposed into a
double sum: the first, over the set ST of connected graphs Tt = (Vt, Et, γt) obtained
by gluing the vertices of two disjoint copies of T with at least one edge overlay (we
reverse the direction of the edges of the second copy beforehand, and we keep track of
the origin of the edges Et = E

(1)
t t E

(2)
t ); the second, over the set of injective labelings

φt : Vt ↪→ [N ] of the vertices of Tt. We may then recast (3.19) as

∑
Tt∈ST

∑
φt:Vt↪→[N ]

E

[ 2∏
`=1

( ∏
e∈E(`)

t

X
(γt(e))
N (φt(e))− E

[ ∏
e∈E(`)

t

X
(γt(e))
N (φt(e))

])]
. (3.22)

We defined ST by reversing the direction of the edges of the second copy of T before
gluing in order to write (3.22) without reference to the transposes (3.20). Moreover, by
keeping track of the origin of the edges, we ensure that ST does not conflate otherwise
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isomorphic graphs, and so guaranteeing a faithful reconstruction of (3.19) from (3.22).
The set ST is of course a finite set whose size only depends on T .

We consider a generic Tt ∈ ST , iterating the proof of Proposition 3.2. We decompose
the set of edges Et = Lt ∪ Nt as before, and the same for Ẽt = L̃t ∪ Ñt (recall that
Ẽt denotes the set of equivalence classes in Et). Suppose that there exists a lone edge
e0 ∈ [e] ∈ Ñt with the label γ(e0) = i0 ∈ I so that

γ(e′) 6= γ(e0), ∀e′ ∈ [e] \ {e0}.

Without loss of generality, we may assume that e0 ∈ E(1)
t . We write

P` =
∏

e∈E(`)
t

X
(γt(e))
N (φt(e)) and P

(0)
1 =

∏
e∈E(1)

t \{e0}

X
(γt(e))
N (φt(e)).

The independence of the centered random variables X(i)
N (j, k) and the injectivity of the

maps φt imply that

E[(P1 − EP1)(P2 − EP2)] = E[X
(γt(e0))
N (φt(e0))]E[(P

(0)
1 − EP (0)

1 )(P2 − EP2)] = 0.

Thus, for Tt ∈ ST to contribute, each label i ∈ I present in a class [e] ∈ Ñt must occur
with multiplicity

mi,[e] ≥ 2. (3.23)

This in turn implies that
#(Nt) ≥ 2#(Ñt). (3.24)

As before, the underlying simple graph Tt = (Vt, Ñt) is still connected, whence

#(Ñt) + 1 ≥ #(Vt). (3.25)

Of course, we also have the inherent bound

#(Nt) ≤ #(Et) = 2#(E). (3.26)

Applying the uniform bound (3.21), we arrive at the asymptotic

Var(tr[T (XN )]) = OT (N
max{#(Vt):Tt∈ST }) ≤ OT (N#(E)+1), (3.27)

or, equivalently,

Var

(
1

N
tr[T (WN )]

)
= OT (N

−1), (3.28)

falling short of our goal.
One might hope that we were overly generous in our bounds and that equality in

max{#(Vt) : Tt ∈ ST } ≤ #(E) + 1 (3.29)

is not attainable in practice. In fact, in the usual situation of traces of powers

tr[T (WN )] = tr((W
(i(1))
N )`1 · · · (W(i(m))

N )`m), (3.30)

this is indeed the case; however, in general, (3.27) is tight. In particular, note that if
we start with a tree T , we can overlay two disjoint copies T1 and T2 of T , the second
with reversed edges, to obtain an opposing colored double tree Tt. In this case, we have
equality in (3.23)-(3.26). Proposition 3.2 then shows that the contribution of Tt in (3.22)
is Θ(N#(E)+1).
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T Tt

x1

x2
x3

x2

x1

T1

T2

x3
x2

x1

x2

x1

x3
x2

x1

x1

x2
x3

x2

x1

Figure 7: An example of an overlay of trees. Here, we consider two copies T1 and T2 of
the tree T . We depict the second copy T2 with the direction of its edges already reversed.

Working backwards, we identify the worst case scenario: for (3.23)-(3.26) to hold
with equality, we need to glue (not necessarily overlay) disjoint copies T1 and T2 of T
with at least one edge overlay to obtain a colored double tree Tt (though T itself need
not be a tree in general). In the classical case (3.30), T corresponds to a cycle of length
`1 + · · · + `m and such a gluing does not exist: starting with an edge overlay between
two copies of the cycle, we obtain a butterfly as in Figure 5 (though the twin edges in
the butterfly may now be opposing), leading to a strict inequality in (3.29) and hence the
usual asymptotic O(N−2) in place of (3.28).

The careful reader will notice that we have actually proven a stronger result in the
presence of loops L 6= ∅: in place of (3.26), we can instead use the tighter bound

#(Nt) ≤ 2#(N ).

We summarize our findings thus far.

Lemma 3.4 (Preliminary concentration for Wigner matrices). For a family of Wigner
matrices XN = (X

(i)
N )i∈I , we have the asymptotic

Var(tr[T (XN )]) = OT (N
#(N )+1), ∀T ∈ T 〈x〉.

The bound is tight in the sense that there exist test graphs T ∈ T 〈x〉 such that

Var(tr[T (XN )]) = ΘT (N
#(N )+1).

The colored double tree obstruction in Lemma 3.4 ramifies into a forest of colored
double trees for higher powers, but this construction remains the lone outlier. We exploit
this feature to prove concentration for higher powers.

Theorem 3.5 (Concentration for Wigner matrices). For a family of Wigner matrices
XN = (X

(i)
N )i∈I , we have the asymptotic

E

[
tr[T (XN )]− E tr[T (XN )]

∣∣∣∣2m]
= OT (N

m(#(N )+1)), ∀T ∈ T 〈x〉.

The bound is tight in the sense that there exist test graphs T ∈ T 〈x〉 such that

E

[∣∣∣∣ tr[T (XN )]− E tr[T (XN )]

∣∣∣∣2m]
= ΘT (N

m(#(N )+1)).
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Proof. The concrete case of m = 2 contains all of the essential ideas; we encourage the
reader to follow through the proof with this simpler case in mind.

To begin, we expand the absolute value as in (3.19) to obtain

∑
φ1,...,φ2m:V→[N ]

E

[ 2m∏
`=1

( ∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

[ ∏
e∈E

X
(γ(e))
N,` (φ`(e))

])]
, (3.31)

where

X
(i)
N,`(j, k) =

{
X

(i)
N (j, k) if ` is odd,

X
(i)
N (k, j) if ` is even.

Our strong moment assumption (3.1) again ensures that we can bound the summands in
(3.31) uniformly in (φ1, . . . , φ2m) and N with a dependence only on T , i.e.,

E

[ 2m∏
`=1

( ∏
e∈E

X
(γ(e))
N,` (φ`(e))− E

[ ∏
e∈E

X
(γ(e))
N,` (φ`(e))

])]
≤ CT <∞. (3.32)

We proceed to an analysis of contributing 2m-tuples Φ = (φ1, . . . , φ2m). Using the
same notation as before, we say that a coordinate φ` in a 2m-tuple Φ is unmatched if

φ̃`(E) ∩ φ̃`′(E) = ∅, ∀`′ 6= `.

Similarly, we say that distinct coordinates φ` and φ`′ (i.e., ` 6= `′) are matched if

φ̃`(E) ∩ φ̃`′(E) 6= ∅.

We further say that a 2m-tuple Φ is unmatched if it has an unmatched coordinate φ`;
otherwise, we say that Φ is matched.

We define an equivalence relation ∼ on the coordinates of Φ by matchings; thus,

φ` ∼ φ`′ ⇐⇒ ∃`1, . . . `k ∈ [2m] : φ`j and φ`j+1
are matched for j = 0, . . . , k,

where `(0) = ` and `(k + 1) = `′. We write Φ̃ for the set of equivalence classes in Φ, in
which case (3.32) becomes∏

[φ̃]∈Φ̃

E

[ ∏
φ∈[φ̃]

( ∏
e∈E

X
(γ(e))
N,`(φ)(φ(e))− E

[ ∏
e∈E

X
(γ(e))
N,`(φ)(φ(e))

])]
≤ CT <∞.

For an unmatched Φ, this product includes a zero term; henceforth, we only consider
matched 2m-tuples. We incorporate the data of such a tuple into the graph T as before.

For a 2m-tuple Φ, we construct a new graph TtΦ by considering 2m disjoint copies
(T1, . . . , T2m) of T (associated to Φ = (φ1, . . . , φ2m) respectively), reversing the direction
of the edges of (T2, T4, . . . , T2m), and then identifying the vertices according their images
under the maps Φ; formally, the vertices of TtΦ are given by

VtΦ = (∪2m`=1φ
−1
` (m) : m ∈ [N ]).

Note that
Φ is matched =⇒ TtΦ has ≤ m connected components.

The sum over the set of matched 2m-tuples Φ can then be decomposed into a double
sum: the first, over the set ST of (not necessarily connected) graphs Tt = (Vt, Et, γt)

obtained by gluing the vertices of 2m disjoint copies of T such that each copy has at
least one edge overlay with at least one other copy (we reverse the direction of the
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edges of the even copies beforehand, and we again keep track of the origin of the edges
Et = E

(1)
t t · · · t E

(2m)
t ); the second, over the set of injective labelings φt : Vt ↪→ [N ] of

the vertices of Tt. We write C(Tt) = {C1, . . . , CdTt
} for the set of connected components

of Tt. We emphasize that
dTt ≤ m. (3.33)

Note that the edges Ep of each connected component Cp consists of a union

Ep = E
(jp(1))
t t · · · t E(jp(kp))

t .

We may then recast (3.31) as

∑
Tt∈ST

∑
φt:Vt↪→[N ]

dTt∏
p=1

E

[ kp∏
`=1

( ∏
e∈E

(jp(`))
t

X
(γt(e))
N (φt(e))−E

[ ∏
e∈E

(jp(`))
t

X
(γt(e))
N (φt(e))

])]
. (3.34)

We consider a generic Tt ∈ ST . Note that our analysis from before applies to each of
the connected components Cp = (Vp, Ep, γp). In particular, using the same notation as
before, we know that the components of a contributing Tt must satisfy

mi,[e] = 0 or mi,[e] ≥ 2, ∀(i, [e]) ∈ I × Ñp, (3.35)

#(Np) ≥ 2#(Ñp), (3.36)

#(Ñp) + 1 ≥ #(Vp). (3.37)

Of course, we also have the inherent (in)equalities

dTt∑
p=1

#(Vp) = #(Vt) and

dTt∑
p=1

#(Np) = #(Nt) ≤ 2m#(N ). (3.38)

Putting everything together, we arrive at the asymptotic

E

[∣∣∣∣ tr[T (XN )]− E tr[T (XN )]

∣∣∣∣2m]
= OT (N

max{#(Vt):Tt∈ST })

≤ OT (Nm#(N )+dTt ) ≤ OT (Nm(#(N )+1)).

The tightness of our bound follows much as before. If we start with a tree T , we can
overlay pairs of the 2m-disjoint copies (T1, . . . , T2m) of T to obtain a forest of dTt = m

opposing colored double trees. In this case, we have equality in (3.33) and (3.35)-(3.38).
Once again, Proposition 3.2 shows that the contribution of Tt in (3.34) is Θ(Nm(#(N )+1)).
As was the case for m = 1, a forest of m colored double trees Tt corresponds to the
worst case scenario.

Reintroducing the standard normalizationWN = N−1/2XN , we obtain the asymptotic

E

[∣∣∣∣ 1N tr[T (WN )]−E 1

N
tr[T (WN )]

∣∣∣∣2m]
= OT (N

−m(#(L)+1)), ∀T ∈ T 〈x〉, (3.39)

which bounds the deviation

P

(∣∣∣∣ 1N tr[T (WN )]−E 1

N
tr[T (WN )]

∣∣∣∣ > ε

)
= OT,m(N−m(#(L)+1)), ∀T ∈ T 〈x〉. (3.40)

We chose to work with the random variable tr[T (XN )], but virtually the same proof
applies to the injective version

tr0[T (XN )] :=
∑

φ:V ↪→[N ]

∏
e∈E

(X
(γ(e))
N )(φ(e)).
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In particular, Theorem 3.5 holds with tr0[T (XN )] in place of tr[T (XN )], and so too do its
implications (3.39) and (3.40). Of course, one could also deduce this from the relations
(2.1) and (2.2) between tr[T (XN )] and tr0[T (XN )], which still hold at the level of random
variables (i.e., before taking the expectation). This shows that the two results are in
fact equivalent. We may then apply the usual Borel-Cantelli machinery to prove the
almost sure version of Proposition 3.2. The results in this section apply just as well to
Wigner matrices of a general parameter βi ∈ D. In this case, we do not need a separate
statement for the general situation.

4 Random band matrices

Our analysis of the Wigner matrices in Section 3 crucially relies on two important
features of our ensemble, namely, the homogeneity of the vertices in our graphs T and
the divergence of our normalization

√
N . By the first property, we mean that the label

φ(v) ∈ [N ] of a vertex v ∈ V does not constrain our choice of a contributing label φ(w)
for an adjacent vertex w ∼e v (or, in the case of an injective labeling φ, does so uniformly
in the choice of φ(v)). At the level of the matrices XN , this corresponds to the fact that
any given row (resp., column) of a Wigner matrix looks much the same as any other row
(resp., column). For example, if we consider a real Wigner matrix as in Definition 1.1,
then the rows (resp, columns) each have the same distribution up to a cyclic permutation
of the entries. More generally, there exists a permutation invariant realization of our
ensemble XN iff βi ∈ [−1, 1]. This property of course does not hold for random band
matrices ΞN = BN ◦XN : rows (resp, columns) near the top or the bottom (resp., the far
left or the far right) of our matrix will in general have fewer nonzero entries. This in turn
owes to the asymmetry of the band condition BN . We can recover the homogeneity of our
ensemble by reflecting the band width across the perimeter of the matrix to obtain the
so-called periodic random band matrices, providing an intermediate model between the
Wigner matrices and the random band matrices. We start with this technically simpler
model and work our way up to the RBMs. We summarize the main results at the end of
the section on proportional growth RBMs.

Remark 4.1. The so-called homogeneity property mentioned above and the correspond-
ing periodization technique first appeared in the work [7] of Bogachev, Molchanov, and
Pastur. The authors used this intermediate model to transfer Wigner’s semicircle law to
random band matrices of slow growth. We employ the same periodization technique to
identify the limiting traffic distribution of independent random band matrices.

4.1 Periodic random band matrices

To begin, we formalize

Definition 4.2 (Periodic RBM). Let (bN ) be a sequence of nonnegative integers. We write
PN for the corresponding N ×N periodic band matrix of ones with band width bN , i.e.,

PN (i, j) = 1{|i− j|N ≤ bN},

where
|i− j|N = min{|i− j|, N − |i− j|}.

Let XN be an unnormalized Wigner matrix. We call the random matrix ΓN defined by

ΓN = PN ◦XN

an unnormalized periodic RBM. Using the normalization ΥN = (2bN )−1/2JN , we call the
random matrix ΛN defined by

ΛN = ΥN ◦ ΓN
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a normalized periodic RBM. We simply refer to periodic RBMs when the context is clear,
or when considering the definition altogether.

(ΓN ,ΛN )(ΞN ,ΘN )

Figure 8: An example of the periodization of a random band matrix. Here, we scale the
matrix to the unit square [0, 1]2. The (i, j)-th entry then corresponds to the subsquare
[ j−1N , jN ]×[N−iN , N−i+1

N ], which we fill in provided that the band width condition |i−j| ≤ bN
(resp., |i− j|N ≤ bN ) is satisfied.

Let XN = (X
(i)
N )i∈I be a family of unnormalized Wigner matrices as before. We

consider a family of divergent band widths (b(i)N )i∈I such that

lim
N→∞

b
(i)
N =∞, ∀i ∈ I, (4.1)

for which we form the corresponding family of periodic RBMs, unnormalized RN =

(Γ
(i)
N )i∈I and otherwise PN = (Λ

(i)
N )i∈I . We identify the LTD of the family PN with that of

the familiar Wigner matricesWN from Proposition 3.2.

Lemma 4.3 (Traffic convergence for periodic RBMs). For any test graph T in x = (xi)i∈I ,

lim
N→∞

τ0N [T (PN )] =

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(4.2)

Proof. The proof follows much along the same lines as Proposition 3.2 except that we
must take care to account for the differing rates of growth in the band widths (b(i)N )i∈I .
To begin, suppose that T = (V,E, γ). By definition, we have that

τ0N [T (PN )] = E

[
1

N

∑
φ:V ↪→[N ]

∏
e∈E

Λ
(γ(e))
N (φ(e))

]

=
1

N
∏
e∈E

√
2b

(γ(e))
N

∑
φ:V ↪→[N ]

E

[ ∏
e∈E

Γ
(γ(e))
N (φ(e))

]
. (4.3)

Using our earlier notation, we can recast the sum in (4.3) as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

Γ
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E

[ ∏
e′∈[e]

Γ
(γ(e′))
N (φ(e′))

])
. (4.4)

Whereas before the label φ(v) of a vertex v did not constrain our choice of label φ(w)
for an adjacent vertex w ∼e v (beyond the injectivity requirement), we note that in this
case a summand of (4.4) equals zero if

∃e0 ∈ [e] : |φ(src(e0))− φ(tar(e0))|N > b
(γ(e0))
N .
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In fact, we see that such a summand equals zero as soon as

∃e0 ∈ [e] : |φ(src(e0))− φ(tar(e0))|N > min
e′∈[e]

b
(γ(e′))
N .

To keep track of these constraints, we define

|φ(e)|N = |φ(src(e))− φ(tar(e))|N .

Note that |φ(·)|N is constant on equivalence classes [e] ∈ Ñ , and so we further write
|φ([e])|N for the common value of

{|φ(e′)|N : e′ ∈ [e]}.

We use the function |φ(·)|N to define the band width condition

C[e] = 1{|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N },

which allows us to rewrite (4.4) as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

C[e]E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
(4.5)

in terms of the usual Wigner matrices XN = (X
(i)
N )i∈I (cf. Equation (3.7)). We may then

apply our analysis from Proposition 3.2 to conclude that a contributing graph T satisfies

mi,[e] = 0 or mi,[e] ≥ 2, ∀(i, [e]) ∈ I × Ñ . (4.6)

The band width condition

|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N , ∀[e] ∈ Ñ (4.7)

bounds the number AN (T ) of contributing maps φ : V ↪→ [N ] by

AN (T ) ≤ N
∏

[e]∈Ñ

min
e′∈[e]

2b
(γ(e′))
N .

Indeed, fixing an arbitrary vertex v0 ∈ V , we have N choices for φ(v0) ∈ [N ]; but, having
made this choice, we must take into account the band widths in traversing the remaining
edges of the simple graph T = (V, Ñ ). In fact, we can apply the same reasoning to any
spanning tree T0 = (V, Ñ0) of T since any edge [ek] ∈ Ñ in a cycle ([e1], . . . , [ek]) will have
already had the admissible range of labels for its incident vertices determined by the
band width conditions coming from the other edges ([e1], . . . , [ek−1]). This leads to the
refinement

AN (T ) ≤ N
∏

[e]∈Ñ0

min
e′∈[e]

2b
(γ(e′))
N , (4.8)

where
#(Ñ0) ≤ #(Ñ ) ≤ #(Ẽ). (4.9)

Recycling the bound (3.11) for the summands of (4.5), we arrive at the asymptotic

τ0N [T (PN )] = OT

(
N

∏
[e]∈Ñ0

mine′∈[e] 2b
(γ(e′))
N

N
∏
e∈E

√
2b

(γ(e))
N

)

= OT

( ∏
[e]∈Ñ0

mine′∈[e] 2b
(γ(e′))
N∏

e∈N

√
2b

(γ(e))
N

∏
`∈L

√
2b

(γ(`))
N

)
.
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For the sake of comparison, we draw the reader’s attention to (3.12) for the analogous
asymptotic in the case of the Wigner matrices (note that #(Ñ0) = #(V ) − 1). The

divergence (4.1) of the band widths b(i)N and the inequalities (4.6) and (4.9) then imply
that τ0N [T (PN )] vanishes in the limit unless T is a colored double tree, in which case one
clearly obtains the prescribed limit (4.2).

Here, the situation for general βi ∈ D becomes much different. For a single periodic
RBM ΛN of divergent band width bN → ∞, the LTD follows (3.16) as in the Wigner
case; however, the joint LTD of PN might not exist depending on the fluctuations of the
band widths (b(i)N )i∈I . In this case, we need to make additional assumptions on the band
widths (e.g., proportional growth) to ensure the existence of an asymptotic proportion
for an ordering ψ of the vertices (i.e., the analogue of (3.15)). We comment more on
this situation later. On the other hand, the orderings play no role in the calculation of
τ0N [T (PN )] for an opposing colored double tree T . Thus, we can apply the criteria (3.18)

in Remark 3.3 to conclude that PN = (Λ
(i)
N )i∈I converges in distribution to a semicircular

system a = (ai)i∈I regardless of the parameters (βi)i∈I .
Note that a periodic RBM ΛN with band width bN = N/2 corresponds to a standard

Wigner matrix WN . As such, we can view Lemma 4.3 as a generalization of Proposition
3.2. We extend the result to include RBMs of slow growth in the next section.

4.2 Slow growth

To begin, we partition the index set I of our matrices XN = (X
(i)
N )i∈I into two camps

I = I1 ∪ I2. We consider a class of divergent band widths (b
(i)
N )i∈I as in (4.1) with the

added condition of slow growth for (b(i)N )i∈I2 , i.e.,

lim
N→∞

b
(i)
N

N
= 0, ∀i ∈ I2. (4.10)

We form the corresponding family of periodic RBMs as before,

RN = R(1)
N ∪R

(2)
N = (Γ

(i)
N )i∈I1 ∪ (Γ

(i)
N )i∈I2 , PN = P(1)

N ∪ P
(2)
N = (Λ

(i)
N )i∈I1 ∪ (Λ

(i)
N )i∈I2 .

For i ∈ I2, we also form the corresponding family of slow growth RBMs (Definition 1.2),

S(2)N = (Ξ
(i)
N )i∈I2 = (B

(i)
N ◦X

(i)
N )i∈I2 , O(2)

N = (Θ
(i)
N )i∈I2 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I2 .

Lemma 4.4 (Traffic convergence for slow growth RBMs). LetMN = P(1)
N ∪ O

(2)
N . For any

test graph T in x = (xi)i∈I ,

lim
N→∞

τ0N [T (MN )] =

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise.
(4.11)

Proof. In view of Lemma 4.3, it suffices to show that

lim
N→∞

∣∣∣∣τ0N [T (PN )]− τ0N [T (MN )]

∣∣∣∣ = 0, ∀T ∈ T 〈x〉. (4.12)

Of course, the only difference between the families PN andMN comes from the periodiza-
tion of the slow growth RBMs S(2)N . Equation (4.12) then asserts that the contribution of
the additional entries arising from this periodization becomes negligible in the limit.

For convenience, we write UN = (U
(i)
N )i∈I for the unnormalized version ofMN so

that

U
(i)
N =

{
Γ
(i)
N if i ∈ I1,

Ξ
(i)
N if i ∈ I2.
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Traffic distributions of random band matrices

Expanding τ0N [T (MN )], we obtain the analogue of (4.3),

1

N
∏
e∈E

√
2b

(γ(e))
N

∑
φ:V ↪→[N ]

E

[ ∏
e∈E

U
(γ(e))
N (φ(e))

]
.

Our notation works just as well in this case to produce the analogue of (4.4) for our sum,∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

U
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

E

[ ∏
e′∈[e]

U
(γ(e′))
N (φ(e′))

])
.

Naturally, we then look for the analogue of (4.5). Note that the corresponding version of
the band width condition (4.7) must now take into account the index γ(e′) ∈ I1 ∪ I2 of
e′ ∈ [e]. We partition the equivalence classes [e] = [e]1 ∪ [e]2 in Ñ accordingly, where

[e]j = [e] ∩ γ−1(Ij).

For an edge e ∈ N , we define

|φ(e)| = |φ(src(e))− φ(tar(e))|.

As before, |φ(·)| is constant on equivalence classes [e] ∈ Ñ , and so we write |φ([e])| for
the common value of

{|φ(e′)| : e′ ∈ [e]}.

More specifically, we write |φ([e]2)| for the common value of

{|φ(e′)| : e′ ∈ [e]2}.

Note that [e]2 may be empty, in which case we define |φ(∅)| = 0. We use the same
convention for |φ([e]1)|N to define the band width condition

C ′[e] = 1{|φ([e]1)|N ≤ min
e′∈[e]1

b
(γ(e′))
N }1{|φ([e]2)| ≤ min

e′∈[e]2
b
(γ(e′))
N }, ∀[e] ∈ Ñ .

We may then write the analogue of (4.5) for our familyMN as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

C ′[e]E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
. (4.13)

Of course, the inherent inequality | · |N = min{| · |, N − | · |} ≤ | · | implies that

C ′[e] ≤ 1{|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N } = C[e], ∀[e] ∈ Ñ ,

which bounds the number BN (T ) of maps φ : V ↪→ [N ] satisfying the band width condition

|φ([e]1)|N ≤ min
e′∈[e]1

b
(γ(e′))
N and |φ([e]2)| ≤ min

e′∈[e]2
b
(γ(e′))
N , ∀[e] ∈ Ñ (4.14)

by

BN (T ) ≤ AN (T ). (4.15)

Recall that AN (T ) is the number of maps φ : V ↪→ [N ] satisfying the weaker condition

|φ([e])|N ≤ min
e′∈[e]

b
(γ(e′))
N , ∀[e] ∈ Ñ (4.16)
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present in Lemma 4.3. In view of (4.15), our work in this previous case implies that

lim
N→∞

τ0N [T (MN )] = 0

unless T is a colored double tree. Thus, it remains to prove (4.12) for such a graph T .
Comparing the two equations (4.5) and (4.13), we arrive at the asymptotic∣∣∣∣τ0N [T (PN )]− τ0N [T (MN )]

∣∣∣∣ = OT

(
DN (T )

N
∏
e∈E

√
2b

(γ(e))
N

)
, (4.17)

where DN (T ) = AN (T ) − BN (T ) is the number of maps φ : V ↪→ [N ] that satisfy the
band width condition (4.16) but not the stronger condition (4.14). This formalizes the
observation that we made at the beginning of the proof about the only difference between
the families PN andMN . In particular, for i ∈ I2, note that the periodic version Γ

(i)
N of

a slow growth RBM Ξ
(i)
N only differs in the entries within band width’s distance of the

perimeter; otherwise, the two matrices are identical. For a map φ : V ↪→ [N ], this means
that if φ stays sufficiently far away from the endpoints of the interval [N ], then the two
conditions (4.14) and (4.16) are actually equivalent. In particular, this holds if

φ(V ) ⊂ [1 + max
e∈E2

b
(γ(e))
N , N −max

e∈E2

b
(γ(e))
N ],

where E2 = γ−1(I2) is of course a finite set. In this case, we have the bound

DN (T ) = AN (T )−BN (T ) ≤ A∗N (T ),

where A∗N (T ) is the number of maps φ : V ↪→ [N ] satisfying (4.16) with range

φ(V ) 6⊂ [1 + max
e∈E2

b
(γ(e))
N , N −max

e∈E2

b
(γ(e))
N ]. (4.18)

We give a simple bound on A∗N (T ) as follows: set aside a vertex v0 ∈ V (for which

there are #(V ) choices) to satisfy (4.18) (for which there are 2max
e∈E2

b
(γ(e))
N choices) and

pick the labels φ(v) of the remaining vertices according to (4.16) (for which there are at

most
∏

[e]∈Ẽ mine′∈[e] 2b
(γ(e′))
N choices) to see that

A∗N (T ) = OT

(
max
e∈E2

b
(γ(e))
N

∏
[e]∈Ẽ

min
e′∈[e]

2b
(γ(e′))
N

)
. (4.19)

We may then recast (4.17) as∣∣∣∣τ0N [T (PN )]− τ0N [T (MN )]

∣∣∣∣ = maxe∈E2 b
(γ(e))
N

N
OT

(∏
[e]∈Ẽ mine′∈[e] 2b

(γ(e′))
N∏

e∈E

√
2b

(γ(e))
N

)
. (4.20)

T being a colored double tree, we know that∏
[e]∈Ẽ mine′∈[e] 2b

(γ(e′))
N∏

e∈E

√
2b

(γ(e))
N

= 1.

Moreover, since#(E2) <∞, the slow growth condition (4.10) still holds for the maximum
over E2,

max
e∈E2

b
(γ(e))
N = o(N). (4.21)
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Traffic distributions of random band matrices

Equations (4.19)-(4.21) formalize our intuition from before: the periodic version of a
RBM only differs within band width’s distance of the perimeter; for a slow growth RBM,
one then needs to be very close to the perimeter to realize this difference; as such, the
corresponding interior region accounts for the bulk of the calculations. The result now
follows.

(ΓN ,ΛN )

(ΞN ,ΘN )

bN
N

bN
N

⇒

⇒ ⇒

⇒

Figure 9: An illustration of the “interior” region of a random band matrix (resp., periodic
random band matrix) at band width’s distance bN

N = o(1) from the perimeter. Here, we
cut off the boundary to see that the two interior regions are indeed identical.

Remark 4.5. If we think of choosing a map φ : V ↪→ [N ] satisfying (4.14) as starting at
an arbitrary vertex v0, making a choice φ(v0) ∈ [N ], and then choosing the labels of the
remaining vertices in a manner compatible with the band width conditions, then each
choice of φ(v) after φ(v0) can be thought of as an incremental walk of distance at most

mine′∈[e] b
(γ(e′))
N for some [e] ∈ Ñ . If I = I2, then starting from a “deep” vertex

φ(v0) ∈ [1 + #(E)max
e∈E

b
γ(e))
N , N −#(E)max

e∈E
b
(γ(e))
N ],

the walk never has a chance to loop across the perimeter of the matrix. This line of
reasoning can be used to give a more intuitive geometric proof of Lemma 4.4 in the
simpler case of I = I2. This notion of a deep vertex originates in the work [7].
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Traffic distributions of random band matrices

If I 6= I2, then we need to account for the possibility of the band widths of the periodic
RBMs being large enough to bring us close to the perimeter so that the walk crosses
over with a step from a periodized version of a slow growth RBM. Taking inspiration
from the simpler case of I = I2, our analysis shows that a generic walk stays within a
region in which the slow growth RBMs and their periodized versions are identical.

We encounter the same problem from before when considering general βi ∈ D:
without further assumptions on the band widths (b(i)N )i∈I , their fluctuations could possibly
preclude the existence of a joint LTD. In general, we must again settle for the convergence
ofMN = (Λ

(i)
N )i∈I1 ∪ (Θ

(i)
N )i∈I2 in distribution to a semicircular system a = (ai)i∈I .

Recall that the Wigner matricesWN are asymptotically traffic independent iff βi ∈ R,
and that a permutation invariant realization of our ensembleWN exists iff βi ∈ R. One
might then ask if permutation invariance is a necessary condition for matricial asymptotic
traffic independence; however, we see that this is not the case. In particular, one cannot
find a permutation invariant realization of the periodic RBMs (except in the trivial case
of bN ∼ N/2), nor of the slow growth RBMs. Instead, we relied on the aforementioned
homogeneity property and the divergence of our normalization. Taken alone, neither of
these two properties suffices, as we shall see in the proportional growth regime (which
lacks homogeneity) and the fixed band width regime (which has a fixed normalization).

4.3 Proportional growth

Not surprisingly, the periodization trick from the previous section fails for propor-
tional growth RBMs unless c = 1 (recall that c = limN→∞

bN
N ∈ (0, 1]). In the case of

proper proportion c ∈ (0, 1), the entries in the matrix introduced by reflecting the band
width across the perimeter now account for an asymptotically nontrivial region in the
unit square and so no longer represent a negligible contribution to the calculations.
Nevertheless, we can adapt our work from before to prove the existence of a joint LTD
supported on colored double trees T , though in general the value of this limit will depend
on the particular degree structure of the graph T .

bN
N

bN
N

c

c

⇒

Figure 10: An illustration of the limit shape of our scaled matrix in the unit square
[0, 1]2. Here, we distinguish the periodized version of our matrix with the additional gray
area. In the limit, the shape corresponds to the banded region |x− (1− y)| ≤ c (resp.,
the periodic banded region min(|x − (1 − y)|, 1 − |x − (1 − y)|) ≤ c). In contrast to the
slow growth regime, we see a nontrivial contribution from the periodization due to the
nonvanishing scale of the band width limN→∞

bN
N = c ∈ (0, 1).

To formalize our result, we now split the index set I = I1 ∪ I2 ∪ I3 ∪ I4 into four
camps. We consider a class of divergent band widths (b(i)N )i∈I as in (4.1) with the added
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conditions of slow growth for b
(2)
N = (b

(i)
N )i∈I2 , full proportion for b

(3)
N = (b

(i)
N )i∈I3 , and

proper proportion for b(4)
N = (b

(i)
N )i∈I4 so that

lim
N→∞

b
(i)
N

N
= 0, ∀i ∈ I2,

lim
N→∞

b
(i)
N

N
= ci = 1, ∀i ∈ I3,

lim
N→∞

b
(i)
N

N
= ci ∈ (0, 1), ∀i ∈ I4.

For i ∈ I1 ∪ I2, we form the corresponding families of periodic RBMs and slow growth
RBMs as before,

RN = R(1)
N ∪R(2)

N = (Γ
(i)
N )i∈I1 ∪ (Γ

(i)
N )i∈I2 , PN = P(1)

N ∪ P(2)
N = (Λ

(i)
N )i∈I1 ∪ (Λ

(i)
N )i∈I2 ;

S(2)
N = (Ξ

(i)
N )i∈I2 = (B

(i)
N ◦X(i)

N )i∈I2 , O(2)
N = (Θ

(i)
N )i∈I2 = (Υ

(i)
N ◦Ξ(i)

N )i∈I2 .

For i ∈ I3 ∪ I4, we form the corresponding families of proportional growth RBMs,

F (3)
N = (Ξ

(i)
N )i∈I3 = (B

(i)
N ◦X

(i)
N )i∈I3 , O(3)

N = (Θ
(i)
N )i∈I3 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I3 ;

C(4)N = (Ξ
(i)
N )i∈I4 = (B

(i)
N ◦X

(i)
N )i∈I4 , O(4)

N = (Θ
(i)
N )i∈I4 = (Υ

(i)
N ◦Ξ

(i)
N )i∈I4 .

We start with the simpler case of the single family O(4)
N of (proper) proportional

growth RBMs. In this case, the LTD of O(4)
N only depends on the band widths b(4)

N up to
the limiting proportions

c4 = (ci)i∈I4 .

Lemma 4.6 (Traffic convergence for proportional growth RBMs). For any test graph T in
x4 = (xi)i∈I4 ,

lim
N→∞

τ0N [T (O(4)
N )] =

{
pT (c4)

∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.22)

where pT (c4) > 0 only depends on the test graph T and the proportions c4 = (ci)i∈I4 .

Proof. As usual, we begin by expanding

τ0N [T (O(4)
N )] =

1

N1+
#(E)

2

∏
e∈E

√
2cγ(e) − c2γ(e)

∑
φ:V ↪→[N ]

E

[ ∏
e∈E

Ξ
(γ(e))
N (φ(e))

]

and rewriting the summands as( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

b
(γ(e′))
N }E

[ ∏
e′∈[e]

X
(γ(e′))
N (φ(e′))

])
.

At this point, we can already conclude the bottom half of (4.22). Hereafter, T denotes a
colored double tree. In this case, we have the equality

τ0N [T (O(4)
N )] =

CN (T )

N1+#(Ẽ)
∏

[e]∈Ẽ (2cγ([e]) − c2γ([e]))

∏
i∈I

β
ci(T )
i

=
CN (T )

N#(V )

1∏
[e]∈Ẽ (2cγ([e]) − c2γ([e]))

∏
i∈I

β
ci(T )
i ,
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where CN (T ) is the number of maps φ : V ↪→ [N ] satisfying the band width condition

|φ([e])| ≤ b(γ([e]))N , ∀[e] ∈ Ẽ. (4.23)

We may think of the ratio
CN (T )

N#(V )
∼ CN (T )

N#(V )

as the proportion of admissible maps φ : V ↪→ [N ]. Unfortunately, the vertices of our
graph T lack the homogeneity property from before due to the asymmetry of the band
condition (4.23). This makes the task of computing CN (T ) extremely tedious (and highly
dependent on T ). Nevertheless, we can give an integral representation of the limit of
this ratio much as in [7]. In particular, a straightforward weak convergence argument
shows that

lim
N→∞

CN (T )

N#(V )
=

∫
[0,1]V

∏
[e]∈Ẽ

1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV . (4.24)

The remaining term in (4.22) follows as

pT (c4) =

∫
[0,1]V

∏
[e]∈Ẽ 1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV∏

[e]∈Ẽ (2cγ([e]) − c2γ([e]))
> 0.

Remark 4.7 (βi ∈ D). For general βi ∈ D, we must again keep track of the orderings ψ
of the vertices. In this case, we combine the integrands of (3.15) and (4.24) to define

pT (c4, ψ) =

∫
[0,1]V

1{xψ(1) ≥ · · · ≥ xψ(#(V ))}
∏

[e]∈Ẽ 1{|xsrc([e]) − xtar([e])| ≤ cγ([e])} dxV∏
[e]∈Ẽ (2cγ([e]) − c2γ([e]))

,

which replaces the 1
#(V )! term in (3.16). In particular, we can write the LTD of O(4)

N as

lim
N→∞

τ0N [T (O(4)
N )] =


∑

ψ:[#(V )]
∼→V

pT (c4, ψ)Sψ(T ) if T is a colored double tree,

0 otherwise.

Naturally, we are interested in the behavior of pT (c4) as the proportions c4 ap-
proach the boundary values {0, 1}. To this end, we fix some notation. Recall that
T = (V,E, γ, src, tar) is a colored double tree. We record the labels L(F̃ ) appearing in
any subset F̃ ⊂ Ẽ of twin edges so that

L(F̃ ) = {γ([e]) : [e] ∈ F̃} ⊂ I4.

We write {src([e]), tar([e])} for the pair of vertices adjacent to twin edges [e] = {e, e′},
which allows us to further record the vertices V (F̃ ) appearing in F̃ as

V (F̃ ) = {src([e]), tar([e]) : [e] ∈ F̃}.

For any collection of real numbers r = (rj)j∈J in [0, 1] with L(F̃ ) ⊂ J , we define the
function

CutF̃ ,r : [0, 1]
V (F̃ ) → [0, 1]

by the product

CutF̃ ,r(xV (F̃ )) =
∏

[e]∈F̃

1{|xsrc([e]) − xtar([e])| ≤ rγ([e])}.
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We note that CutF̃ ,r is simply the indicator on the banded region cut out of the hypercube

[0, 1]V (F̃ ) by the constraints |xsrc([e]) − xtar([e])| ≤ rγ([e]). For example, our notation allows
us to succinctly write the integral

IntT (c4) = lim
N→∞

CN (T )

N#(V )
=

∫
[0,1]V

CutẼ,c4
(xV ) dxV .

Similarly, we group the normalizations coming from the twin edges F̃ ⊂ Ẽ with

NormF̃ (c4) =
∏

[e]∈F̃

(2cγ([e]) − c2γ([e])). (4.25)

If F̃ = Ẽ, we write CutT,r = CutẼ,r (resp., NormT (c4) = NormẼ(c4)). In this case,

pT (c4) =
IntT (c4)

NormT (c4)
.

We will need some simple bounds on the integral IntT (c4). We start with an easy
upper bound. Consider a leaf vertex v0 of our colored double tree T . Let v1 ∼[e0] v0
denote the unique vertex v1 adjacent to v0. We compute the diameter f(xv1) of a cross
section in the banded strip of the unit square [0, 1]2 defined by |xv0 − xv1 | ≤ cγ([e0]),

f(xv1) =

∫ 1

0

1{|xsrc([e0]) − xtar([e0])| ≤ cγ([e0])} dxv0

=

∫ 1

0

1{|xv0 − xv1 | ≤ cγ([e0])} dxv0

=


xv1 + cγ([e0]) if xv1 ∈ [0, cγ([e0]) ∧ (1− cγ([e0]))],
2cγ([e0]) ∧ 1 if xv1 ∈ [cγ([e0]) ∧ (1− cγ([e0])), cγ([e0]) ∨ (1− cγ([e0]))],
1 + cγ([e0]) − xv1 if xv1 ∈ [cγ([e0]) ∨ (1− cγ([e0])), 1]

(4.26)

cγ([e0])

cγ([e0])

f(xv1)

xv1

= .

In particular,
cγ([e0]) ≤ f(xv1) ≤ 2cγ([e0]) ∧ 1.

It follows that

IntT (c4) =

∫
[0,1]V

CutT,c4(xV ) dxV

=

∫
[0,1]V \{v0}

CutẼ\{[e0]},c4
(xV \{v0})

(∫ 1

0

1{|xv0 − xv1 | ≤ cγ([e0])} dxv0
)
dxV \{v0}

≤
∫
[0,1]V \{v0}

CutẼ\{[e0]},c4
(xV \{v0})

(
2cγ([e0]) ∧ 1

)
dxV \{v0}

= (2cγ([e0]) ∧ 1) IntT\[e0](c4),
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where T \ [e0] is the colored double tree obtained from T by removing the leaf v0 and its
adjacent twin edges [e0]. Iterating this construction, we obtain the upper bound

IntT (c4) ≤
∏

[e]∈Ẽ

(2cγ([e]) ∧ 1).

The same reasoning of course shows that

IntT (c4) ≥ cγ([e0]) IntT\[e0](c4) ≥ · · · ≥
∏

[e]∈Ẽ

cγ([e]),

but we can do much better for small proportions c4. In particular, assume that

ĉ = max
[e]∈Ẽ

cγ([e]) <
1

2
.

Then

IntT (c4) =

∫
[0,1]V

CutT,c4(xV ) dxV ≥
∫
[ĉ,1−ĉ]V

CutT,c4(xV ) dxV

=

∫
[ĉ,1−ĉ]V \{v0}

CutẼ\{[e0]},c4(xV \{v0})

(∫ 1−ĉ

ĉ

1{|xv0 − xv1 | ≤ cγ([e0])} dxv0

)
dxV \{v0}

=

∫
[ĉ,1−ĉ]V \{v0}

CutẼ\{[e0]},c4(xV \{v0})

(
(1− 2ĉ)2cγ([e0])

)
dxV \{v0}

= · · · = (1− 2ĉ)#(Ẽ)
∏

[e]∈Ẽ

2cγ([e]).

Thus, for ĉ < 1
2 , we have the bounds

(1− 2ĉ)#(Ẽ)
∏

[e]∈Ẽ 2cγ([e])∏
[e]∈Ẽ (2cγ([e]) − c2γ([e]))

≤ IntT (c4)

NormT (c4)
≤

∏
[e]∈Ẽ 2cγ([e])∏

[e]∈Ẽ (2cγ([e]) − c2γ([e]))
,

which imply that

lim
ĉ→0+

pT (c4) = lim
ĉ→0+

IntT (c4)

NormT (c4)
= 1. (4.27)

We view the limit ĉ → 0+ as approaching the slow growth regime. In view of (4.27),
we see that the LTD (4.22) of the proportional growth RBMs behaves accordingly (in
particular, we have convergence to the LTD (4.11) of the slow growth RBMs).

In an easier direction, we can also consider the limit

c = min
[e]∈Ẽ

cγ([e]) → 1−.

One then clearly has

lim
c→1−

CutT,c4
(xV ) = 1, ∀xV ∈ [0, 1]V . (4.28)

We can push this limit through the integral by dominated convergence to obtain

lim
c→1−

IntT (c4) =

∫
[0,1]V

lim
c→1−

CutT,c4
(xV ) dxV = 1. (4.29)

Of course, the same convergence also holds for the normalizations (4.25),

lim
c→1−

NormF̃ (c4) = 1, ∀F̃ ⊂ Ẽ, (4.30)
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and so

lim
c→1−

pT (c4) = lim
c→1−

IntT (c4)

NormT (c4)
= 1. (4.31)

We view the limit c→ 1− as approaching the usual Wigner matrices, or, more generally,
the full proportion RBMs. Again, our limit (4.31) shows that the LTD (4.22) behaves
accordingly (in particular, we have convergence to the LTD (3.5) of the Wigner matrices).

Up to now, our analysis of the integral IntT (c4) essentially follows [7]. We take care
to account for possibly different band widths by grouping them in the min c or the max ĉ,
but in both cases we indiscriminately send the proportions to a single boundary value
{0, 1}. From this point of view, we fail to perceive any differences in the limits

lim
ĉ→0+

pT (c4) = 1 = lim
c→1−

pT (c4); (4.32)

yet, the two cases actually differ quite considerably. To see this, we will need to refine
our analysis of pT (c4) to consider sending only a subset of the proportions c4 to possibly
different boundary values. The results will greatly inform our treatment of the joint LTD
of the combined families P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N .

We start with the simpler case of sending the band width ci0 of a single label i0 ∈ I4
in our colored double tree T to 1−. We write Ti0 = (Vi0 , Ei0) for the subgraph of T with
edge labels in i0. In general, Ti0 is a forest of colored double trees (in the single “color”
i0). We define T̃i0 = (Vi0 , Ẽi0) as before. We remove the twin edges Ẽi0 from T to obtain
a forest of colored double trees T \ Ẽi0 (say, with connected components T1, . . . , Tk).
We emphasize that we only remove the edges Ẽi0 ; in particular, we keep any resulting
isolated vertices. We then have the analogues of (4.28)-(4.30):

lim
ci0→1−

CutT,c4(xV ) = CutẼ\Ẽi0 ,c4
(xV ) =

k∏
`=1

CutT`,c4(xV`
), ∀xV ∈ [0, 1]V , (4.33)

lim
ci0→1−

IntT (c4) =

∫
[0,1]V

lim
ci0→1−

CutT,c4(xV ) dxV

=

k∏
`=1

∫
[0,1]V`

CutT`,c4
(xV`

) dxV`
=

k∏
`=1

IntT`
(c4),

(4.34)

and

lim
ci0→1−

NormT (c4) = NormẼ\Ẽi0
(c4) lim

ci0→1−
NormẼi0

(c4) =

k∏
`=1

NormT`
(c4). (4.35)

It follows that

lim
ci0→1−

pT (c4) = lim
ci0→1−

IntT (c4)

NormT (c4)
=

∏k
`=1 IntT`

(c4)∏k
`=1 NormT`

(c4)
=

k∏
`=1

pT`
(c4). (4.36)

In particular, if T` consists of an isolated vertex, then pT`
(c4) = 1. One can then effectively

discard the isolated vertices of T \ Ẽi0 and just consider the resulting forest of nontrivial
colored double trees. We choose to keep these vertices in writing a simple, consistent
formula for our limit.

Of course, there is nothing special about only sending one of the band widths ci0 → 1−.
In fact, the same argument clearly applies to any collection of labels i0, . . . , ij in a colored
double tree T . We state the full result later once we have also considered the behavior
of pT (c4) in the limit ci0 → 0+, but first we must introduce some more notation.
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For any pair of subsets W ⊂ V and F̃ ⊂ Ẽ, we define the conditional expectation

IntF̃ (c4|W ) : [0, 1]W → [0, 1]

by

IntF̃ (c4|W )(xW ) =

∫
[0,1]V \W

CutF̃ ,c4
(xV ) dxV \W .

For example, the reader can easily verify that∫
[0,1]W

IntT (c4|W )(xW ) dxW = IntT (c4).

As before, we start with a single label i0 ∈ I4 in T , for which we now consider the
limit ci0 → 0+. To simplify the argument, we first assume that there is a unique pair of
twin edges [ei0 ] with the label γ([ei0 ]) = i0. For notational convenience, we write

{a, b} = {src([ei0 ]), tar([ei0 ])}.

We condition on the vertices {a, b} to obtain

pT (c4) =
IntT (c4)

NormT (c4)
=

∫
[0,1]V

CutT,c4
(xV )

NormT (c4)
dxV

=

∫
[0,1]2

IntẼ\{[ei0 ]}
(c4|{xa, xb})(xa, xb)

NormẼ\{[ei0 ]}
(c4)

(
1{|xa − xb| ≤ ci0}

2ci0 − c2i0
dxadxb

)
=

∫
[0,1]2

f(xa, xb)µci0 (dxa, dxb), (4.37)

where

f(xa, xb) =
IntẼ\{[ei0 ]}

(c4|{xa, xb})(xa, xb)
NormẼ\{[ei0 ]}

(c4)

is a bounded continuous function that does not depend on ci0 and

µci0 (dxa, dxb)

is the uniform (probability) measure on the banded strip in unit square [0, 1]2 defined by
|xa − xb| ≤ ci0 . In the limit, we have the weak convergence

µci0 ⇀ µ∆ as ci0 → 0+,

where µ∆ is the uniform measure on the diagonal {(x, x) : x ∈ [0, 1]} ⊂ [0, 1]2. In
particular, this implies that

lim
ci0→0+

pT (c4) = lim
ci0→0+

∫
[0,1]2

f(xa, xb)µci0 (dxa, dxb)

=

∫
[0,1]2

f(xa, xb)µ∆(dxa, dxb) =

∫ 1

0

f(x, x) dx = pT/[ei0 ](c4),

where T/[ei0 ] is the colored double tree obtained from T by contracting the twin edges
[ei0 ] (i.e., we remove the edges [ei0 ] and merge the vertices {a, b}). We note the contrast
to the situation in (4.36) in the limit ci0 → 1−, where we remove the edges but do not
otherwise modify the vertices.

We must take care if the label i0 appears in more than one set of twin edges. In any
case, we can always identify the subgraph Ti0 of T with edge labels in i0. In general,
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Ti0 = (Vi0 , Ei0) is a forest T1 t · · · t Tk of colored double trees T` = (V`, E`) in the single
color i0. Conditioning on the vertices Vi0 = V1 t · · · t Vk of Ti0 , we obtain

pT (c4) =

∫
×k

`=1[0,1]
V`

f(xV1
, . . . ,xVk

)

k∏
`=1

CutT`,ci0
(xV`

)

NormT`
(ci0)

dxV`
, (4.38)

where

f(xV1 , . . . ,xVk
) =

IntẼ\Ẽi0
(c4|Vi0)(xV1 , . . . ,xVk

)

NormẼ\Ẽi0
(c4)

is again a bounded continuous function that does not depend on ci0 . In this case, we
cannot immediately write (4.38) in terms of probability measures

µ(`)
ci0

(dxV`
) =

CutT`,ci0
(xV`

)

NormT`
(ci0)

dxV`

as we did in (4.37) since, in general,

IntT`
(ci0) =

∫
[0,1]V`

CutT`,ci0
(xV`

) dxV`
6= (2ci0 − c2i0)

#(Ẽ`) = NormT`
(ci0);

however, our work (4.27) from before shows that

lim
ci0→0+

IntT`
(ci0)

NormT`
(ci0)

= 1.

Thus, we can instead write

pT (c4) = δ(ci0)

∫
×k

`=1[0,1]
V`

f(xV1 , . . . ,xVk
)⊗k`=1 µ

(`)
ci0

(dxV`
), (4.39)

where δ(ci0) is a real number depending on ci0 such that

lim
ci0→0+

δ(ci0) = 1

and µ
(`)
ci0

is the uniform measure on the banded region R` ⊂ [0, 1]V` defined by the
constraints

|xsrc([e]) − xtar([e])| ≤ ci0 , ∀[e] ∈ Ẽ`.

As before, we note that
lim

ci0→0+
µ(`)
ci0

= µ
(`)
∆ ,

where µ(`)
∆ is the uniform measure on the diagonal {(x, . . . , x) : x ∈ [0, 1]} ⊂ [0, 1]V` . It

follows that

lim
ci0→0+

pT (c4) = lim
ci0→0+

∫
×k

`=1[0,1]
V`

f(xV1
, . . . ,xVk

)

k∏
`=1

CutT`,ci0
(xV`

)

NormT`
(ci0)

dxV`

=

∫
×k

`=1[0,1]
V`

f(xV1 , . . . ,xVk
)⊗k`=1 µ

(`)
∆ (dxV`

)

=

∫
[0,1]k

f(x1, . . . , x1, . . . , xk, . . . , xk) dx1 · · · dxk = pT/Ti0
(c4),

where T/Ti0 is the colored double tree obtained from T by contracting the edges of Ti0
(i.e., for each ` ∈ [k], we remove the edges Ẽ` and merge the vertices V` into a single
vertex).
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We can easily adapt our argument to accommodate multiple band widths ci0 , . . . , cij
in the limit max(ci0 , . . . , cij )→ 0+. In this case, we replace Ti0 with Ti, the subgraph of
T with edge labels in i = {i0, . . . , ij}; otherwise, the same argument goes through just as
well.

T T \ Ẽi0

xi0

xi1

xi2

xi1

xi1

xi0

xi0
xi1

xi2

xi1

xi1

T/Ti0

xi1

xi1

xi2

xi1

Figure 11: A comparison of the resulting graphs in the limit ci0 → 1− (resp., ci0 → 0+).
Here, we start with a colored double tree T and remove (resp., contract) the edges with
label xi0 to obtain the limit graph T \ Ẽi0 (resp., T/Ti0). Note that the two operations
can produce very different graphs.

At this point, we see how the limits (4.32) come about in different ways: in the limit
c→ 0+, we contract all of the edges, leaving a single isolated vertex; in the limit ĉ→ 1−,
we remove all of the edges, leaving #(V ) isolated vertices.

Finally, the result for a collection of band widths sent to possibly different boundary
values should come as no surprise. We combine our work in the two previous cases,
taking care to account for parts moving simultaneously in different directions. To begin,
let J0 (resp., J1) denote the collection of labels in our colored double tree T whose band
widths are to be sent to 0+ (resp., 1−). We define

c0 = (ci)i∈J0 , c1 = (ci)i∈J1 ,

c0 = max
i∈J0

ci, c1 = min
i∈J1

ci,

and write c2 = c4 \ (c0 ∪ c1) for the remaining band widths. We are then interested in
the limit

lim
(c0,c1)→(0+,1−)

pT (c4).

We decompose our graph as before. We write T0+ for the subgraph of T with edge
labels in J0. In general, T0+ = (V0+ , E0+) is a forest T0+ = T+

1 t · · · t T
+
k of colored

double trees T+
` = (V +

` , E
+
` ) except now possibly with multiple colors. Similarly, we write

T1− = (V1− , E1−) for the subgraph of T with edge labels in J1. Finally, we write E2 =

E \ (E0 ∪E1) for the remaining edges. Conditioning on the vertices V0+ = V +
1 t · · · t V

+
k

of T0+ , we obtain the analogue of (4.39),

pT (c4) = δ(c0)

∫
×k

`=1[0,1]
V

+
`

fc1(xV +
1
, . . . ,xV +

k
)⊗k`=1 µ

(`)
c0

(dxV +
`
),

where δ(c0) is a real number depending on c0 such that

lim
c0→0+

δ(c0) = 1
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and µ
(`)
c0 is the uniform measure on the banded region R` in [0, 1]V

+
` defined by the

constraints
|xsrc([e]) − xtar([e])| ≤ cγ([e]) ∈ c0, ∀[e] ∈ Ẽ+

` .

Despite considering multiple band widths c0, we still have the weak convergence

lim
c0→0+

µ(`)
c0

= µ
(`)
∆ .

As before,

fc1
(xV +

1
, . . . ,xV +

`
) =

IntẼ\Ẽ0+
(c4|V0+)(xV +

1
, . . . ,xV +

k
)

NormẼ\Ẽ0+
(c4)

=

∫
[0,1]

V \V
0+

CutẼ1− ,c1
(xV )

NormẼ1−
(c1)

CutẼ2,c2
(xV )

NormẼ2
(c2)

dxV \V0+

is a bounded continuous function that does not depend on c0; however, fc1 does depend
on c1. In particular, the function

CutẼ1− ,c1
: [0, 1]V → [0, 1]

is monotonic in c1 with

lim
c1→1−

CutẼ1− ,c1
(xV ) = 1, ∀xV ∈ [0, 1]V .

Since
lim

c1→1−
NormẼ1−

(c1) = 1,

it follows that

f(xV +
1
, . . . ,xV +

k
) = lim

c1→1−
fc1

(xV +
1
, . . . ,xV +

k
) =

∫
[0,1]V \V +

0

CutẼ2,c2
(xV )

NormẼ2
(c2)

dxV \V0+
.

The monotonicity of CutẼ1− ,c1
in the proportions c1 then allows us to conclude that

lim
(c0,c1)→(0+,1−)

pT (c4) = lim
(c0,c1)→(0+,1−)

∫
×k

`=1
[0,1]

V
+
`

fc1(xV +
1
, . . . ,x

V +
k
)

k∏
`=1

Cut
Ẽ+

`
,c0

(x
V +
`
)

Norm
T+
`
(c0)

dx
V +
`

=

∫
×k

`=1
[0,1]

V
+
`

f(x
V +
1
, . . . ,x

V +
k
)⊗k

`=1 µ
(`)
∆ (dx

V +
`
)

=

∫
[0,1]k

f(x1, . . . , x1, . . . , xk, . . . , xk) dx1 · · · dxk = pF (c2) =

s∏
r=1

pTr (c2),

where F is the forest of colored double trees F = T1 t · · · t Ts obtained from T by
removing the edges E1− and contracting the edges E0+ .

Our treatment of pT (c4) suggests the following form for the joint LTD of the matrices

O(2)
N ∪O

(3)
N ∪O

(4)
N . We leave the by-now familiar details of the proof to the diligent reader.

Theorem 4.8 (Traffic convergence for RBMs). For any test graph T in x2 ∪ x3 ∪ x4 =
(xi)i∈I2∪I3∪I4 ,

lim
N→∞

τ0
N [T (O(2)

N ∪ O(3)
N ∪ O(4)

N )] =

{
pF (c4)

∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.40)

where F = T1t· · ·tTs is the forest of colored double trees obtained from T by contracting
the edges with labels in I2 and removing the edges with labels in I3 and

pF (c4) =

s∏
r=1

pTr
(c4). (4.41)
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Corollary 4.9 (Traffic independence for RBMs). The full proportion RBMs O(3)
N and the

proper proportion RBMs O(4)
N are asymptotically traffic independent, as are the full

proportion RBMs O(3)
N and the slow growth RBMs O(2)

N . The slow growth RBMs O(2)
N and

the proper proportion RBMs O(4)
N are not asymptotically traffic independent, nor are

independent proper proportion RBMs O(4)
N = (Θ

(i)
N )i∈I4 .

Proof. The statements about asymptotic traffic independence follow from the calculation
of the forest F from our colored double tree T (we simply remove the edges with labels
in I3) and the multiplicativity of (4.41). For the statements about non-asymptotic traffic
independence, we give a simple counterexample, namely, for i2 ∈ I2 and i4, j4 ∈ I4 with
0 < ci4 ≤ cj4 < 1,

lim
N→∞

τ0N

[
·
Θ

(i4)

N

�
Θ

(i4)

N

·
Θ

(i2)

N

�
Θ

(i2)

N

·
Θ

(j4)

N

�
Θ

(j4)

N

·
]
= lim
N→∞

τ0N

[
·
Θ

(i4)

N

�
Θ

(i4)

N

·
Θ

(j4)

N

�
Θ

(j4)

N

·
]

= lim
N→∞

τ0N [S(Θ
(i4)
N ,Θ

(i4)
N ,Θ

(j4)
N ,Θ

(j4)
N )] = pS({ci4 , cj4}),

where

pS({ci4 , cj4}) =



− 1
3c

3
i4
− c2i4cj4 − 2ci4c

2
j4
+ 4ci4cj4

(2ci4 − c2i4)(2cj4 − c
2
j4
)

if ci4 ≤ cj4 ≤
1

2
,

1
3c

3
j4
− ci4c2j4 − c

2
i4
− c2j4 + 2ci4cj4 + ci4 + cj4 − 1

3

(2ci4 − c2i4)(2cj4 − c
2
j4
)

if 1− cj4 ≤ ci4 ≤
1

2
,

− 1
3c

3
i4
− c2i4cj4 − 2ci4c

2
j4
+ 4ci4cj4

(2ci4 − c2i4)(2cj4 − c
2
j4
)

if ci4 ≤ 1− cj4 ≤
1

2
,

1
3c

3
j4
− ci4c2j4 − c

2
i4
− c2j4 + 2ci4cj4 + ci4 + cj4 − 1

3

(2ci4 − c2i4)(2cj4 − c
2
j4
)

if
1

2
≤ ci4 ≤ cj4 .

In particular,

pS({ci4 , cj4}) 6= 1 =

(
lim
N→∞

τ0N

[
·
Θ

(i4)

N

�
Θ

(i4)

N

·
])(

lim
N→∞

τ0N

[
·
Θ

(j4)

N

�
Θ

(j4)

N

·
])

=

(
lim
N→∞

τ0N

[
·
Θ

(i4)

N

�
Θ

(i4)

N

·
])(

lim
N→∞

τ0N

[
·
Θ

(i2)

N

�
Θ

(i2)

N

·
])(

lim
N→∞

τ0N

[
·
Θ

(j4)

N

�
Θ

(j4)

N

·
])
,

which covers both statements.

The careful reader will notice that the periodic RBMs P(1)
N are conspicuously absent in

Theorem 4.8. Again, we have the familiar obstruction: without any further assumptions
on the band widths b(1)

N = (b
(i)
N )i∈I1 , their fluctuations could preclude the existence of a

joint LTD. For example, if a periodic band width b(i)N has a subsequence of slow growth
and another subsequence of proportional growth, then the LTDs along these two subse-
quences will be different. If we assume that the band widths b

(1)
N = (b

(i)
N )I′1 ∪ (b

(i)
N )i∈I′′1

fall into one of these two regimes, slow growth or proportional growth respectively, then
we can prove the extension of Theorem 4.8 to P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N . In this case, the

LTD essentially follows (4.40) except that we must now also contract the edges with
labels in I ′1 and remove the edges with labels in I ′′1 (regardless of the limiting proportions

limN→∞
b
(i)
N

N for i ∈ I ′′1 ).
The contraction of the edges with labels in I ′1 should come as no surprise given

Lemma 4.4, where we saw that periodizing a slow growth RBM does little to affect the
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calculations. Just as we contract the labels in I2, we should then also expect to contract
the labels in I ′1. On the other hand, as we noted before, periodizing a proportional
growth RBM changes the situation entirely. Formally, we need to work with the periodic
absolute value

|x|p = min(x, 1− x), ∀x ∈ [0, 1]

in our integral to account for the edges with labels in I ′′1 ; however, the analogue of (4.26)
does not depend on where we measure the diameter of our cross section

g(xv1) =

∫ 1

0

1{|xv0 − xv1 |p ≤ cγ([e0])} dxv0 = 2cγ([e0]), ∀xv1 ∈ [0, 1].

This balances out perfectly with the normalization of the periodic RBMs

Λ
(γ([e0]))
N = Υ

(γ([e0]))
N ◦ Γ(γ([e0]))

N =
1√

2b
(γ([e0]))
N

Γ(γ([e0])),

and so we can integrate out the vertices that are only adjacent to edges with labels
in I ′′1 without changing the value of the integral. This of course corresponds to simply
removing the edges with labels in I ′′1 when calculating pF (c4). Iterating the proof of

Corollary 4.9, we see that the periodic RBMs P(1′′)
N = (Λ

(i)
N )i∈I′′1 and the proportional

growth RBMs O(4)
N are asymptotically traffic independent, whereas the periodic RBMs

P(1′)
N = (Λ

(i)
N )i∈I′1 and the proportional growth RBMs O(4)

N are not.

For general βi ∈ D, we must again settle for convergence in distribution.

Theorem 4.10 (Convergence for RBMs). Assume that the band widths (b
(i)
N )i∈I1 of the

periodic RBMs fall into one of two categories I1 = I ′1 ∪ I ′′1 as before. For general βi ∈ D,
the joint family P(1)

N ∪ O
(2)
N ∪ O

(3)
N ∪ O

(4)
N converges in distribution to a family

a = (ai)i∈I = (ai)i∈I′1 ∪ (ai)i∈I′′1 ∪ (ai)i∈I2 ∪ (ai)i∈I3 ∪ (ai)i∈I4 = a1′ ∪ a1′′ ∪ a2 ∪ a3 ∪ a4.

The family a1′ ∪ a1′′ ∪ a2 ∪ a3 is a semicircular system; the families a1′′ , a3, and a4 are
free; the families a2 and a4 are not free, nor are the families a1′ and a4; finally, the family
a4 = (ai)i∈I4 is not free.

Proof. The convergence in distribution follows from a modified version of the criteria
(3.18) in Remark 3.3. In particular, we do not actually need to know the value of

lim
N→∞

τ0N [T (P(1)
N ∪ O

(2)
N ∪ O

(3)
N ∪ O

(4)
N )]

for an opposing colored double tree T , just that it exists. In this case, we know that the
value of this limit is equal to pF (c4), which in turn is equal to 1 if there are no edges with
labels in I4. This proves the first statement about a1′ ∪ a1′′ ∪ a2 ∪ a3.

For the second statement, about a1′′ ∪ a3 ∪ a4, it suffices to prove that a3 and a4 are
free. Indeed, this follows from the calculation of pF (c4): edges with labels in either I1′′

or I3 are both treated just the same and simply removed. In particular, this implies that
the joint distributions µa1′′∪a3∪a4 and µa3′′∪a3∪a4 = µb3∪a4 are identical, where a3′′ is the

limit of the full proportion RBMs O(3′′)
N = (Θ

(i)
N )i∈I′′1 and b3 = a3′′ ∪ a3 is simply the limit

of a larger family of independent full proportion RBMs. Now, since the joint distribution
µa3∪a4

is universal independent of the parameters βi, we can calculate µa3∪a4
via a

unitarily invariant realization of O(3)
N . The standard techniques then apply to show that

a3 and a4 are free [27].
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Similarly, the joint distributions µa2∪a4
and µa1′∪a4

are also identical, and so we need
only to consider the families a2 and a4. Let ai2 ∈ a2 and ai4 ∈ a4. If ai2 and ai4 were free,
then

ϕ(a2i4ai2a
2
i4ai2) = ϕ(a2i4)

2ϕ(a2i2) = 1;

however, one can easily calculate

lim
N→∞

E

[
1

N
tr

(
(Θ

(i4)
N )2Θ

(i2)
N (Θ

(i4)
N )2Θ

(i2)
N

)]
= pT (ci4)

=


8c2i4(

1
2 − ci4) +

14
3 c

3
i4

(2ci4 − c2i4)2
if ci4 ≤

1

2
,

2ci4 − 1 + 2
3 (1− c

3
i4
)

(2ci4 − c2i4)2
if ci4 ≥

1

2

6= 1

for ci4 ∈ (0, 1), where

T (Θ
(i4)
N ,Θ

(i4)
N ,Θ

(i4)
N ,Θ

(i4)
N ) = ·

Θ
(i4)

N

�
Θ

(i4)

N

·
Θ

(i4)

N

�
Θ

(i4)

N

· .

Finally, suppose that ai4 6= aj4 ∈ a4 with 0 < ci4 ≤ cj4 < 1. If ai4 and aj4 were free,
then

ϕ(a2i4a
2
j4) = ϕ(a2i4)ϕ(a

2
j4) = 1;

however, one can again show that

lim
N→∞

E

[
1

N
tr

(
(Θ

(i4)
N )2(Θ

(j4)
N )2

)]
= pS({ci4 , cj4}) 6= 1,

where pS({ci4 , cj4}) is as in the proof of Corollary 4.3.

Remark 4.11. We need the assumption on the band widths (bN )i∈I1 of the periodic

RBMs to handle the interaction with the proper proportional growth RBMs O(4)
N . The

families P(1)
N ∪ O

(2)
N ∪ O

(3)
N converge in distribution to a semicircular system regardless,

even without this assumption.

Finally, the same considerations that allowed us to translate Proposition 3.2 to
Theorem 4.8 also work to prove the RBM version of the concentration inequalities in
Theorem 3.5. Here, we do not make any assumptions on the band widths (b(i)N )i∈I1 beyond
their divergence (4.1), nor on the parameters βi ∈ D.
Theorem 4.12 (Concentration for RBMs). Let QN = P(1)

N ∪ O(2)
N ∪ O

(3)
N ∪ O

(4)
N . For any

test graph T in x = (xi)i∈I ,

E

[∣∣∣∣ 1N tr[T (QN )]− E 1

N
tr[T (QN )]

∣∣∣∣2m]
= OT (N

−m).

The bound is tight in the sense that there exist test graphs T ∈ T 〈x〉 such that

E

[∣∣∣∣ 1N tr[T (QN )]− E 1

N
tr[T (QN )]

∣∣∣∣2m]
= ΘT (N

−m).

As before, we can use Theorem 4.12 to upgrade the convergence in Theorems 4.8
and 4.10 to the almost sure sense.
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Remark 4.13 (Dependent RBMs). In the case of a diverging band width bN → ∞, the
bottleneck condition in Equation (4.14) can even compensate for a lack of independence.
For example, let b(1)N be a band width of slow growth or proportional growth, and suppose

that b(2)N →∞ satisfies b(2)N = o(b
(1)
N ). For independent Wigner matrices X(1)

N and X
(2)
N of

the same parameter β ∈ [−1, 1], we form the normalized RBMs

Θ
(1)
N = Υ

(1)
N ◦B

(1)
N ◦X

(1)
N , Θ

(2)
N = Υ

(2)
N ◦B

(2)
N ◦X

(2)
N , and Θ

(1,2)
N = Υ

(2)
N ◦B

(2)
N ◦X

(1)
N .

In particular, note that Θ(1)
N and Θ

(1,2)
N are not independent: we use the same Wigner

matrix X
(1)
N , but with different band widths b(1)N and b(2)N . Since b(2)N = o(b

(1)
N ), the band

width constraints in Equation (4.14) show that a twin edge with mixed labels in Θ
(1)
N and

Θ
(1,2)
N does not contribute in the limit. Indeed, the minimum of the band widths will be

b
(2)
N = o(b

(1)
N ), but we will have carried the cost of the normalization of the larger band

width b(1)N in Θ
(1)
N . In this case, we cannot have twin edges with mixed labels in Θ

(1)
N

and Θ
(1,2)
N , but this is precisely the limiting condition for the independent RBMs Θ

(1)
N

and Θ
(2)
N . It follows that (Θ(1)

N ,Θ
(1,2)
N ) and (Θ

(1)
N ,Θ

(2)
N ) have the same LTD. The heuristic

is that most of the entries of Θ(1)
N are independent from the entries of Θ(1,2)

N , so the

calculation goes through as usual (the nonzero entries of Θ(1,2)
N form a vanishingly small

proportion of the entries of Θ(1)
N since b(2)N = o(b

(1)
N )).

4.4 Fixed band width

We have much less to say in the fixed band width regime. For starters, we cannot
work in the generality of the Wigner matrices of Section 3. Instead, we must further
assume that the off-diagonal entries (resp., the diagonal entries) of XN are identically
distributed and independent of N ; otherwise, in general, the LSD of even a single fixed
band width RBM ΘN = ΥN ◦ΞN = ΥN ◦ (BN ◦XN ) might not exist, never mind the LTD.
We assume hereafter that any fixed band width RBM arises from this restricted setting.

Assuming a symmetric distribution for the entries of XN , Section 6 in [7] proves the
existence of a symmetric non-universal LSD µb for a real symmetric RBM ΘN of fixed
band width bN ≡ b. The authors further prove that the distribution µb converges weakly
to the standard semicircle distribution µsc in the limit b → ∞. We consider the joint
LTD of independent fixed band width RBMs (real and complex) without this symmetry
assumption and prove the analogous convergence to the semicircular traffic distribution
in the large band width limit.

To formalize our result, we consider a class of fixed band widths b = (b
(i)
N )i∈I = (bi)i∈I .

We form the corresponding family of fixed band width RBMs

JN = (Ξ
(i)
N )i∈I = (B

(i)
N ◦X

(i)
N )i∈I , ON = (Θ

(i)
N )i∈I = (Υ

(i)
N ◦Ξ

(i)
N )i∈I .

We write µi (resp., νi) for the distribution of the strictly upper triangular entries X(i)
N (j, k)

(resp., the diagonal entries X(i)
N (j, j)) so that

µi = L(X(i)
N (j, k)) and νi = L(X(i)

N (j, j)), ∀j < k.

In contrast to the previous sections, our fixed normalizations Υ
(i)
N = (2bi + 1)−1/2JN

force us to also consider non-tree-like test graphs T in the large N limit.

Theorem 4.14 (Traffic convergence for fixed band width RBMs). The family of fixed
band width RBMs ON converges in traffic distribution; moreover, for any test graph
T = (V,E, γ) in x = (xi)i∈I , we have the bound

lim
N→∞

τ0N [T (ON )] = OT,µ,ν

(∏
[e]∈Ñ0

mine′∈[e] 2bγ(e′)∏
e∈E

√
2bγ(e) + 1

)
, (4.42)
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where µ = (µi)i∈I , ν = (νi)i∈I , and (V, Ñ0) is any spanning tree of (V, Ñ ).

Proof. We have the familiar expansion

τ0N [T (ON )] =
1

N
∏
e∈N

√
2bγ(e) + 1

∑
φ:V ↪→[N ]

E

[ ∏
e∈E

Ξ
(γ(e))
N (φ(e))

]
, (4.43)

where the sum can be written as∑
φ:V ↪→[N ]

( ∏
[`]∈L̃

E

[ ∏
`′∈[`]

X
(γ(`′))
N (φ(`′))

])( ∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

bγ(e′)}E
[ ∏

e′∈[e]

X
(γ(e′))
N (φ(e′))

])
.

Note that an injective map φ : V ↪→ [N ] satisfying the band width condition

|φ([e])| ≤ min
e′∈[e]

bγ(e′), ∀[e] ∈ Ñ

might not exist (e.g., if ON consists of a single RBM ΘN of fixed band width b and T is a
star graph Sk with k > 2b); however, we can certainly bound the number of such maps by

N
∏

[e]∈Ñ0

min
e′∈[e]

2bγ(e′),

where (V, Ñ0) is any spanning tree of (V, Ñ ). Here, we are simply recycling the bound
from Equation (4.8). The bound (4.42) then follows from our moment assumption (3.1).

As before, we see that τ0N [T (ON )] vanishes unless

mi,[e] = 0 or mi,[e] ≥ 2, ∀(i, [e]) ∈ I × Ñ .

Unfortunately, our fixed normalizations
√
2bi + 1 allow τ0N [T (ON )] to survive in the limit

for test graphs T with mi,[e] > 2. In this case, the assumption that βi ∈ [−1, 1] no longer

suffices to spare us the consideration of the ordering ψφ : [#(V )]
∼−→ V on the vertices.

Nevertheless, our i.i.d. assumption ensures that if φ1 : V ↪→ [N1] and φ2 : V ↪→ [N2]

satisfy the band width condition and induce the same ordering ψφ1 = ψφ2 , then the
corresponding summands of (4.43) are equal, i.e.,

Sφ1
(T ) = E

[ ∏
e∈E

Ξ
(γ(e))
N1

(φ1(e))

]
= E

[ ∏
e∈E

Ξ
(γ(e))
N2

(φ2(e))

]
= Sφ2

(T ).

For an ordering ψ : [#(V )]
∼−→ V , we write Sψ for the common value of

{Sφ : ψφ = ψ and |φ([e])| ≤ min
e′∈[e]

bγ(e′) for all [e] ∈ Ñ}.

This allows us to rewrite (4.43) as

τ0N [T (ON )] =
∑

ψ:[#(V )]
∼→V

p
(ψ)
N∏

e∈E
√

2bγ(e) + 1
Sψ(T ) =

∑
ψ:[#(V )]

∼→V

q
(ψ)
N Sψ(T ),

where

p
(ψ)
N =

∑
φ:V ↪→[N ]

(
1{ψφ = ψ}

∏
[e]∈Ñ 1{|φ([e])| ≤ mine′∈[e] bγ(e′)}

)
N

.

We note the contrast to the situation in (3.14). In particular, we cannot use the same
weak convergence argument to give an integral representation of limN→∞ p

(ψ)
N as in
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(3.15) due to the vanishing scales limN→∞
bi
N = 0. Instead, we must opt for a discrete

approach.
Let (a(ψ)N ) denote the sequence defined by the numerator of p(ψ)N so that

a
(ψ)
N =

∑
φ:V ↪→[N ]

(
1{ψφ = ψ}

∏
[e]∈Ñ

1{|φ([e])| ≤ min
e′∈[e]

bγ(e′)}
)
.

By considering a map φ1 : V ↪→ [N ] (resp., φ2 : V ↪→ [M ]) as a map Φ1 : V ↪→ [N +M ]

(resp., Φ2 : V ↪→ [N +M ]) of the form

Φ1(v) = φ1(v) (resp., Φ2(v) = φ2(v) +N),

we see that the sequence (a
(ψ)
N ) is superadditive:

a
(ψ)
N+M ≥ a

(ψ)
N + a

(ψ)
M .

Fekete’s lemma then implies that

pψ = lim
N→∞

p
(ψ)
N = sup

N

a
(ψ)
N

N
≤

∏
[e]∈Ñ

min
e′∈[e]

2bγ(e′),

which proves the convergence

lim
N→∞

τ0N [T (ON )] =
∑

ψ:[#(V )]
∼→V

pψ∏
e∈E

√
2bγ(e) + 1

Sψ(T ) =
∑

ψ:[#(V )]
∼→V

qψSψ(T ). (4.44)

Note that our bound (4.42) implies the convergence

lim
b→∞

∑
ψ:[#(V )]

∼→V

qψSψ(T ) =

{∏
i∈I β

ci(T )
i if T is a colored double tree,

0 otherwise,
(4.45)

where

b = min
e∈E

bγ(e).

Theorem 4.14 still holds for general βi ∈ D: in fact, since we already kept track of
the orderings ψ, the same proof goes through just as well (except with different values
for Sψ(T )). In this case, the limit (4.45) might not exist depending on the relative rates
of growth in the band widths (bi)i∈I . If we assume that the band widths grow at the

same rate in the limit b→∞, then the proportions q(ψ)N will tend to 1
#(V ) as in (3.16), but

one can skew these proportions along different subsequences to create an obstruction.
One can also periodize the fixed band width RBMs without affecting the calculations (a
fixed band width is in some sense the slowest growth possible, and so we can adapt the
techniques from the slow growth case).

At this point, we can combine everything into a result for the joint (traffic) distribution
of periodic RBMs, slow growth RBMs, proportional growth RBMs, and fixed band width
RBMs; however, the result is not much more interesting than what is already known
from the previous section due to the form of the LTD (4.44). In particular, we do not
have any interesting asymptotic independences arising between the fixed band width
RBMs and those of the previously considered regimes, nor amongst the fixed band width
RBMs themselves (except in the trivial case bi = 0 of the diagonal matrices).

EJP 23 (2018), paper 77.
Page 44/48

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP205
http://www.imstat.org/ejp/


Traffic distributions of random band matrices

A An almost Gaussian degree matrix

As an application of Theorem 4.8, we compute the LSD of the degree matrix deg(ΘN )

of a proportional growth RBMΘN . For simplicity, we restrict our attention to real Wigner
matrices XN . We find that the LSD is almost Gaussian in the sense of its moments.

As before, we form the corresponding proportional growth RBMs, unnormalized ΞN
and otherwise ΘN . Let c = limN→∞

bN
N ∈ (0, 1] denote the limiting proportion of the

band width bN . The entries of the degree matrix DN = deg(ΘN ) can then be written as

DN (i, j) = 1{i = j}
N∑
k=1

ΘN (i, k)

= 1{i = j}
N∑
k=1

ΞN (i, k)√
N
√
2c− c2

=
1{i = j}√
N
√
2c− c2

N∑
k=1

1{|i− k| ≤ bN}XN (i, k).

One can use the asymptotics of partial sums of falling factorials to compute the limits

lim
N→∞

E

[
1

N
tr(Dm

N )

]
, ∀m ∈ N,

for example, by choosing a convenient realization of the random variables XN (i, k) and
then appealing to the universality of (4.40); however, one can avoid such a tedious
calculation and obtain the answer from (4.40) directly. In particular, note that we can
factor the distribution µDN

through the traffic distribution νΘN
via

E

[
1

N
tr(Dm

N )

]
= τN [Cm(DN , . . . ,DN )] = τN [Sm(ΘN , . . . ,ΘN )],

where Cm is the directed cycle with m edges and Sm = (V,E) is the inward facing
directed m-star graph, i.e.,

Cm(DN , . . . ,DN ) =

DN

DN

DN

DN

DN

DN

and

Sm(ΘN , . . . ,ΘN ) =

ΘN

ΘN

ΘN

ΘN

ΘN ΘN

.

Here, we have made the substitution

DN = ·
↓
·
ΘN

in/out

.
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We can rewrite this in terms of the injective traffic state to obtain

τN [Sm(ΘN , . . . ,ΘN )] =
∑

π∈P(V )

τ0N [Sπm(ΘN , . . . ,ΘN )].

In the limit, (4.40) tells us that the only contributions come from double trees. If m is
odd, then there are no such contributions since a double tree has an even number of
edges, whereas Sm has m edges. This implies that

lim
N→∞

E

[
1

N
tr(Dm

N )

]
= 0 if m is odd. (A.1)

Henceforth, we assume that m = 2`. Let v1, . . . , v2` denote the leaf vertices of S2` with
the internal node v0. We see that

Sπ2` is a double tree ⇐⇒ π = {{v0}} ∪ ρ,

where ρ is a pair partition of {v1, . . . , v2`}. In particular, each such π produces the same
double tree T`(ΘN , . . . ,ΘN ) = Sπ2`(ΘN , . . . ,ΘN ), where T` is the inward facing double
`-star graph. It follows that

lim
N→∞

E

[
1

N
tr(D2`

N )

]
= lim
N→∞

∑
π∈P(V )

τ0N [Sπ2`(ΘN , . . . ,ΘN )]

= #(P2(2`))pT`
(c) = (2`− 1)!!

IntT`
(c)

NormT`
(c)

= (2`− 1)!!

∫
[0,1]`+1

∏`
k=1 1{|x0 − xk| ≤ c} dx` · · · dx0

(2c− c2)`

= (2`− 1)!!

∫ 1

0

(∫ 1

0
1{|x0 − x1| ≤ c} dx1

)`
dx0

(2c− c2)`

= (2`− 1)!!
2
`+1 ((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
, (A.2)

where we have made use of (4.26) in the last equality.

We recognize the double factorial (2` − 1)!! as the 2`-th moment of the standard
normal distribution. In view of Theorem 4.12, the limits (A.1) and (A.2) show that µDN

converges weakly almost surely to a symmetric distribution νc of unit variance with
almost Gaussian moments (if c = 1, then these moments are precisely Gaussian). In
particular, we can compute the limits

lim
c→0+

2
`+1 ((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
= 1, ∀` ∈ N,

and

lim
c→1−

2
`+1 ((2c ∧ 1)`+1 − c`+1) + |2c− 1|(2c ∧ 1)`

(2c− c2)`
= 1, ∀` ∈ N,

both of which are special cases of (4.32). The moments (A.2) further imply that the LSD
νc has unbounded support. It would be interesting to see if the distributions (νc)c∈(0,1)
arise in any other contexts.
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ρ7→

S2`(ΘN , . . . ,ΘN ) T`(ΘN , . . . ,ΘN )

ΘN

ΘN

ΘN

ΘN

ΘN

ΘN

Θn

ΘN ΘN

Figure 12: An example of a pair partition ρ of the leaf vertices of S2` giving rise to an
inward facing double `-star graph T` for ` = 3. Here, we use different colors for the
different blocks of the pair partition. Note that any pair partition of the leaf vertices
gives rise to the same double tree T`.
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