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Abstract

In this paper we study a class of stochastic individual-based models that describe the
evolution of haploid populations where each individual is characterised by a phenotype
and a genotype. The phenotype of an individual determines its natural birth- and death
rates as well as the competition kernel, c(x, y) which describes the induced death rate
that an individual of type x experiences due to the presence of an individual or type
y. When a new individual is born, with a small probability a mutation occurs, i.e. the
offspring has different genotype as the parent. The novel aspect of the models we study
is that an individual with a given genotype may expresses a certain set of different
phenotypes, and during its lifetime it may switch between different phenotypes, with
rates that are much larger then the mutation rates and that, moreover, may depend
on the state of the entire population. The evolution of the population is described by a
continuous-time, measure-valued Markov process. In [4], such a model was proposed
to describe tumor evolution under immunotherapy. In the present paper we consider
a large class of models which comprises the example studied in [4] and analyse their
scaling limits as the population size tends to infinity and the mutation rate tends to
zero. Under suitable assumptions, we prove convergence to a Markov jump process
that is a generalisation of the polymorphic evolution sequence (PES) as analysed in
[9, 11].
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PES with phenotypic plasticity

1 Introduction

Over the last decade there has been increasing interest in the mathematical analysis
of so-called stochastic individual based models of adaptive dynamics. These models were
introduced in a series of papers by Bolker, Pacala, Dieckmann, and Law [7, 8, 14]. They
describe the evolution of a population of individuals characterised by their phenotypes
under the influence of the evolutionary mechanisms of birth, death, mutation, and
ecological competition in an inhomogeneous "fitness landscape" as a measure valued
Markov process. Note that individual based models have a much longer tradition in
ecology (see the book by Grimm and Railsback [20] or the more recent review by Grimm
and DeAngelis [13]). In these models there appear two natural scaling parameters. The
carrying capacity, K, which regulates the size of the population and that can reasonably
be considered as a large parameter, and the mutation rate (of advantageous mutations),
u, that in many biological situations can be taken as a small parameter. In a series of
remarkable papers, Champagnat and Méléard [9, 11] (and others) have analysed the
limiting processes that arise in the limit when K is taken to infinity while at the same
time u = uK tends to zero. Under conditions that ensure the separation of the ecological
and evolutionary time scales. This means that the mutation rates are so small that the
system has time to equilibrate (ecological time scale) between two mutational events.
On the time scale where mutations occur (evolutionary time scale), the evolution of
the population can then be described as a Markov jump process along a sequence of
equilibria of, in general, polymorphic populations. An important (and in some sense
generic) special case occurs when the mutant population fixates while the resident
population dies out in each step. The corresponding jump process is called the Trait
Substitution Sequence (TSS) in adaptive dynamics. Champagnat [9] derived criteria
in the context of individual-based models under which convergence to the TSS can be
proven. The general process is called the Polymorphic Evolution Sequence (PES) [11].
Here the limit is describes as a jump process between possibly polymorphic equilibria of
systems of Lotka-Volterra equations of increasing dimension.

In the present paper we extend this analysis to models where an additional biological
phenomenon is present, the so-called phenotypic plasticity[19] or bet hedging [6]. By
this we mean the following. Individuals are no longer described by their phenotype, but
by both their genotype and their phenotype. Moreover, an individual of a given genotype
can express several phenotypes and it can change its phenotype during the course of
its lifetime. The term phenotypic plasticity is often used to describe a situation where
the expression of the phenotype depends on the environment in a deterministic way,
while bet hedging describes stochastic switches that "hedge" against future changes
in the environment. In the model we discuss, both aspects, stochastic switching and
environmental dependence are present.

Our original motivation comes from applications to cancer therapy, where it is
well-known that phenotypic switching is of utmost importance and in fact a major
obstacle to successful therapies (see, e.g. [21] and references therein). Specifically,
Landsberg et al [25] showed in a mouse model of melanoma that phenotypic switches
in the expression of surface markers of tumor cells are responsible for evasion of
immunotherapy with adoptive cell transfer. Moreover, they showed that switch rates
are affected by the presence of cytokines, in particular TNF-α that is produced in
an inflammatory environment. In [4] we reported on first attempts to model these
experiments in the context of the process discussed in the present paper.

Phenotypic switches without mutations are certainly relevant in many if not most
biological systems (see e.g. [6, 19] and references therein).

Here we take a broader look at a large class of models. By expanding the techniques
of [11] we prove that the microscopic process converges on the evolutionary time scale
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PES with phenotypic plasticity

to a generalisation of the Polymorphic Evolution Sequences (PES) (cf. Thm. 3.6). The
main difference in the proof is that we have to couple the process with multi-type
branching processes instead of normal branching processes, which leads also to a
different definition of invasion fitness in this setting. Note that we gave in [4] already
heuristic arguments why the process should converge to a Markov jump process. The
aim of this paper is to give the rigorous statement and its proof.

The remainder of this paper is organised as follows. In Section 2 we define the
model, give a pathwise description of the Markov process we are studying and state
the convergence towards a quadratic system of ODEs in the large population limit. In
Sections 3 we consider the case of rare mutations and fast switches. More precisely, we
state the convergence to the Polymorphic Evolution Sequences with phenotypic Plasticity
(PESP) in Subsection 3.2 and prove it in Subsection 3.3.

2 The microscopic model

In this section we introduce the stochastic individual-based model we analyse (cf.
[4, 17, 9, 11, 5]). The evolutionary process changes populations on a macroscopic level,
but the basic mechanisms of evolution, heredity, variation (in our context caused by
mutation and phenotypical switching), and selection, act on the microscopic level of the
individuals. We describe the evolving population as a stochastic system of interacting
individuals, where each individual is characterised by its phenotype and its genotype.

Let l ≥ 1 and X a finite set of the form X = G × P, where G is the set of genotypes
and P is the set of phenotypes. We call X the trait space of the population. As usual,
we introduce a parameter K ∈ N, called the carrying capacity. This parameter allows
to scale the population size and can be interpreted as the size of available space or the
amount of available resources. Let M(X ) be the set of finite, non-negative measures on
X , equipped with the topology of weak convergence, and let MK(X ) ⊂ M(X ) be the set
of finite point measures on X rescaled by K, i.e.

MK(X ) ≡

{
1

K

n∑
i=1

δxi : n ∈ N0, x1, . . . xn ∈ X

}
, (2.1)

where δx denotes the Dirac mass at x ∈ X . We model the time evolution of a population
as an MK(X )-valued, continuous time Markov process (νKt )t≥0. To account for the
process basic mechanisms of evolution and the phenotypic plasticity, we introduce the
following parameters:

(i) b(p) ∈ R+ is the rate of birth of an individual with phenotype p ∈ P.
(ii) d(p) ∈ R+ is the rate of natural death of an individual with with phenotype p ∈ P.
(iii) c(p, p̃)K−1 ∈ R+ is the competition kernel, which models the competitive pressure

an individual with phenotype p ∈ P feels from an individual with phenotype p̃ ∈ P
and is inversely proportional to the carrying capacity K.

(iv) sgnat.(p, p̃) ∈ R+ is the natural switch kernel, which models the natural switching
from phenotype p to p̃ of individuals with genotype g.

(v) sgind.(p, p̃)(p̂)K
−1 ∈ R+ is the induced switch kernel, which models the switching

from phenotype p to p̃ of individuals with genotype g induced by an individual with
phenotype p̂. (Compare with the cytokine-induced switch of [4], especially the one
of TNF-α (Tumour Necrosis Factor).)

(vi) uKm(g) with uK ,m(g) ∈ [0, 1] is the probability that a mutation occurs at birth from
an individual with genotype g ∈ G, where uK is a scaling parameter.

(vii) M((g, p), (g̃, p̃)) is the mutation law, i.e. if a mutant is born from an individual with
trait (g, p), then the mutant’s trait is (g̃, p̃) with probability M((g, p), (g̃, p̃)).
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PES with phenotypic plasticity

Note that most of the parameters depend on the phenotype only and that we explicitly
allow that individuals with different genotypes can express the same phenotype and,
conversely, that individuals with the same genotype can express different phenotypes.

We assume that phenotypic switches can be enhanced by the environment, i.e.
induced switching can only strengthen natural switching and that phenotypic switches
happen with rate of order one, i.e. they occur with positive probability during the lifetime
of an individual (unless they are set to zero). One might also be interested in cases
where these rates are much smaller, i.e tending to zero with K. This would require a
different analysis and is beyond the scope of this paper.

Assumption 2.1. For simplicity, we assume that sgind.(p, p̃)(p̂)K
−1 = 0, for all p̂ ∈ X ,

whenever sgnat.(p, p̃) = 0, i.e. depending on the environment the total switching rate can
be larger or smaller but not zero or non-zero.

At any time t ≥ 0, we consider a finite population which consist of Nt individuals and
each individual is characterised its trait xi(t) ∈ X . The state of a population at time t is
the measure

νKt =
1

K

Nt∑
i=1

δxi(t). (2.2)

The population process νK is a MK(X )-valued Markov process with infinitesimal
generator L K , defined, for any bounded measurable function φ : MK(X ) → R and for
all µK ∈ MK(X ), by(

L Kφ
)
(µK) (2.3)

=
∑

(g,p)∈G×P

(
φ
(
µK +

δ(g,p)
K

)
− φ(µK)

)
(1− uKm(g))b(p)KµK(g, p)

+
∑

(g,p)∈G×P

∑
(g̃,p̃)∈G×P

(
φ
(
µK +

δ(g̃,p̃)
K

)
− φ(µK)

)
uKm(g)M

(
(g, p), (g̃, p̃)

)
b(p)KµK(g, p)

+
∑

(g,p)∈G×P

(
φ
(
µK − δ(g,p)

K

)
− φ(µK)

)(
d(p) +

∑
p̃∈P

c(p, p̃)µK(p̃)

)
KµK(g, p)

+
∑

(g,p)∈G×P

∑
p̃∈P

(
φ
(
µK +

δ(g,p̃)
K − δ(g,p)

K

)
− φ(µK)

)
×
(
sgnat.(p, p̃) +

∑
p̂∈P

sgind.(p, p̃)(p̂)µ
K(p̂)

)
KµK(g, p).

The first and second terms describe the births (without and with mutation), the third
term describes the deaths due to age or competition, and the last term describes the
phenotypic plasticity. Observe that the first and second terms are linear (in µK ), but
the third and fourth terms are non-linear. The only difference to the standard model is
the presence of the fourth term, that corresponds to the phenotypic switches. However,
this term changes the dynamics substantially. In particular, the system of differential
equations which arises in the large population limit without mutation (uK = 0) is not a
generalised Lotka-Volterra system anymore, i.e. does not have the form ṅ = nf(n), where
f is linear in n (cf. Thm. 2.4 and Def. 3.2).

Remark 2.2. (i) Since X is finite, we could also represent the population state as
an |X |-dimensional vector. More precisely, let E be a subset of R|X | and EK ≡
E ∩ {n/K : n ∈ N|X |

0 } (we denote by N0 the non-negative integers), then, for fixed
K ≥ 1, the population process can be constructed as Markov process with state
space EK by using independent standard Poisson processes (cf. [16] Chap. 11).
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PES with phenotypic plasticity

(ii) For an extension to a non-finite trait space, e.g. if G and P are compact subsets of
Rk, for some k ≥ 1, the modelling of switching the phenotype has to be changed in
the following way: Each individual with trait (g, p) ∈ G×P has instead of the natural
switch kernel sgnat.(p, p̃) a natural switch rate snat.(g, p) combined with a probability

measure S
(g,p)
nat. (dp̃) on P and instead of the induced switch kernel sgind.(p, p̃)(p̂)K

−1

a induced switch kernel sind.((g, p), p̂)K−1 combined with a family of probability

measure {S((g,p),p̂)
ind. (dp̃)} on P.

2.1 Explicit construction of the population process with phenotypic plasticity

It is useful to give a pathwise description of νK in terms of Poisson point measures
(cf. [17]). Let us recall this construction. Let (Ω,F ,P) be an abstract probability space.
On this space, we define the following independent random elements:

(i) a convergent sequence (νK0 )K≥1 of MK(X )-valued random measures (the random
initial population),

(ii) |X | independent Poisson point measures (Nbirth
(g,p)(ds, di, dθ) )(g,p)∈X on [0,∞)×N×

R+ with intensity measure ds
∑

n≥0 δn(di)dθ,

(iii) |X | independent Poisson point measures (Nmut.
(g,p)(ds, di, dθ, dx) )(g,p)∈X on [0,∞)×

N×R+ ×X with intensity measure ds
∑

n≥0 δn(di)dθ
∑

x̃∈X δx̃(dx).

(iv) |X | independent Poisson point measures (Ndeath
(g,p) (ds, di, dθ) )(g,p)∈X on [0,∞)×N×

R+ with intensity measure ds
∑

n≥0 δn(di)dθ,

(v) |X | independent Poisson point measures (N switch
(g,p) (ds, di, dθ, dp) )(g,p)∈X on [0,∞)×

N×R+ × P with intensity measure ds
∑

n≥0 δn(di)dθ
∑

p̃∈P δp̃(dp),

Then, νK is given by the following equation

νKt = νK0 +
∑

(g,p)∈X

∫ t

0

∫
N0

∫
R+

1{
i≤KνK

s−(g,p), θ≤b(p)(1−uKm(g))
} 1

K δ(g,p)N
birth
(g,p)(ds, di, dθ)

(2.4)

+
∑

(g,p)∈X

∫ t

0

∫
N0

∫
R+

∫
X
1{

i≤KνK
s−(g,p), θ≤b(p)uKm(g)M((g,p),x)

} 1
K δxN

mut.
(g,p)(ds, di, dθ, dx)

−
∑

(g,p)∈X

∫ t

0

∫
N0

∫
R+

1{
i≤KνK

s−(g,p), θ≤d(p)+
∑

p̃∈P c(p,p̃)νK
s−

(p̃)
} 1

K δ(g,p)N
death
(g,p) (ds, di, dθ)

+
∑

(g,p)∈X

∫ t

0

∫
N0

∫
R+

∫
P
1{

i≤KνK
s−(g,p), θ≤sgnat.(p,p̃)+

∑
p̂∈P sgind.(p,p̃)(p̂)ν

K
s−(p̂)

}
× 1

K

(
δ(g,p̃) − δ(g,p)

)
N switch

(g,p) (ds, di, dθ, dp̃).

Remark 2.3. This construction uses that X is a discrete set and is in some sense closer
to the definition given in [16] (p. 455). For non-discrete trait spaces the process can be
constructed as in [17].

2.2 The law of large numbers

If the mutation rate is independent of K and the initial conditions converge to a
deterministic limit, then the sequence of rescaled processes, (νK)K≥1, converges in
probability as K ↑ ∞ to the solution of a system of ODEs. This follows directly from the
law of large numbers for density depending processes, see, e.g. Ethier and Kurtz [16],
Chap. 11 or [15] Chap. 10. The following theorem gives a precise statement.
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PES with phenotypic plasticity

Theorem 2.4. Let uK ≡ 1. Suppose that the initial conditions converge in probability to
a deterministic limit, i.e. νK0

p−→ ν0 as K ↑ ∞ , where ν0 is a finite measure on X . Then,
for every T > 0, there exists a deterministic function ξ ∈ C([0, T ],MF (X )) such that, for
all η > 0,

lim
K↑∞

P
[

sup
t∈[0,T ]

∣∣∣∣νKt − ξt
∣∣∣∣
TV

> η
]
= 0, (2.5)

where || . ||TV is the total variation norm. Moreover, let n be the unique solution to the
dynamical system

ṅ(g,p)(t) = n(g,p)(t)

((
1−m(g)

)
b(p)− d(p)−

∑
(g̃,p̃)∈G×P

c(p, p̃)n(g̃,p̃)(t) (2.6)

−
∑
p̃∈P

(
sgnat.(p, p̃) +

∑
(ĝ,p̂)∈G×P

sgind.(p, p̃)(p̂)n(ĝ,p̂)(t)

))

+
∑
p̃∈P

n(g,p̃)(t)

(
sgnat.(p̃, p) +

∑
(ĝ,p̂)∈G×P

sgind.(p̃, p)(p̂)n(ĝ,p̂)(t)

)
+

∑
(g̃,p̃)∈G×P

n(g̃,p̃)(t)m(g̃)b(p̃)M((g̃, p̃), (g, p)), (g, p) ∈ G × P,

with initial condition nx(0) = ν0(x), for all x ∈ X .

Then ξ is given as ξt =
∑

x∈X nx(t)δx.

Proof. This result follows from Theorem 2.1 in Chapter 11 of [16], since we can construct
the processes as described in Remark 2.2 (i). Since these processes have the same
laws, converge almost surely and the limit is deterministic, our processes converge in
probability to the same limit. Alternatively, the theorem can be proven by using a large
deviation principle on [0, T ] (cf. [15] Chap. 10 and Theorem 3.8)

Remark 2.5. If the trait spaces is not finite, one can obtain a similar result, cf. [17].

3 The interplay between rare mutations and fast switches

In this section we state our main results. As in previous work, we place ourselves
under the assumptions

∀V > 0, exp(−V K) � uK � 1

K lnK
, as K ↑ ∞, (3.1)

which ensure that a population reaches equilibrium before a new mutant appears and
that mutations occur before the population dies out. Under these assumptions, we
prove that the individual-based process with phenotypic plasticity convergences to a
generalisation of the PES. Let us start with describing the techniques used in [11].

The key element in the proof of the convergence to the PES used by Champagnat
and Méléard [11] is a precise analysis of how a mutant population fixates. A crucial
assumption in [11] is that the competitive Lotka-Volterra systems that describes the
large population limit always have a unique stable fixed point n̄. Thus, the main task
is to study the invasion of a mutant that has just appeared in a population close to
equilibrium. The invasion can be divided into three steps: First, as long as the mutant
population size is smaller than Kε, for a fixed small ε > 0, the resident population stays
close to its equilibrium. Therefore, the mutant population can be approximated by a
branching process. Second, once the mutant population reaches the level Kε, the whole
system is close to the solution of the corresponding deterministic system and reaches
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PES with phenotypic plasticity

an ε-neighbourhood of n̄ in finite time. Third, the subpopulations which have a zero
coordinate in n̄ can be approximated by subcritical branching processes until they die
out.

The first and third steps require a time of order ln(K), whereas the second step
requires only a time of order one, independent of K. Since the expected time between
two mutations is of order 1/(uKK), the upper bound on uK in (3.1) guarantees that, with
high probability, the three steps of an invasion are completed before a new mutation
occurs.

In the first invasion step the invasion fitness of a mutant plays a crucial role. Given
a population in a stable equilibrium that populates a certain set of traits, say M ⊂ X ,
the invasion fitness f(x,M) is the growth rate of a population consisting of a single
individual with trait x 6∈ M in the presence of the equilibrium population n̄ on M . In the
case of the standard model, it is given by

f(x,M) = b(x)− d(x)−
∑
y∈M

c(x, y)n̄y. (3.2)

Positive f(x,M) implies that a mutant appearing with trait x from the equilibrium
population on M has a positive probability (uniformly in K) to grow to a population of
size of order K; negative invasion fitness implies that such a mutant population will die
out with probability tending to one (as K ↑ ∞) before it can reach a size of order K. The
reason for this is that the branching process (birth-death process) which approximates
the mutant population is supercritical if f(x,M) is positive and subcritical if f(x,M) is
negative.

In order to describe the dynamics of a phenotypically heterogeneous population
on the evolutionary time scale, we have to adapt the notion of invasion fitness to the
case where fast phenotypic switches are present. Since switches between phenotypes
associated to the same genotype happen at times of order one, the growth rate of the
initial mutant phenotype does not determine the probability of fixation. See [12] for
a similar issue in a model with sexual reproduction. In the proof of Theorem 3.6, we
approximate the dynamics of the mutant population by a multi-type branching process
until the reaches a size Kε (or dies out). A continuous-time multi-type branching process
is supercritical if and only if the largest eigenvalue of its infinitesimal generator of is
strictly positive (cf. [2, 27]). Therefore, this eigenvalue will provide an appropriate
generalisation of the invasion fitness.

3.1 The competitive Lotka-Volterra system with phenotypic plasticity

We first consider the large population limit without mutation (uK ≡ 0). Assume that
the initial condition is supported on d traits, (g,p) = ((g1, p1), . . . , (gd, pd)) ∈ (G × P)d,
and that the sequence of the initial conditions converges in distribution

lim
K↑∞

νK0 =

d∑
i=1

ni(0)δ(gi,pi), in law, where ni(0) > 0, for all i ∈ {1 . . . d}. (3.3)

By Theorem 2.4, for every T > 0, the sequences of processes νK ∈ D([0, T ],MK(X ))

generated by L K with initial state νK0 converges in distribution, as K ↑ ∞, to a deter-
ministic function ξ ∈ C([0, T ],M(X )). Since uK ≡ 0, no new genotype can appear in the
population process νK . Moreover, not every genotype can express every phenotype. Let
us describe the support of νKt more precisely.

For all g ∈ G, let Xg be a stationary discrete-time Markov chain with state space P
and transition probabilities
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PES with phenotypic plasticity

P[Xg
i = p̃ |Xg

i−1 = p] =
sg(p, p̃)∑

p̂∈P sg(p, p̂)
, if

∑
p̂∈P

sg(p, p̂) > 0, (3.4)

and

P[Xg
i = p |Xg

i−1 = p] = 1, if
∑
p̂∈P

sg(p, p̂) = 0. (3.5)

The Markov chains {Xg, g ∈ G} contain only partial information on the switching be-
haviour of the process νK , but we see that this is the key information needed later.

In the sequel we work under the following simplifying assumption:

Assumption 3.1. For all g ∈ G, all communicating classes of Xg are recurrent.

We denote the communicating class associated with (g, p) ∈ G × P by [p]g. This is the
communicating class of Xg which contains p, i.e. p can be seen as a representative of the
class, which has an equivalence relation depending on g. By Assumption 2.1, this ensures

p1 p3 p5 p7 p9

p2 p4 p6 p8 p10

Figure 1: Example of a Markov chain Xg. Here, P = {p1, . . . , p10} and Xg has four communi-
cating classes: {p1, p2, p3, p4}, {p5, p6, p7}, {p8}, {p9, p10}. The class {p8} has only one element, i.e.∑10

i=1 s
g(p8, pi) = 0 in this example.

that if we start with a large enough population consisting only of individuals carrying
the same trait (g, p), then, after a time of order 1, all phenotypes in the class [p]g will
be present in the population, but none of the other classes. Observe that these Markov
chains do not describe the dynamics of the whole process. If we allowed transient states
this would not imply that the trait would get extinct, since its growth rate could be larger
than the switching rate.

Thus, [p]g is the set of phenotypes which are reachable in the Markov chain Xg with
Xg

0 = p and the set of traits which can appear in the population process νK is given by

X(g,p) ≡
d⋃

i=1

{gi} × [pi]gi . (3.6)

With this notation, ξ is given by ξ(t) =
∑

x∈X(g,p)
nx(t)δx, where n is the solution of

the competitive Lotka-Volterra system with phenotypic plasticity defined below.

Definition 3.2. For any (g,p) ∈ (G × P)d, we denote by LV S(d, (g,p)) the competitive
Lotka-Volterra system with phenotypic plasticity. This is an |X(g,p)|-dimensional system
of ODEs given by

ṅ(g,p) = n(g,p)

(
b(p)− d(p)−

∑
(g̃,p̃)∈X(g,p)

c(p, p̃)n(g̃,p̃)

−
∑

p̃∈[p]g

(
sgnat.(p, p̃) +

∑
(ĝ,p̂)∈X(g,p)

sgind.(p, p̃)(p̂)n(ĝ,p̂)(t)

))

+
∑

p̃∈[p]g

n(g,p̃)

(
sgnat.(p̃, p) +

∑
(ĝ,p̂)∈X(g,p)

sgind.(p̃, p)(p̂)n(ĝ,p̂)(t)

)
, (g, p) ∈ X(g,p). (3.7)
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We choose the (possibly misleading) name competitive Lotka-Volterra system with
phenotypic plasticity to emphasise that we add phenotypic plasticity (induced by switch-
ing rates) in the usual competitive Lotka-Volterra system. Note, however, that the system
LV S is not a system of Lotka-Volterra equations.

We now introduce the notation of coexisting traits in this context (cf. [11]).

Definition 3.3. For any d ≥ 2, we say that the distinct traits (g1, p1), . . . , (gd, pd) coexist
if the system LV S(d, (g,p)) has a unique non-trivial equilibrium n̄(g,p) ∈ (0,∞)|X(g,p)|

which is locally strictly stable, meaning that all eigenvalues of the Jacobian matrix of the
system LV S(d, (g,p)) at n̄(g,p) have strictly negative real parts.

Note that if (g1, p1), . . . , (gd, pd) coexist, then all traits of X(g,p) coexist and the
equilibrium n̄(g,p) is asymptotically stable. We will prove later that if the traits
(g1, p1), . . . , (gd, pd) coexist, then the invasion probability of a mutant trait (g̃, p̃) which
appears in the resident population X(g,p) close to n̄(g,p) is given by the function

1− q(g,p)(g̃, p̃), (3.8)

where q(g,p)(g̃, p̃) is given as follows: Let us denote the elements of [p̃]g̃ by p̃1, p̃2, . . . , p̃|[p̃]g̃|
and assume without lost of generality that p̃ = p̃1. Then, q(g,p)(g̃, p̃) is the first component
of the smallest nonnegative solution of

u(y) = 0, (3.9)

where u is a map from R|[p̃]g̃| to R|[p̃]g̃| defined, for all i ∈ {1, . . . , |[p̃]g̃|}, by

ui(y) ≡ b(p̃i) y
2
i (3.10)

+

|[p̃]g̃|∑
j=1

(
sg̃nat.(p̃i, p̃j) +

∑
(g,p)∈X(g,p)

sg̃ind.(p̃i, p̃j)(p)n̄(g,p)

)
yj + d(p̃i) +

∑
(g,p)∈X(g,p)

c(p̃i, p)n̄(g,p)(g,p)

−

(
b(p̃i) +

|[p̃]g̃|∑
j=1

(
sg̃nat.(p̃i, p̃j) +

∑
(g,p)∈X(g,p)

sg̃ind.(p̃i, p̃j)(p)n̄(g,p)

)
+ d(p̃i)

+
∑

(g,p)∈X(g,p)

c(p̃i, p)n̄(g,p)(g,p)

)
yi.

In fact, (1 − q(g,p)(g̃, p̃)) is the (asymptotic as K ↑ ∞) probability that a single mutant
reaches a population size of order K in a resident population with traits X(g,p). We
obtain this by approximating the mutant population with multi-type branching processes
(cf. proof of Thm. 3.11). The function (1− q(g,p)(g̃, p̃)) plays the same role as the function
[f(y;x)]+/b(y) in the standard case (cf. [11]).

To obtain that the process jumps on the evolutionary time scale from one equilibrium
to the next, we need an assumption to prevent cycles, unstable equilibria or chaotic
dynamics in the deterministic system (cf. [11] Ass. B).

Assumption 3.4. For any given traits (g1, p1), . . . , (gd, pd) ∈ G × P that coexist, and
for any mutant trait (g̃, p̃) ∈ X \ X(g,p) such that 1 − q(g,p)(g̃, p̃) > 0, there exists a
neighbourhood U ⊂ R|X(g,p)|+|[p̃]g̃| of (n̄(g,p), 0, . . . , 0), such that all solutions of LV S(d+

1, ((g,p), (g̃, p̃))) with initial condition in U ∩ (0,∞)|X(g,p)|+|[p̃]g̃| converge as t ↑ ∞ to a
unique locally strictly stable equilibrium in R|X(g,p)|+|[p̃]g̃| denoted by n∗((g,p), (g̃, p̃)).

We write n∗ and not n̄ to emphasise that some components of n∗ can be zero. We
use the shorthand notation ((g,p), (g̃, p̃)), for ((g1, p1), . . . , (gd, pd), (g̃, p̃)). Assumption 3.4
does not have to hold for all traits in X \ X(g,p), but only for those traits (g̃, p̃) which can
appear in the resident population by mutation, i.e. only if

∑
(g,p)∈X(g,p)

m(g)M((g, p), (g̃, p̃))

is positive.
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Remark 3.5. It is possible to extend the definitions and assumptions for the study of rare
mutations and fast switches in populations with non-discrete trait space if one assumes
that an individual can change its phenotype only to finitely many other phenotypes. This
must be encoded in the switching kernels. More precisely, for all (g, p) ∈ G × P the
communicating class [p]g should contain finitely many elements.

3.2 Convergence to the generalised polymorphic evolution sequence

In this subsection we state the main theorem of this paper and give the general idea
of the proof illustrated by an example.

Theorem 3.6. Suppose that the Assumptions 2.1, 3.1 and 3.4 hold. Fix (g1, p1), . . . ,

(gd, pd) ∈ G × P coexisting traits and assume that the initial conditions have support
X(g,p) and converge almost surely to n̄(g,p), i.e. limK↑∞ νK0 =

∑
x∈X(g,p)

n̄x(g,p)δx a.s..
Furthermore, assume that

∀V > 0, exp(−V K) � uK � 1

K ln(K)
, as K ↑ ∞. (3.11)

Then, the sequence of the rescaled processes (νKt/KuK
)t≥0, generated by L K with initial

state νK0 , converges in the sense of finite dimensional distributions to the measure-
valued pure jump process Λ defined as follows: Λ0 =

∑
(g,p)∈X(g,p)

n̄(g,p)(g,p)δ(g,p) and

the process Λ jumps, for all (ĝ, p̂) ∈ X(g,p), from∑
(g,p)∈X(g,p)

n̄(g,p)(g,p)δ(g,p) to
∑

(g,p)∈X((g,p),(g̃,p̃))

n∗(g,p)((g,p), (g̃, p̃))δ(g,p) (3.12)

with infinitesimal rate

m(ĝ)b(p̂)n̄(ĝ,p̂)(g,p)(1− q(g,p)(g̃, p̃))M((ĝ, p̂), (g̃, p̃)). (3.13)

Remark 3.7. (i) The convergence cannot hold in law with respect to the Skorokhod
topology (cf. [9]). It holds only in the sense of finite dimensional distributions on
MF (X ), the set of finite positive measures on X equipped with the topology of the
total variation norm.

(ii) The process Λ is a generalised version of the usual PES. Therefore, we call Λ
Polymorphic Evolution Sequence with phenotypic Plasticity (PESP).

(iii) Assumption 3.4 is essential for this statement. In the case when the dynamical
system has multiple attractors and different points near the initial state lie in
different basins of attraction, it is not clear and may be random which attractor
the system approaches. The characterisation of the asymptotic behaviour of the
dynamical system is needed to describe the final state of the stochastic process.
This is in general a difficult and complex problem, which is not doable analytically
and requires numerical analysis. Thus, we restrict ourselves to the Assumption 3.4.

We describe in the following the general idea of the proof, which is quite similar to
the one given in [11]. The population is either in a stable phase or in an invasion phase.
Until the first mutant appears, the population is in a stable phase, i.e. the population
stays close to a given equilibrium. From the first mutational event until the population
reaches again a stable state, the population is in an invasion phase. In fact, the mutant
either survives and the population reaches fast a new stable state (where the mutant
trait is present), or the mutant goes extinct and the population is again in the old stable
state. After this, the population is again in a stable phase until the next mutation, etc..

Note that we prove in the following that the invasion phases are relatively short
(O(ln(K))) compared to the stable phase (O(1/uKK)). Since we study the process on
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the time scale 1/KuK , the limit process proceeds as a pure jump process which jumps
from one stable state to another.

The stable phase: Fix ε > 0. Let X(g,p) be the support of the initial conditions. For large
K, the population process νK is, with high probability, still in a small neighbourhood
of the equilibrium n̄(g,p) when the first mutant appears. In fact, using large deviation
results on the problem of exit from a domain (cf. [18]), we obtain that there exists a
constant M > 0 such that the first time νK leave the Mε-neighbourhood of n̄(g,p) is
bigger than exp(V K), for some V > 0, with high probability. Thus, until this stopping
time, mutations born from individuals with trait x ∈ X(g,p) appear with a rate which is
close to

uKm(x)b(x)Kn̄x(g,p).

The condition 1/(KuK) � exp(V K), for all V > 0, in (3.11) ensures that the first
mutation appears before this exit time.

The invasion phase: We divide the invasion of a given mutant trait (g̃, p̃) into three steps,
as in [9] and [11] (cf. Fig. 2). In the first step, from a mutational event until the mutant
population goes extinct or the mutant density reaches the value ε, the number of mutant
individuals is small (cf. Fig. 2, [0, t1]). Thus, applying a perturbed version of the large
deviation result we used in the first phase, we obtain that the resident population stays
close to its equilibrium density n̄(g,p) during this step. Using similar arguments as
Champagnat et al. [9, 11], we prove that the mutant population is well approximated
by a |[p̃]g̃|-type branching process Z, as long as the mutant population has less than εK

individuals. More precisely, let us denote the elements of [p̃]g̃ by p̃1, . . . , p̃|[p̃]g̃|, then, for
each 1 ≤ i ≤ |[p̃]g̃|, each individual in Z (carrying trait (g̃, p̃i)) undergoes

(i) birth (without mutation) with rate b(p̃i),

(ii) death with rate d(p̃i) +
∑

(g,p)∈X(g,p)
c(p̃i, p)n̄(g,p)(g,p) and

(iii) switch to p̃j with rate sg̃nat.(p̃i, p̃j) +
∑

(g,p)∈X(g,p)
sg̃ind.(p̃i, p̃j)(p)n̄(g,p), for all 1 ≤ j ≤

|[p̃]g̃|.

This continuous-time multi-type branching process is supercritical if and only if the
largest eigenvalue of its infinitesimal generator, which we denote by λmax, is larger
than zero. Hence, the mutant invades with positive probability if and only if λmax > 0.
Moreover, the probability that the density of the mutant’s genotype, νK(g̃), reaches ε at
some time t1 is close to the probability that the multi-type branching process reaches
the total mass εK, which converges as K ↑ ∞ to (1− q(g,p)(g̃, p̃)).

In the second step, we obtain as a consequence of Theorem 2.4 that once the mutant
density has reached ε, for large K, the stochastic process νK can be approximated on
any finite time interval by the solution of LV S(d+ 1, ((g1, p1), . . . , (gd, pd), (g̃, p̃))) with a
given initial state. By Assumption 3.4, this solution reaches the ε-neighbourhood of its
new equilibrium n∗((g,p), (g̃, p̃)) in finite time. Therefore, for large K, the stochastic
process νK also reaches with high probability the ε-neighbourhood of n∗((g,p), (g̃, p̃)) at
some finite (K independent) time t2.

In the third step, we use similar arguments as in the first step. Since n∗((g,p), (g̃, p̃))

is a strongly locally stable equilibrium (Ass. 3.4), the stochastic process νKt stays close
n∗((g,p), (g̃, p̃)) and we can approximate the densities of the traits (g, p) ∈ X((g,p),(g̃,p̃))

with n∗
(g,p)((g,p), (g̃, p̃)) = 0 by |[p]g|- type branching processes which are subcritical and

therefore become extinct, a.s..

The duration of the first and third step are proportional to ln(K), whereas the time
of the second step is bounded. Thus, the second inequality in (3.11) guarantees that,
with high probability, the three steps of invasion are completed before a new mutation
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Figure 2: The three steps of one invasion phase.

occurs. After the last step the process is again back in a stable phase, but with a possibly
different resident population, until the next mutation happens.

An example: Figure 2 shows the invasion phase of a single mutant with trait (g̃, p̃1),
which appeared (at time 0) in a population close to n̄(g,p) (indicated by the dashed lines).
In this example the resident population consists of two coexisting traits (g, p1) and (g, p2)

and the mutant individuals can switch to one other phenotype only, i.e. [p̃1]g̃ = {p̃1, p̃2}.
The parameters of the simulation of Figure 2 are given in Table 1. The stable fixed point of

Table 1: Parameters of Figure 2
b(p1) = 3 d(p1) = 1 c(p1, p1) = 1 c(p1, p2) = 0.7 c(p1, p̃1) = 0.7 c(p1, p̃2) = 0.7 sgnat.(p1, p2) = 1

b(p2) = 3 d(p2) = 1 c(p2, p1) = 0.7 c(p2, p2) = 1 c(p2, p̃1) = 0.7 c(p2, p̃2) = 0.7 sgnat.(p2, p1) = 2

b(p̃1) = 5 d(p̃1) = 1 c(p̃1, p1) = 0.7 c(p̃1, p2) = 0.7 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.7 sg̃nat.(p̃1, p̃2) = 1.5

b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p1) = 0.7 c(p̃2, p2) = 0.7 c(p̃2, p̃1) = 0.7 c(p̃2, p̃2) = 1 sg̃nat.(p̃2, p̃1) = 2

K = 2000 uK = 0 νK
0 (g, p1) = 1.5 νK

0 (g, p2) = 0.8 νK
0 (g̃, p̃1) = 1/K νK

0 (g̃, p̃2) = 0 s.ind.( . , . )(.) ≡ 0

the system LV S(2, ((g, p1), (g, p2))) is n̄((g, p1), (g, p2)) ≈ (1.507, 0.809). The infinitesimal
generator of the multi-type branching process that approximates the mutant population
in the first step is approximately (

0.879 1.5

2 −0.621

)
. (3.14)

Since the largest eigenvalue of this matrix is positive (≈ 2.016), the mutant population
reaches with positive probability the second invasion step (cf. Fig. 2).
Moreover, n∗ ≈ (0, 0, 2.608, 1.608) is the unique locally strictly stable fixed point of
the dynamical system LV S(4, ((g, p1), (g, p2), (g̃, p̃1), (g̃, p̃2))). The dynamical system and
hence also the stochastic process reach in finite time the ε-neighbourhood of this value.
The infinitesimal generator of the multi-type branching process that approximates the
resident population in the third step is approximately(

−1.951 2

1 −2.951

)
. (3.15)

The largest eigenvalue of this matrix is negative (≈ −0.951), meaning that the process
is subcritical and goes extinct, a.s.. Therefore, there exists a time t3 such that all
individuals which carry trait (g, p1) or (g, p2) are a.s. dead at time t3.

EJP 23 (2018), paper 72.
Page 12/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP194
http://www.imstat.org/ejp/


PES with phenotypic plasticity

3.3 Proof of Theorem 3.6

In this paragraph we prove the convergence to the PESP. (The proof uses the same
arguments and techniques as [11], which were developed in [9]. However, some exten-
sions are necessary if fast phenotypic switches are included in the process, which we
state and prove in this subsection.) We start with an analog of Theorem 3 of [9]. Part (i)
of the following theorem strengthens Theorem 2.4, and part (ii) provides control of exit
from an attractive domain in the polymorphic case with phenotypic plasticity.

Theorem 3.8. (i) Assume that the initial conditions have support {(g1, p1), . . . (gd, pd)}
and are uniformly bounded, i.e., for all 1 ≤ i ≤ d, νK0 (gi, pi) ∈ A, where A is a
compact subset of R>0 (R>0 denotes the set of strictly positive real numbers).
Then, for all T > 0 and for all η > 0,

lim
K↑∞

P

[
sup

t∈[0,T ]

∣∣∣∣∣∣νKt −
∑

x∈X(g,p)

nx(t, ν
K
0 )δx

∣∣∣∣∣∣
TV

> η

]
= 0, (3.16)

where n(t, νK0 ) ∈ R|X(g,p)| denotes the value of the solution of LV S(d, (g,p)) at
time t with initial condition nx(0, ν

K
0 ) = νK0 (x), for all x ∈ X(g,p). Note that the

measure
∑

x∈X(g,p)
nx(t, ν

K
0 )δx depends on K, since the initial condition and hence

the solution of LV S(d, (g,p)) depends on K.

(ii) Let (g1, p1), . . . , (gd, pd) ∈ X coexist. Assume that, for any K ≥ 1, Supp(νK0 ) =

X(g,p). Let τmut. be the first mutation time. Define the first exit time from the
ξ-neighbourhood of n̄x(g,p) by

θK,ξ
exit ≡ inf

{
t ≥ 0 : ∃x ∈ X(g,p) :

∣∣νKt (x)− n̄x(g,p)
∣∣ > ξ

}
. (3.17)

Then there exist ε0 > 0 and M > 0 such that, for all ε < ε0, there exists V > 0 such
that if the initial state of νK lies in the ε-neighbourhood of n̄x(g,p), the probability
that θK,Mε

exit is larger than eKV ∧ τmut. converges to one, i.e.

lim
K↑∞

sup
nK∈(N/K)

|X(g,p)|∩Bε(n̄(g,p))

P
[
θK,Mε
exit < eKV ∧ τmut.

∣∣∣ νK0 (x) = nK
x ,

for all x ∈ X(g,p)

]
= 0, (3.18)

where nK ≡ (nK
x )x∈X(g,p)

and Bε(n̄(g,p)) denotes the ε-neighbourhood of n̄(g,p).

Moreover, (3.18) also holds if, for all (g, p) ∈ X(g,p), the total death rate of an
individual with trait (g, p),

d(p) +
∑

(g̃,p̃)∈X(g,p)

c(p, p̃)νKt (g̃, p̃), (3.19)

and the total switch rates of an individual with trait (g, p),

sgnat.(p, pi) +
∑

(g̃,p̃)∈X(g,p)

sgind.(p, pi)(p̃)ν
K
t (g̃, p̃) for all pi ∈ [p]g, (3.20)

are perturbed by additional random processes that are uniformly bounded by
c̄ε respectively s̄ind.ε, where c̄ and s̄ind. are upper bounds for the parameters of
competition and induced switch.

Remark 3.9. (i) One consequence of the second part of (ii) is that, with high prob-
ability, the process stays in the Mε-neighbourhood of n̄x(g,p) until the first time
that a mutant’s density reaches the value ε. In other words, let θKInvasion denote the
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first time that a mutant’s density reaches the value ε, i.e

θKInvasion ≡
{
t ≥ 0 : ∃(g, p) /∈ X(g,p) :

∑
p̃∈[p]g

νKt (g, p̃) ≥ ε
}
. (3.21)

Then, the probability that θK,Mε
exit is larger than eKV ∧ θKInvasion converges to one. We

use this result also for the third invasion step.

(ii) Since n̄(g,p) is a locally strictly stable fixed point of the system LV S(d, (g,p)), there
exists a constant M > 0 such that, for all ε > 0 small enough, for all trajectories
n(t) with ||n(0)− n̄(g,p)|| < ε, it holds that supt≥0 ||n(t)− n̄(g,p)|| < Mε.

Proof. The main task to prove (i) is to show that a large deviation principle on [0, T ]

holds for a sightly modify process and that the νK has the same law on the random time
interval we need to control it. In fact, Theorem 10.2.6 of [15] can be applied to obtain
the large deviation principle. The main task to prove (ii) is to show that the classical
estimates for exit times from a domain (cf. [18]) for the jump process νK can be used.
Note that Freidlin and Wentzell study in [18] mainly small white noise perturbations of
dynamical systems. However, there also are some comments on the generalisation to
dynamical systems with small jump-like perturbations (cf. [18], Sec. 5.4)

The following Lemma describes the asymptotic behaviour of τmut. and can be seen as
an extension of Lemma 2 of [9] or Lemma A.3 of [11].

Lemma 3.10. Let (g1, p1), ..., (gd, pd) ∈ X coexist. Assume that, for any K ≥ 1,
Supp(νK0 ) = X(g,p). Let τmut. denote the first mutation time. Then, there exists ε0 > 0

such that if the initial states of νK belong to the ε0-neighbourhood of n̄x(g,p), then, for
all ε ∈ (0, ε0),

lim
K↑∞

P

[
τmut. > ln(K), sup

t∈[ln(K),τmut.]

∣∣∣∣∣∣νKt −
∑

x∈X(g,p)
n̄x(g,p)δx

∣∣∣∣∣∣
TV

< ε

]
= 1, (3.22)

Moreover, (τmut.uKK)K≥1 converges in law to an exponential distributed random variable
with parameter

∑
(g,p)∈X(g,p)

m(g)b(p)n̄(g,p)(g,p) and the probability that the mutant,

which appears at time τmut., is born from an individual with trait (g, p) ∈ X(g,p) converges
to

m(g)b(p)n̄(g,p)(g,p)∑
(g̃,p̃)∈X(g,p)

m(g̃)b(p̃)n̄(g̃,p̃)(g,p)
(3.23)

as K ↑ ∞.

Proof. There exist constants C > 0 and V > 0, such that on the time interval [0, exp(KV )],
with probability tending to one, the total mass of the population, νKt (X ), is bounded
from above by C. Therefore, we can construct an exponential random variable A with
parameter C ′KuK , where C ′ = Cmaxg∈G,p∈P m(g)b(p), such that

A ≤ τmut. on the event {τmut. < exp(KV )} . (3.24)

Thus, P [τmut. > ln(K)] ≥ P [A > ln(K)] = e−C′ ln(K)KuK . Since (3.11) implies that
ln(K)KuK converges to zero as K ↑ ∞, we get limK↑∞P[τmut. > ln(K)] = 1.

The fixed point n̄(g,p) is asymptotic stable. Thus, ∃ε0 > 0 : ∀ε̃ ∈ (0, ε0) ∃T (ε̃):

‖n(g,p)(0)− n̄(g,p)‖ < ε0, implies sup
t≥T (ε̃)

|n(g,p)(t)− n̄(g,p)| < ε̃/2. (3.25)

In words, there exists a finite time T (ε̃) such that all trajectories, which start in the ε0
neighbourhood of the fixed point, stay after T (ε̃) in the ε̃/2-neighbourhood of the fixed
point.
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Next, we apply the last theorem: By (i), for all ε̃ ∈ (0, ε0) ∃T (ε̃) such that, for K large
enough, ∣∣∣∣∣∣νKT (ε̃) −

∑
x∈X(g,p)

n̄x(g,p)δx

∣∣∣∣∣∣
TV

< ε̃ a.s.. (3.26)

Then, by (ii), there exist ε0 > 0 and M > 0: for all ε̃ ∈ (0, ε0), there exists V > 0 such that

lim
K↑∞

P

[
sup

t∈[T (ε̃), eKV∧τmut.)

∣∣∣∣∣∣νKt −
∑

x∈X(g,p)
n̄x(g,p)δx

∣∣∣∣∣∣
TV

< Mε̃

]
= 1. (3.27)

Moreover, for all ε̃ ∈ (0, ε0) there exists K0 ∈ N such that T (ε̃) < ln(K), for all K ≥ K0.
Thus, setting ε = Mε̃, ends the proof of (3.22), provided that limK↑∞P[τmut. < eKV ] = 1.

Again, we can construct, for all ε > 0, two exponential random variables A1,K,ε and
A2,K,ε with parameters

a1uKK ≡
∑

(g,p)∈X(g,p)

uKm(g)b(p)(n̄(g,p)(g,p) + ε)K (3.28)

and
a2uKK ≡

∑
(g,p)∈X(g,p)

uKm(g)b(p)(n̄(g,p)(g,p)− ε)K (3.29)

such that

A1,K,ε ≤ τmut. ≤ A2,K,ε on the event {T (ε̃) < τmut. < eKV }, (3.30)

where T (ε̃) is the time defined in equation (3.26) and ε̃ = ε/M . Moreover, we have

lim
K↑∞

P[τmut. < ln(K)] = 0 and lim
K↑∞

P[A2,K,ε > eKV ] = 0, (3.31)

because uKKeKV ↑ ∞ as K ↑ ∞. Therefore, for all ε > 0, the probability of the event
{T (ε̃) < τmut. < eKV } converges to one as K goes to infinity. Moreover, the random
variables A1,K,εuKK and A2,K,εuKK converge both in law to the same exponential
distributed random variable with parameter∑

(g,p)∈X(g,p)

m(g)b(p)n̄(g,p)(g,p) (3.32)

as first K ↑ ∞ and then ε → 0. The random variables A, A1,K,ε and A2,K,ε can easily be
constructed by using the pathwise description of νK (cf. [3] or [10]).

Theorem 3.11 (The three steps of invasion). Let (g1, p1), . . . , (gd, pd) ∈ X coexist. Assume
that, for any K ≥ 1, Supp(νK0 ) = X(g,p) ∪{(g̃, p̃)}. Let τmut. denote the next mutation time
(after time zero) and define

θK,ξ
No Jump ≡ inf

{
t ≥ 0 : νKt (g̃) = 0 and

∣∣∣∣∣∣νKt −
∑

x∈X(g,p)
n̄x(g,p)δx

∣∣∣∣∣∣
TV

< ξ
}

(3.33)

θK,ξ
Jump ≡ inf

{
t ≥ 0 :

∣∣∣∣∣∣νKt −
∑

x∈X((g,p),(g̃,p̃))
n∗x((g,p), (g̃, p̃))δx

∣∣∣∣∣∣
TV

< ξ (3.34)

and ∀x̂ /∈ {x ∈ X : n∗x((g,p), (g̃, p̃)) > 0} : νKt (x̂) = 0
}
.

Assume that we have a single initial mutant, i.e. νK0 (g̃, p̃) = 1/K. Then, there exist
ε0 > 0, C > 0, and M > 0 such that for all ε ∈ (0, ε0) if ||νK0 −

∑
x∈X(g,p)

n̄x(g,p)δx||TV < ε,

lim
K↑∞

P
[
θK,Mε
No Jump < θK,Mε

Jump

]
≥ q(g,p)(g̃, p̃)− Cε, (3.35)

lim
K↑∞

P
[
θK,Mε
Jump < θK,Mε

No Jump

]
≥ 1− q(g,p)(g̃, p̃)− Cε, (3.36)
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where 1− q(g,p)(g̃, p̃) is the invasion probability defined in (3.8) and

∀η > 0, lim
K↑∞

P

[
θK,Mε
Jump ∧ θK,Mε

No Jump ≥ η

uKK
∧ τmut.

]
≤ Cε. (3.37)

The structure of the proof is similar to the one of Lemma 3 in [9] (cf. also Lem. A.4. of
[11]). However, we have to extend the theory to multi-type branching processes. Thus,
the proof is not a simple copy the arguments in [9]. Before proving the theorem, let us
collect some properties about multi-type continuous-time branching processes. Most of
these can be found in [2] or [27]. The limit theorems we need in the sequel were first
obtained by Kesten and Stigum [23, 22, 24] in the discrete-time case and by Athreya [1]
in the continuous-time case.

Let Z(t) be a k-dimensional continuous-time branching process. Assume that Z(t) is
non-singular and that the first moments exist. (Note that a process is singular if and only
if each individual has exactly one offspring and that the existence of the first moments is
sufficient for the non-exposition hypothesis.) Then, the so-called mean matrix M(t) of
Z(t) is the k × k matrix with elements

mij(t) ≡ E[Zj(t)|Z(0) = ei], 1 ≤ i, j ≤ k, (3.38)

and ei is the i-th unit vector in Rk. It is well known (cf. [2] p. 202) that there exists a
matrix A, called the infinitesimal generator of the semigroup {M(t), t ≥ 0}, such that

M(t) ≡ exp(At) =

∞∑
n=0

tn(A)n

n!
. (3.39)

Furthermore, let r = (r1, . . . , rk) be the vector of the branching rates, meaning that every
individual of type i has an exponentially distributed lifetime of parameter ri and let M
be the mean matrix of the corresponding discrete-time process, i.e. M ≡ {mij , i, j =

1, . . . , k}, where mij is the expected number of type j offspring of a single type-i-particle
in one generation. Then, we can identify the infinitesimal generator A as

A = R(M− I), (3.40)

where R = diag(r1, . . . , rk), i.e. rij = riδi(j) and I is the identity matrix of size k.
Under the basic assumption of positive regularity, i.e. that there exists a time t0 such

that M(t0) has strictly positive entries, the Perron-Frobenius theory asserts that

(i) the largest eigenvalue of M(t0) is real-valued and strictly positive,

(ii) the algebraic and geometric multiplicities of this eigenvalue are both one, and

(iii) the corresponding eigenvector has strictly positive components.

By (3.39), the eigenvalues of M(t) are given by exp(λit), where {λi; i = 1, . . . , k} are the
eigenvalues of A, and both matrices have the same eigenvectors, which implies that
the left and right eigenvectors u and v of λmax(A) can be chosen with strictly positive
components and satisfying∑k

i=1 viui = 1 and
∑k

i=1 ui = 1. (3.41)

The process Z is called supercritical, critical, or subcritical according as λmax(A) is
larger, equal, or smaller than zero.

Observe that the following properties are equivalent (cf. [27] p. 95-99 and [26]):

Z is irreducible ⇔ M is irreducible ⇔ A is irreducible ⇔ M(t) is irreducible for all
t > 0 ⇔ M(t) > 0 for all t > 0.
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In particular, irreducible implies positive regular. Note that a matrix is irreducible if it is
not similar via a permutation to a block upper triangular matrix and that a Markov chain
is irreducible if and only if the mean matrix is irreducible.

The following lemma is an extension of Theorem 4 of [9] for multi-type branching
processes.

Lemma 3.12. Let (Z(t))t≥0 be a non-singular and irreducible k-dimensional continuous-
time Markov branching process and q the extinction vector of Z, i.e.

qi ≡ P[Z(t) = 0, for some t ≥ 0|Z(0) = ei], for 1 ≤ i ≤ k. (3.42)

Furthermore, let (tK)K≥1 be a sequence of positive numbers such that ln(K) � tK ,

define Tρ ≡ inf{t ≥ 0 :
∑k

i=1 Zi(t) = ρ} and assume that, for all i, j ∈ {1, . . . , k} and
t ∈ [0,∞),

E[Zj(t) ln(Zj(t))|Z(0) = ei] < ∞. (3.43)

(i) If Z is subcritical, i.e. λmax(A) < 0, then, for any ε > 0,

lim
K↑∞

P
[
T0 ≤ tK ∧ TdεKe

∣∣∣ Z(0) = ei

]
= 1, for all i ∈ {1, . . . , k}, (3.44)

and

lim
K↑∞

inf
x∈∂BεK

P [T0 ≤ tK |Z(0) = x] = 1, where ∂BεK ≡ {x ∈ Nk
0 :
∑k

i=1 xi = dεKe}.
(3.45)

Moreover, for ū =
max1≤i≤k ui

min1≤j≤k uj
and, for any ε > 0,

lim
K↑∞

sup
x∈Bε2K

P
[
TdεKe ≤ T0

∣∣∣ Z(0) = x
]
≤ ūε,

where Bε2K ≡ {x ∈ Nk
0 :
∑k

i=1 xi ≤ dε2Ke}. (3.46)

(ii) If Z is supercritical, i.e. λmax(A) > 0, then, for any ε > 0 (small enough),

lim
K↑∞

P
[
T0 ≤ tK ∧ TdεKe

∣∣∣ Z(0) = ei

]
= qi, for all i ∈ {1, . . . , k} (3.47)

and

lim
K↑∞

P
[
TdεKe ≤ tK

∣∣∣ Z(0) = ei

]
= 1− qi, for all i ∈ {1, . . . , k}. (3.48)

Moreover, conditionally on survival, the proportions of the different types present
in the population converge almost surely, as t ↑ ∞, to the corresponding ratios of
the components of the eigenvector: for all i = 1, . . . , k,,

lim
t↑∞

Zi(t)∑k
j=1 Zj(t)

=
vi∑k
j=1 vj

, a.s. on {T0 = ∞}. (3.49)

Remark 3.13. In the critical case, when λmax(A) = 0, (3.44) still holds, i.e. a mutant
will not fixate. But Eq. (3.45) does not hold, since the time to extinction is now much
larger. This leads to complications that would obfuscate the picture. Assumption 3 on
the existence of a unique strictly stable equilibrium excludes the occurrence of these
critical situations.

Proof. We start with the proof of (i). Since Z(t) is in this case a subcritical irreducible
continuous-time branching process and E[Zj(t) ln(Zj(t))|Z(0) = ei] < ∞, we obtain by
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applying Satz 6.2.7 of [27] the existence of a constant C > 0 such that

lim
t↑∞

1− qi(t)

eλmax(A)t
= Cui, (3.50)

where qi(t) ≡ P[Z(t) = 0 |Z(0) = ei]. Moreover, we have a non-explosion condition. Thus,
for all ε > 0, either TdεKe equals infinity or it converges to infinity as K ↑ ∞. Putting
both together, there exists a sequence sK with limK↑∞ sK = +∞ such that

lim
K↑∞

P
[
T0 ≤ tK ∧ TdεKe

∣∣∣Z(0) = ei

]
≥ lim

K↑∞
P [T0 ≤ sK | Z(0) = ei] = lim

K↑∞
qi(sK) = 1.

(3.51)
The branching property implies that, for all x ∈ Nk, P[Z(t) = 0 |Z(0) = x] =

∏k
i=1(qi(t))

xi

(cf. [26] p. 25). So, we get

inf
x∈∂BεK

P [T0 ≤ tK | Z(0) = x] = inf
x∈∂BεK

P [Z(tK) = 0 | Z(0) = x] = inf
x∈∂BεK

k∏
i=1

(qi(tK))xi .

(3.52)
For all i ∈ {1, . . . , k}, 1 ≥ (qi(tK))xi ≥ (qi(tK))dεKe and by (3.50) we have 1 − qi(tK) =

O(eλmax(A)tK ). Moreover, for any sequence (wK)K≥1 such that limK↑∞ wK = 0,

lim
K↑∞

(
1 +

wK

K

)K
= 1. (3.53)

This implies that, for all tK with tK � ln(K) and C > 0, since limK↑∞ Ceλmax(A)tkdεKe = 0,

lim
K↑∞

(1− Ceλmax(A)tk)dεKe = 1. (3.54)

Thus, taking the limit K ↑ ∞ in (3.52), we obtain the desired equation (3.45). To prove
the inequality (3.46) we use the fact that (

∑k
i=1 uiZi(t))e

−λmaxt is a martingale (cf. [1],
Prop. 2). By applying Doob’s stopping theorem to the stopping time TdεKe ∧ T0 we obtain,
for all x ∈ Bε2K , that

E
[(∑k

i=1 uiZi(TdεKe)
)
e−λmax(A)TdεKe1{TdεKe<T0}

∣∣∣Z(0) = x
]
=
∑k

i=1 uixi. (3.55)

Therefore, since λmax(A) < 0 in the subcritical case,

E

[
min

1≤i≤k
uidεKe1{TdεKe<T0}

∣∣∣∣Z(0) = x

]
≤ max

1≤i≤k
uidε2Ke, for all x ∈ Bε2K , (3.56)

which implies (3.46).
Let us continue by proving (ii). Since Z(t) is supercritical in this case, applying

Theorem 5.7.2 of [2] yields that

lim
t↑∞

Z(t)(ω)e−λmax(A)t = W (ω)v, a.s., (3.57)

where W is a nonnegative random variable. Since we assume that, for all i ∈ {1, . . . , k},
E[Zj(t) ln(Zj(t))|Z(0) = ei] < ∞, we get that

P[W = 0|Z(0) = ei] = qi, E[W |Z(0) = ei] = ui, (3.58)

and W has an absolutely continuous distribution on (0,∞). All components of v are
strictly positive and W > 0, a.s., on the event {ω : T0(ω) = ∞}. Hence, we have

Z(t) = O
(
eλmax(A)t

)
a.s. on {T0 = ∞}. (3.59)
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This implies that limK↑∞P[Z(tK) < dεKe, T0 = ∞] = 0 and thus

lim
K↑∞

P[T0 = ∞, TdεKe ≥ tK ] = 0. (3.60)

Note that we used that tK � ln(K). Since P [T0 = ∞|Z(0) = ei] = 1 − qi, we deduce
(3.48). On the other hand, there exist two sequences s1K and s2K , which converge to
infinity as K ↑ ∞, such that, limK↑∞P[s

1
K ≤ tK ∧ TdεKe ≤ s2K ] = 1. This yields (3.47),

because, for all i ∈ {1, . . . k} and l = 1, 2, we have that limK↑∞P[T0 < slK |Z0 = ei] = qi.
Note that equation (3.49) is a simple consequence of (3.57).

Using these properties about multi-type branching processes we can now prove the
theorem about the three steps of invasion.

Proof of Theorem 3.11. The first invasion step. Let us introduce the following stopping
times

θK,Mε
exit = inf

{
t ≥ 0 : ||νKt −

∑
x∈X(g,p)

n̄x(g,p)δx||TV > Mε
}

(3.61)

θ̃Kε = inf
{
t ≥ 0 : νKt (g̃) ≥ ε

}
(3.62)

θ̃K0 = inf
{
t ≥ 0 : νKt (g̃) = 0

}
(3.63)

Until θ̃Kε the mutant population νKt (g̃) influences only the death and switching rates of
the resident population and this perturbation is uniformly bounded by (c̄+ s̄ind.)ε. Thus,
by applying Theorem 3.8 (ii), we obtain

lim
K↑∞

P
[
θK,Mε
exit < eKV ∧ τmut. ∧ θ̃Kε

]
= 0. (3.64)

On the time interval [0, θK,Mε
exit ∧τmut.∧θ̃Kε ], the resident population can be approximated by∑

x∈X(g,p)
n̄x(g,p)δx and no further mutant appears. This allows us to approximate νKt (g̃)

by multi-type branching processes.
Let k ≡ |[p̃]g̃|. We construct two (N0)

k- valued processes X1,ε(t) and X2,ε(t), using the
pathwise definition in terms of Poisson point measures of νKt , which control the mutant
population νKt (g̃). To this aim let us denote the elements of [p̃]g̃ by p̃1, . . . , p̃k (w.l.o.g.
p̃ ≡ p̃1). Then, we define X1,ε by

X1,ε(t) ≡ X1,ε(0) (3.65)

+

k∑
j=1

∫ t

0

∫
N0

∫
R+

1{
i≤X1,ε

j (s−), θ≤b(p̃i)−ε
}ejNbirth

(g̃,p̃j)
(ds, di, dθ)

−
k∑

j=1

∫ t

0

∫
N0

∫
R+

1{
i≤X1,ε

j (s−), θ≤d(p̃j)+
∑

(g,p)∈X(g,p)
c(p̃j ,p)n̄(g,p)(g,p)+c̄Mε

}ejNdeath
(g̃,p̃j)

(ds, di, dθ)

+

k∑
j=1

∫ t

0

∫
N0

∫
R+

∫
[p̃]g̃

1{
i≤X1,ε

j (s−), i 6=j
}

×
(
1{

θ≤sg̃nat.(p̃j ,p̃l)+
∑

(g,p)∈X(g,p)
sg̃ind.(p̃j ,p̃l)(p)n̄(g,p)(g,p)−s̄ind.Mε

}el
− 1{

θ≤sg̃nat.(p̃j ,p̃l)+
∑

(g,p)∈X(g,p)
sg̃ind.(p̃j ,p̃l)(p)n̄(g,p)(g,p)+s̄ind.Mε

}ej
)
N switch

(g̃,p̃j)
(ds, di, dθ, dp̃l),

and similar X2,ε by
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X2,ε(t) ≡ X2,ε(0) (3.66)

+

k∑
j=1

∫ t

0

∫
N0

∫
R+

1{
i≤X2,ε

j (s−), θ≤b(p̃i)+ε
}ejNbirth

(g̃,p̃j)
(ds, di, dθ)

−
k∑

j=1

∫ t

0

∫
N0

∫
R+

1{
i≤X2,ε

j (s−), θ≤d(p̃j)+
∑

(g,p)∈X(g,p)
c(p̃j ,p)n̄(g,p)(g,p)−c̄Mε

}ejNdeath
(g̃,p̃j)

(ds, di, dθ)

+

k∑
j=1

∫ t

0

∫
N0

∫
R+

∫
[p̃]g̃

1{
i≤X1,ε

j (s−), i 6=j
}

×
(
1{

θ≤sg̃nat.(p̃j ,p̃l)+
∑

(g,p)∈X(g,p)
sg̃ind.(p̃j ,p̃l)(p)n̄(g,p)(g,p)+s̄ind.Mε

}el
− 1{

θ≤sg̃nat.(p̃j ,p̃l)+
∑

(g,p)∈X(g,p)
sg̃ind.(p̃j ,p̃l)(p)n̄(g,p)(g,p)−s̄ind.Mε

}ej
)
N switch

(g̃,p̃j)
(ds, di, dθ, dp̃l),

where ej is the j-th unit vector in Rk and Nbirth, Ndeath, and N switch are the collections
of Poisson point measures defined in Subsection 2.1. Note that X1,ε(t) and X2,ε(t) are
k-type branching processes with the following dynamics: For each 1 ≤ i ≤ k, each
individual in X1,ε(t), respectively X2,ε(t), with trait (g̃, p̃i) undergoes

(i) birth (without mutation) with rate b(p̃i)− ε, respectively b(p̃i)+ ε+2(k− 1)s̄ind.Mε,

• death with rate D(g,p)(p̃i) + c̄Mε+ 2(k − 1)s̄ind.Mε, respectively D(g,p)(p̃i)− c̄Mε,
where D(g,p)(p̃i) ≡ d(p̃i) +

∑
(g,p)∈X(g,p)

c(p̃i, p)n̄(g,p)(g,p),

(ii) switch to p̃j with rate S(g,p)(p̃i, p̃j)− s̄ind.Mε, for all j 6= i (for both processes),

where S(g,p)(p̃i, p̃j) ≡ sg̃nat.(p̃i, p̃j) +
∑

(g,p)∈X(g,p)
sg̃ind.(p̃i, p̃j)(p)n̄(g,p).

Moreover, the processes X1,ε(t) and X2,ε(t) have the following property: There exists a
K0 > 1 such that, for all p̃i ∈ [p̃]g̃ and for all K ≥ K0,

∀ 0 ≤ t ≤ θK,ε
exit ∧ τmut. ∧ θ̃Kε : X1,ε

i (t) ≤ νKt (g̃, p̃i)K ≤ X2,ε
i (t). (3.67)

Hence, if θ̃Kε ≤ θK,ε
exit ∧ τmut., then

inf
{
t ≥ 0 : X2,ε(t) = dεKe

}
≤ θ̃Kε ≤ inf

{
t ≥ 0 : X1,ε(t) = dεKe

}
. (3.68)

On the other hand, if inf{t ≥ 0 : X2,ε(t) = 0} ≤ inf{t ≥ 0 : X2,ε(t) = dεKe} ∧ θK,ε
exit ∧ τmut.,

then
θ̃K0 ≤ inf{t ≥ 0 : X2,ε(t) = 0}. (3.69)

Next, let us identify the infinitesimal generator of the control processes X1,ε and X2,ε.
Therefore, define, for i = 1, . . . , k,

f(g,p)(g̃, p̃i) ≡ b(p̃i)−D(g,p)(p̃i)−
∑

j 6=i S(g,p)(p̃i, p̃j). (3.70)

(f(g,p)(g̃, p̃i) would be the invasion fitness of phenotype p̃i if there was no switch back
from the other phenotypes to p̃i.) Then, by Equation (3.40), the infinitesimal generators
are given by the following matrixes

A(X l,ε)=


f l,ε
(g,p)(g̃, p̃1) S(g,p)(p̃1, p̃2)−s̄ind.Mε . . . S(g,p)(p̃1, p̃k)−s̄ind.Mε

S(g,p)(p̃2, p̃1)−s̄ind.Mε f l,ε
(g,p)(g̃, p̃2)

...
. . .

...

S(g,p)(p̃k, p̃1)−s̄ind.Mε . . . f l,ε
(g,p)(g̃, p̃k)


(3.71)
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for l ∈ {1, 2}, where f1,ε
(g,p)(g̃, p̃i) ≡ f(g,p)(g̃, p̃i)−ε(1+c̄M+(k−1)s̄ind.M) and f2,ε

(g,p)(g̃, p̃i) ≡
f(g,p)(g̃, p̃i) + ε(1 + c̄M + 3(k − 1)s̄ind.M).

We prove in the following that the number of mutant individuals grow with positive
probability to εK before dying out if and only if λmax of A(g̃,p̃) ≡ limε→0 A(X1,ε) is strictly
positive. Thus, λmax(A(g̃,p̃)) is an appropriate generalisation of the invasion fitness of the
class [p̃]g̃:

F[p̃]g̃ (g,p) ≡ λmax(A(g̃,p̃)). (3.72)

Since the birth and death rates of X1,ε and X2,ε are positive and since Assumption 3.1
implies that M(X1,ε) and M(X2,ε) are irreducible, we obtain that the processes X1,ε

and X2,ε are non-singular and irreducible. Thus, X1,ε and X2,ε satisfy the conditions of
Lemma 3.12. For l ∈ {1, 2}, let q(X l,ε) denote the extinction probability vector of X l,ε,
i.e.

q(X l,ε) ≡ (q1(X
l,ε), . . . , qk(X

l,ε)),

where qi(X
l,ε) ≡ P

[
X l,ε(t) = 0, for some t

∣∣X l,ε(0) = ei
]
.

Observe that q(X l,ε) = (1, . . . , 1) if X l,ε is not supercritical. To characterise q(X l,ε) in
the supercritical case, let us introduce the following functions

ul : [0, 1]k × (−η, η) → Rk, where η is some small enough constant and l ∈ {1, 2},
(3.73)

defined, for all 1 ≤ i ≤ k, by

u1
i (y, ε) ≡

(
b(p̃i)− ε

)
y2i +

∑
j 6=i

(
S(g,p)(p̃i, p̃j)− s̄ind.Mε

)
yj

+D(g,p)(p̃i) + c̄Mε+ 2(k − 1)s̄ind.Mε

−
(
b(p̃i) +

∑
j 6=i

S(g,p)(p̃i, p̃j) +D(g,p)(p̃i) + (1− c̄M + (k − 1)s̄ind.M) ε
)
yi. (3.74)

and

u2
i (y, ε) ≡

(
b(p̃i) + ε+ 2(k − 1)s̄ind.Mε

)
y2i +

∑
j 6=i

(
S(g,p)(p̃i, p̃j)− s̄ind.Mε

)
yj

+D(g,p)(p̃i)− c̄Mε

−
(
b(p̃i) +

∑
j 6=i

S(g,p)(p̃i, p̃j) +D(g,p)(p̃i) + (1− c̄M + (k − 1)s̄ind.M) ε
)
yi. (3.75)

Observe that u1(y, ε) and u2(y, ε) are the infinitesimal generating functions of X1,ε

and X2,ε and that u1(y, 0) = u2(y, 0). Moreover, the extinction vector of a multi-type
branching process is given as the unique root of the generating function in the unit cube
(cf. [2] p. 205 or [27] Chap. 5). Thus, in the supercritical case q(X1,ε) is the unique
solution of

u1(y, ε) = 0 for y ∈ [0, 1)k (3.76)

and q(X2,ε) is the unique solution of

u2(y, ε) = 0 for y ∈ [0, 1)k. (3.77)

These solutions are in general not analytic. Applying Lemma 3.12 to X1,ε and X2,ε we
obtain that there exists C1 > 0 such that, for all η > 0, ε > 0 sufficiently small and K
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large enough,

P
[
θK,Mε
No Jump < η

KuK
∧ θK,Mε

exit ∧ τmut. ∧ θ̃Kε

]
≥ P

[
inf{t ≥ 0 : X2,ε(t) = 0} < η

KuK

]
≥ q1(X

2,ε)− C1ε (3.78)

and

P
[
θ̃Kε < η

KuK
∧ θK,Mε

exit ∧ τmut. ∧ θ̃K0

]
≥ P

[
inf{t ≥ 0 : X1,ε(t) = 0} < η

KuK

]
≥ 1− q1(X

1,ε)− C1ε. (3.79)

If X2,ε is sub- or critical for ε small enough, then limε↓0 q1(X
2,ε) = limε↓0 q1(X

1,ε) = 1.
In the supercritical case, let q ∈ [0, 1)k be the solution of u1(y, 0) = u2(y, 0) = 0. Then,
by applying the implicit function theorem, there exist open sets U1 ⊂ R and U2 ⊂ R

containing 0, open sets V 1 ⊂ Rk and V 2 ⊂ Rk containing q, and two unique continuously
differentiable functions g1 : U1 → V 1 and g2 : U2 → V 2 such that

{(ε, g1(ε))|ε ∈ U1} = {(ε,y) ∈ U1 × V 1|u1(y, ε) = 0}. (3.80)

and

{(ε, g2(ε))|ε ∈ U2} = {(ε,y) ∈ U2 × V 2|u2(y, ε) = 0}. (3.81)

By definition, g1(0) = g2(0) = q and q1 = q(g,p)(g̃, p̃). We can linearise and obtain that
there exists a constant C2 > 0 such that

q1(X
1,ε) ≤ q(g,p)(g̃, p̃) + C2ε and q1(X

2,ε) ≥ q(g,p)(g̃, p̃)− C2ε (3.82)

Therefore,

lim
K↑∞

P
[
θK,Mε
No Jump ∧ θ̃Kε < η

KuK
∧ θK,Mε

exit ∧ τmut.

]
≥ 1− 2(C1 + C2)ε. (3.83)

Conditionally on survival, the proportions of the different phenotypes in X1,ε converge
almost surely, as t ↑ ∞, to the corresponding ratios of the components of the eigenvector,
which are all strictly positive (cf. Lem. 3.12, Eq. (3.49)). Moreover, there exists a constant
C3 > 0 such that, for all ε small enough,

lim
K↑∞

P
[{

θ̃Kε < η
KuK

∧ θK,Mε
exit ∧ τmut.

}
∩
{
inf{t ≥ 0 : X1,ε(t) = 0} < ∞

}]
< C3ε (3.84)

and θ̃Kε converges to infinity asK ↑ ∞. Thus, conditionally on {θ̃Kε < η
KuK

∧θK,Mε
exit ∧τmut.},

there exists a (small) constant C4 > 0 such that the probability that the densities of the
phenotypes {p̃1, . . . , p̃k}, are all larger than C4ε at time θ̃Kε convergences to one as first
K ↑ ∞ and then ε → 0. More precisely, there exists constants C4 > 0 and C5 > 0 such
that, for all ε small enough,

lim
K↑∞

P
[
θ̃Kε < η

KuK
∧ θK,Mε

exit ∧ τmut., ∃i ∈ {1, . . . k} : νK
θ̃K
ε
(p̃i) ≤ C4ε

]
≤ C5ε. (3.85)

The second invasion step. By Assumption 3.4, any solution of LV S(d+1, ((g,p), (g̃, p̃)))

with initial state in the compact set

A ≡
{
x ∈ R|X(g,p)| : |x− n̄(g,p)| ≤ Mε

}
× [C4ε, ε]

k (3.86)

converge, as t ↑ ∞, to the unique locally strictly stable equilibrium n∗((g,p)), (g̃, p̃)).
Therefore, for all ε > 0 there exists T (ε) ∈ R such that any of these trajectories do not
leave the set {

x ∈ R|X(g,p)|+k : |x− n∗((g,p)), (g̃, p̃))| ≤ ε2/2
}

(3.87)
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after time T (ε). Back to the stochastic system, let us introduce on the event {θ̃Kε <
η

KuK
∧ θK,Mε

exit ∧ τmut.} the following stopping time

θK,ε
near n∗ = inf

{
t ≥ θ̃Kε :

∣∣∣∣∣∣νKt −
∑

x∈X((g,p),(g̃,p̃))
n∗x((g,p), (g̃, p̃))δx

∣∣∣∣∣∣
TV

< ε2
}
. (3.88)

Then, we conclude by using the strong Markov property at θ̃Kε and Theorem 3.8 (i) on
[0, T (ε)] that there exists a constant C6 > 0 such that, for all ε small enough,

lim
K↑∞

P

[
θ̃Kε < τmut. ∧ η

KuK
and sup

s∈[θ̃K
ε ,θ̃K

ε +T (ε)]

∣∣∣∣∣∣νKs −
∑

x∈X(g,p)
nx(s, ν

K
0 )δx

∣∣∣∣∣∣
TV

≤ ε2
]
(3.89)

≥ 1− q(g,p)(g̃, p̃)− C6ε,

which implies

lim
K↑∞

P
[
θ̃Kε < θK,ε

near n∗ < τmut. ∧ η
KuK

]
≥ 1− q(g,p)(g̃, p̃)− C6ε. (3.90)

We used that, at time θ̃Kε , the stochastic process νK (considered as element of R|X(g,p)|+k)
lies in the compact set A, where A is defined in (3.86).

The third invasion step. After time θK,ε
near n∗ we use again comparisons with multi-type

branching processes to show that all individuals carrying a trait which is not present in
the new equilibrium n∗ die out. To this aim let us define

X n∗

extinct = {(g, p) ∈ X((g,p),(g̃,p̃)) : n
∗
(g,p)((g,p), (g̃, p̃)) = 0} (3.91)

For proving that the populations with traits in X n∗

extinct stay small after θK,ε
near n∗ and that

the populations with traits not in X n∗

extinct stay close to its equilibrium value after θK,ε
near n∗ ,

let us define

θK,ε
not small = inf

{
t ≥ θK,ε

near n∗ : ∃(g, p) ∈ X n∗

extinct such that νKt (g, p) > ε
}

(3.92)

and

θK,Mε
exit n∗ ≡ inf

{
t ≥ θK,ε

near n∗ :
∣∣∣∣∣∣νKt −

∑
x∈X((g,p),(g̃,p̃))

n∗x((g,p), (g̃, p̃))δx

∣∣∣∣∣∣
TV

> Mε
}
. (3.93)

By using first the strong Markov property at θK,ε
near n∗ , we can apply Theorem 3.8 (ii) and

obtain that there exist constants M > 0 and C7 > 0 such that, for all ε small enough,

lim
K↑∞

P
[
θ̃Kε < θK,ε

near n∗ < τmut. ∧ η
KuK

and θK,Mε
exit n∗ < eKV ∧ τmut. ∧ θK,ε

not small

]
< C7ε (3.94)

This is obtained in a similar way as Equation (3.64) in the first step. Note that (g, p) ∈
X n∗

extinct implies that (g, pi) ∈ X n∗

extinct, for all pi ∈ [p]g, which is a consequence of Assumption
3.1.

Using the same arguments as in the first step, we can construct, for all (g, p) ∈ X n∗

extinct,
a |[p]g|-type continuous-time branching process Y ε,(g,p)(s) with initial condition

Y
ε,(g,p)
i (0) = νK

θK,ε
near n∗

(g, pi)K, for all pi ∈ [p]g (3.95)

such that, for all K large enough and, for all t ∈ [θK,ε
near n∗ , θ

K,Mε
exit n∗ ∧ θK,ε

not small ∧ τmut.],

νKt (g, pi)K ≤ Y
ε,(g,p)
i (t− θK,ε

near n∗), for all pi ∈ [p]g. (3.96)

Moreover, Y ε,(g,p)(t) is characterised as follows: For each pi ∈ [p]g, each individual in
Y ε,(g,p)(t) with trait (g, pi) undergoes
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(i) birth (without mutation) with rate b(pi) + 2(|[p]g| − 1)sind.(M + |X n∗

extinct|)ε
• death with rate d(pi)+

∑
(ĝ,p̂)∈X(g,p),(g̃,p̃)

c(pi, p̂)n
∗
(ĝ,p̂)((g,p), (g̃, p̃))− c̄(M+ |X n∗

extinct|)ε
(ii) for all j 6= i, switch to pj with rate

sgnat.(pi, pj)+
∑

(ĝ,p̂)∈X(g,p),(g̃,p̃)
sgind.(pi, pj)(p̂)n

∗
(ĝ,p̂)((g,p), (g̃, p̃))− s̄ind.(M + |X n∗

extinct|)ε .

Let A(Y ε,(g,p)) denote the infinitesimal generator of the process Y ε,(g,p). Since the
equilibrium n∗((g,p), (g̃, p̃)) is locally strictly stable (cf. Ass. 3.4), the eigenvalues of the
Jacobian matrix of the dynamical system at n∗((g,p), (g̃, p̃)) are all strictly negative. If ε is
small enough, this implies that all eigenvalues of {A(Y ε,(g,p)), (g, p) ∈ X n∗

extinct} are strictly
negative. (There exists an order of the elements of X(g,p),(g̃,p̃) such that the Jacobian
matrix is an upper-block-triangular matrix and {A(Y 0,(g,p)), (g, p) ∈ X n∗

extinct} are on the
diagonal.) Thus, for all ε small enough, the branching processes {Y ε,(g,p), (g, p) ∈ X n∗

extinct}
are all subcritical. Moreover, we can apply Lemma 3.12 and get, for all ε small enough
and (g, p) ∈ X n∗

extinct

lim
K↑∞

P

[
inf{t ≥ 0 : Y ε,(g,p)(t) = 0} ≤ η

KuK

]
= 1, (3.97)

and there exists a constant C8 such that, for all ε small enough and (g, p) ∈ X n∗

extinct,

lim
K↑∞

P
[
inf{t ≥ 0 : Y ε,(g,p)(t) = dεKe} ≤ inf{t ≥ 0 : Y ε,(g,p)(t) = 0}

]
≤ C8ε. (3.98)

Hence, there exists a constant M > 0 and C9 > 0 such that, for all η > 0 and ε small
enough,

lim
K↑∞

P

[
θ̃Kε < θK,Mε

Jump < τmut. ∧
η

KuK
∧ θK,ε

not small

]
≥ 1− q(g,p)(g̃, p̃)− C9ε, (3.99)

which finishes the proof of the theorem.

Combining all the previous results, we can prove similar as in [9] that for, all ε >

0, t > 0 and Γ ⊂ X ,

lim
K↑∞

P
[
Supp(νKt/KuK

) = Γ, all traits of Γ coexist in LV S(|Γ|,Γ), (3.100)

and ||νKt/KuK
−
∑
x∈Γ

n̄x(Γ)δx||TV < ε
]
= P[Supp(Λt) = Γ]

where Λ is the PES with phenotypic plasticity defined in Theorem 3.6. Finally, generalis-
ing this to any sequence of times 0 < t1 < . . . < tn, implies that (νKt/KuK

)t≥0 converges in
the sense of finite dimensional distributions to (Λt)t≥0 (cf. [9], Cor. 1 and Lem. 1), which
ends the proof of Theorem 3.6.

3.4 Examples

Figure 3 shows two examples where in a population consisting only of type (g, p) and
being close to n(g, p) a mutation to genotype g̃ occurs. In these example, g̃ is associated
with two possible phenotypes p̃1 and p̃2.

In example (A), we start with a single mutant carrying trait (g̃, p̃1) and which can
switch to p̃2 but the back-switch is relative weak (cf. Tab. 2). According to definition
(3.70) we have f(g,p)(g̃, p̃1) < 0 and f(g,p)(g̃, p̃2) > 0. However, the global fitness of
the genotype g̃ is positive. More precisely, it is given by the largest eigenvalue of(−3 2
0.6 1

)
, which equals approximatively 1.280. Therefore, the multi-type branching pro-

cess approximating the mutant population in the first step is supercritical. This does
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A B

Figure 3: Simulations of the invasion phase with K = 1000. (A) The mutant phenotype p̃1
has a negative initial growth rate but can switch to p̃2 which has a positive one. The fitness of
the genotype g̃ is positive. (B) The fitness of the mutant genotype g̃ is positive, although each
phenotype has a negative initial growth rate. This is possible because an outgoing switch is a loss
of a cell for a phenotype, but not for the whole genotype.

not depend on the phenotype of the first mutant, i.e. we would have the same if we
had started with a single mutant carrying trait (g̃, p̃2). However, the probability of
invasion depends on this. In this example, the invasion probability is given by the
solution of

2y21 + 2y2 + 3− 7y1 = 0, (3.101)

4y22 + 0.6y1 + 2.4− 7y2 = 0. (3.102)

Thus, if we start with the trait (g̃, p̃1), the invasion probability is approximately 0.199.
Whereas it is 0.338 if the first one has trait (g̃, p̃2). In Figure 3 (A), the mutant population
with genotype g̃ survives and the stochastic process is attracted to the new equilibrium
n∗((g, p), (g̃, p̃1), (g̃, p̃2)) ≈ (0, 0.543, 2.554), which is a strictly stable.

Table 2: Parameters of Figure 3 (A)
b(p) = 3 d(p) = 1 c(p, p) = 1 c(p, p̃1) = 1 c(p, p̃2) = 0.7 s.ind.( . , . )(.) ≡ 0 νK0 (g, p) = 2

b(p̃1) = 2 d(p̃1) = 1 c(p̃1, p) = 1 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.5 sg̃(p̃1, p̃2) = 2 νK0 (g̃, p̃1) = K−1

b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p) = 0.7 c(p̃2, p̃1) = 0.5 c(p̃2, p̃2) = 1 sg̃(p̃2, p̃1) = 0.6 νK0 (g̃, p̃2) = 0

In example (B), f(g,p)(g̃, p̃1) and f(g,p)(g̃, p̃2) are both negative. Nevertheless, the
fitness of the genotype is positive and thus the mutant invades with positive probability.
(It is given by the largest eigenvalue of

(−3 2
2 −0.4

)
, which equals approximatively 0.685.)

However, the invasion probability is smaller in this example. It is approximately 0.127

if we start with the trait (g̃, p̃1) and 0.207 else. In Figure 3 (B), the mutant population
survives and the process is attracted to the stable fixed point n∗((g, p), (g̃, p̃1), (g̃, p̃2)) ≈
(0, 1.153, 1.745). Hence, this examples illustrate that the usual definition of invasion
fitness fails for populations with phenotypic plasticity.

Table 3: Parameters of Figure 3 (B)
b(p) = 3 d(p) = 1 c(p, p) = 1 c(p, p̃1) = 1 c(p, p̃2) = 0.7 s.ind.( . , . )(.) ≡ 0 νK0 (g, p) = 2

b(p̃1) = 2 d(p̃1) = 1 c(p̃1, p) = 1 c(p̃1, p̃1) = 1 c(p̃1, p̃2) = 0.5 sg̃(p̃1, p̃2) = 2 νK0 (g̃, p̃1) = 1/K

b(p̃2) = 4 d(p̃2) = 1 c(p̃2, p) = 0.7 c(p̃2, p̃1) = 0.5 c(p̃2, p̃2) = 1 sg̃(p̃2, p̃1) = 2 νK0 (g̃, p̃2) = 0
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