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Abstract

We consider diploid bi-parental analogues of Cannings models: in a population of fixed
size N the next generation is composed of Vi,j offspring from parents i and j, where
V = (Vi,j)1≤i 6=j≤N is a (jointly) exchangeable (symmetric) array. Every individual
carries two chromosome copies, each of which is inherited from one of its parents.
We obtain general conditions, formulated in terms of the vector of the total number
of offspring to each individual, for the convergence of the properly scaled ancestral
process for an n-sample of genes towards a (Ξ-)coalescent. This complements Möhle
and Sagitov’s (2001) result for the haploid case and sharpens the profile of Möhle and
Sagitov’s (2003) study of the diploid case, which focused on fixed couples, where each
row of V has at most one non-zero entry.

We apply the convergence result to several examples, in particular to two diploid
variations of Schweinsberg’s (2003) model, leading to Beta-coalescents with two-fold
and with four-fold mergers, respectively.
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1 Introduction and main results

For haploid population models, in which every individual (gene) has one parent
(gene), coalescent processes have been used widely in order to describe the ancestral
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Coalescent results for diploid exchangeable population models

structure of a sample of n genes when the total population size N is sufficiently large.
The purpose of this work is to extend the coalescent theory to general diploid population
models, in which individuals carry two copies of each gene which they inherit from two
distinct parental individuals. In this context, we derive the diploid analogue of Möhle and
Sagitov’s classification of the ancestral processes in exchangeable haploid population
models [22]. This gives a unified picture of studying genealogies in an exchangeable
diploid setting, which has up to now only been available in special cases.

We consider a general diploid exchangeable population model with fixed constant pop-
ulation size N ∈ N := {1, 2, . . .} and non-overlapping generations m ∈ N0 := {0, 1, 2, . . .}
without explicit sexes (see however our remarks in Section 2.3.3). The generations
are labeled backwards in time. That is, m = 0 is the current generation; m = 1 is one
generation backwards in time and so on. Each individual possesses two chromosome
copies, each inherited from one of its two parents. Which parental chromosome is
inherited is a uniform random pick, independently for each child. For m ∈ N, let V (m)

i,j be
the number of children by individuals i and j (for i < j) in the m-th generation. We call
these quantities pairwise offspring numbers and implicitly define V (m)

k,j = V
(m)
j,k for k > j

when notationally necessary. We exclude the possibility of self-fertilisation, i.e., V (m)
i,i = 0.

We assume that the reproduction law is independent and identically distributed from
generation to generation, i.e., the matrices

(
V

(m)
i,j

)
1≤i<j≤N , m ∈ N are i.i.d. We will often

write Vi,j = V
(1)
i,j for simplicity. We have

∑
1≤i<j≤N Vi,j = N because the population

size is fixed. Note that despite this dependence on N of the law of (Vi,j)1≤i<j≤N we
will suppress the N -dependence in the notation. Our fundamental assumption is the
following exchangeability condition:

(Vi,j)1≤i<j≤N
d
=
(
Vσ(i),σ(j)

)
1≤i<j≤N for any permutation σ of {1, . . . , N}, (1.1)

i.e., (Vi,j)1≤i<j≤N is a finite jointly exchangeable array (see also Remark 4 in Section
1.1).

children

parents

Figure 1: An example for the assignment of parental genes in a
population of size N = 7, each individual has two gene copies (the
filled circles).

Generally, we are interested in tracking the genealogy of a sample of n ∈ VN :=

{1, 2, . . . , N} genes from the present population of size N . We will follow the customary
approach of describing ancestral relations among n sampled genes by partitions char-
acterising which genes are descended from the same parental gene. Unless specified
otherwise, asymptotic relations refer to letting N → ∞ throughout the paper.

Let En be the collection of partitions of Vn and E∞ be the collection of partitions of N.
Any element in En can be expressed by ξ = {C1, C2, . . . , Cb} where Ci ∩ Cj = ∅ for i 6= j

and ∪bi=1Ci = Vn with b = |ξ| the number of partition elements in ξ. When it is necessary
to make the representation unique we order the Ci, i = 1, . . . , b by their smallest element
in ascending order. In the following we will also refer to the partition elements as blocks.
For any ξ, η ∈ En, write ξ ⊆ η if and only if every block of η is a union of (one or more)
blocks of ξ.

In order to also specify which ancestral genes belong to the same ancestral individuals
we use notation introduced by Möhle and Sagitov in [23] and consider the state space

Sn =
{
{{C1, C2} , . . . , {C2x−1, C2x} , C2x+1, . . . , Cb} : b ∈ Vn, x ∈ V⌊

b
2

⌋, {C1, . . . , Cb} ∈ En
}
,
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where bxc is the largest integer less than or equal to x. We equip the space En as well as
Sn with the discrete topology. For later use we define a map cd : Sn → En such that for
any

ξ = {{C1, C2} , . . . , {C2x−1, C2x} , C2x+1, . . . , Cb} ∈ Sn,

cd(ξ) := {C1, C2, . . . , C2x−1, C2x, C2x+1, . . . , Cb} ∈ En.

Following [4], we call cd(ξ) the complete dispersion of ξ.
Now sample n genes randomly from the current generation. We can think of sampling

n/2 individuals and looking at both of their genes or sampling n individuals and inspecting
only one randomly chosen gene in each or something in-between, this will not matter
in the limit we are interested in. For m ∈ N0, let ξn,N (m) be the configuration of the
genealogical structure for the sampled genes when looking m generations backwards in
time: i and j are in the same block of ξn,N (m) if and only if the i-th and the j-th sampled
genes have the same ancestral gene m generations ago. We also keep track of the
grouping of these ancestral genes into ancestral (diploid) individuals (this is necessary
so that the dynamics of ξn,N is Markovian). For example, in Figure 1 if we sample all
genes of the children then the leftmost parent carries two ancestral genes while the
third parent from the left only carries one. We are interested in the convergence of the
(suitably time-scaled) ancestral process

(
ξn,N (m)

)
m∈N0

, which is a Markov chain with
state space Sn.

For the description of the possible limit processes as N → ∞ the total offspring
numbers

Vi :=
∑

1≤j≤N

Vi,j , (1.2)

giving the total number of offspring of individual i for 1 ≤ i ≤ N will play a crucial
role. Note that these Vi children may be full or half siblings. We have

∑N
i=1 Vi = 2N

and the vector (Vi)1≤i≤N inherits exchangeability from the array (Vi,j). Indeed, for any
permutation σ on VN , we have

(
Vσ(1), . . . , Vσ(N)

)
=

 N∑
j=1

Vσ(i),j


i∈VN

=

 N∑
j=1

Vσ(i),σ(j)


i∈VN

d
=

 N∑
j=1

Vi,j


i∈VN

= (V1, . . . , VN ) .

(1.3)

Thus, (Vi)1≤i≤N can essentially be viewed as an offspring distribution for a Cannings
model with population size 2N (in which always only N individuals are parents to
offspring in the following generation).

In order to consider a suitable scaling for the large population limit a key quantity is
the probability that two genes (picked at random) from two distinct individuals, which
are chosen randomly without replacement from the same generation, have a common
ancestor (gene) in the previous generation. In our model this quantity is given by

cN =
1

8
E
[
V 2
1,2 − 2

N−1

]
+
N − 2

8
E
[
V1,2V1,3

]
=

1

8

1

N − 1
E[(V1)2] (1.4)

where (v)k := v(v−1) · · · (v−k+1) denotes the k-th falling factorial (see Lemma 3.1 below,
where also alternative expressions for cN are given). If cN → 0 as N → ∞, the correct
time scaling is 1/cN and any limiting genealogical process will be a continuous-time
Markov chain. We will assume that cN → 0 as N → ∞ throughout this paper.
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We write V(1) ≥ V(2) ≥ · · · ≥ V(N) for the ranked version of (V1, . . . , VN ) and

ΦN := L
(
V(1)

2N ,
V(2)

2N , . . . ,
V(N)

2N , 0, 0, . . .
)

for the law of their ranked (total) offspring frequencies, viewed as a probability measure
on the infinite dimensional simplex ∆ := {(x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∑∞
i=1 xi ≤ 1}.

For all x = (x1, x2, . . .) ∈ ∆, denote by |x| :=
∑∞
i=1 xi and (x, x) :=

∑∞
i=1 x

2
i , put 0 :=

(0, 0, . . . ) ∈ ∆. We equip ∆ with the topology of coordinate-wise convergence, metrised
e.g. via d∆(x, y) =

∑∞
i=1 2

−i|xi − yi| for anyx, y ∈ ∆.

We assume that

1

2cN
ΦN (dx) −→

N→∞

1

(x, x)
Ξ′(dx) vaguely on ∆ \ {0} (1.5)

where Ξ′ is a probability measure on ∆. It is possible that the vague limit of the l.h.s. in
(1.5) is a strict sub-probability measure, we then add the remaining mass to Ξ′ as the
weight of an atom at 0, i.e., we put Ξ′({0}) = 1− Ξ′ (∆ \ {0}). It is known that (1.5) is
equivalent to the following condition (see Lemma A.6 and Remark 3 in Section 1.1):

φj(k1, . . . , kj) := lim
N→∞

1

cN

E
[
(V1)k1 · · · (Vj)kj

]
Nk1+···+kj−j2k1+···+kj

exists for all j ∈ N and k1, . . . , kj ≥ 2.

(1.6)

Other characterisations of the equivalent conditions (1.5) and (1.6) are recalled in
the Appendix (see Conditions I, II and III). If either of the conditions (1.5) and (1.6) holds,
the two limiting objects are connected via (see Theorem A.5)

φj(k1, . . . , kj) = 1I{j=1,k1=2} · 2Ξ′({0}) +
∫
∆\{0}

∞∑
i1,...,ij=1
distinct

xk1i1 x
k2
i2

· · ·xkjij
2Ξ′(dx)

(x, x)
. (1.7)

Furthermore, in this case also the limits

ψj,s(k1, . . . , kj) = lim
N→∞

1

cN

E
[
(V1)k1 · · · (Vj)kj Vj+1 · · ·Vj+s

]
Nk1+···+kj−j2k1+···+kj+s

(1.8)

exist, see [22, Lemma 3.5].

The objects and conditions appearing in (1.5), (1.6) and (1.7) are familiar from the
theory of coalescents with simultaneous multiple mergers, so called Ξ-coalescents (see
[22, 28]). Let Ξ be a finite measure on ∆. An n-Ξ-coalescent is a continuous time
(jump-hold) Markov chain (ξn(t))t≥0 on En where in each move, possibly several groups
of blocks are merged. If η ∈ En has b blocks and η′ with a < b blocks arises from η by
merging j groups of sizes k1, . . . , kj ≥ 2 (in particular, there are s = b − k1 − · · · − kj
“singleton” blocks in η which do not participate in any merger), the transition from η to
η′ occurs at rate

rη,η′ = λb;k1,...,kj ;s =1I{j=1,k1=2}Ξ({0})

+

∫
∆\{0}

s∑
`=0

∞∑
i1,...,ij+`=1

distinct

(
s

`

)
xk1i1 · · ·xkjij xij+1 · · ·xij+` (1− |x|)s−` Ξ(dx)

(x, x)
.

(1.9)

With this notation we can now state our main result.
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Theorem 1.1. Assume that cN → 0 and that the laws of (V1, . . . , VN ), derived from (Vi,j)

via (1.2), satisfy one of the conditions (1.5) and (1.6). Assume also that ξn,N (0) = ξ0 ∈ Sn
for all N . Then (

ξn,N (bt/cNc)
)
t≥0

−→ (ξn(t))t≥0

as N → ∞ in the sense of finite-dimensional distributions. The limit process ξn is an
n-Ξ-coalescent starting from ξn(0) = cd(ξ0) with Ξ = Ξ′ ◦ ϕ−1 where Ξ′ is the probability
measure on ∆ appearing on the r.h.s. of (1.5) and (1.7) and ϕ : ∆ → ∆ is given by
ϕ(x1, x2, x3, . . . ) = (x1/2, x1/2, x2/2, x2/2, . . . ).

Note that (1.9) shows that Ξ({0}) corresponds to the rate for binary mergers of two
blocks, which is the dynamics of Kingman’s coalescent. We remark that since ϕ(0) = 0

the measures Ξ′ and Ξ give the same mass to 0 and so have the same Kingman coalescent
component.

We also point out that in Theorem 1.1 we only state f.d.d. convergence since one
cannot expect weak convergence on D([0,∞),Sn), the set of Sn-valued càdlàg paths
equipped with Skorohod’s J1-topology (see, e.g., [10, Ch. 3.4]). This is because whenever
two ancestral genes descend from the same parental individual the probability that they
descend from different ancestral genes (carried by the parental individual) is 1/2, as is
the probability that they descend from the same ancestral gene (resulting in a coalescent
event). We have chosen our scaling such that the latter event happens at a finite rate
in the limit. Thus, also the former event, which creates some partition ξ ∈ Sn \ En
happens at a positive rate in the limit. But the reason we have f.d.d. convergence in En in
Theorem 1.1 is that in the limit any ξ ∈ Sn \ En transitions instantaneously to cd(ξ) ∈ En.
Thus, due to the discrete topology on Sn we always have a non-vanishing probability of
an accumulation of jumps of finite size which precludes weak convergence in Skorohod’s
J1-topology. However, if we instead consider the process which tracks the succession of
complete dispersion states then weak convergence on D([0,∞), En) holds:
Corollary 1.2. Let ξ̃n,N (m) := cd

(
ξn,N (m)

)
∈ En be the ancestral partition of the n sam-

pled genesm generations in the past, irrespective of the grouping into diploid individuals.
Under the assumptions of Theorem 1.1, we have(

ξ̃n,N (bt/cNc)
)
t≥0

−→
N→∞

(ξn(t))t≥0 weakly on D([0,∞), En)

and the limit process is the n-Ξ-coalescent from Theorem 1.1.

Before continuing we briefly outline the structure of the remaining paper. After
discussing our main result and its relation to the literature in Section 1.1 we consider
various examples and discuss their biological motivation in Section 2. In particular, we
study two diploid variations of a model by Schweinsberg [29] in Section 2.1 and 2.2. We
also discuss the relation to previous results on coalescents for diploid population models
and possible extensions in more detail in Section 2.3.

The final Section 3 is dedicated to the proofs of our main results. In Section 3.1
we prove Theorem 1.1 and Corollary 1.2. In Sections 3.2 and 3.3 we prove the more
technical convergence results for the models considered in Section 2: Proposition 2.3 of
Section 2.1 is proven in Section 3.2 and Proposition 2.5 of Section 2.2 in Section 3.3.

1.1 Discussion

In this section we first give a brief overview over existing coalescent theory in the
haploid and diploid setting. Subsequently, we make several remarks regarding our main
results.

Classical large population approximation results in the haploid setting can be found
in Kingman [15, 16], where a convergence theorem to the classical coalescent (nowadays
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known as Kingman’s coalescent) is established for a class of exchangeable populations.
In recent years, there has been a tremendous development in coalescent theory. We
refer to Pitman [25], Sagitov [26] and Donnelly & Kurtz [8] for coalescents with multiple
mergers and to Schweinsberg [28] and Möhle & Sagitov [22] for coalescents with
simultaneous multiple mergers. At the same time, coalescent theory has been applied
to more complex population models. Sagitov [26] deduced a necessary condition for
the convergence of the haploid ancestral process to coalescents with multiple mergers.
Möhle and Sagitov [22] then fully classified haploid exchangeable population models,
so called Cannings models, in terms of the convergence of their ancestral lines to
coalescents with simultaneous multiple mergers. They characterised the coalescent
generators in terms of the joint moments of offspring sizes as well as in terms of a
sequence of measures defined on the infinite dimensional simplex. Subsequently, Sagitov
[27] presented a criterion of weak convergence to the coalescent with simultaneous
multiple mergers by a scaled vector of the ranked offspring sizes which constitute a
given generation.

For diploid population models, the available theory has been more limited. Möhle
[17] introduced a diploid population model with selfing and studied the ancestral process
in the Wright-Fisher case. He proved that in this case the limit is Kingman’s coalescent.
We recover Möhle’s result without selfing as a special case of our general result, see
Section 2. In Möhle [18] it was proved that the scaled ancestral process of n sampled
genes in the two-sex Wright-Fisher model behaves like Kingman’s coalescent. In this con-
text, Möhle also derived coalescence estimates for general offspring mechanisms if only
two genes are sampled. Subsequently, Möhle and Sagitov [23] completely classified the
coalescent patterns in two-sex diploid exchangeable population models and established
conditions for the limiting scaled ancestral process to either be Kingman’s coalescent or
the coalescent with (simultaneous) multiple mergers. In contrast to our set-up, individu-
als are either male or female (N individuals each) and in each generation N couples are
formed that have children according to a general exchangeable offspring distribution.
Sexes are again assigned randomly conditioned on there being again N males and N
females. This is a special case of our result, see Section 2.3.1. In fact, Theorem 1.1 is in
a sense an explicitly worked-out version of the remarks in [23, Section 7].

Birkner et al. [4] studied a diploid Moran type population model in which two indi-
viduals drawn uniformly at random contribute a (potentially) large number of offspring
relative to the total population size. They proved that due to this property and the
diploid inheritance the scaled ancestral process admits in the limit simultaneous multiple
mergers in up to four groups. In Section 2.3.2 we give more details on the relationship
to our main results. In particular, the single-locus analogues of Theorems 1.2 and 1.3 in
[4] can be recovered as a special case of Theorem 1.1.

We would like to emphasize a number of points regarding our main results:

1. Broadly speaking, Theorem 1.1 says that we can (for N large) use “equivalent”
sampling on the gene level and ignore the grouping of genes into diploid individuals.
This phenomenon has been observed many times before (e.g. in [23] and [4]), it is
explained by an asymptotic separation of time-scales: the “breaking up” of grouping
into diploids is much faster than non-trivial coalescence on the gene level (see the
proof of Theorem 1.1).

For finite N , the process ξ̃n,N is in general not a Markov chain, this is one of the rea-
sons why we consider ξn,N in Theorem 1.1. However, the limit process is Markovian.
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2.
(
ξn(t)

)
t≥0

can in a natural way be interpreted as a tree describing the genealogy
of n sampled genes. In population genetics applications, functionals of this tree, in
particular the total length

Ltot(ξ
n) :=

∫ τ

0

#ξn(t) dt with τ := inf{t ≥ 0 : #ξn(t) = 1}

and the length of all branches subtending i leaves for i ∈ {1, 2, . . . , n− 1}

Li(ξ
n) :=

∫ τ

0

#
{
C ∈ ξn(t) : #C = i

}
dt

are of interest. By Corollary 1.2, the distribution of such functionals of
(
ξ̃n,N

(
bt/cNc

))
t≥0

converges as well.

3. Note the normalisation with 2cN in (1.5). The expression in (1.7) is the limit object
related to sampling according to the (“haploid”) offspring vectors (V1, . . . , VN ) and
the asymptotically correct scaling of ΦN (so that the corresponding limit object Ξ′ is
a probability measure on ∆) is given by 1/c′N with

c′N = E

[
1

2N(2N − 1)

N∑
i=1

Vi(Vi − 1)

]
=
E[V1(V1 − 1)]

2(2N − 1)
,

see e.g. [27, Eq. (1.5)]. We can interpret c′N as referring to sampling directly on the
level of chromosomes where cN as defined in (1.4) refers to sampling on the level
of diploid individuals. We have c′N ∼ 2cN for N → ∞ (see also Lemma 3.1) and our
normalisation in (1.7) entails φ1(2) = 2.

4. (1.1) says that (Vi,j) is a finite jointly exchangeable array. A related notion is that
of “separately exchangeable arrays” where rows and columns may use different
permutations. See also the discussion in Section 2.3 and see e.g. [14], [1] for general
background on exchangeable arrays.

2 Examples

We will now apply Theorem 1.1 to various examples. Some of these have been
considered in the literature before, and we recover the known limiting results in an
efficient way, some of the examples are new or analysed here in a more general setting.

Arguably, the simplest diploid population model is the diploid Wright-Fisher model
where each individual in the children’s generation is independently assigned two distinct
parents by drawing twice without replacement from the parent’s generation; the joint
distribution of (Vi,j)1≤i<j≤N is then a

(
N
2

)
-dimensional multinomial distribution with

uniform weights. This model was considered e.g. by Möhle [17] and to set the stage we
briefly discuss how we recover his result for the case with no selfing (s = 0 in Möhle’s
[17] notation) from Theorem 1.1.

Proposition 2.1. In the diploid Wright-Fisher model without selfing, using time-scaling
with cN = 1/(2N), the limiting coalescent (in the f.d.d. sense) is Kingman’s coalescent
(which corresponds to the case Ξ′ = Ξ = δ0 in Thm. 1.1).

Proof. By choosing Wi ≡ 1 in Section 2.1 this model is a special case of the class
considered there and the result follows from Proposition 2.3, case 1. Alternatively, one
can easily check that the (sharp) criterion on the third factorial moment of V1 from Möhle
[20, Eq. (14) in Sect. 4] for convergence to Kingman’s coalescent is satisfied.
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It is well known that the class of possible coalescent processes arising as limiting
genealogies in population models is much richer than just Kingman’s coalescent. An im-
portant family of examples for the haploid case is given by the Beta(2−α, α)-coalescents,
where 0 < α < 2. For the sub-case 1 ≤ α < 2 these are well motivated by a class of
models that were proposed and analysed by Schweinsberg [29], which work as follows:
Let each generation consist of N haploid (adult) individuals. Individual i produces Xi

juveniles, where X1, . . . , XN are independent copies of X with E[X] > 1 and X has a
(strictly) regularly varying tail,

P(X > x) ∼ cx−α as x→ ∞ (2.1)

with c ∈ (0,∞). Then, N of the SN = X1 + · · ·+XN (> N typically) juveniles are drawn
at random without replacement to form the next (adult) generation. It turns out (see [29,
Thm. 4]) that in the limit N → ∞, the suitably scaled genealogies of samples from such
a population model converge to a Beta(2− α, α)-coalescent. This is a particular so-called
Λ-coalescent. In the notation of (1.9) it is given by

Ξ (dx) =

∫
[0,1]

δ(x,0,0,...) Beta (2− α, α) (dx)

where Beta(2− α, α) is the probability law on [0, 1] with density

1

B (2− α, α)
x1−α (1− x)

α−1
, 0 < x < 1. (2.2)

Here, for a, b > 0, B(a, b) = Γ(a)Γ(b)/Γ(a+ b) denotes the Beta-function. There is also a
rich mathematical structure linking these particular Λ-coalescents to stable branching
processes, see e.g. [2, 3].

This model captures situations where occasionally some individuals can, for example
due to environmental fluctuations, possibly produce many more offspring than others
(note that (2.1) with α < 2 implies Var[Xi] = ∞). It is thus a possible mathematical
formalisation of the concept of “sweepstakes reproduction” that appears in the biological
literature, see e.g. Eldon and Wakeley [9] and the discussion and references therein.

There are various possibilities how one can extend this model – literally or in spirit – to
a diploid scenario. We explore two such possibilities below in more detail: In Section 2.1
we assign each individual i in a given generation independently a random “fitness value”
Wi ≥ 0 and decree that each child has a chance ∝ WiWj to descend from couple (i, j),
i.e. the joint law of offspring numbers is given by (2.4). In Section 2.2, each couple (i, j)

independently produces Xi,j juveniles and then N out of the
∑
i<j≤N Xi,j juveniles are

drawn at random to form the next generation, analogous to [29].

It turns out that two distinct forms of “diploid Beta(2− α, α)-coalescents” arise from
these two set-ups: The limiting Ξ in Section 2.1 arises from a Beta(2− α, α)-distributed
x by replacing it with two equal weights x/4 (see Equation (2.10) in Proposition 2.3)
whereas in Section 2.2 it is split into four equal weights (see (see Equation (2.20) in
Proposition 2.5).

Intuitively, this can be understood as follows: In Section 2.1, the dominant contri-
bution comes from situations when one Wi is exceptionally large (≈ O(N)) whereas all
others are much smaller; then there is a large family of half-siblings and the two weights
correspond to the two chromosome copies of the exceptional individual i; all the other
parents will typically have a total number of offspring which is negligible in comparison
to N and none of their genes will be involved in a multiple merging event. On the other
hand, in Section 2.2 the dominant contribution comes from cases when Xi,j ≈ O(N) for
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exactly one couple (i, j) and all other Xk,` ({k, `} 6= {i, j}) are much smaller; then there
is a large family of full siblings and the four weights correspond to the four chromosome
copies of the two individuals in the successful couple.

In particular, we see that the answer to the question which diploid coalescent is
appropriate for a given biological population with potentially highly skewed individual
reproductive success can depend on the typical mating behaviour.

We describe and analyse these diploid variations of Schweinsberg’s [29] model in
more detail in Sections 2.1 and 2.2 below. In Section 2.3, we briefly discuss how results
of previous studies of diploid population models, especially from [4] and [23], fit into our
framework. We also mention possible extensions and additional examples there.

The perspicacious reader will observe that in Propositions 2.3 and 2.5 below (compare
Assumptions (2.5) and (2.17), respectively), we have excluded the boundary cases α = 2

and α = 1. In view of Schweinsberg’s [29] results for the haploid case, we expect
the following: For α = 2, cN ∼ c(logN)/N in Lemmas 2.2 and 2.4 and convergence
to Kingman’s coalescent; for α = 1, cN ∼ c/ logN and in both Proposition 2.3, 2.
and Proposition 2.5, 2., the uniform distribution on [0, 1] will appear, i.e. the limiting
coalescent will then be a variation on the Bolthausen-Sznitman-coalescent where jumps
are broken into two groups and into four groups, respectively.

We leave the details to future work.

2.1 Diploid population model with random individual fitness

Let W1,W2, . . . ≥ 0 be independent copies of nonnegative random variables W with
µW := E[W ] > 0, put

ZN :=
∑

1≤i<j≤N

WiWj =
1

2

(
N∑
i=1

Wi

)2

− 1

2

N∑
i=1

W 2
i . (2.3)

Given the Wi’s let

(Vi,j)1≤i<j≤N
d
=Multinomial

(
N,

W1W2

ZN
,
W1W3

ZN
, . . . ,

WN−1WN

ZN

)
. (2.4)

(we will see in Section 3.2 that the event ZN = 0 has negligible probability in the limit
N → ∞). Note that when theWi’s are identical, (2.4) coincides literally with our version
of the diploid Wright-Fisher model, see Proposition 2.1.

The “fitness” in this section’s title is not based on an explicitly modelled genetic type
and is not passed on to offspring as the values are drawn afresh in each generation. The
offspring distribution in (2.4) may be appropriate for a population with high individual
reproductive potential (thinking e.g. of plants or marine species that can in principle
produce large numbers of seeds or eggs) in an environment that fluctuates rapidly both
in space and time. In reality, there may be a very complex and highly variable interplay
between ecological and genetic factors that determine the reproductive success of a
given individual at a given time. All this would be subsumed in this model into a random
“effective fitness parameter” W .

For the fitness parameter we will consider separately the finite variance case as well
as the case of (strictly) regularly varying tails such that

P(W ≥ x) ∼ cWx
−α as x→ ∞ for some cW ∈ (0,∞) and 1 < α < 2. (2.5)

Before stating the convergence result we specify the asymptotic behavior of the
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scaling parameter cN as specified in (1.4). A key quantity is

QN :=

N∑
j=2

W1Wj

ZN
, (2.6)

the probability that a randomly chosen child is an offspring of parent 1.

Lemma 2.2. The pair coalescence probability over one generation for Vi,j ’s as in (2.4)
is given by

cN =
N

8
E
[
Q2
N

]
. (2.7)

1. If µ(2)
W := E

[
W 2
]
<∞ we have

cN ∼ C
(Kingm)
pair N−1 as N → ∞ with C

(Kingm)
pair =

µ
(2)
W

2µ2
W

. (2.8)

2. If (2.5) holds we have

cN ∼ C
(Beta)
pair N1−α as N → ∞ with C

(Beta)
pair = cW (2/µW )ααΓ(2− α)Γ(α)/8. (2.9)

By scaling with the appropriate cN we obtain the following convergence results.

Proposition 2.3. 1. If µ(2)
W < ∞ then (ξn,N (cNt))t≥0 with c = 1/C

(Kingm)
pair (cf. (2.8))

converges in the f.d.d. sense to Kingman’s coalescent.

2. If the tails of W vary (strictly) regularly as specified in (2.5) then (ξn,N (cNα−1t))t≥0

with c = 1/C
(Beta)
pair (cf. (2.9)) converges in the f.d.d. sense to a Ξ-coalescent with

Ξ = Beta(2−α, α)◦ϕ−1 where ϕ : [0, 1] → ∆ is given by ϕ(x) = (x/4, x/4, 0, 0, . . . ), that is

Ξ(dx) =

∫
[0,1]

δ( x4 ,
x
4 ,0,0,... )

Beta(2− α, α)(dx) (2.10)

with the density of the Beta(2− α, α) distribution given in (2.2).

The proof of Lemma 2.2 and Proposition 2.3 can be found in Section 3.2.

2.2 Diploid population model related to supercritical Galton-Watson processes

In this section, we consider another diploid version of the model introduced and
studied by Schweinsberg in [29] in which an abundance of offspring is produced in each
generation of which only a limited number survives. The model is similar to that of
Section 2.1 in that large families may be produced. However, in contrast to the random
individual fitness model of the last section, in which individual parents may have many
offspring due to an unusual fitness, we here have parent couples that may produce a
large family.

More concretely, let Xi,j = X
(N)
i,j , 1 ≤ i < j ≤ N, be the “potential offspring” of parent

i and j in any given generation with a distribution that may depend on N. For notational
convenience, we set X(N)

j,i = X
(N)
i,j if j > i and X(N)

i,i = 0. We also denote the number of
potential offspring to parent i by

Xi = X
(N)
i =

N∑
j=1, j 6=i

X
(N)
i,j

for any 1 ≤ i ≤ N. Let
SN =

∑
1≤i<j≤N

X
(N)
i,j (2.11)
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be the total number of potential offspring. The actual total population size is always
fixed at N. If SN ≥ N , we obtain the next generation by sampling N of these offspring
at random without replacement. We use Vi,j = V

(N)
i,j to denote the number of offspring

sampled from Xi,j for any 1 ≤ i < j ≤ N. Our scaling will be such that there are enough
offspring for resampling with sufficiently high probability so that the details of (any
exchangeable) offspring assignment will not be relevant otherwise. We assume in the
following that (

X
(N)
i,j

)
1≤i<j≤N

are i.i.d. (2.12)

so that the potential offspring of parent pairs are generated as in a Galton-Watson
process. In addition, we assume that

L
(
X

(N)
i,j | X(N)

i,j > 0
)
= L(X) and pN := P

(
X

(N)
i,j > 0

)
∼ cX,1/N with cX,1 ∈ (0,∞)

(2.13)
where the law of X does not depend on N and satisfies

µX := E[X] ∈ (2/cX,1,∞). (2.14)

Note that (2.14) implies that

E[SN ] =

(
N

2

)
pNµX ∼

N→∞
µN with µ :=

cX,1
2
µX > 1. (2.15)

(We will see in Lemma 3.13 below that this implies that the event {SN < N} has
asymptotically negligible probability in the scaling regimes we consider.) Finally, we
require one of the following assumptions:

E
[
X2
]
<∞ (2.16)

or

P(X > k) ∼
k→∞

cX,2k
−α for some α ∈ (1, 2) and cX,2 ∈ (0,∞). (2.17)

These assumptions might appear at first sight somewhat artificial, see however the
discussion in Remark 2.6 below.

Before stating the convergence result we again specify the asymptotic behavior of
the scaling parameter cN given in (1.4).

Lemma 2.4. 1. If (2.16) holds then

cN ∼ C̃
(Kingm)
pair N−1 as N → ∞ with C̃

(Kingm)
pair =

1

2

(
E[X(X − 1)]

cX,1µ2
X

+ 1

)
. (2.18)

2. If (2.17) holds then

cN ∼ C̃
(Beta)
pair N1−α as N → ∞ with C̃

(Beta)
pair =

1

8

cX,1cX,2α

µα
B (2− α, α) . (2.19)

By scaling with cN we obtain the following convergence result.

Proposition 2.5. 1. If (2.16) holds then
(
ξn,N (cNt)

)
t≥0

with c = 1/C̃
(Kingm)
pair (cf. (2.18))

converges in the f.d.d. sense to Kingman’s coalescent.

2. If (2.17) holds then
(
ξn,N (cNα−1t)

)
t≥0

with c = 1/C̃
(Beta)
pair (cf. (2.19)) converges in

the f.d.d. sense to a Beta-coalescent with simultaneous mergers of four groups. More
precisely, the limiting coalescent is a Ξ-coalescent with

Ξ (dx) =

∫
(0,1]

δ( x
4 ,
x
4 ,
x
4 ,
x
4 ,0,0,...

)Beta(2− α, α) (dx) , (2.20)

where the density of the Beta(2− α, α) distribution is given in (2.2).
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The proof of Lemma 2.4 and Proposition 2.5 can be found in Section 3.3.

Remark 2.6. 1. The model considered in this section is appropriate for a large, unstruc-
tured population of N diploid individuals with promiscuous reproductive behaviour. It
is intended to capture situations where there is potentially great variability between
the number of juveniles produced by different mating couples and this is achieved in
analogy to Schweinberg’s model [29] in the mathematically simplest way by assuming
that the X(N)

i,j are independent with the same distribution.

At first sight, it may seem then that the structural assumptions (2.13) and (2.16) or
(2.17) are artificial choices just to “make the mathematical theory work”. However, if
we stipulate, as seems biologically reasonable, that the law L(X(N)

1 ) of the number
of potential offspring of a typical individual (think e.g. of the number of gametes
produced) should be roughly independent of the population size N – in particular, it
should not diverge as N grows large – then together with the i.i.d.-assumption for
the X(N)

i,j we see that there is essentially no other choice than to assume the first

half of (2.13): P(X(N)
i,j > 0) must be of order 1/N . (2.13) also means that the average

number of partners of a typical individual stabilises in distribution as N → ∞, in fact,
it is approximately Poisson distributed with mean cX,1.

From the point of view of a biological model, we suggest to read (2.13) as follows:
Given a large population of size N � 1 let

cX,1 = NP(two randomly drawn individuals produce potential offspring together)

and let L(X) be the law of the number of potential offspring produced by two randomly
drawn individuals, given that they do produce some. Then, if X satisfies (2.16)
or (2.17), the genealogy of an n-sample is over time-scales ∝ 1/cN approximately
described by Proposition 2.5. See Section 2.3.3 for possible extensions.

2. We do not strive here to answer in full generality the mathematical question “if one
only assumes that X(N)

i,j , 1 ≤ i < j ≤ N are i.i.d. with law νN such that supN E[X
(N)
1 ] =

supN (N − 1)E[X
(N)
1,2 ] <∞, what are sharp conditions on the family νN of probability

measures onZ+ so that the genealogical processes of finite samples in such population
models converge?”

Obviously, then necessarily supN NP(X
(N)
i,j > 0) <∞ and we see from the proofs of

Lemma 2.4 and Proposition 2.5 that in the case of infinite variance E
[
(X

(N)
i,j )2

]
= ∞

suitable control of the tail behaviour P(X(N)
i,j > x |X(N)

i,j > 0) uniformly in N is
required for the limit in (3.50) to exist. In fact, one can cook up examples where
NP(X

(N)
i,j > 0) and Nα−1cN oscillates as a function of N or where even though

limx→∞ xαP(X
(N)
i,j > x |X(N)

i,j > 0) =: cX,2 exists for all N one has convergence to
different coalescents along different subsequences.

3. Our parametrisation in (2.13) enforces P(X = 0) = 0. If one prefers to allow 0 <

P(X = 0) < 1, one can replace pN by pNP(X > 0) and X by X ′ where P(X ′ ∈ ·) =
P(X ∈ · |X > 0).

2.3 Relation to previous work and possible further extensions

2.3.1 Diploid population model with randomly chosen pairs as couples

We here recover the convergence result of [23, Theorem 4.2 and Corollary 4.3] concern-
ing a diploid two-sex population model. In order to make comparisons to [23] easier
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we assume here that the population size is given by 2N. Now, let {J1, . . . , JN} be a
random and randomly ordered partition of {1, . . . , 2N} into N subsets of size 2. This
partition describes the grouping of individuals into N distinct couples which give birth
to the individuals of the next generation. Let Ṽ1, . . . , ṼN be a sequence of exchangeable
non-negative random variables representing the number of children from each couple
respectively with Ṽ1+ · · ·+ ṼN = 2N . Write Ṽ(1) ≥ Ṽ(2) ≥ · · · ≥ Ṽ(N) for its ranked version.
The offspring distribution (Vi,j)1≤i<j≤2N is then given by

Vi,j =

{
Ṽ`, if {i, j} = J` for some ` ∈ {1, 2, . . . , N},
0, else.

It is clear that the (Vi,j)1≤i<j≤2N are exchangeable as in (1.1). Note that the correspond-

ing total offspring size vector (V1, . . . , V2N ) is a random permutation of (Ṽ1, Ṽ1, . . . , ṼN , ṼN ).

In particular, V1 and Ṽ1 have the same distribution. Thus, we obtain from (1.4) that
(remember that we use population size 2N here)

c2N =
E[(V1)2]

8 (2N − 1)
=

E[(Ṽ1)2]

8 (2N − 1)
.

Let us remark that this model can also be interpreted as a two-sex model, which is
the formulation used in [23]. Here, in each generation, we randomly assign sexes to
the offspring such that there are N male and N female offspring. Subsequently, the
couples are formed at random between the males and the females. We have the following
proposition:

Proposition 2.7 (Möhle & Sagitov [23]). Assume that c2N → 0 as N → ∞ and that

1

4c2N
L

(
Ṽ(1)

2N
,
Ṽ(2)

2N
, . . . ,

Ṽ(N)

2N

)
−→
N→∞

1

(x, x)
Ξ′′ (dx) vaguely on ∆ \ {0} (2.21)

where Ξ′′ is a probability measure on ∆. Then there is convergence in the f.d.d. sense to
a Ξ-coalescent with Ξ = Ξ′′ ◦ ϕ−1 ◦ ϕ−1 = Ξ′′ ◦ ϕ̃−1 (recall the function ϕ from Thm. 1.1)
with

ϕ̃ : ∆ → ∆ given by ϕ̃(x1, x2, . . . ) = (x1/4, x1/4, x1/4, x1/4, x2/4, x2/4, x2/4, x2/4, . . . ).

Remark 2.8. We note that (2.21) can be equivalently formulated in terms of moment
conditions as in (1.6) or as in Appendix A.

Proof. We use Theorem 1.1 with condition (1.5), which is in the present context of the
form

1

2c2N
L

(
Ṽ(1)

4N ,
Ṽ(1)

4N ,
Ṽ(2)

4N ,
Ṽ(2)

4N , . . . ,
Ṽ(N)

4N ,
Ṽ(N)

4N , 0, 0, . . .

)
−→
N→∞

1

(x, x)
Ξ′(dx) (2.22)

vaguely on ∆ \ {(0, 0, . . . )} for a certain probability measure Ξ′ on ∆. Note that the
measure on the left-hand side of (2.22) equals

1

2

1

c2N
L
(
ϕ
( Ṽ(1)

2N ,
Ṽ(2)

2N , . . . ,
Ṽ(N)

2N

))
and that (2.21) means that for every continuous function f with compact support in
∆ \ {0}

1

c2N
E

[
f

(
ϕ

(
Ṽ(1)

2N ,
Ṽ(2)

2N , . . . ,
Ṽ(N)

2N

))]
−→
N→∞

4

∫
∆

f (ϕ(y))
1

(y, y)
Ξ′′(dy) = 2

∫
∆

f(x)
1

(x, x)

(
Ξ′′ ◦ ϕ−1

)
(dx)
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(observe (ϕ(y), ϕ(y)) = 1
2 (y, y)). Thus (2.22) is equivalent to (2.21) with Ξ′ = Ξ′′ ◦ ϕ−1

and the result follows.

Note that we see clearly from the form of Ξ = Ξ′′ ◦ ϕ̃−1 that the mass of each large
family is split into four equal parts, representing the four chromosomes from a particular
couple.

2.3.2 A diploid population model with occasional large families

Here, we briefly discuss how the class of continuous-time diploid population models
from [4], which involve suitably rare but “large” reproduction events with a single large
family, can be formulated in our present discrete-time context and thus the “single-locus”
analogues of Theorems 1.2 and 1.3 there can be obtained from our main result.

The children’s generation arises as follows: Randomly choose two distinct individuals
{I1, I2} from VN = {1, 2, . . . , N}. Individuals I1 and I2 form a couple (as in [23]) and
have a random number ΨN of children together but with no-one else, i.e. VI1,I2 = ΨN ,
VIi,j = 0 for j 6= I3−i, i = 1, 2. The other N − 2 individuals in VN \ {I1, I2} give birth to
N −ΨN children according to the diploid Wright-Fisher model. We have (see proof of
Lemma 3.1)

cN =E

[
ΨN (ΨN − 1)

N (N − 1)

1

4
+

∑
i<j in VN\{I1,I2}

Vi,j (Vi,j − 1)

N (N − 1)

1

4
+

∑
i,j,k in VN\{I1,I2}
pairwise distinct

Vi,jVi,k
N (N − 1)

1

8

]

=
E
[
ΨN (ΨN − 1)

]
4N (N − 1)

+O
(
N−1

)
.

(2.23)

The limiting behaviour depends on the sequence of laws L (ΨN ), N ∈ N:

1. A simple choice, inspired by [9], is to assume that the “large” family constitutes
always a fixed fraction of the total population: Given ψ ∈ (0, 1), we assume

P (ΨN = bψNc) = 1− P (ΨN = 1) = N−γ ,

where γ > 0. Then

I. If γ ∈ (0, 1), we have cN ∼ ψ2

4 N
−γ and (1.5) holds true with Ξ

′
= δ(ψ

2 ,
ψ
2 ,0,0,...

).
Thus Theorem 1.1 yields that the scaled ancestral process converges to a
Ξ-coalescent process with Ξ = δ(ψ

4 ,
ψ
4 ,
ψ
4 ,
ψ
4 ,0,0,...

).
II. If γ = 1, we have cN ∼ ψ2

4N + 1
2N and (1.5) holds true with Ξ

′
= ψ2

ψ2+2δ
(
ψ
2 ,
ψ
2 ,0,0,...

)+
2

ψ2+2δ0. Thus, Theorem 1.1 shows that the scaled ancestral process converges to

a Ξ-coalescent process with Ξ = ψ2

ψ2+2δ
(
ψ
4 ,
ψ
4 ,
ψ
4 ,
ψ
4 ,0,0,...

) + 2
ψ2+2δ0.

III. If γ > 1 the limit process is Kingman’s coalescent.

We note that alternatively, we could assume that with probability 1−N−γ there is just
a Wright-Fisher reproduction step and with probability N−γ a reproduction step with
one exceptionally fertile couple as above occurs. This yields the same limit process.
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2. More generally, we can assume that the sequence of laws L (ΨN ), N ∈ N satisfies
cN → 0 as N → ∞ with cN from (2.23) and there exists a probability measure F on
[0, 1] such that

1

2cN
P (ΨN > Nx) −→

∫ 1

x

1

y2
F (dy) as N → ∞ for any x ∈ (0, 1) where F is continuous.

In this case, (1.5) holds true with Ξ
′
=
∫
[0,1]

δ( y
2 ,
y
2 ,0,0,...

)F (dy) and Theorem 1.1 yields
that the scaled ancestral process converges to a Ξ-coalescent process with Ξ =∫
[0,1]

δ( y
4 ,
y
4 ,
y
4 ,
y
4 ,0,0,...

)F (dy).

3. One can easily generalise this model to any number k of “large” families. Initially,
we randomly choose k couples from VN . The number of children of those k cou-
ples are ΨN,1, ΨN,2,. . .,ΨN,k with ΨN,i = bψiNc and suitable ψi ∈ (0, 1) for any
i = 1, 2, . . . , k. Assume cN converges to 0, then the scaled ancestral process converges
to a Ξ-coalescent process with
Ξ = δ(ψ1

4 ,
ψ1
4 ,

ψ1
4 ,

ψ1
4 ,...,

ψk
4 ,

ψk
4 ,

ψk
4 ,

ψk
4 ,0,0,...

).
2.3.3 Further remarks and possible extensions

The matrix of offspring numbers (Vi,j)1≤i<j≤N can equivalently be viewed as a(n ex-
changeable) random multigraph on N nodes, by drawing Vi,j undirected edges (one
for each child) between nodes i and j. For example, we can interpret the model from
Section 2.2 as a variation on Erdős-Rényi graphs (remembering (2.13)): First draw an
Erdős-Rényi graph on N nodes with edge probability cX,1/N , then replace the i-th of
the resulting M ≈ cX,1N/2 edges by νi,M edges, where (ν1,M , . . . , νM,M ) are drawn as
in Schweinsberg [29, Section 1.3] (except that we enforce ν1,M + · · ·+ νM,M = N , not
=M ).

From the point of view of biological modelling, one might feel that the set-up in
Section 2.2, which in particular enforces that the number of reproductive partners of a
typical individual is essentially Poisson distributed (and hence the number of potential
offspring has a compound Poisson distribution), is somewhat restrictive. A natural
generalisation of (2.13) would be the following: Let Di be independent copies of an
N0-valued random variable D with E[eλD] <∞ for λ in a neighbourhood of 0; we think of
Di as the number of reproductive partners of individual i. Use the configuration model
to assign reproductive partners, i.e. attach Di “half-edges” to node i and then randomly
match all half-edges conditional on producing no self-loops (if D1+ · · ·+DN is odd, throw
away the last half-edge, say). Finally replace each resulting edge e by a random number
Xe of edges where Xe are independent copies of X. If E[X]E[D] > 2 and X satisfies
(2.16) or (2.17), then a suitable analogue of Proposition 2.5 will hold. We do not go into
detail here but note that by Theorem 1.1, asymptotically for our study of genealogies,
only the joint law of (Vi)1≤i≤N , which in the language of random graphs corresponds
to the empirical degree distribution, is important. In the extension of the model from
Section 2.2 just sketched, this will again on the relevant time-scales be dominated by
one exceptionally large value of Xe if (2.17) holds and negligible compared to N if (2.16)
holds. See e.g. [30] for background on random graphs, which is currently a very active
research topic.

Obviously, these models allow various generalisations where the “degree of promis-
cuity” can be chosen as a parameter: One could for example assign a% of the children
to fixed couples as in the model from Section 2.3.1 and the remaining (100− a)% of the
children by using a “configuration model” as just discussed.
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Coalescent results for diploid exchangeable population models

In most of the models discussed so far we did not include individuals of different sexes.
However, as described in Section 2.3.1 two-sex models, possibly with unequal sex ratio
r : 1− r, can be in principle easily embedded into our set-up: take a random bi-partite
“exchangeable” multigraph on brNc and N − brNc nodes with N edges (equivalently: a
separately exchangeable brNc × (N − brNc)-matrix, with values in N0, summing to N ),
assign individuals i = 1, . . . , N randomly to the two “sex groups”. One can combine this
with small variations of all the models discussed in Section 2 and one can for example
also incorporate differences in the variance of reproductive success between the two
sexes in this class of models.

One can also allow the possibility of selfing, i.e. P(Vi,i > 0) > 0. Then complete
dispersion will not happen (asymptotically) immediately but only after a certain random
number of sampled genes have merged due to selfing, analogous to [17]. We leave the
details to future work.

3 Proofs

3.1 Proof of Theorem 1.1 and Corollary 1.2

In this section we prove our main convergence result Theorem 1.1 and Corollary 1.2.

3.1.1 The pair coalescence probability

We start by analyzing the pair coalescence probability cN . Recall that this is the proba-
bility that two genes (picked at random) from two distinct individuals, which are chosen
randomly without replacement from the same generation (in the population of size N ),
have a common ancestor (gene) in the previous generation.

Lemma 3.1. We have

cN =
1

8
E
[
V 2
1,2 − 2

N−1

]
+
N − 2

8
E [V1,2V1,3] =

1

8
E [V1,2 (V1 − 1)] =

1

8

1

N − 1
E [(V1)2] . (3.1)

Proof. Pick two distinct individuals at random from the current population and pick
from each of them independently one of the two gene copies at random by a fair coin
flip. These two genes may be descended from the same ancestral gene in the previous
generation if the two individuals have both parents or just one parent in common (full
siblings, half siblings). The probabilities that the two genes are descended from the
same ancestral gene of one of the parent individuals is then 1

4 and 1
8 respectively. Thus

cN = E

 ∑
1≤i<j≤N

[
Vi,j(Vi,j − 1)

N(N − 1)

1

4
+
Vi,j(Vi − Vi,j)

N(N − 1)

1

8
+
Vi,j(Vj − Vi,j)

N(N − 1)

1

8

]
=

1

8

1

N(N − 1)

∑
1≤i<j≤N

E [Vi,j (Vi + Vj − 2)] =
1

8

(
N
2

)
N(N − 1)

E [V1,2 (V1 + V2 − 2)]

=
1

8
E [V1,2(V1 − 1)] =

1

8(N − 1)
E

 N∑
j=2

V1,j (V1 − 1)

 =
1

8

1

N − 1
E [(V1)2]

by the exchangeability assumptions (1.1). Alternatively write

1

8
E
[
V1,2(V1 − 1)

]
=

1

8

N∑
j=2

E
[
V1,2V1,j

]
− 1

8
E
[
V1,2

]
=

1

8
E
[
V 2
1,2

]
− 1

8

2

N − 1
+
N − 2

8
E
[
V1,2V1,3

]
to obtain the first equality in (3.1).
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Note that one can also express cN in terms of variance and covariances of Vi,j , as
follows:

cN =
1

8
Var[V1,2] +

1

8
(N − 2)Cov[V1,2, V1,3] +

1

4 (N − 1)
.

3.1.2 Transition probabilities

Next, we analyze the transition probabilities of the ancestral process. Let Πn,N =

(πn,N (ξ, η))ξ,η∈Sn be the transition matrix of the Markov chain
(
ξn,N (m)

)
m∈N0

. (Πn,N
can be viewed as an |Sn|× |Sn|-matrix if we fix an order for Sn, which we will do later). In
particular, we see from the argument in Lemma 3.1 that cN = π2,N ({{1}, {2}}, {{1, 2}}).

It turns out that for our purposes it is sufficient to describe the πn,N (ξ, η) in case that
ξ ∈ En. For some b ≤ n we thus consider the transition probability from states ξ ∈ En to
η ∈ Sn of the form

ξ = {C1, . . . , Cb} and (3.2)

η = {{D1, D2} , . . . , {D2d−1, D2d} , D2d+1, . . . , Da} , (3.3)

for some a ≤ b and 2d ≤ a such that ξ ⊆ cd(η). Assume that Di is a union of ki ≥ 1 classes
from ξ with k1 + · · ·+ ka = b.

Denote by Ea,d the collection of elements in Ea with a − d blocks, d of which have
cardinality 2 while the other a−2d have cardinality 1. Then we can describe the grouping
into diploid individuals in η via ζ = {ζ1, . . . , ζa−d} ∈ Ea,d : Let Di and Dj belong to the
same diploid ancestral individual in η if and only if {i, j} ∈ ζ. We put

`j :=
∑
i∈ζj

ki, j = 1, . . . , a− d, (3.4)

which is the number of offspring classes in ξ that belong to the j-th ancestral individual
described by η, and we have therefore that

∑a−d
j=1 `j = b.

In order to calculate and describe the transition probabilities we will introduce
another useful concept and corresponding notation. Recall that Vi,j (= Vj,i) represents
the random number of offspring of the parental individuals i and j. By definition, each
offspring inherits one chromosome copy from each parent. Let us assume that we
randomly and uniformly “mark” one of these chromosome copies as “relevant” (in the
sense that it will be this copy that we possibly later examine in the child), let V̂i,j be the
number of offspring with parents from i and j who inherited their relevant chromosome
copy from parent i. Mathematically, this means that conditional on (Vu,w)1≤u,w≤N ,

V̂i,j is Bin(Vi,j ,
1
2 )-distributed, V̂j,i = Vi,j − V̂i,j and V̂i,j and V̂k,` are independent when

{i, j} 6= {k, `}. We will write

V̂i :=

N∑
j 6=i

V̂i,j

for the total number of “relevant” offspring of individual i. Note that we have
∑N
i=1 V̂i =

N by definition.

Lemma 3.2. Both the array
(
V̂i,j
)
1≤i 6=j≤N of relevant pairwise offspring numbers and

the vector (V̂i)1≤i≤N of relevant total offspring numbers are exchangeable.

EJP 23 (2018), paper 49.
Page 17/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP175
http://www.imstat.org/ejp/


Coalescent results for diploid exchangeable population models

Proof. Note that

P
(
V̂i,j = v̂i,j , 1 ≤ i 6= j ≤ N

)
=P (Vi,j = v̂i,j + v̂j,i, 1 ≤ i < j ≤ N)

∏
1≤i<j≤n

(
v̂i,j + v̂j,i

v̂i,j

)
2−(v̂i,j+v̂j,i).

(3.5)

For any permutation σ on VN , we have

P
(
V̂i,j = v̂σ(i),σ(j), 1 ≤ i 6= j ≤ N

)
= P

(
Vi,j = v̂σ(i),σ(j) + v̂σ(j),σ(i), 1 ≤ i < j ≤ N

)
·
∏

1≤i<j≤n

(
v̂σ(i),σ(j) + v̂σ(j),σ(i)

v̂σ(i),σ(j)

)
2−

(
v̂σ(i),σ(j)+v̂σ(j),σ(i)

)
. (3.6)

It follows from (1.1) that (3.5) equals (3.6), i.e.
(
V̂σ(i),σ(j)

)
1≤i6=j≤N

=d
(
V̂i,j

)
1≤i6=j≤N

.

Exchangeability of (V̂i)1≤i≤N follows from this as in (1.3).

The following lemma states that if the limits in (1.6) exist then they can also be
expressed in terms of the quantities (V̂i)i=1,...,N instead of the (Vi)i=1,...,N .

Lemma 3.3. Let b, c ∈ N, `1, . . . , `c ∈ N with `1 + · · ·+ `c = b. Under Condition (1.6), we
have

lim
N→∞

E
[
(V̂1)`1 · · · (V̂c)`c

]
cN N b−c = lim

N→∞

E
[
(V1)`1 · · · (Vc)`c

]
cN N b−c 2b

.

Proof. Recall the combinatorial identity for choosing (without replacement) ` objects out
of
∑n
i=1 ai objects(∑n
i=1 ai
`

)
=

1

`!

(∑n
i=1 ai

)
`
=

∑
(k1,...,kn)∈Nn0
k1+···+kn=`

n∏
i=1

(ai)ki
ki!

, `, n ∈ N, a1, . . . , an ∈ N0, (3.7)

which results from choosing exactly ki out of ai objects and from considering all the
possible choices of k1 + · · ·+ kn = `. Now, set

KN (`1, . . . , `c)

:=
{
(ki,j)i=1,...,c, j=1,...,N ∈ Nc×N0 : ki,1 + · · ·+ ki,N = `i with ki,i = 0 for i = 1, . . . , c

}
.

Then, expanding the definition of V̂i and using (3.7) yield

c∏
i=1

(V̂i)`i
`i!

=

c∏
i=1

{ ∑
(ki,1,...,ki,N )∈NN0

ki,1+···+ki,N=`i,ki,i=0

N∏
j 6=i

(V̂i,j)ki,j
ki,j !

}
=

∑
(ki,j)∈KN (`1,...,`c)

c∏
i=1

{ N∏
j 6=i

(V̂i,j)ki,j
ki,j !

}

=
∑

(ki,j)∈KN (`1,...,`c)

{ ∏
1≤i<j≤c

(V̂i,j)ki,j
ki,j !

(Vi,j − V̂i,j)kj,i
kj,i!

}
×
{ c∏
i=1

N∏
j=c+1

(V̂i,j)ki,j
ki,j !

}
(3.8)
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Thus,

E
[ c∏
i=1

(V̂i)`i
`i!

∣∣∣ (Vu,w)1≤u,w≤N

]
=

∑
(ki,j)∈KN (`1,...,`c)

{ ∏
1≤i<j≤c

1

2ki,j+kj,i
(Vi,j)ki,j+kj,i
ki,j ! kj,i!

}
×
{ c∏
i=1

N∏
j=c+1

1

2ki,j
(Vi,j)ki,j
ki,j !

}

=
1

2b

∑
(ki,j)∈KN (`1,...,`c)

{ ∏
1≤i<j≤c

(Vi,j)ki,j+kj,i
ki,j ! kj,i!

}
×
{ c∏
i=1

N∏
j=c+1

(Vi,j)ki,j
ki,j !

}
(3.9)

where we have used the fact that

E
[
(V̂i,j)ki,j (Vi,j − V̂i,j)kj,i

∣∣∣ (Vu,w)1≤u,w≤N

]
=

1

2ki,j+kj,i
(Vi,j)ki,j+kj,i

(a special case of an identity for mixed factorial moments of a multinomial vector, see also
Lemma 3.11) and the conditional independence properties of V̂i,j ’s in the first equation.
Note that if we replace in (3.9) the term∏

1≤i<j≤c

(Vi,j)ki,j+kj,i
ki,j ! kj,i!

by
∏

1≤i<j≤c

(Vi,j)ki,j (Vi,j)kj,i
ki,j ! kj,i!

(3.10)

then we obtain (as in (3.8)),

1

2b

∑
(ki,j)∈KN (`1,...,`c)

c∏
i=1

N∏
j=1
j 6=i

(Vi,j)ki,j
ki,j !

=
1

2b

c∏
i=1

(Vi)`i
`i!

. (3.11)

The difference of the two terms (Vi,j)ki,j+kj,i and (Vi,j)ki,j (Vi,j)kj,i which get replaced
inside the product in (3.10) vanishes whenever ki,j + kj,i ≤ 1 and is

O
(
(Vi,j)

ki,j+kj,i−1
)

otherwise (with a combinatorial constant that depends on c and `1, . . . , `c but not on N ).
Thus,

1

cNN b−c

(
E
[
term in (3.9)

]
− E

[
term on r.h.s. of (3.11)

])
−→ 0 as N → ∞

because of Condition (1.6), which is the claim.

With the help of this lemma we can now prove the following:

Lemma 3.4. For ξ, η as in (3.2), (3.3) with `j from (3.4), we have

lim
N→∞

πn,N (ξ, η)

cN
= lim
N→∞

N∑
i1,...,ia−d=1

distinct

E
[
(Vi1)`1(Vi2)`2 · · · (Via−d)`a−d

]
2a−d

cNN b22b

= lim
N→∞

E
[
(V1)`1(V2)`2 · · · (Va−d)`a−d

]
cN 2b (2N)b−a+d

. (3.12)

If `1, . . . , `a−d ≥ 2 we see from (1.6) that the limit in (3.12) equals

φa−d(`1, . . . , `a−d) ·
1

2b−a+d
.

When s ≥ 1 of the `i are equal to 1, say `1, . . . , `a−d−s ≥ 2, `a−d−s+1 = · · · = `a−d = 1 we
see from (1.8) that the limit in (3.12) equals

ψa−d−s,s(`1, . . . , `a−d−s) ·
1

2b−a+d
.
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Proof of Lemma 3.4. Since ξ ∈ En ⊂ Sn is a completely dispersed state, its b classes
belong to b distinct individuals in the offspring generation and we can think of the chro-
mosome copies which belong to ξ as the relevant ones (in the corresponding individuals),
i.e., the transition from ξ to η corresponds to drawing b times without replacement from
an urn which contains V̂i balls of colour i for i = 1, . . . , N . Thus

πn,N (ξ, η) =

N∑
i1,...,ia−d=1

distinct

E
[∏a−d

r=1 (V̂ir )`r
(N)b

×
a−d∏
r=1

2−`r+1
]
= 2−b+a−d

(N)a−d
(N)b

E
[ a−d∏
r=1

(V̂r)`r

]
.

(3.13)

Note that the factor
∏a−d
r=1 2

−`r+1 accounts for the fact that we still have to assign for
each r = 1, . . . , a− d which of the `r classes in ∪i∈ζrDi descends from which of the two
chromosome copies in the ir-th ancestral individual (this makes `r assigned picks if
we decree who descends from the “first” and who from the “second” chromosome in
individual ir but we gain a factor of 2 because the roles of the “first” and the “second”
chromosome are arbitrary and can be swapped). The second equation is a consequence
of exchangeability of the V̂i. Finally, (3.12) follows from (3.13) and Lemma 3.3.

For n ∈ N, ξ, η ∈ En, put

π̃n,N (ξ, η) :=
∑

{η′∈Sn : cd(η′)=η}

πn,N (ξ, η′). (3.14)

Note that π̃n,N is a Markov transition matrix on En, a step according to π̃n,N means first
taking a step according to πn,N and then applying the complete dispersion operator, i.e.,
ignoring the grouping into diploid individuals.

In particular, there is sampling consistency: For ξ ∈ En, η = {D1, . . . , Da} ∈ En we
have

π̃n,N (ξ, η) = π̃n+1,N (ξ ∪ {{n+ 1}}, η ∪ {{n+ 1}})

+

a∑
i=1

π̃n+1,N

(
ξ ∪ {{n+ 1}}, {D1, . . . , Di−1, Di ∪ {n+ 1}, Di+1, . . . , Da}

)
.

(3.15)

Furthermore, the transition probabilities depend on n only implicitly through the merger
structure that the transition from ξ to η induces.

Lemma 3.5. Let n ∈ N, ξ ∈ En, η ∈ Sn where ξ has b classes and cd(η) arises from ξ by
merging j ≥ 1 groups of classes with sizes k1, k2, . . . , kj ≥ 2 from ξ and leaving s ≥ 0

singleton classes (in particular, η has a = j + s classes and b = k1 + · · ·+ kj + s). Then

lim
N→∞

1

cN
π̃n,N

(
ξ, cd(η)

)
= λb;k1,...,kj ;s (3.16)

where λb;k1,...,kj ;s are the transition rates of the Ξ-coalescent defined in Theorem 1.1
(recalled in (1.9)).

Proof. Assume ξ and η are given by (3.2) and (3.3) with classes denoted by Ci and Di,

respectively. Recall that Di is a union of ki ≥ 1 classes from ξ with k1 + · · ·+ ka = b and
that ζ describes the grouping into diploid individuals.

Now note that cd−1 (cd (η)) := {η′ ∈ Sn : cd(η′) = cd(η)} can be parametrised by
choosing any d ∈ {0, 1, . . . , ba/2c} and ζ ∈ Ea,d (d describes the number of ancestral
individuals in η carrying two ancestral genes and ζ describes the grouping of the a
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ancestral chromosomes in η into diploid individuals). For ζ ∈ Ea,d and i = 1, 2, . . . , a, we

define ζ̂(i) = k ∈ {1, . . . , a− d} if i ∈ ζk.

First consider the case s = 0 and hence a = j > 1: From (3.14), Lemma 3.4, as well
as (1.6) and (1.7),

lim
N→∞

1

cN
π̃n,N

(
ξ, cd(η)

)
=

ba/2c∑
d=0

∑
ζ∈Ea,d

2−b+a−d
∫
∆

∞∑
i1,...,ia−d=1

distinct

a−d∏
`=1

x

(∑
r∈ζ`

kr

)
i`

2Ξ′(dx)

(x, x)

=

∫
∆

ba/2c∑
d=0

2a−d
∞∑

i1,...,ia−d=1
distinct

∑
ζ∈Ea,d

(
1
2xiζ̂(1)

)k1 (
1
2xiζ̂(2)

)k2
· · ·
(

1
2xiζ̂(a)

)ka 2Ξ′(dx)

(x, x)

=

∫
∆

∞∑
i′1,...,i

′
a=1

distinct

(
ϕ(x)i′1

)k1 (
ϕ(x)i′2

)k2 · · · (ϕ(x)i′a)ka Ξ′(dx)

(ϕ(x), ϕ(x))

=

∫
∆

∞∑
i′1,...,i

′
a=1

distinct

xk1i′1
· · ·xkai′a

Ξ(dx)

(x, x)
= λb;k1,...,ka;0 (3.17)

where we used that by definition of ϕ, for any function F : [0, 1]a → [0,∞) and x =

(x1, x2, . . . ) ∈ ∆

∞∑
i′1,...,i

′
a=1

distinct

F
(
ϕ(x)i′1 , ϕ(x)i′2 , . . . , ϕ(x)i′a

)

=

ba/2c∑
d=0

2a−d
∞∑

i1,...,ia−d=1
distinct

∑
ζ∈Ea,d

F

(
1

2
xi
ζ̂(1)

,
1

2
xi
ζ̂(2)

, . . . ,
1

2
xi
ζ̂(a)

)

and that (ϕ(x), ϕ(x)) = 1
2 (x, x). In the case j = 1, we additionally have the Kingman term

in (3.17) of the form

1I{j=1,k1=2} 2 Ξ′({0})2−b+a−d = 1I{j=1,k1=2}Ξ({0})

since −b+ a− d = −1 in this case and Ξ′({0}) = Ξ({0}). Thus, (3.16) holds when s = 0.

For the general case s > 0, we can employ the consistency relations (3.15) in order to
use induction on s : Assume that (3.16) holds whenever the number of “singleton classes”
involved is at most s, and b = k1 + · · ·+ kj + s with k1, . . . , kj ≥ 2. Let cd(η) ∈ En+1 arise
from ξ ∈ En+1 by a merger in j groups of sizes k1, . . . , kj ≥ 2, leaving s + 1 singleton
classes. By the symmetries of the model, we may (without changing the transition
probability) assume that one of the relevant singleton classes in η is {n + 1}. Then,
rearranging (3.15) and using the induction hypothesis we see that

lim
N→∞

π̃n+1,N

(
ξ, cd(η)

)
cN

= λb;k1,...,kj ;s −
j∑
i=1

λb+1;k1,...,ki+1,...,kj ;s − sλb+1;k1,...,kj ,2;s−1.

The term on the right-hand side equals λb+1;k1,...,kj ;s+1 by the consistency relation for
transition probabilities of Ξ-coalescents (implicit in [22, Eq. (11) and Lemma 3.4],
explicitly spelled out for example in [27, Eq. (2.5)]).
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A central ingredient in the proof of Theorem 1.1 is the following result from [17].
It makes the separation of time-scales behind Theorem 1.1 explicit: On the fast time
scale O(1), any diploid sample configuration is transformed into its complete dispersion
whereas on the much slower time scale O(1/cN ), non-trivial merging occurs.

Lemma 3.6 (Möhle [17]). Let XN = (XN (m))m∈N0
be a sequence of time homogeneous

Markov chains on a probability space (Ω,F ,P) with the same finite state space S and
let ΠN denote the transition matrix of XN . Assume that the following conditions are
satisfied:

1. A := limN→∞ ΠN exists and ΠN 6= A for all sufficiently large N .

2. P := limm→∞Am exists.

3. G := limN→∞ PBNP exists, where BN := (ΠN −A) /cN and cN := ‖ΠN − A‖ for all
N ∈ N.

If the sequence of initial probability measures PXN (0) converge weakly to some probabil-
ity measure µ, then the finite dimensional distributions of the process (XN (bt/cNc))t≥0

converge to those of a time continuous Markov process (Xt)t≥0 with initial distribution

X0
d
=µ,

transition matrix Π (t) := P − I + etG = PetG, t > 0, and infinitesimal generator G.

Proof of Theorem 1.1: Applying Lemma 3.6, the strategy to prove our result is based on
the decomposition of the transition matrix Πn,N = (πn,N (ξ

′
, η

′
))ξ′ ,η′∈Sn . In order to have

these transitions be well defined as matrices we choose a specific order of Sn : Namely,
consider the standard order of En ⊂ Sn. We will then insert all remaining elements
of cd−1(ξ) ⊂ Sn directly following any ξ ∈ En (the order here is fixed in an arbitrary
way). This way, the matrix Πn,N decomposes into sub-matrices (Π̃n,N (ξ, η))ξ,η∈En with
Π̃n,N (ξ, η) a

∣∣cd−1(ξ)
∣∣× ∣∣cd−1(η)

∣∣ matrix.

What we need to do is to find the decomposition such that

Πn,N = A+ cNBn,N ,

where A = limN→∞ Πn,N does not depend on N , cN → 0 and Bn,N is bounded. In the
sense of sub-matrix structure, it is necessary to find the decomposition such that

Π̃n,N (ξ, η) = Ã (ξ, η) + cN B̃n,N (ξ, η) ,

for ξ, η ∈ En, where both Ã (ξ, η) and B̃n,N (ξ, η) are
∣∣cd−1(ξ)

∣∣× ∣∣cd−1(η)
∣∣ sub-matrices of

A and Bn,N . Set Ã (ξ, η) = 0 for ξ 6= η and

Ã (ξ, ξ) =

 1 0 · · · 0
...

...
...

1 0 · · · 0

 := Pξ.

Note that this matrix maps any ξ′ ∈ cd−1(ξ) to ξ ∈ En. It follows that

lim
m→∞

Ãm (ξ, ξ) = Ã (ξ, ξ) := Pξ.
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Thus, we have P := limm→∞Am with sub matrix structure P̃ (ξ, η) = 0 for ξ 6= η and
P̃ (ξ, ξ) = Pξ. It is easy to show that

G := lim
N→∞

PBn,NP = lim
N→∞

(PξBn,N (ξ, η)Pη)ξ,η∈En

= lim
N→∞




g
(N)
ξ,η 0 · · · 0
...

...
...

g
(N)
ξ,η 0 · · · 0



ξ,η∈En

where g(N)
ξ,η is the sum of all the entries in the first row of matrix Bn,N (ξ, η). Consequently,

g
(N)
ξ,η =

∑
η′∈cd−1(η)

πn,N (ξ, η
′
)

cN
− δξ,η

cN
.

Assume η arises from ξ by merging j ≥ 1 groups of classes with sizes k1, k2, . . . , kj ≥ 2

and leaving s ≥ 0 singleton classes (b = k1 + · · ·+ kj + s). Applying Lemma 3.5, we have

lim
N→∞

g
(N)
ξ,η = λb;k1,...,kj ;s.

Note that a transition from any given state η
′ ∈ Sn with a ≤ n classes (as in (3.3)) to

its complete dispersion state cd(η
′
) happens whenever none of the ancestral genes of

distinct ancestral individuals in configurations η
′
have a common parental ancestral

gene in the previous generation. (Ancestral genes of the same individual naturally have
distinct parental ancestral genes as we have excluded selfing.) For any pair of such
ancestral genes the probability to have a common parental ancestral gene is cN and
there are at most

(
a
2

)
such pairs to consider. Thus, the transition probability satisfies

πn,N (η
′
, cd(η

′
)) ≥ 1−

(
a

2

)
cN .

It is clear that πn,N (η
′
, cd(η

′
)) → 1 as N → ∞ or in other words that A = limN→∞ Πn,N .

Hence, complete dispersion happens instantaneously in the limit of the genealogical
process for the diploid population model. By eliminating all those instantaneous states,
we can get an En-valued marginal process (Rn (t))t≥0 whose generator is given by(
limN→∞ g

(N)
ξ,η

)
ξ,η∈En

. The process (Rn (t))t≥0 is exactly the n-Ξ-coalescent process.

Proof of Corollary 1.2: Our argument is essentially borrowed from the proof of Theo-
rem 3.1 in Möhle [19]. Theorem 1.1 yields that the finite-dimensional distributions
of (

ξ̃n,N (bt/cNc)
)
t≥0

=
(
cd
(
ξn,N (bt/cNc)

))
t≥0

converge to those of ξn. Thus, in order to strengthen this to weak convergence on the
path space D([0,∞), En) we only have to verify tightness there. Since En is finite (and so
in particular compact) and ξ̃n,N can by construction only move by mergers, it suffices to
check that in the limit N → ∞, the jump times of

(
cd
(
ξn,N (b·/cNc)

))
do not accumulate

(see e.g. [10, Thm. 6.2 in Ch. 3] or [5]). Noting that for any ξ ∈ Sn

P
(
cd
(
ξn,N (m+ 1)

)
6= cd

(
ξ
) ∣∣∣ ξn,N (m) = ξ

)
=P
( at least one pair of genes (necessarily from
distinct individuals) merges in the next step

∣∣∣ ξn,N (m) = ξ
)
≤
(
n

2

)
cN

we see that the times between jumps of
(
ξ̃n,N (m)

)
m∈N0

are stochastically larger than
independent geometric random variables with success parameter cNn(n− 1)/2 which
after time scaling converge in distribution to independent exponentials with rate n(n−
1)/2.
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3.2 Proof of Proposition 2.3

In this section we prove Lemma 2.2 and Proposition 2.3, the main convergence result
for the diploid population model with random individual fitness of Section 2.1. Apart
from Lemma 2.2 we need two auxiliary lemmas for the proof of Proposition 2.3. Their
proofs are postponed to Section 3.2.1.

Note that while the set-up in Proposition 2.3 is quite similar in spirit to that from [29],
the adaptation poses some additional technical difficulties. In particular, observe that
ZN , the normalising constant in the representation (2.4) of the law of (Vi,j) as a mixture
of multinomials is not literally an i.i.d. sum as in [29].

Recall from (2.3) and (2.4) that in the random individual fitness model Vi,j , 1 ≤ i <

j ≤ N are multinomial with N trials and with success probabilities of individuals i and
j proportional to WiWj where the fitness parameters Wi are independent copies of W
with mean µW .

Lemma 3.7. 1. If µ(2)
W = E

[
W 2
]
<∞ we have

φ1(3) = lim
N→∞

E
[
(V1)3

]
cNN2

= 0. (3.18)

2. If (2.5) holds we have

φ2(2, 2) = lim
N→∞

E
[
(V1)2(V2)2

]
cNN2

= 0. (3.19)

Lemma 3.8. If (2.5) holds we have

N

cN
P(V1 > Nx) −→

N→∞
8

∫ 1

x

1

y2
Beta(2− α, α)(dy) for x ∈ (0, 1). (3.20)

Proof of Proposition 2.3. 1. The scaling of the pair coalescence probability cN is given
in (2.8) in Lemma 2.2. Using Theorem 1.1 we should verify that µ(2)

W < ∞ implies that
(cf. Condition (1.6)) for all j ∈ N and k1, . . . , kj ≥ 2

lim
N→∞

1

cN

E
[
(V1)k1 · · · (Vj)kj

]
Nk1+···+kj−j2k1+···+kj

= 21I{j=1,k1=2}. (3.21)

For j = 1, k1 = 2 this follows from the fact that cN = E[V1(V1−1)]/(8(N −1)) (see Lemma
3.1); for j = 1, k1 = 3 it follows from Lemma 3.7; it is well known that the latter implies
that (3.21) also holds for j = 1, k1 > 3 and for j ≥ 2 (see [22] and [27]).

2. In this case, the scaling of cN is given by (2.9) in Lemma 2.2. To verify the claimed
form of the limiting coalescent we should check that the probability measure Ξ′ on ∆

appearing in (1.5) and (1.7) is given by

Ξ′(A) =

∫ 1

0

1IA(y/2, 0, 0, . . . )
y1−α(1− y)α−1

Γ(2− α)Γ(α)
dy,

i.e. Ξ′ is the image measure of Beta(2−α, α) under the mapping [0, 1] 3 x 7→ (x/2, 0, 0, . . . ) ∈
∆.

It is known that (3.19) from Lemma 3.7 implies that the vague limit measure of ΦN
from (1.5) is concentrated on ∆̃ := {(x1, x2, . . . ) ∈ ∆ : x2 = 0}, see [27, Cor. 2.1] (one
can view ∆̃ as the canonical embedding of [0, 1] into ∆) so it suffices to observe that for
any x ∈ (0, 1/2) by Lemma 3.8

lim
N→∞

1

cN
P
(
V(1) > 2Nx

)
= lim
N→∞

N

cN
P
(
V1 > 2Nx

)
= 8

∫ 1

2x

1

y2
Beta(2− α, α)(dy)

= 2

∫ 1

2x

1

(y/2)2
Beta(2− α, α)(dy) = 2

∫ 1

0

1IA(x)(y/2, 0, 0, . . . )
1

y2/4

y1−α(1− y)α−1

Γ(2− α)Γ(α)
dy

with A(x) = {(y1, y2, . . . ) ∈ ∆ : y1 > x, y2 = 0}.
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3.2.1 Proofs of auxiliary results

Here, we provide some details of the proofs of Lemmas 2.2, 3.7 and 3.8.

Lemma 3.9. Assume that W ≥ 0 satisfies the tail assumption (2.5). For k ∈ {2, 3, 4, . . . },
we have

lim
M→∞

MαE
[ W k

(W +M)k

]
= cWαB(k − α, α). (3.22)

This is a small variation on Lemma 12 from [29], addressing the case k = 2 and W
integer-valued. For a rough idea why the asymptotic decay rate of E

[
W k/(M +W )k

]
is

M−α note that on the event {W ≥M}, which has probability ∼ cWM
−α, the integrand

is almost constant.

Proof. For any bounded monotone g ∈ C1([0,∞)) with g(0) = 0 we have

E[g(W )] = E
[ ∫ ∞

0

1I(x ≤W )g′(x) dx
]
=

∫ ∞

0

g′(x)P(W ≥ x) dx.

Applying this with g(x) = xk/(x+M)k hence g′(x) = kMxk−1/(x+M)k+1 we obtain

E
[ W k

(W +M)k

]
=

∫ ∞

0

g′(x)P(W ≥ x) dx =

∫ ∞

0

Mk
xk−1

(x+M)k+1
P(W ≥ x) dx. (3.23)

For every L > 0 we have

lim sup
M→∞

Mα

∫ L

0

g′(x)P(W ≥ x) dx ≤ lim sup
M→∞

Mα

∫ L

0

g′(x) dx

= lim
M→∞

Mα Lk

(L+M)k
= 0, (3.24)

using that α < 2 and that k ≥ 2. Furthermore,∫ ∞

L

xk−1

(x+M)k+1
x−α dx =

∫ M/(M+L)

0

(
M(1− y)

y

)k−1−α ( y
M

)k+1

My−2 dy

=M−α−1

∫ M/(M+L)

0

(1− y)k−1−αyα dy

(we substituted y = M/(M + x), hence x = M(1 − y)/y, dx/dy = −My−2 for the first
equation). Thus,

lim
M→∞

Mα

∫ ∞

0

Mk
xk−1

(x+M)k+1
x−α dx = k

∫ 1

0

(1− y)k−1−αyα dy

=
kΓ(α+ 1)Γ(k − α)

Γ(k + 1)

= α
Γ(α)Γ(k − α)

Γ(k)
= αB(k − α, α) (3.25)

For ε > 0 we can choose L so large that (1− ε)cWx
−α ≤ P(W ≥ x) ≤ (1 + ε)cWx

−α

holds for all x ≥ L. Combining (3.23)–(3.25) we see that

lim sup
M→∞

MαE
[ W k

(W +M)k

]
≤ (1 + ε)cWαB(k − α, α)

and similarly for the lim inf. (3.22) follows by taking ε ↓ 0.
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Defining

Sk,N :=

N∑
j=k

Wj , S
(2)
k,N :=

N∑
j=k

W 2
j (3.26)

(for 2 ≤ k < N ) we can re-express ZN from (2.3) as

ZN =W1S2,N +
1

2

(
(S2,N )2 − S

(2)
2,N

)
(3.27)

and also as

ZN =
1

2

(
W1 +W2 + S3,N

)2 − 1

2
W 2

1 − 1

2
W 2

2 − 1

2
S
(2)
3,N

=W1W2 + (W1 +W2)S3,N +
1

2

(
(S3,N )2 − S

(2)
3,N

)
. (3.28)

Lemma 3.10. Assume that W satisfies (2.5) or that µ(2)
W < ∞. For 0 < δ < 1 and

k ∈ {2, 3} let

Aδ :=
{
Sk,N < (1− δ)µWN

}
∪
{
(Sk,N )2 − S

(2)
k,N < (1− δ)µ2

WN
2
}

then there exists r = r(δ) > 0 such that

P(Aδ) ≤ e−rN for all N large enough. (3.29)

Furthermore, for all r = r(δ) > 0 with δ ∈ (0, 1) we have

P
(
(Sk,N )2 − S

(2)
k,N < µWNSk,N/2

)
≤ e−rN for all N large enough. (3.30)

For (3.30) (under Assumption (2.5)) note that while the typical size of Sk,N is ≈ µWN

by the law of large numbers, conditioned on Sk,N � µWN there will typically be just
one exceptionally large summand (by the tail assumption (2.5), this is much more likely
than having many moderately large summands, cf. [24]). Then, the order of magnitude
of (Sk,N )2 − S

(2)
k,N will in fact be ≈ NSk,N up to constants.

Proof. Write Wi = Ui + Oi with Ui := Wi1I(Wi ≤ K), Oi := Wi1I(Wi > K) where K is
chosen so large that E[Ui] > (1 − δ/5)µW . Since Ui ≥ 0 are i.i.d. bounded random
variables, we get from Cramér’s large deviations theorem (see, for example, Theorem
2.2.3 in [7]) that

P

(
N∑
i=k

Ui < (1− δ/4)µWN

)
+ P

(
N∑
i=k

Ui > (1 + δ/4)µWN

)
≤ e−rN (3.31)

for all N large enough with r = r(δ) > 0. We now argue that Aδ ⊂ {
∑N
i=k Ui <

(1 − δ/4)µWN} for N large enough: Obviously, {Sk,N < (1 − δ)µWN} ⊂ {
∑N
i=k Ui <

(1− δ/4)µWN}. On the event
{∑N

i=k Ui ≥ (1− δ/4)µWN
}
we have

(Sk,N )2 − S
(2)
k,N ≥

(
(1− δ/4)µWN +

N∑
i=k

Oi

)2
−NK2 −

N∑
i=k

O2
i

≥ (1− δ/4)2µ2
WN

2 −NK2 =
(
1− δ

2
+
δ2

16
− K2

µ2
WN

)
µ2
WN

2 ≥ (1− δ)µ2
WN

2

for N large enough. Thus, also {(Sk,N )2 − S
(2)
k,N < (1 − δ)µ2

WN
2} ⊂ {

∑N
i=k Ui < (1 −

δ/4)µWN} and we have that (3.29) follows from (3.31).
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On the event
{
1 − δ/4 ≤ (µWN)−1

∑N
i=k Ui ≤ 1 + δ/4

}
we can estimate similarly to

the above for all δ ∈ (0, 1) :

(Sk,N )2 − S
(2)
k,N ≥

(
(1− δ/4)µWN +

N∑
i=k

Oi

)2

−NK2 −
N∑
i=k

O2
i

= (1− δ/4)2µ2
WN

2 + 2(1− δ/4)µWN

N∑
i=k

Oi +

(
N∑
i=k

Oi

)2

−NK2 −
N∑
i=k

O2
i

≥ µWN

2

(
(1 + δ/4)µWN +

N∑
i=k

Oi

)
≥ µWN

2

(
N∑
i=k

Wi

)
=
µWN

2
Sk,N .

Thus, (3.30) follows from (3.31).

For ease of reference we recall here a classical fact about multinomal distributions
(see, e.g., Formula (35.5) in [13]).

Lemma 3.11. For Y = (Y1, . . . , Ym) ∼ Multinomial(N, p1, p2, . . . , pm) and n1, n2, . . . , nm ∈
N0 we have

E [(Y1)n1
(Y2)n2

. . . (Ym)nm ] = (N)np
n1
1 pn2

2 · · · pnmm (3.32)

with n = n1 + n2 + · · ·+ nm.

Proof of Lemma 2.2. To verify (2.7) observe that from (2.4) with QN from (2.6)

L
(
V1
∣∣ (Wi)

)
= Bin (N,QN )

hence using (3.32) from Lemma 3.11

E
[
V1(V1 − 1) | (Wi)

]
= N(N − 1)Q2

N .

(2.7) follows from this via the formula cN = E[V1(V1 − 1)]/(8(N − 1)), see Lemma 3.1.

We now assume that (2.5) holds. In order to prove (2.9) we first verify that

lim sup
N→∞

NαE
[
Q2
N

]
≤ 8C

(Beta)
pair . (3.33)

Note that using (3.27) we can re-write

QN =
W1S2,N

W1S2,N + 1
2 (S2,N )2 − 1

2S
(2)
2,N

=
W1

W1 +
(S2,N )2−S(2)

2,N

2S2,N

. (3.34)

Put

ÃN,δ :=
{1− δ

2
µWN <

(S2,N )2 − S
(2)
2,N

2S2,N
<

1 + δ

2
µWN

}
.

We have

P
(
ÃN,δ

)
−→
N→∞

1, (3.35)

noting that S2,N/N → µW and S(2)
2,N/N

2 → 0 as N → ∞ in probability (for the latter use

thatW 2
i have regularly varying tails of index α/2 ∈ (1/2, 1), so in particular S(2)

2,N/N
2/α is

tight; this follows e.g. from [11, Thm. 2 in Section XVII.5]). Furthermore, consider

BN :=
{ (S2,N )2 − S

(2)
2,N

2S2,N
< µWN/5

}
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and note that P(BN ) ≤ e−rN for N large enough with r > 0 due to (3.30) from
Lemma 3.10 for k = 2. Since for small enough δ > 0 we have BN ⊂ ÃcN,δ it then
follows for those δ that

E
[
QN

2
]
≤ e−rN + E

[
W 2

1(
W1 + µWN/5

)2 1IÃcN,δ
]
+ E

[
W 2

1(
W1 + (1− δ)µWN/2

)2
]

= e−rN + E

[
W 2

1(
W1 + µWN/5

)2
]
P
(
ÃcN,δ

)
+ E

[
W 2

1(
W1 + (1− δ)µWN/2

)2
]

(3.36)

and Lemma 3.9 together with (3.35) implies

lim sup
N→∞

NαE
[
Q2
N

]
≤ cW

(
2

(1−δ)µW

)α
αB(2− α, α),

(3.33) follows by taking δ ↓ 0.

Analogous, in fact a little easier, arguments can be used to show that

lim inf
N→∞

NαE
[
Q2
N

]
≥ 8C

(Beta)
pair . (3.37)

Again using (3.34) we get

E
[
QN

2
]
≥ P(ÃN,δ)E

[
W 2

1(
W1 + (1 + δ)µWN/2

)2 ], (3.38)

now combine (3.35) with Lemma 3.9 as above and then let δ ↓ 0 to conclude (3.37).
(3.33) and (3.37) combined with (2.7) yield (2.9).

We now assume µ(2)
W < ∞. The proof of (2.8) is similar, in fact simpler: Instead of

using Lemma 3.9, we simply observe that in this case

lim
M→∞

M2E
[ W 2

1

(W1 +M)2

]
= lim
M→∞

E
[
W 2

1

M2

(W1 +M)2

]
= E

[
W 2

1

]
= µ

(2)
W

by dominated convergence. Thus, (3.36) implies that lim supN→∞N2E
[
Q2
N

]
≤ 4(1 −

δ)−2µ
(2)
W /µ2

W and (3.38) implies lim supN→∞N2E
[
Q2
N

]
≥ 4(1− δ)2µ

(2)
W /µ2

W . Taking δ ↓ 0,
this combined with (2.7) yields (2.8).

Proof of Lemma 3.7. 1. Assume µ(2)
W < ∞ and recall S2,N and S(2)

2,N from (3.26). Since

L
(
V1
∣∣ (Wi)

)
= Bin

(
N,QN

)
we have by (3.32)

E
[
(V1)3

∣∣ (Wi)
]
= (N)3

W 3
1 (S2,N )3

Z3
N

.

We re-write ZN = W1S2,N + 1
2

(
(S2,N )2 − S

(2)
2,N

)
as in (3.27). Lemma 3.10 shows that

(S2,N )2 − S
(2)
2,N ≥ (µW /2)NS2,N holds with probability ≥ 1− 2e−rN . Thus,

E
[
(V1)3

]
≤ N3E

[
W 3

1

(W1 + µWN/2)3

]
+ 2N3e−rN ,

and (3.18) follows as in the proof of [29, Proposition 7] with the help of (2.8) in Lemma
2.2.

2. Write

V ′ :=

N∑
j=3

V1,j , V ′′ :=

N∑
j=3

V2,j ,
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hence V1 = V1,2 + V ′, V2 = V1,2 + V ′′ and a straightforward calculation yields

(V1)2(V2)2 = (V1,2)4 + 4(V1,2)3 + 2(V1,2)2 + 2(V1,2)3(V
′ + V ′′) + 4(V1,2)2(V

′ + V ′′)

+ (V1,2)2(V
′′)2 + (V1,2)2(V

′)2 + 4(V1,2)2V
′V ′′ + 4V1,2V

′V ′′

+ 2V1,2V
′(V ′′)2 + 2V1,2V

′′(V ′)2 + (V ′)2(V
′′)2.

Instead of spelling out the details of this computation, note that there is a combinatorial
interpretation: Consider V1,2 + V ′ + V ′′ numbered balls, of which V1,2 are white, V ′

are red and V ′′ are blue. Then (V1)2(V2)2 counts the number of ordered pairs we can
form where the first pair consists of two distinct balls which are either white or red and
the second pair consists of two distinct balls which are either white or blue (and the
same ball(s) might possibly appear in both pairs). The right-hand side decomposes this
number: There are (V1,2)4 pairs where all balls are white and all are distinct, 4(V1,2)3
pairs where all balls are white and exactly one ball appears twice, etc.

Since the law of
(
V1,2, V

′, V ′′, N − V1,2 − V ′ − V ′′) given the (Wi) is

Multinomial
(
N,

W1W2

ZN
,
W1S3,N

ZN
,
W2S3,N

ZN
,

∑
3≤j<k≤N WjWk

ZN

)
we find using Lemma 3.11 in the first equality that

E
[
(V1)2(V2)2

∣∣ (Wi)
]

(3.39)

= (N)4
(
W1W2

ZN

)4
+ 4(N)3

(
W1W2

ZN

)3
+ 2(N)2

(
W1W2

ZN

)2
+ 2(N)4

(
W1W2

ZN

)3 (W1+W2)S3,N

ZN
+ 4(N)3

(
W1W2

ZN

)2 (W1+W2)S3,N

ZN

+ (N)4
(
W1W2

ZN

)2(W2S3,N

ZN

)2
+ (N)4

(
W1W2

ZN

)2(W1S3,N

ZN

)2
+ 4(N)4

(
W1W2

ZN

)2W1S3,NW2S3,N

Z2
N

+ 4(N)3
W1W2

ZN

W1S3,NW2S3,N

Z2
N

+ 2(N)4
W1W2

ZN

W1S3,N

ZN

(W2S3,N

ZN

)2
+ 2(N)4

W1W2

ZN

W2S3,N

ZN

(W1S3,N

ZN

)2
+ (N)4

(W1S3,N

ZN

)2(W2S3,N

ZN

)2
=

(N)4
Z4
N

(
W 4

1W
4
2 + 2W 3

1W
3
2 (W1 +W2)S3,N +W 2

1W
4
2 (S3,N )2 +W 4

1W
2
2 (S3,N )2

+ 4W 3
1W

3
2 (S3,N )2 + 2W 2

1W
3
2 (S3,N )3 + 2W 3

1W
2
2 (S3,N )3 +W 2

1W
2
2 (S3,N )4

)
+

4(N)3
Z3
N

(
W 3

1W
3
2 +W 2

1W
2
2 (W1 +W2)S3,N +W 2

1W
2
2 (S3,N )2

)
+

2(N)2W
2
1W

2
2

Z2
N

.

Recall

ZN =W1W2 + (W1 +W2)S3,N +
1

2

(
(S3,N )2 − S

(2)
3,N

)
from (3.28) and that we can bound

(S3,N )2 − S
(2)
3,N ≥ (1− δ)µ2

WN
2 ∨ µW

2
NS3,N

except on an event with exponentially small probability, cf. (3.29) and (3.30) from
Lemma 3.10.

We will not treat all the terms on the right-hand side of (3.39) in detail (but see
Remark 3.12 below) since the computations are long but otherwise relatively straightfor-
ward. Consider for example the term

E

[
W 2

1W
2
2 (S3,N )4

Z4
N

]
= E

 W 2
1W

2
2 (S3,N )4(

W1W2 + (W1 +W2)S3,N +
(
(S3,N )2 − S

(2)
3,N

)
/2
)4
 .
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If (1− δ)µWN ≤ S3,N ≤ 2µWN , say, we can estimate

W 2
1W

2
2 (S3,N )4

Z4
N

≤ 16µ4
WN

4 W 2
1W

2
2(

(W1 +W2)(1− δ)µWN + (1− δ)µ2
WN

2/2
)4

≤ 16(1− δ)−4 W 2
1(

W1 + µWN/2
)2 W 2

2(
W2 + µWN/2

)2 ,
hence

E

[
W 2

1W
2
2 (S3,N )4

Z4
N

1I(S3,N ≤ 2µWN)

]
≤ e−rN + 16(1− δ)−4

(
E

[
W 2

1(
W1 + µWN/2

)2
])2

≤ CN−2α

for N large enough where we used Lemma 3.9 in the last inequality.

On {S3,N ≥ 2µWN} we also have S2
3,N − S

(2)
3,N ≥ (µW /2)NS3,N with high probability.

Then

E

[
W 2

1W
2
2 (S3,N )4

Z4
N

1I(S3,N > 2µWN)

]
≤E

[
W 2

1W
2
2 (S3,N )4(

(W1 +W2)S3,N + (µW /4)NS3,N

)4 1I(S3,N > 2µWN)

]
+ e−rN

≤E

[
W 2

1W
2
2(

(W1 +W2) + µWN/4
)4
]
P(S3,N > 2µWN) + e−rN

≤

(
E

[
W 2

1(
W1 + µWN/2

)2
])2

P(S3,N > 2µWN) + e−rN = O(N−2α)

and we obtain

lim sup
N→∞

N2αE

[
W 2

1W
2
2 (S3,N )4

Z4
N

]
<∞.

Similarly, using Lemma 3.10

E

[
W 4

1W
4
2

Z4
N

]
≤ E

[
W 4

1W
4
2(

W1W2 + (W1 +W2)(1− δ)µWN + (1− δ)µ2
WN

2/2
)4
]
+ e−rN

≤ 24

(1− δ)4
E

[
W 4

1W
4
2(

W1W2 + (W1 +W2)µWN + µ2
WN

2
)4
]
+ e−rN

=
24

(1− δ)4
E

[
W 4

1

(W1 + µWN)4
W 4

2

(W2 + µWN)4

]
+ e−rN

and we obtain again

lim sup
N→∞

N2αE

[
W 4

1W
4
2

Z4
N

]
<∞

from Lemma 3.9.

The other terms in (3.39) can be treated analogously (see Remark 3.12) to yield

lim sup
N→∞

N2α−4E
[
(V1)2(V2)2

]
<∞. (3.40)

Since N2cN ∼ C
(Beta)
pair N3−α by (2.9) of Lemma 2.2 and 4 − 2α < 3 − α this proves the

claim (3.19).
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Remark 3.12. For a rough idea of the size of the terms on the right-hand side of (3.39)
we can argue as follows: Consider the “typical event” S3,N ≈ µN, (S3,N )2 − S

(2)
3,N ≈ µ2N2.

When W1 and W2 are both bounded, the right-hand side of (3.39) is then O(1), the
contribution of the case W1 ≈ Nβ1 , W2 ≈ Nβ2 is then ≈ Nγ with

γ = −α(β1 + β2) + 4

+
[
(4β1 + 4β2) ∨ (4β1 + 3β2 + 1) ∨ (3β1 + 4β2 + 1) ∨ (2β1 + 4β2 + 2) ∨ (4β1 + 2β2 + 2)

∨ (3β1 + 3β2 + 2) ∨ (2β1 + 3β2 + 3) ∨ (3β1 + 2β2 + 2) ∨ (2β1 + 2β2 + 4)
]

− 4
[
(β1 + β2) ∨ (β1 + 1) ∨ (β2 + 1) ∨ 2

]
.

Observe that when β1, β2 ≤ 1 this is= −α(β1+β2)+4+(2β1+2β2+4)−4·2 = (2−α)(β1+β2)
(< 3− α, note that we divide in (3.19) by cNN2 ≈ N3−α); when β1 < 1 ≤ β2, say, this is
= −α(β1 + β2) + 4 + (2β1 + 4β2 + 2) − 4(β2 + 1) = 2 + (2 − α)β1 − αβ2 (< 3 − α); when
β1, β2 > 1 this is = −α(β1 + β2) + 4 + (4β1 + 4β2)− 4(β1 + β2) = 4− α(β1 + β2) (< 3− α).
This confirms (3.40) at least on an intuitive level.

Proof of Lemma 3.8. We start by arguing that in order to show (3.20) it suffices to check
that for x ∈ (0, 1)

lim
N→∞

N

cN
P (QN > x) (3.41)

exists and is given by the right-hand side of (3.20) (note that this expression is continuous
in x). Indeed, since L

(
V1
∣∣ (Wi)

)
= Bin (N,QN ) and

Bin(N, p)({0, 1, . . . , d(1− ε)pNe} ∪ {b(1 + ε)pNc, . . . , N}) ≤ e−rN

for any p, ε ∈ (0, 1) with r = r(p, ε) > 0 by classical large deviation estimates for the
binomial distribution (e.g. [7], Thm. 2.2.3 and Ex. 2.2.23 (b)) we may write for ε > 0

P

(
V1
N

> x

)
= P

(
V1
N

> x
∣∣QN > x(1 + ε)

)
P (QN > x(1 + ε))

+P

(
V1
N

> x
∣∣x(1− ε) < QN ≤ x(1 + ε)

)
× P (x(1− ε) < QN ≤ x(1 + ε))

+P

(
V1
N

> x
∣∣QN ≤ x(1− ε)

)
P (QN ≤ x(1− ε)) .

Due to (3.41) and the continuity of the limit we can choose ε > 0 small and then N large
to make the second probability in the second term multiplied by N/cN and thus the
second term multiplied by N/cN arbitrarily small. By choosing N potentially larger and
by using the above large deviations result the conditional probabilities in the first and
third line are arbitrarily close to 1 respectively arbitrarily close to 0 even when multiplied
by N/cN ∼ 1/C

(Beta)
pair Nα by (2.9). Thus, the claim (3.20) now follows from (3.41).

As in the proof of Lemma 2.2 we re-express (see (3.34) and recall S2,N and S(2)
2,N from

(3.26))

QN =
W1

W1 +
(S2,N )2−S(2)

2,N

2S2,N

.

Recall that ÃN,δ :=
{

1−δ
2 µWN <

(S2,N )2−S(2)
2,N

2S2,N
< 1+δ

2 µWN
}
satisfies P

(
ÃN,δ

)
→ 1 as

N → ∞ for every δ > 0 (see (3.35) in the proof of Lemma 2.2), furthermore

P

(
ÃcN,δ ∩

{ (S2,N )2 − S
(2)
2,N

2S2,N
< µWN/5

})
≤ 3e−rN
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for N large enough with r = r(δ) > 0 (combine (3.29) and (3.30) from Lemma 3.10).
Thus

lim sup
N→∞

N

cN
P
(
{QN > x} ∩ ÃcN,δ

)
≤ lim sup

N→∞

N

cN
P
(
W1 > NµWx/5

)
P
(
ÃcN,δ

)
= 0

where we use N/cN ∼ Nα/C
(Beta)
pair by Lemma 2.2, combined with (2.5) and (3.35).

Now

lim sup
N→∞

N

cN
P
(
{QN > x} ∩ ÃN,δ

)
≤ lim sup

N→∞

N

cN
P

(
W1

W1 + (1− δ)µWN/2
> x

)
P
(
ÃN,δ

)
= lim sup

N→∞

Nα

C
(Beta)
pair

P
(
W1 >

x

1− x
(1− δ)µWN/2

)
=

(1− δ)−α

C
(Beta)
pair

cW
2α

µαW

(
1− x

x

)α
by the tail assumption (2.5), analogous to the proof of Lemma 14 in [29], and similarly
for the lim inf. Finally note that from (2.9) in Lemma 2.2 we have

cW (2/µW )α

C
(Beta)
pair

(
1− x

x

)α
=

8

B(2− α, α)

1

α

(
1− x

x

)α
=

8

B(2− α, α)

∫ 1

x

1

y2
y1−α(1− y)α−1 dy.

3.3 Proof of Proposition 2.5

In this section we prove Lemma 2.4 and Proposition 2.5, the main convergence result
for the diploid population model of Section 2.2, where potential offspring to parental
couples are generated as in a supercritical Galton-Watson process and then pruned. In
order to prove the main Proposition 2.5 we need two lemmas in addition to Lemma 2.4.
The proof of these auxiliary lemmas is postponed to Section 3.3.1.

Our proofs in this section are to some extent parallel to those in [29], especially those
of Lemmas 2.4 and 3.13. We note however that the arguments are somewhat more
involved, in particular due to the fact that X(N)

i , 1 ≤ i ≤ N are not independent. Our
proof of Proposition 2.5, 2. follows a slightly different route than that of its analogue, [29,
Thm. 4 (c)] in that we verify condition (1.5) on the law of the ranked offspring frequencies
directly without recourse to the moment criterion (1.6). One can alternatively prove
Proposition 2.5 by verifying (1.6) but this route appears more cumbersome here because
the Xi are not independent in our set-up.

Recall that the offspring V (N)
i,j of individual i and j are sampled from the “potential

offspring" X(N)
i,j , which are i.i.d.. We write V

(N)
i =

∑N
j 6=i V

(N)
i,j as before. Our first

observation concerns large deviations of the total number of potential offspring SN =∑
1≤i<j≤N X

(N)
i,j of (2.11) which by (2.15) has E[SN ] ∼ Nµ with µ > 1.

Lemma 3.13. For any ε > 0 there exist constants c = c(ε) > 0 and C = C(ε) <∞ such
that

P
(
SN ≤ (1− ε)Nµ

)
≤ e−cN for all N large enough (3.42)

and under Assumption (2.17) we have

P
(
SN ≥ (1 + ε)Nµ

)
≤ CN1−α for all N large enough (3.43)

(under Assumption (2.16), (3.43) holds with the right-hand side replaced by CN−1, i.e.,
by formally setting α = 2.)

The same bounds hold for S′
N := SN −X

(N)
1,2 and for S′′

N := SN −X
(N)
1 .
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We note that on {SN ≥ N}, conditioned on the X(N)
k,` ’s, each V

(N)
i is hypergeometric.

More precisely, if hypergeom(n,m, x) is the number of white balls in n draws without
replacement from an urn that contains m balls of which x are white balls and m− x are
black balls then V (N)

i ∼ hypergeom(N,SN , X
(N)
i ) conditionally on the X(N)

k,` ’s. However,

the V (N)
i ’s for different i are not independent.

We now consider A(N)
i,j , 1 ≤ i < j ≤ N to be i.i.d. ∼ Ber(pN ) (for other i 6= j ∈ [N ] put

A
(N)
j,i = A

(N)
i,j , A(N)

i,i = 0), as well as Y (N)
i,j , i, j ∈ N to be independent copies of X from

(2.13), independent of the A(N)
i,j ’s. A convenient parametrisation of the set-up from (2.12)

and (2.13) is to set
X

(N)
i,j = A

(N)
i,j Y

(N)
i,j . (3.44)

Note that

A
(N)
i :=

N∑
j=1

A
(N)
i,j , (3.45)

the number of different “potential partners” of individual i, is Bin(N − 1, pN )-distributed,

A(N) :=
∑

1≤i<j≤N

A
(N)
i,j , (3.46)

the total number of “potential offspring-generating” pairs, is Bin
(
N(N − 1)/2, pN

)
-

distributed.

Lemma 3.14. Let A(N)
i,j , 1 ≤ i < j ≤ N be i.i.d. ∼ Ber(pN ) with pN ∼ cX,1/N and

A
(N)
j,i = A

(N)
i,j for j > i as defined above. Then

P
(
∃ k ≤ N :

N∑
i 6=k

A
(N)
i,k ≥ logN

)
= O(N−b) (3.47)

for every b > 0.

For A(N) =
∑

1≤i<j≤N A
(N)
i,j as in (3.46) we have E[A(N)] =

(
N
2

)
pN ∼ cX,1N/2 and

P
(∣∣A(N) − E[A(N)]

∣∣ > εE[A(N)]
)
≤ 2 exp

(
−ε

2

3
E[A(N)]

)
. (3.48)

for all N and 0 < ε ≤ 1/2.

In the following we will drop the superscript (N) often for notational simplicity.

Proof of Proposition 2.5. 1. In view of Lemma 2.4 and Condition (1.7) it suffices to verify
that E[(V1)3] = o(N) for then φ1(3) = limN E[(V1)3]/(cNN

2) = 0 and this implies (1.5)
and (1.7) with Ξ′ = δ0 (see e.g. [20, Thm. 4 (b)]). This can be checked along the lines of
the proof of [29, Proposition 7]. We simply need that for some 0 < a < 1

lim sup
N→∞

E[X2
11I{X1≥Na}] = 0. (3.49)

To see that this is true we use (2.13) and (2.16) to estimate

E[X2
11I{X1≥Na}] = (N − 1)E

[
X2

1,2

(
1I{X1,2≥Na/2} + 1I{

∑N
j=3X1,j≥Na/2}

)]
≤ (N − 1) pNE

[
X21I{X≥Na/2}

]
+ (N − 1) pN

(
2

Na

)2

E[X2] → 0

as N → ∞. This shows (3.49) and thus the claim.
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2. Let V(1) ≥ V(2) ≥ · · · ≥ V(N) be the ranked Vi’s. We will verify that (1.5) holds with

Ξ′(dx) =

∫
[0,1]

δ(x/2,x/2,0,0,... ) Beta(2− α, α)(dx)

(and then Proposition 2.5, 2. follows from our main result, Theorem 1.1, via Condi-
tion (1.5)).

This in turn will follow if we show that for every k ∈ N, 1 > x1 ≥ x2 ≥ x3 ≥ · · · ≥ xk >

0 we have

lim
N→∞

1

2cN
P
(
V(1)

2N > x1,
V(2)

2N > x2, · · · ,
V(k)

2N > xk

)
=

∫
∆

1I(y1 ≥ x1, y2 ≥ x2, . . . , yk ≥ xk)
1

(y, y)
Ξ′(dy)

= 1I(x1 ≤ 1/2, k ≤ 2)

∫ 1

2x1

2

y2
Beta(2− α, α)(dy)

= 1I(x1 ≤ 1/2, k ≤ 2)
2

αΓ(2− α)Γ(α)

(
1− 2x1
2x1

)α
. (3.50)

Here we have used in the last line that with the substitution of z = (1− y)/y

Γ(2− α)Γ(α)

∫ 1

2x1

1

y2
Beta(2− α, α)(dy)

=

∫ 1

2x1

(
1− y

y

)α−1
dy

y2
=

∫ (1−2x1)/2x1

0

zα−1dz = α−1

(
1− 2x1
2x1

)α
. (3.51)

The intuition behind this result is the following: Vi,j > Ny with y > 0 is possible (only)
if Xi,j is of order N (and then with overwhelming probability the sum of all other Xk,`

with {k, `} 6= {i, j} is ≈ Nµ and both Vi and Vj are ≈ Vi,j up to terms which are o(N));
we then have

Vi,j ≈ N
Xi,j

Xi,j +Nµ

(using fluctuation bounds for hypergeometric distributions), thus

Vi,j > Ny “⇐⇒”
Xi,j

Xi,j +Nµ
> y ⇐⇒ Xi,j > Nµ

y

1− y
.

Furthermore

P

(
V(1)

2N
> x1,

V(2)

2N
> x2

)
≈ P

(
∃ exactly one pair i < j ≤ N with V(1) ≈ V(2) ≈ Vi,j > 2Nx1

)
+ o(N1−α).

Recall A(N) from (3.45). By Lemma 3.14, A(N) ≈ cX,1N/2, then

P

(
V(1)

2N
> x1,

V(2)

2N
> x2

)
∼ cX,1N

2
P

(
X > Nµ

2x1
1− 2x1

)
∼ cX,1N

2
cX,2N

−αµ−α
(

2x1
1− 2x1

)−α
=
cX,1cX,2
2µα

(
1− 2x1
2x1

)α
N1−α

(note that then because x1 ≥ x2, the event
{
V(1) > 2Nx1, V(2) < 2Nx2

}
is very unlikely).

Combining this with Lemma 2.4 suggests (3.50) for k = 2, namely

1

2cN
P

(
V(1)

2N
> x1,

V(2)

2N
> x2

)
≈ 4µα

cX,1cX,2αB(2− α, α)
Nα−1 cX,1cX,2

2µα

(
1− 2x1
2x1

)α
N1−α

=
2

αB(2− α, α)

(
1− 2x1
2x1

)α
.
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For ε > 0,

P(V(3) > εN) = o(N1−α) and P(V(1) > Ny,N(1− ε)y ≥ V(2)) = o(N1−α)

(both events require essentially that there are at least two distinct pairs {i, j} 6= {k, `}
with Xi,j , Xk,` ≥ (ε/2)N , say; observe that Vi,j ≤ Xi,j by definition).

A more detailed argument runs as follows: Let

Bi,j(y, ε) = B
(N)
i,j (y, ε) :=

{
X

(N)
i,j > Nµ

2y

1− 2y
, SN −X

(N)
i,j ≤ Nµ(1 + ε)

}
for y ∈ (0, 1/2), ε > 0. In the following we again drop the index N and note that

P
(
Bi,j(y, ε)

)
∼ P

(
X1,2 > Nµ

2y

1− 2y

)
∼ cX,1

N
cX,2

(1− 2y)α

(2y)αµα
N−α as N → ∞ (3.52)

because

P
(
Xi,j > Nµ

2y

1− 2y
, SN −Xi,j > Nµ(1 + ε)

)
= P

(
X1,2 > Nµ

2y

1− 2y

)
P
(
SN −X1,2 > Nµ(1 + ε)

)
≤ C

1

N

(1− 2y)α

(2y)αµα
N−α ·N1−α = C ′N−2α

by Assumption (2.17) and Lemma 3.13 using the fact that α > 1.

Since the Vk,`’s are hypergeometric conditional on the Xk,`’s with

E
[
Vi,j

∣∣Xk,`’s
]
= N

Xi,j

SN
= N

Xi,j

Xi,j + (SN −Xi,j)
on {SN ≥ N}

and the right-hand side is on Bi,j(y, ε) ∩ {SN ≥ N} bounded below by

N
Xi,j

Xi,j +Nµ(1 + ε)
≥ N

2y/(1− 2y)

2y/(1− 2y) + (1 + ε)
≥ N

2y

1 + ε
,

we have by fluctuation bounds for hypergeometric laws (e.g. as recalled in [29, Lemma 19];
see [6, 12]) and by conditioning on Xk,`’s that

P
({
Vi,j ≤ 2Ny/(1 + 2ε)

}
∩Bi,j(y, ε) ∩ {SN ≥ N}

)
≤ e−c(ε)N (3.53)

with c(ε) > 0. Using (3.53) as well as the fact that {Vi,j ≥ m} ⊂ {Vi ≥ m,Vj ≥ m} ⊂
{V(1) ≥ m,V(2) ≥ m} for every m and all i < j ≤ N we obtain that

lim sup
N→∞

1

2cN
P
( ⋃
i<j≤N

Bi,j
(
x1(1 + 2ε), ε

)
∩ {SN ≥ N}

)
(3.54)

= lim sup
N→∞

1

2cN
P
( ⋃
i<j≤N

{
Vi,j > 2Nx1

}
∩Bi,j

(
x1(1 + 2ε), ε

)
∩ {SN ≥ N}

)
≤ lim inf

N→∞

1

2cN
P

(
V(1)

2N
> x1,

V(2)

2N
> x1

)
.

Furthermore P(SN < N) ≤ e−cN for N large enough by Lemma 3.13 and for {i, j} 6=
{k, `} we have that

P
(
Bi,j

(
y, ε
)
∩Bk,`

(
y, ε
))

≤ P
(
Xi,j > Nµ 2y

1−2y , Xk,` > Nµ 2y
1−2y

)
≤
(
C

1

N
cX,2

(1− 2y)α

(2y)αµα
N−α

)2

.
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This gives

P

 ⋃
i<j≤N

Bi,j
(
x1(1 + 2ε), ε

)
∩ {SN ≥ N}


=

∑
i<j≤N

P
(
Bi,j

(
x1(1 + 2ε), ε

))
+O

(
N2 ·N−2−2α + e−cN

)
=

(
N

2

)
P
(
B1,2

(
x1(1 + 2ε), ε

))
+ o(N1−α). (3.55)

Combining (3.52), (3.54), (3.55) with the calculation in (3.51) and Lemma 2.4 yields

lim inf
N→∞

1

2cN
P

(
V(1)

2N
> x1,

V(2)

2N
> x1

)
≥
∫ 1

2x1(1+2ε)

2

u2
Beta(2− α, α)(du). (3.56)

For the matching upper bound we let

D(N) :=
⋂

i<j≤N

{
SN −X

(N)
i,j ≥ (1− ε)µN

}
∩
⋂
k≤N

{
A

(N)
k < logN

}
.

Note that if we choose ε small such that (1− ε)µ > 1 we in particular have SN ≥ N on
D(N). Also,

P
(
(D(N))c

)
≤ N2e−cN +N−b (3.57)

by Lemmas 3.13 and 3.14 where c > 0 and the constant b > 0 can be chosen (much)
larger than α− 1. Choose δ ∈

(
α−1
2 , α− 1

)
. Then

E(N) :=
{
∃ i < j ≤ N, k < ` ≤ N with {i, j} 6= {k, `} and Xi,j ≥ N (1+δ)/α, Xk,` ≥ N (1+δ)/α

}
due to (2.13) and (2.17) that

P
(
E(N)

)
≤
(
N2
)2 ( 1

N

C

(N (1+δ)/α)α

)2

= O(N−2δ) = o
(
N1−α) (3.58)

because δ > (α− 1)/2. We also have

D(N) ∩ (E(N))c ∩
{
V(1) ≥ 2Ny

}
⊂

⋃
i<j≤N

{
Vi,j ≥ (1− ε)2Ny

}
(3.59)

for N large enough since on D(N) ∩ (E(N))c every Vi consists of the sum of at most logN
many nonzero Vi,j (since this is true for Xi and Xi,j) of which only one can be larger
than N (1+δ)/α (note that (1 + δ)/α < 1 so that the largest Vi,j needs to be of the same
order as V(1)).

We now set

B̃i,j(y, ε) = B̃
(N)
i,j (y, ε) :=

{
X

(N)
i,j < Nµ

2y

1− 2y
, SN −X

(N)
i,j ≥ Nµ(1− ε)

}
.

Then we have by fluctuation bounds for hypergeometric distributions, analogous to the
argument for (3.53), that

P
({
Vi,j ≥ (1− ε)2Ny

}
∩ B̃i,j((1− 2ε)y, ε) ∩

{
SN ≥ N

})
≤ e−c(ε)N . (3.60)
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Combining (3.57), (3.58) and then (3.59) we see that

P
(
V(1) ≥ 2Ny

)
≤ P

(
(D(N))c

)
+ P

(
E(N)

)
+ P

(
{V(1) ≥ 2Ny} ∩D(N) ∩ (E(N))c

)
≤ P

({
V(1) ≥ 2Ny

}
∩D(N) ∩ (E(N))c ∩

⋂
i<j≤N

{
Xi,j <

2y(1− 2ε)

1− 2y(1− 2ε)
µN
})

+ P
( ⋃
i<j≤N

{
Xi,j ≥

2y(1− 2ε)

1− 2y(1− 2ε)
µN
})

+ o
(
N1−α)

≤ P

 ⋃
i<j≤N

{
Vi,j ≥ (1− ε)2Ny

}
∩

⋂
i<j≤N

B̃i,j((1− 2ε)y, ε) ∩
{
SN ≥ N

}
+

(
N

2

)
P
(
X1,2 ≥ 2y(1− 2ε)

1− 2y(1− 2ε)
µN
)
+ o
(
N1−α),

hence, by (3.60),

lim sup
N→∞

1

2cN
P
(V(1)
2N

> x1,
V(2)

2N
> x2

)
≤ lim sup

N→∞

1

2cN
P
(V(1)
2N

> x1

)
≤ lim sup

N→∞

1

2cN

(
N

2

)
P
(
X1,2 ≥ 2x1(1− 2ε)

1− 2x1(1− 2ε)
µN
)

≤
∫ 1

2x1(1−2ε)

2

u2
Beta(2− α, α)(du), (3.61)

where we have (as in the lower bound (3.56)) used (3.51) and (3.52) as well as Lemma
2.4. Now let ε ↓ 0 in (3.56) and (3.61) to obtain (3.50) for k ≤ 2.

Finally, for ε > 0 and N sufficiently large, we have

P
(
V(3) ≥ εN

)
≤ P

(
∃distinct i, j, k ≤ N : Xi, Xj , Xk ≥ εN

)
≤ P

(
(D(N))c

)
+ P

(
E(N)

)
= o
(
N1−α)

as above. Combining again with Lemma 2.4, this completes the proof of (3.50) for
k ≥ 3.

3.3.1 Proofs of auxiliary results

In this section we prove Lemma 2.4, 3.13 and 3.14. To start with we need one more
lemma.

Lemma 3.15. Let Y1, Y2, . . . be independent copies of Y > 0 with

P(Y > y) ∼ cY y
−α,

where cY ∈ (0,∞), α ∈ (1, 2). Let BN ∼ Bin(N, pN ) where pN ∼ cp/N with cp ∈ (0,∞)

and set

XN :=

BN∑
i=1

Yi.

Then we have that

∀ ε > 0 ∃N0, x0 <∞ : sup
N≥N0

sup
x≥x0

∣∣∣P(XN > x)

cpcY x−α
− 1
∣∣∣ ≤ ε.
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Proof. Write µ := E[Y1] (< ∞ because α > 1), Sm := Y1 + · · · + Ym. Inspection of the
proof of [24, Thm. 1] gives

∀ c > µ, ε > 0 ∃x∗ = x∗(c, ε) such that sup
m∈N

sup
x≥ cm∨x∗

∣∣∣ P(Sm > x)

mcY (x−mµ)−α
− 1
∣∣∣ ≤ ε (3.62)

(note that [24] considers centred summands, we apply the results from [24] to P(Sm >

x) = P(Sm −mµ > x−mµ).)
By assumption, cp := supN∈NNpN < ∞. For y > cp we have the elementary large

deviations bound

P(BN ≥ y) ≤ e−λyE
[
eλBN

]
≤ e−λy

(cp
N

(
eλ − 1

)
+ 1
)N

≤ exp
(
− λy + cp

(
eλ − 1

))
which holds for all N ∈ N, λ > 0. Choosing λ = log(y/cp) > 0 yields

P(BN ≥ y) ≤ exp
(
−yĨ(y)

)
for all N ∈ N, y > cp (3.63)

where Ĩ(y) = log(y/cp)− 1.

Fix ε > 0, choose x∗ so that the bound in (3.62) holds for some c > µ and potentially
enlarge x∗ further such that for all x ≥ x∗ we have x ≥ cm > µm for all m ≤ log x. Let
x∗∗ > ecp be so large that

sup
x≥x∗∗

xα

cpcY
exp

(
− Ĩ(log x) · log x

)
< ε

and

sup
x≥x∗∗

sup
1≤m≤blog xc

( x

x−mµ

)α
< 1 + ε.

For x ≥ x∗ ∨ x∗∗ we have

P(XN > x)

cpcY x−α
− 1 =

N∑
m=0

(
N

m

)
pmN (1− pN )N−m

(
P(Sm > x)

cpcY x−α
− 1

)

≤
blog xc∧N∑
m=0

(
N

m

)
pmN (1− pN )N−m

(
P(Sm > x)

cpcY (x−mµ)−α
(x−mµ)−α

x−α
− 1

)

+
xα

cpcY

N∑
m=dlog xe∧N

(
N

m

)
pmN (1− pN )N−m

≤
blog xc∧N∑
m=0

(
N

m

)
pmN (1− pN )N−m

(m
cp

(1 + ε)2 − 1
)
+

xα

cpcY
P
(
BN ≥ log x

)
≤
( (1 + ε)2

cp
E[BN ]− 1

)
+

xα

cpcY
exp

(
− Ĩ(log x) · log x

)
.

The right-hand side is smaller than 8ε when N ≥ N0 where N0 is chosen so that

E[BN ] < cp(1 + ε) for all N ≥ N0.

The lower bound can be proved analogously: it suffices to keep in the computation
above the sum over m up to blog xc ∧ N where x ≥ max{x∗, x∗∗, x†} with x† chosen so

large that
∑blog x†c∧N
m=0 m

(
N
m

)
pmN (1− pN )N−m ≥ (1− ε)E[BN ] uniformly in N ≥ N0, with a

suitably enlarged N0.

EJP 23 (2018), paper 49.
Page 38/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP175
http://www.imstat.org/ejp/


Coalescent results for diploid exchangeable population models

Proof of Lemma 3.14. Put cp := supn∈NNpN < ∞. A(N)
k :=

∑N
i6=k Ai,k ∼ Bin(N − 1, pN ),

we have (see (3.63))

P(A
(N)
k ≥ logN) ≤ exp

(
− logN

(
log log(N)− log cp − 1

))
= O

(
exp

(
− (b+ 1) logN

))
for any b > 0. The probability on the left-hand side of (3.47) is bounded by

∑N
k=1P(A

(N)
k ≥

logN) = O
(
N ·N−b−1

)
.

The probability bound in (3.48) is a classical large deviation bound for sums of
Bernoulli random variables (the claimed constant is not sharp).

(For completeness, here are some details:

E[eβA
(N)

] =
(
pN (eβ−1)+1

)N(N−1)/2 ≤ exp
(
pN

N(N − 1)

2

(
eβ−1

))
= exp

(
E[A(N)]

(
eβ−1

))
for any β ∈ R, hence (we parametrise λ ≥ 0 in the formulas below)

P
(
A(N) > (1 + ε)E[A(N)]

)
≤ e−λ(1+ε)E[A

(N)]E[eλA
(N)

] ≤ exp
(
E[A(N)]

(
eλ − 1− λ − ελ

))
and

P
(
A(N) < (1− ε)E[A(N)]

)
≤ eλ(1−ε)E[A

(N)]E[e−λA
(N)

] ≤ exp
(
E[A(N)]

(
e−λ − 1 + λ − ελ

))
.

Now put λ = ε and use that 0 ≤ eβ − 1− β ≤ (2/3)β2 for |β| ≤ 1/2.)

Proof of Lemma 3.13. (3.42) can be proved by classical large deviation bound argu-
ments, e.g. along the lines of the proof of [29, Lemma 5]. Alternatively, we see from
(3.48) in Lemma 3.14 by conditioning on the A(N)

i,j ’s in (3.44) that SN is indeed a sum of
≈ cX,1N/2 i.i.d. summands (up to an exponentially small error term) and then we can
literally apply [29, Lemma 5].

For (3.43) under Assumption (2.17) we represent SN via (3.44) and Lemma 3.14 as
a sum of at most (1 + ε/2)cX,1N/2 i.i.d. copies of X (up to an exponentially small error
term) and then apply [24, Thm. 1].

Under Assumption (2.16) we have c := supN E[(X
(N)
1 )2] < ∞ (cf. e.g. (3.68) below),

so P(X(N)
1 ≥ x) ≤ c/x2 by Markov’s inequality. [24, Thm. 2] then gives a bound of the

form CN−1 for the probability in (3.43).

Finally, note that S′′
N =d SN−1 and S′′

N ≤ S′
N ≤ SN .

With the help of Lemma 3.13 (and Lemma 3.15) we can now prove Lemma 2.4.
For this let us recall that the factorial moments for a hypergeometric random variable
H ∼ hypergeom(n,m, x) are given by (see e.g. Formula (39.6) in [13]),

E
[
(H)k

]
= (n)k

(x)k
(m)k

. (3.64)

Proof of Lemma 2.4. Recall that X1 = X
(N)
1 . We have by (3.64) and (3.42) of Lemma

3.13 that

cN =
E[(V1)2]

8(N − 1)
=

1

8(N − 1)
N(N − 1)E

[ (X1)2
(SN )2

1I(SN ≥ N)
]
+O(e−cN ). (3.65)

In the case of 1. we now observe that for every ε > 0

E

[
(X1)2
(SN )2

1I(SN ≥ N)

]
≤ E[(X1)2]

((1− ε)µN)2
+O(e−cN ), (3.66)

E

[
(X1)2
(SN )2

1I(SN ≥ N)

]
≥ E[(X1)21I(SN ≤ (1 + ε)µN)]

((1 + ε)µN)2
+O(N1−α) (3.67)
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by (3.42) and (3.43) of Lemma 3.13.

E[(X1)2] = E[X
2
1 ]− E[X1] = (N − 1)E[X2

1,2] + (N − 1)(N − 2)E[X1,2]
2 − (N − 1)E[X1,2]

∼ cX,1
(
E[X2]− E[X]

)
+
(
cX,1E[X]

)2
. (3.68)

Furthermore,

E
[
(X1)21I(SN > (1 + ε)µN)

]
≤ E

[
(X1)21I(X1 > εµN/2)

]
+ E

[
(X1)21I(SN −X1 > (1 + ε/2)µN)

]
−→
N→∞

0

due to the fact that by (3.68) and (3.43) of Lemma 3.13

E
[
(X1)21I(SN −X1 > (1 + ε/2)µN)

]
≤ E

[
(X1)2

]
· P
[
SN −X1 > (1 + ε/2)µN)

]
≤ CN1−α

with α = 2 and so as N → ∞,

E[(X1)21I(SN ≤ (1 + ε)µN)] ∼ E[(X1)2].

Combining this and (3.66), (3.67), and (3.68) with µ = cX,1µX/2 gives (2.18).

For showing 2. we first use (3.65), write SN = X1+(SN−X1) and use that by Lemma 3.13
for ε > 0,

P
[
(1− ε)µN ≤ SN −X1 ≤ (1 + ε)µN

]
→ 1.

We may then formally follow the argument in the proof of [29, Lemma 13] in order to
obtain

cN ∼ N

8
E
[ X2

1

(X1 +Nµ)2

]
.

Now note that P(X1 > x) = P(X
(N)
1 > x) ∼ cX,1cX,2x

−α as x → ∞ uniformly in N

by Lemma 3.15 and so the statement of Lemma 3.9 also holds in the current setting
implying that

cN ∼ N

8
(Nµ)−αcX,1cX,2αB(2− α, α).

A The weak convergence criterion for the total offspring num-
bers

Here, for ease of reference, we briefly recall some of the main results from Möhle
and Sagitov [22], Sagitov [27], Schweinsberg [28] in the notation of our Theorem 1.1
and its assumptions. Note that our offspring numbers (V1, . . . , VN ) by (1.2) are analogous
to the family size in each generation for haploid Cannings models. The only difference
comes from the fact that the Vi here sum to 2N whereas theirs sum to N .

Lemma A.1. Assume (1.6). For any j ∈ N, there exists a symmetric measure Fj , uniquely

determined on the simplex ∆j :=
{
(x1, . . . , xj) : x1 ≥ x2 ≥ · · · ≥ xj ≥ 0,

∑j
i=1 xi ≤ 1

}
via

its moments∫
∆j

xk1−2
1 · · ·xkj−2

j Fj (dx1, . . . , dxj) = φj (k1, . . . , kj) for k1, . . . , kj ≥ 2.

Proof. We refer to the analog proof for Lemma 3.1 in [22].
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Lemma A.2. The recursive formula for ψj,s (k1, . . . , kj) by (1.8) over s holds as follows:

ψj,s+1 (k1, . . . , kj) =ψj,s (k1, . . . , kj)−
j∑
i=1

ψj,s (k1, . . . , ki−1, ki + 1, ki+1, . . . , kj)

− sψj+1,s−1 (k1, . . . , kj , 2) .

(A.1)

Proof. We refer to the analog proof for Lemma 3.3 in [22].

Proposition A.3. Assume (1.6).

1. For any j ≥ `, k1 ≥ m1,. . ., k` ≥ m`, we have φj (k1, . . . , kj) ≤ φ` (m1, . . . ,m`) .

2. For all j ∈ N and k1, . . . , kj ≥ 2, φj (k1, . . . , kj) are uniformly bounded.

Proof. Note that these φj ’s are exactly the particular case of ψj,s’s when s = 0. By
recursive formula (A.1), the monotonicity is true for φj ’s. This result has also been
proposed in the Remark on Page 39 of Möhle [21].

The uniform bounded property follows from monotonicity as

E
(
(V1)k1 · · · (Vj)kj

)
cNNk1+···+kj−j2k1+···+kj

≤
E ((V1)2)

4cNN
≤ 2,

where we have used cN = E ((V1)2) / [8 (N − 1)].

In order to represent those {ψj,s : j ∈ N, s ∈ N0} by integrations with respect to
symmetric measures {Fj : j ∈ N}, we define analogous polynomials

T
(r)
j,s (x1, . . . , xr) , 1 ≤ j ≤ r, r ∈ N and s ∈ N0

as
T (r)
r,s (x1, . . . , xr) = (1− x1 − · · · − xr)

s

and

T
(r)
r−j,s (x1, . . . , xr) = (−1)

j+1
ij+1−2∑
ij=2j−1

· · ·
i2−2∑
i1=1

j∏
k=0

ik

(
1−

r−k∑
i=1

xi

)ik+1−ik−2

, j = 1, . . . , r,

where i0 = −1 and ij+1 = s+ 1. Note that this implies T (r)
r−j,s (x1, . . . , xr) = 0 for s < 2j.

Lemma A.4. Assume (1.6). Then we have

ψj,s (k1, . . . , kj) =
∑
r≥j

∫
∆r

xk1−2
1 · · ·xkj−2

j T
(r)
j,s (x1, . . . , xr)Fr (dx1 · · · dxr) (A.2)

for all j ∈ N, k1, . . . , kj ≥ 2 and all s ∈ N0.

Proof. The proof is analogous to Lemma 3.5 and Lemma 3.14 in [22].

Theorem A.5. Assume (1.6). {ψj,s (k1, k2, . . . , kj) : s ∈ N0, j ∈ N, k1, . . . , kj ≥ 2} is the
collection of real numbers given by (A.2). It is clearly that these ψj,s (k1, k2, . . . , kj) are
nonnegative. The sequence of measures (Fj)j∈N in Lemma A.1 satisfies

1. each Fj is concentrated on ∆j =
{
(x1, . . . , xj) : xi ≥ 0 for all i and

∑j
i=1 xi ≤ 1

}
;

2. each Fj is symmetric with respect to the j coordinates of ∆j;
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3. F1 (∆1) ≥ F2 (∆2) ≥ · · · · · ·

Then there exists an E∞-valued coalescent process R∞ := (R∞ (t))t≥0 satisfying

1. R∞ (0) is the partition of N into singletons;

2. for each n, (Rn (t))t≥0 is the restriction of (R∞ (t))t≥0 on {1, 2, . . . , n}. When Rn
has b := k1 + · · · + kj + s blocks, k1, . . . , kj ≥ 2, each (b; k1, . . . , kj ; s)-collision is
occurring at rate ψj,s (k1, . . . , kj) given by (A.2). For such a simultaneous multiple
coalescent process R∞, there is a finite measure Ξ

′
on the infinite simplex ∆ of the

form Ξ
′
= Ξ

′

0 + aδ0, where Ξ
′

0 has no atom at zero and δ0 is a unit mass at zero, such
that

ψj,s (k1, k2, . . . , kj) =

∫
∆

s∑
`=0

(
s

`

) ∑
i1,...,ij+`
distinct

xk1i1 · · ·xkjij xij+1 · · ·xij+` (1− |x|)s−` 2Ξ
′

0 (dx)

(x, x)

+ 2a1I{j=1,k1=2}.

The connection between the probability measure Ξ
′
on the infinite dimensional simplex

∆ and the sequence of measures (Fj)j∈N is given by

Fj (S) =

∫
∆

∑
i1,...,ij
distinct

y2i1 · · · y
2
ij1I

{(
yi1,...,yir

)
∈S

} 2Ξ′

0 (dy)

(y, y)
+ 2a1I{r=1,(0,...,0)∈S}

with S ⊆ ∆r.

Proof. We refer to Theorem 2, Proposition 8 and Proposition 11 in Schweinsberg [28] as
well as Theorem 2.1 in Möhle and Sagitov [22] for details.

Condition I: The limits of

lim
N→∞

E
(
(V1 − 2)

k1 · · · (Vj − 2)
kj
)

cNNk1+···+kj−j2k1+···+kj

exist for all j ∈ N and k1, . . . , kj ≥ 2, which is also equal to φj (k1, . . . , kj).

Condition II: The limits of

lim
N→∞

E
(
(V1)2 · · · (Vj)2

)
cNN j22j

= Fj (∆j)

exist for all j ∈ N and

lim
N→∞

N j

cN
P (V1 > 2Nx1, . . . , Vj > 2Nxj) =

∫ 1

x1

· · ·
∫ 1

xj

Fj (dy1 · · · dyj)
y21 · · · y2j

holding for all points (x1, . . . , xj) of continuity for the measure Fj .

For any ε > 0, let∆r,ε := ∆r∩{x1, . . . , xr > ε}. Denote by Ξr,N the symmetric measure
on∆r giving the joint distribution of the vector (V1/2N, . . . , Vr/2N) of unranked offspring
frequencies. Let Ξr be a symmetric measure on the r-dimensional simplex ∆r.

Condition III: The weak convergence condition

1

2cN
NrΞr,N → Ξr as N → ∞
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over ∆r,ε, where the connection between Ξr and Ξ
′
is given by

Ξr (S) :=

∫
∆

∑
i1,...,ir
distinct

1I{
(
yi1 ,...,yir

)
∈S}

Ξ
′
(dy)

(y, y)

for all S ⊆ ∆r.
It is clear that the probability measure Ξ

′
is uniquely determined by the sequence of

measures (Ξr)r∈N.

Lemma A.6. Conditions (1.5), (1.6), I, II and III are equivalent.

Proof. (1.6) ⇔ Condition I and (1.6) ⇔ Condition II can be proved similarly as Page 1557
of [22]. Condition II ⇔ Condition III and (1.5) ⇔ Condition III can be proved following
Pages 849-852 of [27]. Here we omit the details.
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