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Abstract

Let P 1
n , . . . , P

d
n be n× n permutation matrices drawn independently and uniformly at

random, and set Sd
n :=

∑d
`=1 P

`
n. We show that if log12 n/(log log n)4 ≤ d = O(n), then

the empirical spectral distribution of Sd
n/
√
d converges weakly to the circular law in

probability as n→∞.
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1 Introduction

For an n× n matrix Mn let λ1(Mn), λ2(Mn), . . . , λn(Mn) be its eigenvalues. We define
the empirical spectral distribution (ESD) of Mn as follows:

LMn :=
1

n

n∑
i=1

δλi(Mn).

For a sequence of random probability measures {µn}n∈N, supported on the complex
plane, we say that µn converges weakly to a limiting probability measure µ, in probability,
if for every bounded continuous function f : C 7→ R,∫

fdµn −
∫
fdµ→ 0 as n→∞, (1.1)

in probability. If (1.1) holds almost surely we say that µn converges weakly to µ, almost
surely.
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Circular law for the sum of random permutation matrices

We are concerned in this paper with the ESD of certain random, non-normal matrices,
defined as follows. For a positive integer n, let πin, i = 1, 2, . . . denote i.i.d. permutations,
distributed uniformly on the symmetric group Sn. Let P in denote the associated permuta-
tion matrices, i.e., P `n(i, j) := I(π`n(i) = j) for ` ∈ [d], i, j ∈ [n] where for any integer m
we denote [m] := {1, 2, . . . ,m}. For d an integer, define Sdn as

Sdn(i, j) :=

d∑
`=1

P `n(i, j) =

d∑
`=1

I(π`n(i) = j). (1.2)

Note that Sdn can be viewed as the adjacency matrix of a d-regular directed multigraph.

For two sequences of positive reals {an} and {bn} we say that an = O(bn) (or an =

o(bn)) if for some universal constant C, lim supn→∞ an/bn ≤ C (respectively, = 0). We
say that an = ω(bn) if bn = o(an). The main result of this paper is the following theorem.

Theorem 1.1. If log12 n/(log log n)4 ≤ d = O(n) then the ESD of Sdn/
√
d converges

weakly to the uniform distribution on the unit disk in the complex plane, in probability,
as n→∞.

We refer to this result as the weak circular law for sums of permutations.

Remark 1.2. One expects the conclusion of Theorem 1.1 to hold almost surely. However,
the estimate on the smallest singular value of Sdn/

√
d − zI contained in Theorem 2.1

below is not sharp enough to allow for the application of the Borel–Cantelli lemma.
On the other hand, other estimates in the paper, and in particular the concentration
inequalities and the estimates on moderately small singular values, see Section 2 for
definitions, are not an obstacle to the application of Borel–Cantelli.

Remark 1.3. Theorem 1.1 is established for d ≥ log12 n/(log log n)4. One expects its
conclusion to hold as soon as d = ω(1). Obvious obstacles to proving this by our methods
are that the minimal singular value estimate, Theorem 2.1 below, requires d = ω(log8 n)

to be useful, and our loop equations main theorem, Theorem 2.6, is only effective when d
grows like a power of log n. Proving Theorem 1.1 for d = ω(1) remains a major challenge
and seems to require new ideas. It is possible that one could use the methods of [29] to
relax the assumptions in Theorem 2.1 to d = ω(1).

1.1 Background: ESD’s for non-normal matrices

The study of the ESD for random Hermitian matrices can be traced back to Wigner
[42, 43] who showed that the ESD’s of n×nHermitian matrices with i.i.d. centered entries
of variance 1/n (upper diagonal) satisfying appropriate moment bounds (e.g., Gaussian)
converge to the semicircle distribution. The conditions on finiteness of moments were
removed in subsequent work, see e.g. [5, 34] and the references therein. We refer to
the texts [30, 21, 39, 3, 5] for further background and a historical perspective.

Wigner’s proof employed the method of moments: one notes that the moments of
the semicircle law determine it, and then one computes by combinatorial means the
expectation (and variance) of the trace of powers of the matrix. This method (as well
as related methods based on evaluating the Stieltjes transform of the ESD) fails for
non-normal matrices since moments do not determine the ESD.

An analogue of Wigner’s semicircle law in the non-normal regime is the following
circular law theorem:

Circular law. Let Mn be an n×n matrix with i.i.d. entries of zero mean and unit variance.
Then the ESD of Mn/

√
n converges to the uniform distribution on the unit disk on the

complex plane.
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Circular law for the sum of random permutation matrices

The circular law was posed as a conjecture based on numerical evidence in the 1950’s.
For the case that the entries have a complex Gaussian distribution it can be derived
from Ginibre’s explicit formula for the joint density function of the eigenvalues [23, 30].
The case of real Gaussian entries, where a similar formula is available, was settled
by Edelman [18]. For the general case when there is no such formula, the problem
remained open for a very long time. An approach to the problem, which eventually
played an important role in the resolution of the conjecture, was suggested by Girko in
the 1980’s [24], but mathematically it contained significant gaps. The first non-Gaussian
case (assuming existence of density for the entries) was rigorously treated by Bai [4],
and after a series of partial results (see [12] and the references therein), the circular law
conjecture was established in its full generality in the seminal work of Tao and Vu [41].

Theorem 1.4 (Circular law for i.i.d. entries [41, Theorem 1.10]). Let Mn be an n × n
random matrix whose entries are i.i.d. copies of a fixed (independent of n) complex
random variable x with zero mean and unit variance. Then the ESD of 1√

n
Mn converges

weakly to the uniform distribution on the unit disk on the complex plane, both in
probability and in the almost sure sense.

A remarkable feature of Theorem 1.4 is its universality: the asymptotic behavior of
the ESD is insensitive to the specific details of the entry distributions as long as they are
i.i.d. and have zero mean and unit variance. It also extends to the sparse set-up. Namely
consider a matrix of i.i.d. entries where each entry is the product of a zero mean and
unit variance random variable, and an independent Bernoulli(p) random variable. From
the two concurrent works of Götze and Tikhomirov [25] and Tao and Vu [40] it follows
that if p decays polynomially in n, i.e. p ≥ nε−1 for some ε > 0, then the limit is still the
circular law. Later Wood [44] relaxed the moment assumptions of the entries. A recent
article by Basak and Rudelson [7] shows that the same limit continues to hold when p
decays at a poly-logarithmic rate. In all these works the entries of the matrix still enjoys
the independence and this feature plays a key role in the proofs. In [11], Bordenave,
Caputo and Chafaï studied random Markov generators where one puts i.i.d. entries on
the off-diagonal positions and sets each diagonal to be the negative of the corresponding
row-sum, showing that the limit law is a free additive convolution of the circular law and
a Gaussian random variable. Their result covers sparse ensembles, including the Markov
generator for a directed Erdős–Rényi graph with edge probability p(n) = ω(n−1 log6 n).

Circular laws for matrices with less independence between entries were subsequently
proved in [10], [1], [33], [2], and [32]. In particular, in [32] Nguyen showed that the
ESD of a uniformly chosen random doubly stochastic matrices converges weakly to the
circular law. Since the adjacency matrix of a random d-regular directed graph (digraph)
is a random doubly stochastic matrix, one is naturally led to the question of establishing
the limits of the ESD for such matrices. This was addressed in recent work of the second
author [16], where it was shown that the circular law holds for adjacency matrices of
random regular digraphs assuming a poly-log(n) lower bound on the degree.

A completely different story emerges when one replaces the Ginibre matrices by
other models whose distribution is invariant under the action of some large group (note
that Ginibre matrices are indeed invariant under right or left multipliction by unitary
matrices). The study of such invariant models was initiated by Feinberg and Zee [20],
who evaluated non-rigorously the limit of the ESD for such matrices and showed various
properties of the limit, e.g. that it is supported on a single ring in the complex plane.
By using a variant of Girko’s method adapted to the unitary group, this was put on a
rigorous basis by Guionnet, Krishnapur and Zeitouni [26], who evaluated the limit of the
ESD for a matrix of the form UD where D is diagonal satisfying some assumptions and
U is a random Haar-distributed unitary, and showed that it coincides with the Brown
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Circular law for the sum of random permutation matrices

measure of the associated limiting operators (an improved version appears in [37]).
Building on this and closer to the topic of this paper, Basak and Dembo [6] showed that
the ESDs of the sum Ûdn of d i.i.d. Haar distributed Unitary/Orthogonal matrices converge
to a probability measure µd whose density with respect to Lebesgue measure is given by

fd(z) :=
1

π

d2(d− 1)

(d2 − |z|2)2
I(|z| ≤

√
d), (1.3)

which coincides with the Brown measure of a sum of d free Haar unitaries. Note that
from this one easily concludes the existence of a sequence d = d(n) so that the ESD of

Û
d(n)
n /

√
d(n) converges to the circular law.

We finally get to our model: it sits at the intersection of sparse models of regular
directed (multi)-graphs and the sum of unitaries treated in [6]. Indeed, from the point
of view of the latter we replace unitary matrices which are Haar-distributed on the full
unitary group by unitaries which are Haar-distributed on the subgroup of permutation
matrices. In this case a formal application of Girko’s method leads one to expect
convergence to µd (if d is fixed, see e.g. [12]) or to the circular law when d = ω(1) (after
rescaling by

√
d). The goal of this paper is to establish that the latter indeed holds, at

least when d does not grow too slowly or too rapidly.

Remark 1.5. Our methods are not sharp enough to handle the case of d constant, both
for the reasons mentioned in Remark 1.3 and the fact that the loop equations for fixed
d are much more complicated. See however the recent work [8] for progress in this
direction for random d-regular graphs of sufficiently large fixed degree.

We end this section by pointing out that for fixed d, the random regular digraph
model considered in [16] is contiguous with the sum of permutations model conditioned
to have no parallel edges (i.e. with the matrix conditioned to have no entries larger than
1, an event which occurs with positive probability) [31, 27]. However, we are unaware
of any quantitative contiguity results that allow d to grow with n. Given such a result
(allowing d to grow faster than log12 n) it could be possible to deduce the main result of
[16] from Theorem 1.1, for some range of d; however, this would require a quantitative
version of Theorem 1.1 with failure probability smaller than the probability for the sum
of permutations to yield a 0/1 matrix, which is of order exp(−cd2).

1.2 Outline of the paper

In Section 2 we provide a brief outline of the proof techniques of Theorem 1.1. We
begin Section 2 by a short description of Girko’s method, which in a nutshell consists
of focusing attention on the logarithmic potential of the ESD of Sdn/

√
d. This is done by

analyzing the Hermitian matrix Tn(z) = (z − Sdn/
√
d)∗(z − Sdn/

√
d) with z ∈ C (hereafter,

for any n× n matrix Bn and z ∈ C, for brevity, we often write z −Bn to denote zIn −Bn).
To implement Girko’s method one requires good control on the smallest singular value
of Tn(z) as well as on its smallish singular values. The required control on the smallest
singular value is derived in Theorem 2.2 and an outline of its proof can be found in
Section 2.2. The desired control on the smallish singular values is obtained in Theorem
2.6 by controlling the difference of the Stieltjes transform of the ESD of T 1/2

n (z) at the
finite n level and at the putative limit, all the way up to (almost) the real line. An outline
of the proof of Theorem 2.6 is given in Section 2.3.

For Theorem 2.2, to control the smallest singular value of a matrix An we need to
control the infimum of ‖Anu‖2 over all u in the unit sphere. To this end, we break the
sphere into the set of “flat” vectors and its complement, where a vector is said to be
flat if it is close in `2 norm to a vector with a large number of equal components (for a
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Circular law for the sum of random permutation matrices

precise formulation see Definition 2.4). The infimum over flat vectors is taken care of in
Section 3 and the infimum over the remaining vectors is treated in Section 4.

Section 5 and Section 6 are devoted to control certain traces of polynomials in Sdn
and to derive concentration inequalities for Lipschitz functions of sum of permutations,
respectively. We then turn to the control on the Stieltjes transform of the ESD of T 1/2

n (z).
In Section 7.1 we show that the Stieltjes transform satisfies an (approximate) fixed point
equation, first in expectation and then, using the concentration results of Section 6, also
with high probability. In Section 7.2 we then finish the proof of Theorem 2.6 using the
stability of the fixed point equation, apriori lower bound on Stieltjes transform of the
ESD of T 1/2

n (z) far away from the real line, and a bootstrap argument.
Finally in Section 8 combining Theorem 2.2, Theorem 2.6, and using a replacement

principle (see Lemma 8.1) we finish the proof of Theorem 1.1.

1.3 Notational conventions

We write CJ for the subspace of vectors in Cn supported on J ⊂ [n], and write
BJ ,SJ for the closed Euclidean unit ball and sphere in this subspace. If J = [n], we
write Bn,Sn−1 for brevity. Given v ∈ Cn and J ⊂ [n], vJ denotes the projection of v to
CJ . 1 = 1n denotes the n-dimensional vector with all components equal to one, and
consequently 1J denotes the vector with jth component equal to 1 for j ∈ J and 0
otherwise. For x, y ∈ R we sometimes write x ∧ y to mean min(x, y).

2 Preliminaries and proof outline

2.1 Proof overview

In this section we provide an outline of the proof of Theorem 1.1. As we go along we
introduce necessary definitions and notation.

The standard technique to analyze the asymptotics of the ESD of a non-normal matrix
is Girko’s method [24]. The basis of this method is the following identity which is a
consequence of Green’s theorem: for any polynomial P (z) =

∏n
i=1(z − λi) and any test

function ψ ∈ C2
c (C),

n∑
j=1

ψ(λj) =
1

2π

∫
C

∆ψ(z) log |P (z)|dm(z),

where m is the Lebesgue measure on C and ∆ denotes the two-dimensional Laplacian.
Applying this identity with the characteristic polynomial P (·) of a matrix Mn yields∫

C

ψ(z)dLMn
(z) =

1

2πn

∫
C

∆ψ(z) log |det(zIn −Mn)|dm(z) (2.1)

=
1

4πn

∫
C

∆ψ(z) log det[(zIn −Mn)(zIn −Mn)∗]dm(z).

Next, associate with any n-dimensional non-Hermitian matrix Mn and every z ∈ C the
2n-dimensional Hermitian matrix

Mz
n :=

[
0 (zIn −Mn)

(zIn −Mn)∗ 0

]
. (2.2)

The eigenvalues of Mz
n are merely ±1 times the singular values of zIn −Mn. Therefore,

denoting by νzn the ESD of Mz
n, we have that

1

n
log det[(zIn −Mn)(zIn −Mn)∗] =

1

n
log |detMz

n| = 2〈Log, νzn〉 ,
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Circular law for the sum of random permutation matrices

where for any probability measure µ on R, 〈Log, µ〉 :=
∫
R

log |x|dµ(x). Therefore we have
the following key identity∫

C

ψ(z)dLMn(z) =
1

2π

∫
C

∆ψ(z)〈Log, νzn〉dm(z). (2.3)

The utility of Eqn. (2.3) lies in the following general recipe for proving convergence of
LMn

of a given family of non-Hermitian random matrices {Mn}:

Step 1: Show that for (Lebesgue almost) every z ∈ C, as n → ∞, the measures νzn
converge weakly, in probability, to some measure νz.

Step 2: Justify that 〈Log, νzn〉 → 〈Log, νz〉 in probability.

Step 3: A uniform integrability argument allows one to convert the z-a.e. convergence
of 〈Log, νzn〉 to the convergence of

∫
C

∆ψ(z)〈Log, νzn〉dm(z), for a suitable collection S ⊆
C2
c (C) of (smooth) test functions ψ. Consequently, it then follows from (2.3) that for each

fixed, non-random ψ ∈ S,∫
C

ψ(z)dLMn
(z)→ 1

2π

∫
C

∆ψ(z)〈Log, νz〉dm(z) , (2.4)

in probability.

Step 4: Upon checking that f(z) := 〈Log, νz〉 is smooth enough to justify the integration
by parts, one has that for each fixed, non-random ψ ∈ S,∫

C

ψ(z)dLMn
(z)→ 1

2π

∫
C

ψ(z)∆f(z)dm(z) , (2.5)

in probability. For S large enough, this implies the weak convergence of the ESDs
LMn to a limit which has the density 1

2π∆f with respect to Lebesgue measure on C, in
probability.

To prove Theorem 1.1 our plan is to establish Steps 1–4 for Mn = Sdn/
√
d. As has

been the case for other models of random matrices, Step 2 is the most challenging
part. Since νz is the ESD of a Hermitian matrix one can use tools such as the method of
moments or the Stieltjes transform to deduce Step 1. However log(·) being unbounded
both near zero and infinity the conclusion of Step 1 is not enough to establish Step 2.
One needs additional control on the large as well as small singular values of Sdn/

√
d− z.

To this end, we first note that the limit of the ESD of Sdn/
√
d, the circular law, is compactly

supported. Therefore one can actually check that establishing Steps 1–4 for z in a large
ball in the complex plane is enough to complete the proof of Theorem 1.1.

Next note that each row-sum and column-sum of Sdn is d and hence the maximal
singular value of Sdn/

√
d− z is O(

√
d) for any z in a large ball. One can also easily show

that the trace of Sdn(Sdn)∗/nd is bounded with high probability (see Section 5), which can
be used to show that νzn integrates x2, and hence log(x), near infinity.

Most of this paper is devoted to obtaining bounds on the small singular values of
Sdn/
√
d− z. First, one needs to have a lower bound on the smallest singular value. This is

derived in Theorem 2.1. The idea behind the proof of Theorem 2.1 is outlined in Section
2.2.

Next we need to show that there are not too many singular values near zero. Equiva-
lently, we need to show that the total mass of a small interval I around zero under the
ESD of Mz

n is not too large. That mass can be estimated by obtaining bounds on the
Stieltjes transform of the ESD at a distance from the real line which is comeasurate with
the length of I (for example, see Lemma 8.3). In Section 2.3 we provide an outline on
how to achieve the desired bounds on the Stieltjes transform of Mz

n (see Theorem 2.6).
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Circular law for the sum of random permutation matrices

2.2 Control on the smallest singular value

The following result provides the required lower bound on the smallest singular value
of 1√

d
Sdn − z.

Theorem 2.1. Fix any R > 0 and let z ∈ BC(0, R):= {z′ ∈ C : |z′| ≤ R}. Assume 1 ≤ d ≤
n100. There exists C2.1 <∞ depending only on R and an absolute constant C2.1 > 0 such
that

P

{
sn

( 1√
d
Sdn − zIn

)
≤ n−C2.1 logd∧n n

}
≤ C2.1

log4 n√
d ∧ n

, (2.6)

where sn(·) denotes the smallest singular value.

We deduce Theorem 2.1 from the following more general result. First we introduce
some notation. For an n× n matrix Mn we write

‖Mn‖〈1〉⊥ := sup
u∈Sn−1∩〈1〉⊥

‖Mnu‖2, (2.7)

where we recall Sn−1 := {u ∈ Cn : ‖u‖2 = 1} and ‖ · ‖2 denotes `2 norm.

Theorem 2.2. Fix an arbitrary γ0 ≥ 1. Let 1 ≤ d ≤ nγ0 , and let Zn be a deterministic
n× n matrix such that ‖Zn‖〈1〉⊥ ≤ nγ0 and Zn 1 = ζ 1, Z∗n 1 = ζ 1 for some ζ ∈ C. There

exists C2.2 <∞ depending only on γ0 and an absolute constant C2.2 <∞ such that

P
{
sn(Sdn + Zn) < n−C2.2γ0 logd∧n n ∧ |d+ ζ|

}
≤ C2.2

log4 n√
d ∧ n

. (2.8)

By taking Zn =
√
dzIn we immediately deduce Theorem 2.1 from Theorem 2.2.

Remark 2.3. In the proof of Theorem 2.2 it will be convenient to assume d ≤ n. We now
show how to reduce to this case (in fact we could reduce assuming d ≤ c0n for any fixed
constant c0 > 0). Suppose d > n, and let

Z ′n = Zn + Sdn − Snn .

Condition on πn+1
n , . . . , πdn to fix Z ′n. Then we have

• Z ′n 1 = (ζ + d− n)1 =: ζ ′ 1,

• (Z ′n)∗ 1 = ζ ′ 1,

• |n+ ζ ′| = |d+ ζ|,
• ‖Z ′n‖〈1〉⊥ ≤ ‖Zn‖〈1〉⊥ + ‖Sdn − Snn‖ ≤ nγ0 + d ≤ 2nγ0 .

Thus, after modifying γ0 slightly, we see that it is enough to prove Theorem 2.2 under
the additional assumption that d ≤ n.

On a high level, the proof of Theorem 2.2 follows the general strategy of the recent
work [16] of the second author, which establishes a similar result with Sdn replaced by a
uniform random 0–1 matrix constrained to have all row and column sums equal to d. We
now motivate some of the main ideas of this strategy.

From the definition of the smallest singular value we have

sn(Sdn + Zn) = inf
u∈Sn−1

∥∥(Sdn + Zn)u
∥∥

2
. (2.9)
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We note that 1 is an eigenvector of (Sdn + Zn)∗(Sdn + Zn) with eigenvalue |d + ζ|2. A
short argument then shows that to obtain (2.8) it suffices to control the infimum of∥∥(Sdn + Zn)u

∥∥
2

for u ∈ Sn−1 ∩ 〈1〉⊥. Denoting the rows of Sn +Zn by R1, . . . , Rn, we have

(Sdn + Zn)u = (R1 · u, . . . , Rn · u).

Thus, for a fixed vector u ∈ Sn−1 ∩ 〈1〉⊥, the task of controlling the probability that
(Sdn + Zn)u concentrates near the origin will involve bounding the probability that the
scalar random variables Ri · u concentrate near zero.

First we briefly review the argument from [36] for the case where Sdn is replaced by a
matrix Xn with i.i.d. centered entries ξij of unit variance. In this case we have

Ri · u = w +

n∑
j=1

ξijuj , (2.10)

w ∈ C is a deterministic quantity involving the entries of u and Zn. Then we can bound
P(|Ri · u| ≤ t) for small t > 0 using standard anti-concentration estimates. For instance,
we have the following Berry–Esséen-type bound (see Lemma 4.8): for fixed nonzero
v ∈ Cn and any r ≥ 0,

sup
z∈C

P

(∣∣∣∣z +

n∑
j=1

ξjvj

∣∣∣∣ ≤ r) = O

(
r + ‖v‖∞
‖v‖2

)
. (2.11)

For this bound to be effective when applied to u, we need u to be “spread” in the sense
that there is a set J ⊂ [n] with |J | ≥ cn such that |uj | ∼ 1/

√
n for all j ∈ J . After

conditioning on the variables ξij with j /∈ J , (2.11) gives

P(|Ri · u| ≤ t) = O

(
t+

1√
n

)
. (2.12)

This motivates partitioning the sphere into compressible and incompressible vectors,
which we now define. Denote supp(v) := {j ∈ [n] : vj 6= 0}, and for m ∈ [n] define the set
of m-sparse vectors

Sparse(m) :=
{
v ∈ Cn : | supp(v)| ≤ m

}
. (2.13)

For m ∈ [n] and ρ > 0, the set of (m, ρ)-compressible unit vectors is defined to be the
ρ-neighborhood of the set of m-sparse vectors in the sphere:

Comp(m, ρ) := Sn−1 ∩
(

Sparse(m) + ρBn
)
.

For m ≥ cn and ρ of constant order, one can show that incompressible vectors u ∈
Sn−1\Comp(m, ρ) are spread in the above sense, i.e. |uj | ∼ 1/

√
n for ≥ c′n elements

j ∈ [n] for some constant c′ > 0. Thus, (2.12) is effective for incompressible vectors.
While we only have a crude anti-concentration bound for compressible vectors, the
bound can be tensorized to show P(‖Mu‖2 ≤ c

√
n) ≤ e−cn for any fixed compressible

vector u. Then, from the fact that Comp(m, ρ) has low metric entropy (i.e. it can be
covered by a relatively small number of small balls) one can apply the union bound over
a suitable net to show infu∈Comp(c1n,c2) ‖(Xn + Zn)u‖2 ≥ c′

√
n with high probability if

c1, c2 are sufficiently small constants.
After obtaining uniform control on ‖(Xn +Zn)u‖2 for u ∈ Comp(c1n, c2), an averaging

argument shows that in order to obtain an estimate of the form

P
(
sn(Xn + Zn) ≤ t/

√
n
)

= O(t) + o(1),
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it suffices to get a bound of the form P(|Ri · u| ≤ t) = O(t) + o(1) for an arbitrary fixed
row Ri and u ∈ Sn−1\Comp(c1n, c2). But this now follows from (2.12). See [36] for the
detailed presentation of this argument.

The distribution of Sdn necessitates a somewhat modified approach, and in particular
a different notion of structure than compressibility. In order to make use of the anti-
concentration estimate (2.11) we will consider pairs of rows Ri1 , Ri2 . For each ` ∈ [d],
conditioning on the remaining n− 2 rows of P `n fixes π`n({i1, i2}). It follows that the i1-st
row of P `n is ej where j is drawn uniformly from π`n({i1, i2}), and ek denotes the k-th
standard basis vector. Since the matrices {P `n}`∈[d] are independent, it is then possible
to express

Ri1 · u = w +

d∑
`=1

ξ`(uπ`n(i1) − uπ`n(i2)) (2.14)

where {ξ`}`∈[d] are i.i.d. Rademacher variables and w ∈ C is some quantity that is
deterministic under conditioning on the rows [n]\{i1, i2} of all of the matrices {P `n}`∈[d].
By the discussion under (2.10), we can then get a bound on P(|Ri1 · u| ≤ t) for small
t > 0 via the Berry–Esséen-type bound (2.11), which will be effective when the vector of
differences (uπ`n(i1) − uπ`n(i2))`∈[d] is spread. This motivates the following:

Definition 2.4. For m ∈ [n] and ρ ∈ (0, 1), define the set of (m, ρ)-flat vectors

Flat(m, ρ) := Sn−1 ∩

(
ρBn +

⋃
λ∈C

(
λ1+ Sparse(m)

))
=
{
u ∈ Sn−1 : ∃ v ∈ Sparse(m), λ ∈ C with ‖u− v − λ1 ‖2 ≤ ρ

}
(2.15)

(where the set Sparse(m) was defined in (2.13)). We denote the mean-zero flat vectors by

Flat0(m, ρ) := Flat(m, ρ) ∩ 〈1〉⊥. (2.16)

For non-integral x ≥ 0 we will sometimes abuse notation and write Sparse(x), Flat(x, ρ),
etc. to mean Sparse(bxc), Flat(bxc, ρ).

Our first task is get a lower bound on infu∈Flat0(m,ρ) ‖(Sdn + Zn)u‖2 holding with high
probability for a suitable choice of m, ρ, which we obtain in Proposition 2.5 below. For a
parameter K ≥ 1 define the boundedness event

B(K) :=
{
‖Sdn + Zn‖〈1〉⊥ ≤ K

√
d
}

(2.17)

(recall our notation (2.7)). We will eventually take K = nγ0 for an arbitrary fixed γ0 ≥ 1

(cf. Section 4.4). For m ∈ [n] and ρ ∈ (0, 1) (possibly depending on n), define the event

EK(m, ρ) := B(K) ∩
{
∃u ∈ Flat0(m, ρ) : ‖(Sdn + Zn)u‖2 ≤ ρK

√
d
}
. (2.18)

Proposition 2.5 (Invertibility over flat vectors). There exist absolute constants C2.5,
c2.5,c2.5 > 0 such that the following holds. Let γ ≥ 1 and 1 ≤ K ≤ nγ . Assume
log3 n ≤ d ≤ n. Then

P

{
EK
(

c2.5n

γ log2 n
, n−C2.5γ logd n)

)}
≤ e−c2.5d (2.19)

for all n sufficiently large depending on γ.
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Section 3 is devoted to the proof of Proposition 2.5, and we defer discussion of the
proof ideas to that section.

The remainder of the proof of Theorem 2.2 is given in Section 4. Having obtained
control on flat vectors, our aim will then be to reduce the problem to obtaining an
anti-concentration estimate on Ri1 · u, which we express as in (2.14), for a fixed row Ri1
and fixed u ∈ Sn−1∩〈1〉⊥∩Flat(m, ρ)c. (Actually we will consider dot products of the form
(Ri1 −Ri2) · u, but these can also be expressed in the form (2.14).) As in the i.i.d. setting
discussed above this can be accomplished by an averaging argument, but the argument
here is more delicate due to the dependencies among the entries of Sdn. We adapt an
approach used in [29] for the invertibility problem for random regular digraphs. The
vector u must be chosen to be almost-orthogonal to the span of rows {Ri : i /∈ {i1, i2}},
and we want to ensure that the differences uπ`n(i1) − uπ`n(i2) are large for a large number
of ` ∈ [d]. If the indices π`n(i1), π`n(i2) were independent of u then it would be relatively
easy to show that because u is non-flat, a random choice of i1, i2 will give us a large
number of differences, on average. However, since both u and π`n(i1), π`n(i2) are fixed
by conditioning on {π`n(i) : i ∈ [n]\{i1, i2}, ` ∈ [d]} the argument requires some care. See
Lemma 4.4 for the details.

Having reduced to consideration of a random walk of the form (2.14) with a large
number of large differences uπ`n(i1) − uπ`n(i2), we can conclude using the Berry–Esséen-
type bound (2.11); this is done in Lemma 4.6. In Section 4.4 we combine all of these
elements to complete the proof of Theorem 2.2.

2.3 Control on the Stieltjes transform

We begin this section by fixing some notation. Denote C+ := {ξ ∈ C : Im ξ > 0}.
Fixing any z ∈ BC(0, R), for some R > 0, and ξ ∈ C+ we define the Green function as
follows:

G(Sdn) := G(Sdn, ξ, z) :=

(
ξ −

(
z − Sdn√

d

)(
z − Sdn√

d

)∗)−1

.

Instead of working with the Green function Gn(·), we will see that it will be easier to
work with its symmetrized version

G̃(Sdn) := G̃(Sdn, ξ, z) :=

ξ −
 0

(
z − Sdn√

d

)
(
z − Sdn√

d

)∗
0

−1

. (2.20)

We next define the Stieltjes transform of the ESD of (z − Sdn/
√
d)(z − Sdn/

√
d)∗ and its

symmetrized version,

mn(ξ) := mn(ξ, z) :=
1

n
Tr G(Sdn, ξ, z), m̃n(ξ) :=

1

2n
Tr G̃(Sdn, ξ, z).

Recall that the eigenvalues of the matrix

Sd,zn :=

 0
(
z − Sdn√

d

)
(
z − Sdn√

d

)∗
0

 (2.21)

are ±si(z−Sdn/
√
d) where si(z−Sdn/

√
d) are the singular values of z−Sdn/

√
d. Therefore,

m̃n(ξ) is the Stieltjes transform of the symmetrized version of the empirical measure of
the singular values of z − Sdn/

√
d, and one has

m̃n(ξ) = ξmn(ξ2). (2.22)
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Our goal is to show that m̃ converges to a limit m̃∞ which is the Stieltjes transform of a
probability measure on R and satisfies the equation

m̃∞(ξ)(ξ − m̃∞(ξ))2 + m̃∞(ξ)(1− |z|2)− ξ = 0. (2.23)

As explained above, we need a bit more: we need to control the difference |m̃n(ξ)−m̃∞(ξ)|
for all ξ ∈ C+ such that Im ξ ≥ (log2 n)−1. The proof of Theorem 1.1 only requires such
control for ξ purely imaginary. This is achieved in Theorem 2.6 below.

Theorem 2.6. Fix any sufficiently small ε > 0 and z ∈ BC(0, 1− ε). Take any sequence of
reals {$n}n∈N such that $n →∞ as n→∞. Then there exist a constant C̃2.6, depending
only on ε, absolute constants c2.6, C̄2.6, C2.6, and an event Ωn with

P(Ωcn) ≤ C2.6 exp(−c2.6(log n)2) + exp(−c2.6d),

such that for all large n, on the event Ωn we have

|m̃n(ξ)− m̃∞(ξ)| ≤ C̃2.6 max

{
1

d1/2
,

log n

n1/4

}
(Im ξ)−3

for all ξ ∈ Sε,$ where

Sε,$ :=
{
ξ = iη : η ∈ (0, C̄2.6], η3 min{d1/2, n1/4(log n)−1} ≥ $n

}
.

Remark 2.7. In Theorem 2.6 we treat the case when ξ is purely imaginary, which
simplifies some of the computations. One can use a similar idea as in the proof of Theorem
2.6 to control the difference of m̃n(ξ) and m̃∞(ξ) for all ξ ∈ C+ when Im ξ ≥ (log n)−C

for some C > 0. The key is to establish stability of the equation (2.23) for all ξ ∈ C+.
Since the proof of Theorem 1.1 does not require such control we do not attempt it here.

The key to the proof of Theorem 2.6 is to establish that m̃n(ξ) satisfies an approximate
version of the equation (2.23). That is we need to show that P̃ (m̃n(ξ)) ≈ 0 where
P̃ (m) := m(ξ −m)2 +m(ξ)(1− |z|2)− ξ. To show this, it is easier to work with m̂n(ξ), the
Stieltjes transform of the symmetrized version of the empirical measure of the singular
values of z − Ŝdn/

√
d where the entries of Ŝdn are now centered. Then concentration

bounds for Lipschitz functions of permutations under the Hamming metric also allow us
only to consider P̃ (Em̂n(ξ)).

To show that P̃ (Em̂n(ξ)) ≈ 0 we start with a function related to G̃(Ŝdn), where G̃(Ŝdn)

is defined by replacing S̃dn with Ŝdn in (2.20). Then we use the resolvent identity and
the fact that {P `n} are independent to identify the dominant and negligible terms. This
yields an approximate equation involving Em̂n(ξ) and an auxiliary variable. To remove
the auxiliary variable we derive another approximate equation.

However, this alone does not yield Theorem 2.6. Because P̃ (·) is cubic polynomial,
bounds on P̃ (·) do not translate to bounds on |m̃n(ξ) − m̃∞(ξ)|. Moreover, the bound
on P̃ (m̃n(ξ)) depends implicitly on an bound on m̃n(ξ) (see Lemma 7.1). To overcome
this difficulty, in Lemma 7.6 we show that if m̃n(ξ) if bounded below then a bound on
P̃ (·) can be translated to a bound on the difference between m̃n(ξ) and m̃∞(ξ). On other
hand, we can easily show that the desired bounds on m̃n(ξ) hold when ξ is far away from
the real line. This gives Theorem 2.6 when ξ away from the real line.

To propagate the above bound for all ξ ∈ Sε,$ we use a bootstrap argument. In
the random matrix literature the bootstrap argument has already been used on many
occasions to prove local law for different random matrix ensembles. Specifically, Erdős,
Schlein, and Yau [19] used it to prove the local semicircle law for Wigner matrices down
to the optimal scale. Subsequently it was generalized to prove local laws for other
ensembles of random matrices (see [9] and references therein).
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To carry out the above scheme for ξ ∈ C+ such that Im ξ is small we note that by
Lipschitz continuity and the boundedness property of m̃∞(ξ) derived in Lemma 7.8, the
bounds on m̃n(ξ) translates to a bound on the same with ξ replaced by ξ′, whenever
|Im ξ− Im ξ′| is small. These bounds on m̃n(ξ′) together with Lemma 7.1 yield the desired
bound on |m̃n(ξ′)− m̃∞(ξ′)|. Repeating this scheme we obtain the desired result for all
ξ ∈ Sε,$.

We note that in the work [16] on the spectrum of the adjacency matrix An,d for a
random d-regular digraph, a completely different argument is used to obtain quantitative
control on the Stieltjes transforms gξ,z(An,d) = 1

nTrG(An,d, ξ, z). There the approach is
by comparison, first replacing An,d with an i.i.d. 0–1 Bernoulli matrix Bn,p with entries
of mean p = d/n, and then replacing Bn,p with a suitably rescaled real Ginibre matrix
Gn (for which the desired bounds are known to hold), showing that gξ,z changes by a
negligible amount at each replacement. The comparison between gξ,z(Bn,p) and gξ,z(Gn)

is done using the standard Lindeberg swapping argument, whose use in random matrix
theory goes back to Chatterjee [14]. The comparison of gξ,z(An,d) with gξ,z(Bn,p) is done
by conditioning, basically showing that gξ,z(Bn,p) concentrates near its expected value
with failure probability smaller than the probability that Bn,p lies in An,d, the set of
adjacency matrices for d-regular digraphs. Since An,d is uniform in An,d, obtaining a
lower bound for the latter probability amounts to the enumerative problem of estimating
the cardinality of An,d, which can be solved with known techniques. It is possible that
this comparison approach could be adapted to the current setup, first replacing Sdn with
a discrete i.i.d. matrix Md

n having i.i.d. Poisson entries, and then replacing Md
n with a

Gaussian matrix. However, as Sdn is not drawn uniformly from a set of matrices the first
step would not reduce to an enumeration problem as it did for An,d, and hence this
step appears more challenging. Instead we would need a coupling between Sdn and Md

n,
together with a lower bound on the probability that they are close in an appropriate
norm. It is likely that a proof along these lines, even if doable, would be somewhat
lengthier than the approach taken in the present article.

3 Invertibility over flat vectors

In this section we prove Proposition 2.5. Throughout this section and Section 4 we
let Sdn and Zn be as in the statement of Theorem 2.2, except that some lemmas and
propositions are stated under additional assumptions on the range of d. (Recall from
Remark 2.3 that we are free to assume d ≤ n; also note that Theorem 2.2 trivially holds
for d ≤ log8 n.)

The general approach is similar to the proof in [16], and indeed we make use of two
lemmas from that work (Lemma 3.5 and Lemma 3.6). However, the differences between
the distribution of Sdn and the adjacency matrix of a uniform random regular digraph An,d
cause the proof here to differ on most of the particulars. We have attempted to structure
the proof in roughly the same way as in [16], and use Lemma 3.1 to encapsulate the parts
of the proof which are most different from that work. On a technical level, the proof
here is somewhat simpler as the joint independence of the permutations π`n allows us to
avoid the difficult coupling constructions of [16], as well as the use of heavy-powered
graph discrepancy results.

3.1 Anti-concentration for the image of a fixed vector

To lighten notation we will drop subscripts n from πn, π
`
n in this section.

We begin by obtaining lower tail bounds for the norm of (Sdn + Zn)u for a fixed vector
u ∈ Sn−1.

Lemma 3.1 (Image of a fixed vector). There exist absolute constants c3.1, c3.1 > 0 such
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that the following holds. Let d ≥ 1, and let u ∈ Cn be such that there are disjoint sets
J1, J2 ⊂ [n] and ρ > 0, with |J1| = |J2| = m, such that

|uj1 − uj2 | ≥
ρ√
n

∀j1 ∈ J1, j2 ∈ J2. (3.1)

Then

P

(
‖(Sdn + Zn)u‖2 ≤ c3.1ρmin

{√
md

n
, 1

})
≤ exp

(
−c3.1 min(md, n)

)
. (3.2)

Remark 3.2. We note that (3.2) is essentially optimal when md is small compared with
n, at least for the case Zn = 0 (and we are aiming for estimates that are uniform in
Zn). Indeed, ‖Sdnu‖22 =

∑n
i=1 |Ri · u|2, where Ri is the ith row of Sdn. When md = o(n) the

number of “good” rows Ri whose support overlaps the support of u will be roughly md
on average (in fact it concentrates near md, as will be shown in the proof). For each
good row Ri we will have E|Ri · u|2 ≈ 1/n, since the overlap of supports is of order 1 on
average, and coordinates uj are typically of size 1/

√
n. This means we should expect

‖Sdnu‖22 ≈ md/n, and (3.2) gives a lower bound at this scale. However, the bound is
suboptimal when m ≈ n, in which case there will be roughly � n good rows with overlaps
of order d, which suggests E‖Sdnu‖22 ≈ d in this case. Thus, we expect (3.2) to hold with
min(

√
md/n, 1) replaced with

√
md/n. The proof could be extended to give such a bound

by exploiting the randomness of all d permutations within each row (in the proof we only
use one permutation per row) but such a refinement is not necessary for our purposes.

The above lemma is a quick consequence of Lemma 3.3 below. First we need some
notation. We write J := J1 ∪J2, and for each k ∈ [d] we set Ik := (πk)−1(J) = I1

k ∪ I2
k with

Iak := (πk)−1(Ja) for a = 1, 2. Note that I1
k , I

2
k are disjoint sets of size m. We also denote

π<k := (π`)`∈[k−1], π>k := (π`)`∈[k+1,d], π(k) := (π`)`∈[d]\{k} (3.3)

and

U<k :=
⋃

`∈[k−1]

I`, U>k :=
⋃

`∈[k+1,d]

I`, U(k) :=
⋃

`∈[d]\{k}

I` (3.4)

(with U<1 = U>d := ∅). We further write π≤k := π<k+1, U≥k := U>k−1, etc. For fixed
u ∈ Cn and for k ∈ [d] let

Wk(u) :=
∑
i∈U≤k

|Ri · u|2, Xk(u) := exp

(
− n

ρ2
Wk(u)

)
.

Lemma 3.3. Let J1, J2, u, and m be as in Lemma 3.1. There are absolute constants
c0, c1 > 0 such that for any d0 ≤ min(d, c0n/m),

EXd0(u) ≤ e−c1md0 . (3.5)

Proof of Lemma 3.1. Let c0, c1 > 0 be as in Lemma 3.3 and let d0 = bmin(d, c0n/m)c. For
any c2 > 0 we have

P

(
‖(Sdn + Zn)u‖2 ≤ c2ρ

√
md0

n

)
= P

(
n∑
i=1

|Ri · u|2 ≤ c22ρ2md0

n

)

≤ P
(
Wd0(u) ≤ c22ρ2md0

n

)
.
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Using the pointwise bound I[0,∞)(x) ≤ exp((n/ρ2)x) followed by Lemma 3.3, we can
bound the last expression by

ec
2
2md0EXd0(u) ≤ exp((c22 − c1)md0).

Taking c2 = c
1/2
1 /2, the claim follows.

Proof of Lemma 3.3. Fix u as in the statement of the lemma. To lighten notation we will
drop the dependence on u from Xk(u),Wk(u) and write Xk,Wk.

First we note that for any ` ∈ [d], j1 ∈ J1, and j2 ∈ J2, if i ∈ (π`n)−1({j1, j2}), then we
have

P

{
|Ri · u| ≤

ρ

4
√
n

∣∣∣∣ π(`), ((π`)−1(j))j /∈{j1,j2}

}
≤ 1

2
. (3.6)

Indeed, fixing ((π`)−1(j))j /∈{j1,j2} we see that for any i ∈ (π`)−1({j1, j2}), either π`(i) = j1
or j2 with equal probability. Thus, under the conditioning in (3.6) we have

|Ri · u| = ∆i + uj1 or ∆i + uj2 ,

with equal probability, where ∆i is some non-random quantity depending on π(`),
((π`)−1(j))j /∈{j1,j2}. Using the assumption (3.1) and the triangle inequality we imme-
diately deduce (3.6). Now using (3.6),

E

(
exp

(
− n

ρ2
|Ri · u|2

) ∣∣∣∣ π(`), ((π`)−1(j))j /∈{j1,j2}

)
=

∫ 1

0

P
{
e
− n
ρ2
|Ri·u|2 ≥ s

∣∣∣ π(`), ((π`)−1(j))j /∈{j1,j2}

}
ds

≤ 1

2
(1− e−1/16) + e−1/16 =: 1− q. (3.7)

Now we establish the claim for the case m = 1, in which case J = {j1, j2}, and for
each k ∈ [d] we set Ik = {i1k, i2k}. The sets Ik are i.i.d. uniform random subsets of [n] of
size 2. Let d1 = c3d for some c3 > 0 to be determined later. For 2 ≤ k ≤ d1, say that k is
“bad” if Ik ∩ U<k 6= ∅, and let Bk be the event that k is bad. Then for each 2 ≤ k ≤ d1,

EI(Bk) ≤ 2d1 · n/
(
n

2

)
= O(c3) (3.8)

(recall our assumption d ≤ n from Remark 2.3). Thus we have that B :=
∑d1
k=2 I(Bk) is

stochastically dominated by a sum of i.i.d. indicator variables with expectation O(c3).
From the Chernoff bound it thus follows that

P(B > d1/2) ≤ e−cd, (3.9)

taking c3 sufficiently small. Let us denote the complement of this event by G. On G, there
exists a set G ⊂ [d1] with |G| ≥ d1/2 such that the sets {Ik}k∈G are pairwise disjoint. We
take G to be the largest such set (in the event of a tie we pick one in some measurable
fashion). We have

E
[
Xd1

∣∣ G, (πk)k/∈G, (Ik)k∈G
]
I(G)

≤E

[
exp

(
− n

ρ2

∑
k∈G

|Ri1k · u|
2

) ∣∣∣∣∣ G, (πk)k/∈G, (Ik)k∈G

]
I(G)

=
∏
k∈G

E

[
exp

(
− n

ρ2
|Ri1k · u|

2

) ∣∣∣∣ G, (πk)k/∈G, (Ik)k∈G

]
I(G) ≤ (1− q)|G|I(G).
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Thus, since d1 ≤ d0,

EXd0 ≤ EXd1 ≤ P(Gc) + EXd1I(G) ≤ e−cd + (1− q)d1/2 ≤ e−c
′d

for some constant c′ > 0, establishing the lemma for the case m = 1.

Now assume m ≥ 2. In fact we are now free to assume m ≥ C0 for some absolute
constant C0 > 0 to be specified later. Indeed, for m ≤ C0 we can simply pass to singleton
subsets of J1, J2 and apply the case m = 1 (adjusting the constant c1).

We next show that for any fixed k ∈ [d],

E

[
exp

− n

ρ2

∑
i∈Ik\U(k)

|Ri · u|2
 ∣∣∣∣∣ π(k), (πk(i))i∈U(k)

]

≤ E
[
(1− q)Mk

∣∣∣ π(k), (πk(i))i∈U(k)

]
, (3.10)

where

Mk := min(|I1
k\U(k)|, |I2

k\U(k)|). (3.11)

Note that the expectation in (3.10) is only taken over part of the randomness of the
permutation πk. The idea for the proof is that after some further conditioning we can
reduce to using only the randomness of πk on Mk pairwise disjoint sets T1, . . . , TMk

⊂
Ik\U(k) of size two, and the action of πk on these sets can be realized as the application
of Mk independent transpositions. Thus, we can extract a subsequence of Mk rows Rij
that are jointly independent under the conditioning, and apply the bound (3.7) to each
one.

We turn to the details. Fix k ∈ [d] and write Îak := Iak\U(k) for a = 1, 2. For given
m0 ∈ N and U ⊂ [n] let T (m0, U) be the collection of all sequences T := (Tj)

m0
j=1 of

pairwise disjoint 2-sets Tj := {i1j , i2j} ⊂ [n]\U . Given T ∈ T (m0, U), define the set

ST :=
⋂

j∈[m0]

{π ∈ Sn : |Tj ∩ (π−1(J1))\U | = |Tj ∩ (π−1(J2))\U | = 1}.

(Since π−1(J1), π−1(J2) are disjoint, this is the event that they bisect each of the sets Tj
for 1 ≤ j ≤ m0.) Conditional on π(k) and Mk, for any T ∈ T (Mk, U(k)),

E

exp

− n

ρ2

∑
i∈Ik\U(k)

|Ri · u|2
 ∣∣∣∣∣∣ π(k), (πk(i))i∈U(k)

, Mk

 I(πk ∈ ST)

≤ E

exp

− n

ρ2

Mk∑
j=1

|Ri1j · u|
2

 ∣∣∣∣∣∣ π(k), (πk(i))i∈U(k)
, Mk

 I(πk ∈ ST)

=

Mk∏
j=1

E

[
exp

(
− n

ρ2
|Ri1j · u|

2

) ∣∣∣∣ π(k), (πk(i))i∈U(k)
, Mk

]
I(πk ∈ ST)

≤ (1− q)MkI(πk ∈ ST),

where in the penultimate line we noted that under the conditioning and restriction to
πk ∈ ST the pairs of rows {(Ri1j , Ri2j )}

Mk
j=1 are jointly independent, and in the last line we

applied (3.7). Now letting T ′ := T ′(Mk, U(k)) ⊂ T (Mk, U(k)) be a sub-collection such that
{ST}T∈T ′ partitions the range of πk under the conditioning on π(k), (πk(i))i∈U(k)

,Mk, we
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have

E

[
exp

− n

ρ2

∑
i∈Ik\U(k)

|Ri · u|2
 ∣∣∣∣∣ π(k), (πk(i))i∈U(k)

, Mk

]

≤
∑
T∈T ′

(1− q)MkI(πk ∈ ST) ≤ (1− q)Mk .

Undoing the conditioning on Mk yields (3.10) as desired.
Define the decreasing sequence of sigma algebras

Fk :=
〈
π>k, (π`(i))`≤k,i∈U>k

〉
, k = 1, . . . , d− 1 (3.12)

and set Fd to be the trivial sigma algebra. In words, conditioning on Fk fixes the
permutations πk+1, . . . , πd, along with the values π`(i) for ` ≤ k and all i in the preimages
of J = J1 ∪ J2 under πk+1, . . . , πd. Note that F1 ⊃ · · · ⊃ Fd. Note also that for any k ∈ [d]

the random variable Mk defined in (3.11) is Fk−1-measurable. Indeed, conditioning
on Fk−1 fixes I1

k , I
2
k , U≥k, and π`(i) for all ` ≤ k − 1 and i ∈ Ik ⊂ U≥k, which in turn

determine
Iak ∩ U<k =

⋃
`≤k−1

{i ∈ Iak : π`(i) ∈ J}, a = 1, 2,

so Iak ∩ U c<k ∩ U c>k = Iak\U(k) are fixed as well for a = 1, 2.
From (3.10),

E[X1|F1] = E

[
exp

(
− n

ρ2

∑
i∈I1

|Ri · u|2
) ∣∣∣∣∣ F1

]

≤ E

exp

− n

ρ2

∑
i∈I1\U(1)

|Ri · u|2
 ∣∣∣∣∣∣ F1

 ≤ E [(1− q)M1
∣∣ F1

]
. (3.13)

Now letting 2 ≤ k ≤ d0, we have

E[Xk|Fk] = E

Xk−1E

exp

− n

ρ2

∑
i∈Ik\U(k)

|Ri · u|2
 ∣∣∣∣∣∣ π(k), (πk(i))i∈U(k)

 ∣∣∣∣∣∣ Fk


≤ E
[
Xk−1E

[
(1− q)Mk

∣∣∣ π(k), (πk(i))i∈U(k)

] ∣∣∣ Fk]
= E

[
Xk−1(1− q)Mk

∣∣ Fk] = E
[
E[Xk−1|Fk−1](1− q)Mk

∣∣ Fk] ,
where the penultimate equality follows upon noting that

Fk ⊂ 〈π(k), (πk(i))i∈U(k)
〉

and applying the tower property of the conditional expectation, and in the last step
we have used that Mk is Fk−1-measurable. Iterating this bound over 2 ≤ k ≤ d0 and
combining with (3.13) we obtain

E[Xd0 |Fd0 ] ≤ E

[
d0∏
`=1

(1− q)M`

∣∣∣∣∣ Fd0
]
≤ E

[
d0∏
`=1

(
(1− q)m/2 + I

(
M` <

m

2

)) ∣∣∣∣∣ Fd0
]
.

Thus,

EXd0 ≤ E
d0∏
`=1

(
(1− q)m/2 + I

(
M` <

m

2

))
=

d0∑
k=0

(1− q) 1
2m(d0−k)

∑
L∈([d0]

k )

P (EL) (3.14)

EJP 23 (2018), paper 33.
Page 16/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP162
http://www.imstat.org/ejp/


Circular law for the sum of random permutation matrices

where
EL :=

⋂
`∈L

{
M` <

m

2

}
.

Next we will show that for any L ⊂ [d0],

P(EL) ≤ e−cm|L|, (3.15)

for some absolute constant c > 0. Assuming (3.15), we have from (3.14) that

EXd0 ≤
d0∑
k=0

(
d0

k

)
(1− q) 1

2m(d0−k)e−cmk = ((1− q)m/2 + e−cm)d0 ≤ e−c
′md0 ,

where the last inequality is obtained by taking the constant C0 > 0 sufficiently large and
thus m ≥ C0. This yields (3.5) and hence Lemma 3.3.

It only remains to establish (3.15). Since the variables M` are exchangeable we may
take L = [k]. As I` = I1

` ∪ I2
` with |I1

` | = |I2
` | = m, on EL we have |I`\U(`)| < 3m/2 for

each ` ≤ k. Hence,

|U≤k| =

∣∣∣∣∣∣
⋃
`≤k

I`

∣∣∣∣∣∣ =
∑
`≤k

|I`\U<`| <
3

2
mk.

On the other hand,
|U<`| ≤ |U≤k| ≤ 2mk ≤ 2md0 ≤ 2c0n,

and since the sets I` are independent and uniformly distributed over
(

[n]
2m

)
, we have

E|I`\U<`| ≥ 2m (1− 2c0) ≥ 1.9m

for each ` ≤ k, where we took the constant c0 sufficiently small. Hence,

E|U≤k| =
k∑
`=1

E|I`\U<`| ≥ 1.9mk.

We have thus shown
P(EL) ≤ P(|U≤k| < 0.99E|U≤k|).

The latter probability can be shown to be at most e−cmk by an argument using stochastic
domination and the Chernoff bound similar to what was done in (3.8)–(3.9). This gives
(3.15) and hence the claim.

3.2 Weak control on flat vectors

In this subsection we establish the following, which already implies Proposition 2.5
when d ≥ n/ log n, but is weaker for smaller values of d. Recall the events EK(m, ρ) from
(2.18).

Lemma 3.4 (Invertibility over flat vectors, weak version). There are absolute constants
c3.4, c3.4, c′3.4 > 0 such that the following holds. Let γ ≥ 1 and 1 ≤ K ≤ nγ . Assume d ≥ 1.
Then for any 1 ≤ m0 ≤ c′3.4d/γ log n,

P

{
EK
(
m0,

c3.4
K
√
m0

)}
≤ e−c3.4d. (3.16)

We will need the following lemma from [16].

Lemma 3.5 (Metric entropy for flat vectors, cf. [16, Lemma 3.3]). Let 1 ≤ m ≤ n/10 and
ρ ∈ (0, 1). There exists Σ0 := Σ0(m, ρ) ⊂ Flat0(m, ρ) such that Σ0 is a ρ-net for Flat0(m, ρ)

and |Σ0| ≤
(
C3.5n
mρ2

)m
for some absolute constant C3.5 > 0.
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Proof of Lemma 3.4. Our plan is to use Lemma 3.1 first to obtain a bound on ‖(Sdn +

Zn)u‖2 for any arbitrary but fixed u ∈ Flat(m0, ρ0), where ρ0 := c/K
√
m0 for some c to

be determined determined during the course of the proof. Then using Lemma 3.5 we
claim that the metric entropy of Flat(m0, ρ0) is small enough to allow us to take a union
bound.

In order to apply Lemma 3.1 we need to find disjoint sets J1 and J2 such that
|uj1 − uj2 | is large for every j1 ∈ J1 and j2 ∈ J2. To this end, consider an arbitrary vector
u ∈ Flat0(m0, ρ0). By definition, there exists λ ∈ C, v ∈ Sparse(m0) and w ∈ ρ0BC(0, 1)

such that u = v + λ√
n
1+w. First we claim that

‖v + w‖2 ≥ 1/2. (3.17)

Indeed, by the triangle inequality,

|λ| =
∥∥∥∥ λ√

n
1

∥∥∥∥
2

≥ ‖u‖2 − ‖v + w‖2 = 1− ‖v + w‖2. (3.18)

On the other hand by the assumption u ∈ Sn−1 ∩ 〈1〉⊥ and applying the Cauchy–Schwarz
inequality we get

|λ|
√
n =

∣∣∣∣∣∣
n∑
j=1

(vj + wj)

∣∣∣∣∣∣ ≤ ‖v + w‖2
√
n

and so
|λ| ≤ ‖v + w‖2.

Combined with (3.18) this gives (3.17).
Let J ⊂ [n] with |J | = m0 such that supp(v) ⊂ J . Shrinking ρ0, if necessary, from

(3.17) we obtain

1

8
≤ 1

4
− ‖w‖22 ≤

∑
j∈J
|vj + wj |2 ≤ m0 max

j∈J

∣∣∣∣uj − λ√
n

∣∣∣∣2 .
It follows that there exists j1 ∈ J with∣∣∣∣uj1 − λ√

n

∣∣∣∣ ≥ 1

2
√

2m0
. (3.19)

On the other hand, since
∑
j∈Jc |wj |2 ≤ ‖w‖22 ≤ ρ2

0 it follows from the pigeonhole principle
that there exists j2 ∈ Jc such that∣∣∣∣uj2 − λ√

n

∣∣∣∣ = |wj2 | ≤
ρ0√

n−m0
≤ 1

5
√
m0

,

where we have used the fact that m0 = o(n) and the definition of ρ0. Now using the
triangle inequality we have

|uj1 − uj2 | ≥
1

4
√
m0

. (3.20)

To complete the proof of the lemma we then apply Lemma 3.1 with J1 = {j1}, J2 = {j2},
m = 1 and ρ = 1

4

√
n/m0. Recalling that u ∈ Flat0(m0, ρ0) was abitrary, we conclude the

bound

sup
u∈Flat0(m0,ρ0)

P

{
‖(Sdn + Zn)u‖2 ≤

c3.1
4

√
d

m0

}
≤ e−c3.1d, (3.21)

where we also use the fact that d ≤ n.
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Now by Lemma 3.5 we may fix a ρ0-net Σ0(m0, ρ0) ⊂ Flat0(m0, ρ0) for Flat0(m0, ρ0) of
cardinality at most (C3.5n/m0ρ

2
0)m0 . On the event EK(m0, ρ0) we have ‖(Sdn + Zn)v‖2 ≤

ρ0K
√
d for some v ∈ Flat0(m0, ρ0). Letting u ∈ Σ0(m0, ρ0) such that ‖u− v‖2 ≤ ρ0, by the

triangle inequality we have

‖(Sdn+Zn)u‖2 ≤ ‖(Sdn+Zn)v‖2+‖(Sdn+Zn)(u−v)‖2 ≤ ρ0K
√
d+ρ0‖Sdn+Zn‖〈1〉⊥ ≤ 2ρ0K

√
d,

where in the last step we have used the fact that EK(m0, ρ0) ⊂ B(K). Thus, by the union
bound,

P {EK(m0, ρ0)} ≤
∑

u∈Σ0(m0,ρ0)

P
{
‖(Sdn + Zn)u‖2 ≤ 2ρ0K

√
d
}
.

We choose c3.4 such that c3.4 ≤ c3.1/2 and hence 2ρ0K
√
d ≤ c3.1

√
d
m0

. Therefore, by

(3.21),

P {EK(m0, ρ0)} ≤ |Σ0(m0, ρ0)|e−c3.1d ≤
(
C3.5n

m0ρ2
0

)m0

e−c3.1d

=

(
C3.5nK

2

c23.4

)m0

e−c3.1d

≤ exp
(
(1 + 2γ)m0 log n+m0 log(C3.5/c

2
3.4)− c3.1d

)
≤ exp

(
−c3.1

3
d

)
,

where in the last step we choose c′3.4 suffciently small. The proof of the lemma thus
completes.

3.3 Proof of Proposition 2.5

In this subsection we upgrade the weak control on flat vectors obtained in Lemma
3.4 to obtain Proposition 2.5 by iterative application of Lemma 3.7 below. The idea is
that once we have shown Sdn + Zn is well-invertible over Flat(m0, ρ0) for some small
value of m0 ∈ [n] we can exploit the improved anti-concentration properties of vectors in
Sn−1\Flat(m0, ρ0). (Here and in the sequel, by saying that a matrix A is well-invertible
over a subspace B we mean that with high probability a good lower bound on ‖Au‖2 holds
for all u ∈ B.) This allows us to beat the increased metric entropy cost for Flat(m1, ρ1)

for some m1 > m0 that exceeds m0 by a factor (essentially) d, and some ρ1 > 0 somewhat
smaller than ρ0. We can iterate this roughly logd n times to obtain control on Flat(m, ρ)

with m essentially size n (up to log corrections). A similar iterative approach was used
in the sparse i.i.d. setup in [25] (with the sets Flat(m0, ρ0) replaced by sets of vectors
lying close to m0-sparse vectors).

For deducing the improved anti-concentration properties as we increment the param-
eter m we will need the following lemma from [16].

Lemma 3.6 (Locating a bimodal component, cf. [16, Lemma 3.5]). Let u ∈ Sn−1\
Flat(m?, ρ). There exist disjoint sets J1, J2 ⊂ [n] such that |J1| ≥ m?, |J2| ≥ c3.6(n−m?)

and
|uj1 − uj2 | ≥

ρ

4
√
n

∀ j1 ∈ J1, j2 ∈ J2, (3.22)

where c3.6 > 0 is some absolute constant.

Lemma 3.7 (Incrementing control on flat vectors). There exists absolute constants
c3.7, c

′
3.7, c3.7 > 0 such that the following holds. Let γ ≥ 1 and 1 ≤ K ≤ nγ . Assume

1 ≤ d ≤ n. Let

e−γ log2 n ≤ ρ? < 1 and 1 ≤ m? ≤ min

(
1

d
,

c3.6
1 + c3.6

)
n (3.23)
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and let m′, ρ′ satisfy

m? < m′ ≤
(

c′3.7d

γ log2 n

)
m? , 0 < ρ′ ≤

(
c3.7
√
m?d

Kn

)
ρ?. (3.24)

Then
P {EK(m′, ρ′)\EK(m?, ρ?)} ≤ exp

(
−c3.7m?d

)
. (3.25)

Proof. Let m?,m′, ρ?, ρ′ be as in the statement of the lemma (note that the lemma holds
vacuously for d ≤ log2 n by the assumptions (3.24)). Since the event EK(m, ρ) is monotone
in the parameters m, ρ, we may and will assume that the upper bounds (3.24) hold with
equality.

First we will argue

sup
u∈Flat0(m′,ρ′)\Flat0(m?,ρ?)

P

{
‖(Sdn + Zn)u‖2 ≤

c3.1ρ
?

4

√
m?d

n

}
≤ exp

(
−c3.1m∗d

)
. (3.26)

Indeed, consider an arbitrary fixed element u ∈ Flat0(m′, ρ′)\Flat0(m?, ρ?). Note that

Flat0(m′, ρ′)\Flat0(m?, ρ?) = Sn−1 ∩ 〈1〉⊥ ∩ Flat(m′, ρ′) ∩ Flat(m?, ρ?)c

⊂ Sn−1\Flat(m?, ρ?).

By the assumed upper bound on m? we can apply Lemma 3.6 to obtain disjoint sets
J1, J2 ⊂ [n] with |J1| ≥ m?, |J2| ≥ c3.6(n−m?) ≥ m?, such that

|uj1 − uj2 | ≥
ρ?

4
√
n

∀ j1 ∈ J1, j2 ∈ J2. (3.27)

By deleting elements from J1 and J2 we may assume |J1| = |J2| = m?. Now we apply
Lemma 3.1 to obtain

P

{
‖(Sdn + Zn)u‖2 ≤

c3.1ρ
?

4

√
m?d

n

}
≤ exp

(
−c3.1m∗d

)
where we have used the fact that m?d ≤ n. Since u was arbitrary, (3.26) follows.

As in the proof of Lemma 3.4 we conclude by application of the union bound. In-
deed, using Lemma 3.5 we fix a ρ′-net Σ′0 ⊂ Flat0(m′, ρ′) for Flat0(m′, ρ′) with |Σ′0| ≤
(C3.5n/m

′ρ′2)m
′
. By similar reasoning as in the proof of Lemma 3.4, on the event

EK(m′, ρ′), there exists u ∈ Σ′0 such that ‖(Sdn + Zn)u‖2 ≤ 2ρ′K
√
d. Since d ≤ n, choos-

ing c3.7 sufficiently small we also have that 2ρ′K
√
d ≤ (c3.1ρ

?/4)
√
m?d/n. Therefore,

applying the union bound and (3.26) we deduce,

P {EK(m′, ρ′)\EK(m?, ρ?)} ≤
∑
u∈Σ′0

P
(
EK(m?, ρ?)c ∩

{
‖(Sdn + Zn)u‖2 ≤ 2ρ′K

√
d
})

≤
∑

u∈Σ′0\Flat0(m?,ρ?)

P
(
‖(Sdn + Zn)u‖2 ≤ 2ρ′K

√
d
)

≤
(
C3.5n

m′ρ′2

)m′
exp

(
−c3.1m?d

)
≤ exp

(
m′
(

log(n3K2) + 2 log
1

ρ?
+ log

(
C3.5

c′23.7c
2
3.7

))
− c3.1m?d

)
.

Since K ≤ nγ , and ρ? and m′ satisfies (3.23) and (3.24) respectively we further obtain
that

P {EK(m′, ρ′)\EK(m?, ρ?)} ≤ exp
(
3c′3.7m

?d− c3.1m?d
)
.

Now we choose c′3.7 sufficiently small to complete the proof of the lemma.
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Proof of Proposition 2.5. We may and will assume throughout that n is sufficiently large
depending on γ. In the sequel, we will frequently apply the observation that the events
EK(m, ρ) are monotone increasing in the parameters m and ρ.

For k ≥ 0, set

mk :=

(
c2.5d

γ log2 n

)k
, ρ̃k := n−10γk, (3.28)

where c2.5 := c′3.4 ∧ c′3.7, and denote

Ek := EK(mk, ρ̃k).

Note that mk is an increasing sequence by our assumption d ≥ log3 n. From Lemma 3.4
and monotonicity of EK(m, ·), we have

P(E1) ≤ e−c3.4d. (3.29)

Let k∗ ≥ 0 be such that
n

d
∈ [mk∗ ,mk∗+1). (3.30)

From the definitions of k∗ and mk and using the fact that d ≥ log3 n we see that

k∗ ≤ C log n

log d
(3.31)

for a sufficiently large constant C > 0. By monotonicity of EK(·, ρ),

EK
(n
d
, ρ̃k∗+1

)
⊂ Ek∗+1.

Thus, applying the union bound,

P

{
EK
(

c2.5n

γ log2 n
, ρ̃k∗+2

)}
≤ P

(
EK
(

c2.5n

γ log2 n
, ρ̃k∗+2

)
\EK

(n
d
, ρ̃k∗+1

))

+ P(E1) +

k∗∑
k=1

P(Ek+1\Ek) (3.32)

where we interpret the last sum as zero if k∗ = 0. From (3.31) we have

ρ̃k∗+1 = n−10(k∗+2)γ ≥ exp
(
−γ log2 n

)
,

for n sufficiently large. Thus, we can apply Lemma 3.7 with m? = n/d and ρ? = ρ̃k∗+1 to
bound

P

{
EK
(

c2.5n

γ log2 n
, ρ̃k∗+2

)
\EK

(n
d
, ρ̃k∗+1

)}
≤ P

{
EK

(
n

d
× c2.5d

γ log2 n
, ρ̃k∗+1 ×

c3.7
√

(n/d)× d
Kn

)
\EK

(n
d
, ρ̃k∗+1

)}
≤ e−c3.7n ≤ e−c3.7d. (3.33)

For the case that k∗ ≥ 1, since

mk+1

mk
≤ c′3.7d

γ log2 n
,

ρ̃k+1

ρ̃k
= n−10γ ≤ c3.7

√
mkd

Kn

we may similarly apply Lemma 3.7 to deduce

P(Ek+1\Ek) ≤ e−c3.7d, (3.34)
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for each 1 ≤ k ≤ k∗. Combining (3.29) and (3.33)–(3.34), from (3.32) and our assumption
d ≥ log3 n we conclude

P

{
EK
(

c2.5n

γ log2 n
, ρ̃k∗+2

)}
≤ 4k∗e−cd ≤ e−cd/2,

where c is a sufficiently small positive constant. From (3.31) we have ρ̃k∗+2 ≥ n−C
′γ logd n

for a sufficiently large constant C ′ > 0. This completes the proof of the proposition.

4 Invertibility over non-flat vectors

Having shown that Sdn + Zn is well-invertible over vectors in Flat0(m, ρ) with m

essentially of size n (up to log factors), it remains to control the infimum of ‖(Sdn+Zn)u‖2
over the non-flat vectors u ∈ Sn−1 ∩ 〈1〉⊥ ∩ Flat(m, ρ)c. The metric entropy of non-flat
vectors is too large to take union bounds, so a different approach must be used for
reducing to consideration of (Sdn + Zn)u for a fixed vector u. We follow [36] by using
an averaging argument, which in the setting of i.i.d. matrices reduces the problem to
consideration of a dot product Ri · u for a single row vector Ri and a unit vector u that is
orthogonal to the span of the remaining rows (and hence may be treated as fixed).

In the present setting, in order to use random transpositions we must consider a
fixed pair of rows Ri1 , Ri2 and the dot product (Ri1 −Ri2) · u. Here u is a unit vector that
is (almost) orthogonal to the remaining n− 2 vectors as well as Ri1 + Ri2 . The lack of
independence between the rows makes the argument considerably more delicate than in
[38]. In particular, the vectors Ri1 , Ri2 and u all depend on the rows {Ri : i 6= i1, i2}, and
we want to avoid the event that, after conditioning on these n− 2 rows, the vector u is
not flat on the supports of Ri1 and Ri2 . To overcome this we will adapt an argument of
Litvak et al. that was used to bound the singularity probability for adjacency matrices of
random regular digraphs [29]. Specifically, we define “good overlap events” Oi1,i2 on
which we may select an appropriate (almost-) normal vector u that has “high variation”
on the supports of Ri1 , Ri2 , see Definition 4.3. In Lemma 4.4 we show that, if we restrict
to the events that

1. Sdn + Zn is well-invertible over flat vectors, and

2. Sdn has no holes in the sense that the nonzero entries are uniformly distributed in
all sufficiently large submatrices,

then the events Oi1,i2 hold for a constant proportion of pairs i1, i2 ∈ [n]. Event (1) holds
with high probability by Proposition 2.5, while the no-holes property (2) is shown to hold
with high probability in Section 4.1. We can then restrict to Oi1,i2 for some fixed i1, i2 by
an averaging argument, at which point we can control the dot product (Ri1−Ri2) ·u using
a Berry–Esséen-type bound. As with the previous section, the arguments are similar to
those in the work [16] for random regular digraphs, but differ in many particulars due to
the different nature of the distribution of Sdn.

4.1 The no-holes property

In the graph theory literature, a graph is said to enjoy a discrepancy property if
the number of edges between all sufficiently large pairs of vertex sets U, V is roughly
δ|U ||V |, where δ is the density of the graph. In terms of the adjacency matrix this says
that all sufficiently large submatrices have roughly the same density. We will need a
one-sided version of this property, called the no-holes property, to hold for Sdn with
high probability – namely, that all sufficiently large submatrices have density at least
half of the expected value. In fact, we will need this property to hold for all matrices
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{STn : T ⊂ [d]} obtained by summing only the permutation matrices P `n with ` ∈ T .
(Note that STn can be interpreted as the adjacency matrix for a random regular directed
multigraph.)

For L ⊂ [d] and I, J ⊂ [n], write

eL(I, J) :=
∑
`∈L

∑
i∈I

I(π`n(i) ∈ J). (4.1)

Since the permutations π`n have uniform distribution, by linearity of the expectation,

EeL(I, J) =
1

n
|L||I||J |. (4.2)

For k0 ∈ [d], n0 ∈ [n] we define the no-holes event

D(k0, n0) :=
⋂

L⊂[d]:
|L|≥k0

⋂
I,J⊂[n]:
|I|,|J|≥n0

{
eL(I, J) ≥ |L||I||J |

2n

}
. (4.3)

(This event actually only enforces a one-sided discrepancy property.)

Lemma 4.1 (No-holes property). Assume 1 ≤ d ≤ 10n. If k0n
2
0 ≥ C4.1n

2 for a sufficiently
large absolute constant C4.1 > 0, then

P (D(k0, n0)) ≥ 1− e−n. (4.4)

Proof. The proof follows from a result of [17] upon taking the union bound. Indeed, from
[17, Theorem 1.13] we have that for any fixed L ⊂ [d], I, J ⊂ [n],

P

(
eL(I, J) ≤ |L||I||J |

2n

)
≤ 2 exp

(
− 1

10n
|L||I||J |

)
. (4.5)

Combining this with the union bound,

P(D(k0, n0)c) = P

{
∃L ⊂ [d], I, J ⊂ [n] : |L| ≥ k0, |I|, |J | ≥ n0, eL(I, J) ≤ |L||I||J |

2n

}
≤ 2d+14n exp

(
−k0n

2
0

10n

)
.

Since d ≤ n the result immediately follows.

Remark 4.2. It is interesting to note that the dual property that Sdn has no dense patches
with high probability was a crucial ingredient in the work of Kahn–Szemerédi [22] on
the mirror problem of proving an upper tail bound for the second largest singular value
of Sdn (i.e. the operator norm of the centered matrix Sdn − d

n 11∗).

4.2 Good overlap via an averaging argument

In this and the next subsection we make use of the following notation: for distinct
i1, i2 ∈ [n] we denote

F(i1, i2) := 〈{π`n(i) : i 6= i1, i2}〉 (4.6)

that is, the sigma algebra of events generated by all but the i1-st and i2-nd rows of each
permutation matrix P `n, ` ∈ [d].

Definition 4.3 (Good overlap events). For i1, i2 ∈ [n] distinct, ρ, t > 0 and k ≥ 1, we
define the good overlap event Oi1,i2(k, ρ, t) to be the event that there exist u ∈ Sn−1∩〈1〉⊥
and L ⊂ [d] with |L| ≥ k such that the following properties hold:
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(a)
∣∣uπ`n(i1) − uπ`n(i2)

∣∣ ≥ ρ√
n

for all ` ∈ L,

(b)
∥∥(Sdn + Zn)(i1,i2)u

∥∥
2
≤ t√

n
, and

(c)
∣∣(Ri1 +Ri2) · u

∣∣ ≤ 2t√
n

.

Here (Sdn + Zn)(i1,i2) denotes the matrix obtained by removing rows i1, i2 from Sdn + Zn.
We note that the event Oi1,i2(k, ρ, t) is F(i1, i2)-measurable. Indeed, conditioning on
F(i1, i2) fixes the (Sdn + Zn)(i1,i2) as well as the pairs {π`n(i1), π`n(i2)}`∈[d], and the latter
determine the vector Ri1 +Ri2 and the differences {|uπ`n(i1) − uπ`n(i2)|}`∈[d].

For each pair of distinct indices i1, i2 ∈ [n] we choose an F(i1, i2)-measurable random
vector u(i1,i2) ∈ Sn−1 ∩ 〈1〉⊥ and an F(i1, i2)-measurable random set L(i1, i2) ⊂ [d] which,
on the event Oi1,i2(k, ρ, t), satisfy the stated properties (a)–(c) for u, L; off this event we
define u(i1,i2) and L(i1, i2) arbitrarily (but in an F(i1, i2)-measurable way).

For m ≥ 1 and ρ, t > 0 we define the “good” event that (Sdn + Zn) is well-invertible
over mean-zero flat vectors:

G(m, ρ, t) :=

{
∀u, v ∈ Flat0(m, ρ), min(‖(Sdn + Zn)u‖2, ‖(Sdn + Zn)∗v‖2) >

t√
n

}
. (4.7)

Lemma 4.4 (Good overlap on average). Assume d ≥ 1 and let 1 ≤ m ≤ c3.6
1+c3.6

n. For all
ρ > 0 and 0 < t ≤ |d+ ζ|

√
n,

P

({
sn(Sdn + Zn) <

t√
n

}
∩ G(m, ρ, t) ∩ D

(
c4.4md

n
,
m

4

))
≤ 2

mn

n∑
i1,i2=1

P

(
Oi1,i2

(
c4.4md

n
,
ρ

4
, t

)
∩
{∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣ ≤ 8t

ρ

})
(4.8)

for some absolute constant c4.4 > 0.

Remark 4.5. The condition t ≤ |d + ζ|
√
n is needed in order to bypass the possibility

that 1 is an approximate minimal singular eigenvector of Sdn + Zn. This can be best seen
if one chooses ζ = −d.

Proof of Lemma 4.4. Suppose the event on the left hand side of (4.8) holds. Let u, v ∈
Sn−1 be the respective eigenvectors of (Sdn + Zn)∗(Sdn + Zn), (Sdn + Zn)(Sdn + Zn)∗ with
eigenvalue (sn(Sdn+Zn))2. By our assumptions on Zn we have that 1 is also an eigenvector
of these matrices with eigenvalue |d+ ζ|2. Then since

sn(Sdn + Zn) <
t√
n
≤ |d+ ζ|

by assumption, it follows that u and 1 are associated to distinct eigenvalues of (Sdn +

Zn)∗(Sdn + Zn) and hence u ⊥ 1; we similarly have that v ⊥ 1. We have thus located
vectors u, v ∈ Sn−1 ∩ 〈1〉⊥ such that

‖(Sdn + Zn)u‖2, ‖(Sdn + Zn)∗v‖2 ≤
t√
n
. (4.9)

Furthermore, by the restriction to G(m, ρ, t) we have that u, v ∈ Sn−1 ∩ 〈1〉⊥ ∩Flat(m, ρ)c.
In the first stage of the proof, we show that there is a large number of “good” pairs

(i1, i2) ∈ [n]2 such that (1) |vi1 − vi2 | is reasonably large, and (2) |uπ`n(i1) − uπ`n(i2)| is
reasonably large for a large number of ` ∈ [d].
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We begin with (2), counting pairs (i1, i2) that are “good” with respect to u. Since
u ∈ Sn−1\Flat(m, ρ), by Lemma 3.6 there exist disjoint sets J1, J2 ⊂ [n] with |J1| = m

and
|J2| ≥ c3.6(n−m) ≥ c3.6

1 + c3.6
n ≥ m (4.10)

such that
|uj1 − uj2 | ≥

ρ

4
√
n
∀j1 ∈ J1, j2 ∈ J2. (4.11)

For i ∈ [n] and α ∈ {1, 2}, write

Lα(i) := {` ∈ [d] : π`n(i) ∈ Jα}.

Fixing c4.4 <
c3.6

4(1+c3.6) , define

I(u) :=

{
(i1, i2) ∈ [n]2 : |L1(i1) ∩ L2(i2)| > c4.4dm

n

}
. (4.12)

We will use our restriction to the no-holes event D(c4.4md/n,m/4) to show that I(u) is
large. First, let

I1 :=

{
i ∈ [n] : |L1(i)| ≥ dm

2n

}
.

We claim
|I1| > n− m

4
. (4.13)

Indeed, suppose |Ic1 | ≥ m/4. By our restriction to D(c4.4md/n,m/4) and the fact that
|J1| = m > m/4, we have

d|Ic1 |m
2n

≤ e[d](I
c
1 , J1) =

∑
i∈Ic1

|L1(i)| < dm|Ic1 |
2n

,

a contradiction. Hence, (4.13) holds. Now for i1 ∈ [n] let

I2(i1) :=

{
i ∈ [n] : |L1(i1) ∩ L2(i)| ≥ c4.4dm

n

}
.

We claim that for any i1 ∈ I1,

|I2(i1)| > n− m

4
. (4.14)

Indeed, suppose towards a contradiction that |I2(i1)c| ≥ m/4 for some i1 ∈ I1. From
(4.10) we have |J2| ≥ m, so by our restriction to D(c4.4md/n,m/4),

|L1(i1)||I2(i1)c||J2|
2n

≤ eL1(i1)(I2(i1)c, J2) =
∑

i∈I2(i1)c

|L1(i1) ∩ L2(i)| < |I2(i1)c|c4.4dm
n

,

which rearranges to
|L1(i1)||J2| < 2c4.4dm.

Since |J2| ≥ c3.6
1+c3.6

n and c4.4 <
c3.6

4(1+c3.6) , we have |L1(i1)| < dm/2n, which contradicts the
fact that i1 ∈ I1. This establishes (4.14). From (4.13) and (4.14) it follows that

|I(u)| ≥ |{(i1, i2) : i1 ∈ I1, i2 ∈ I2(i1)}| >
(
n− m

4

)2

> n2 − mn

2
. (4.15)

Now we count pairs that are “good” with respect to v. For i1 ∈ [n] write

Jv(i1) :=

{
i ∈ [n] : |vi1 − vi| ≥

ρ√
n

}
.
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Since v ∈ Sn−1\Flat(m, ρ) we must have that |Jv(i1)| > m for any i1 ∈ [n]. Indeed,
suppose |Jv(i1)| ≤ m for some i1 ∈ [n]. Denoting w := (v − vi1 1)Jv(i1) (for any vector
v′ and J ′ ∈ [n] we write v′J′ to denote the projection of the vector v′ onto coordinates
indexed by J ′), we have

‖v − vi1 1−w‖2 = ‖(v − vi1 1)Jv(i1)c‖2 < ρ.

But since w ∈ Sparse(m) this contradicts the assumption that v /∈ Flat(m, ρ). Thus,
putting

Ĩ(v) :=

{
(i1, i2) ∈ [n]2 : |vi1 − vi2 | ≥

ρ√
n

}
we have |Ĩ(v)| =

∑
i1∈[m] |Jv(i1)| ≥ nm. Set

I ′(u, v) := I(u) ∩ Ĩ(v).

Using the bound (4.15) we have

|I ′(u, v)| ≥ |Ĩ(v)| − |Ĩ(v)\I(u)| ≥ |Ĩ(v)| − |I(u)c| ≥ mn− mn

2
=
mn

2
. (4.16)

Now we show that Oi1,i2(c4.4md/n, ρ/4, t) holds for all (i1, i2) ∈ I ′(u, v) (in fact it
holds for all (i1, i2) ∈ I(u)). Indeed, the vector u and the set L = L1(i1) ∩ L2(i2) witness
the conditions (a)–(c) from Definition 4.3, as we now demonstrate. The condition that
|L| ≥ c4.4md/n follows from the definition of I(u). The condition (a) follows from (4.11)
and the definitions of L1(i1), L2(i2). Finally, (b) and (c) follow easily from (4.9) and the
triangle inequality:

‖(Sdn + Zn)(i1,i2)u‖2 ≤ ‖(Sdn + Zn)u‖2 ≤
t√
n
,

|(Ri1 +Ri2) · u| ≤ |Ri1 · u|+ |Ri2 · u| ≤ 2‖(Sdn + Zn)u‖2 ≤
2t√
n
.

A key point here is that while u and L = L1(i1) ∩ L2(i2) witness that the event Oi1,i2
(c4.4md/n, ρ/4, t) holds, we cannot take these to be u(i1,i2) and L(i1, i2), respectively, as u
and L are not themselves measurable with respect to F(i1, i2).

Now it remains to show that occurrence of all the events on the left hand side
of (4.8) implies also the occurrence of the event {

∣∣(Ri1 − Ri2) · u(i1,i2)
∣∣ ≤ 8t

ρ } for all
(i1, i2) ∈ I ′(u, v). By several applications of the Cauchy–Schwarz inequality and the fact
that Oi1,i2(c4.4md/n, ρ/4, t) holds, we have

t√
n
≥
∥∥v∗(Sdn + Zn)

∥∥
2
≥
∣∣v∗(Sdn + Zn)u(i1,i2)

∣∣
=

∣∣∣∣∣
n∑
i=1

viRi · u(i1,i2)

∣∣∣∣∣
≥
∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)

∣∣− ∥∥(Sdn + Zn)(i1,i2)u(i1,i2)
∥∥

2

≥
∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)

∣∣− t√
n
,

which implies that |(vi1Ri1 +vi2Ri2)·u(i1,i2)| ≤ 2t√
n

. Using the triangle inequality, recalling
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the definition of Ĩ(v), and using the fact that maxi |vi| ≤ ‖v‖2 = 1, we further obtain∣∣∣(vi1Ri1 + vi2Ri2) · u(i1,i2)
∣∣∣

=
1

2

∣∣∣(vi1 + vi2)(Ri1 +Ri2) · u(i1,i2) + (vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣∣

≥ 1

2

∣∣∣(vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣∣− ∣∣∣(Ri1 +Ri2) · u(i1,i2)

∣∣∣
≥ 1

2

∣∣∣(vi1 − vi2)(Ri1 −Ri2) · u(i1,i2)
∣∣∣− 2t√

n

≥ ρ

2
√
n

∣∣∣(Ri1 −Ri2) · u(i1,i2)
∣∣∣− 2t√

n
,

where in the second-to-last inequality we have used the property (c) of the event
Oi1,i2(c4.4md/n, ρ/4, t). Combining and rearranging we have∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣ ≤ 8t

ρ
.

We have thus shown that on the event E :=
{
sn(Sdn + Zn) ≤ t√

n

}
∩ G(m, ρ, t) ∩

D
(
c4.4md
n , m4

)
, the event E(i1, i2) := Oi1,i2

(
cmd
n , ρ2 , t

)
∩
{∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣ ≤ 8t
ρ

}
holds

for at least mn/2 values of (i1, i2) ∈ [n]2. By double counting,

n∑
i1,i2=1

IE(i1,i2) ≥
mn

2
IE .

Taking expectations on both sides and rearranging yields the desired bound.

4.3 Anti-concentration for random walks

In the previous section we essentially reduced our task to obtaining an anti-concen-
tration estimate for the random variable (Ri1 − Ri2) · u(i1,i2) for a fixed pair of distinct
indices i1, i2 ∈ [n]. We accomplish this in the following lemma (recall our notation (4.6)).

Lemma 4.6 (Anti-concentration for row-pair random walk). Let i1, i2 ∈ [n] be distinct,
and suppose Oi1,i2(k, ρ, t) holds for some k ≥ 1, ρ, t > 0. Then for all r ≥ 0,

P
{∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣ ≤ r ∣∣∣ F(i1, i2)
}
≤ C4.6

(
1 +

r
√
n

ρ

)(
log(n/ρ)

k

)1/2

(4.17)

for some absolute constant C4.6.

Remark 4.7. In the proof we will only use the lower bound |L(i1, i2)| ≥ k and property
(a) for u(i1,i2) and L(i1, i2) from Definition 4.3, which is why the bound is independent of
the parameter t.

We will need the following standard anti-concentration bound of Berry–Esséen-type;
see for instance [15, Lemma 2.7] (the condition there of κ-controlled second moment is
easily verified to hold with κ = 1 for a Rademacher variable).

Lemma 4.8 (Berry–Esséen-type small-ball inequality). Let v ∈ Cn be a fixed nonzero
vector and let ξ1, . . . , ξn be independent Rademacher variables. There exists an absolute
constant C4.8 such that for any r ≥ 0,

sup
z∈C

P

(∣∣∣∣z +

n∑
j=1

ξjvj

∣∣∣∣ ≤ r) ≤ C4.8

(
r + ‖v‖∞
‖v‖2

)
.
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Proof of Lemma 4.6. By symmetry we may take (i1, i2) = (1, 2). Condition on a realiza-
tion of {π`(i) : i /∈ {1, 2}, 1 ≤ ` ≤ d} such that Oi1,i2(k, ρ, t) holds. This fixes the vector
u(1,2) and the set L(1, 2) ⊂ [d]. For ease of notation we write u = u(1,2) and L = L(1, 2)

for the remainder of the proof. Let r ≥ 0. Our aim is to show

P
(∣∣(R1 −R2) · u

∣∣ ≤ r ∣∣ F(1, 2)
)
≤ C

(
1 +

r
√
n

ρ

)(
log(n/ρ)

k

)1/2

(4.18)

for some sufficiently large constant C. Let ξ1, . . . , ξd be i.i.d. Rademacher variables,
independent of all other variables, and for each ` ∈ [d] put

π̃`n := π`n ◦ τ
1
2 (ξ`+1)

(1,2)

where we recall τ(i1,i2) denotes the transposition that switches i1, i2, and we interpret

τ1
(i1,i2) = τ(i1,i2), τ

0
(i1,i2) = Id. Now let S̃dn be as in (1.2) but with each π`n replaced by

π̃`n. By the Haar distribution of π1
n, . . . , π

d
n and their independence from the Rademacher

variables ξ1, . . . , ξd, we have that S̃dn
d
=Sdn, even under conditioning on F(i1, i2). Moreover,

it is clear from the construction that π̃`n(i) = π`n(i) for all 3 ≤ i ≤ n and 1 ≤ ` ≤ d, so that
S̃dn agrees with Sdn on the third through n-th rows. We denote the first two rows of S̃dn by
R̃1 and R̃2. By replacing Sdn with S̃dn in (4.18), it now suffices to show

P
(∣∣(R̃1 − R̃2) · u

∣∣ ≤ r ∣∣∣ F(1, 2)
)
≤ C

(
1 +

r
√
n

ρ

)(
log(n/ρ)

k

)1/2

. (4.19)

Turning to prove (4.19) we note

(R̃1 − R̃2) · u =
∑
`∈[d]

uπ̃`n(1) − uπ̃`n(2)

=
∑
`∈[d]

(
uπ`(1) − uπ`(2)

)
I(ξ` = −1)−

(
uπ`(1) − uπ`(2)

)
I(ξ` = +1)

=
∑
`∈[d]

ξ`∂`(u), (4.20)

where
∂`(u) := uπ`(2) − uπ`(1). (4.21)

For j ≥ −1 let
L(j) :=

{
` ∈ L : 2−(j+1) < |∂`(u)| ≤ 2−j

}
.

By condition (a) in Definition 4.3 we have that |∂`(u)| ≥ ρ/
√
n for all ` ∈ L. Therefore,

L ⊂
log2(

√
n/ρ)⋃

j=−1

L(j).

Since |L| = k by the pigeonhole principle there must exists some j? such that

|L(j?)| ≥ k

2 log2(
√
n/ρ)

.

Set
v :=

(
∂`(u)I(` ∈ L(j?))

)
`∈[d]

∈ Cd.

For all ` ∈ L(j) we have |v`| ≥ ρ/
√
n and so

‖v‖2 ≥
ρ√
n
|L(j?)|1/2 ≥ ρ√

n

(
k

2 log2(
√
n/ρ)

)1/2

. (4.22)
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Moreover, since the components of v vary by at most a factor of 2 on L(j?) we also have
|v`| ≥ ‖v‖∞/2 for all ` ∈ L(j?). Therefore

‖v‖∞ ≤
2‖v‖2
|L(j)|1/2

≤
(

8 log2(
√
n/ρ)

k

)1/2

‖v‖2. (4.23)

Conditioning on {π` : ` ∈ [d]} and applying Lemma 4.8, we have

sup
z∈C

PL(j?)

∣∣∣∣z +
∑

`∈L(j?)

ξ`∂`(u)

∣∣∣∣ ≤ r
 = sup

z∈C
PL(j?)

(∣∣∣∣z +

d∑
`=1

ξ`v`

∣∣∣∣ ≤ r
)

≤ C4.8

(
r

‖v‖2
+
‖v‖∞
‖v‖2

)
≤ C4.8

(
1 +

r
√
n

ρ

)(
8 log2(

√
n/ρ)

k

)1/2

,

where PL(j?) denotes the law of {ξ`}`∈L(j?) . Applying this bound to the expression (4.20)
(after conditioning on {ξ` : ` /∈ L(j)} and absorbing the resulting deterministic summands
into the scalar z), we obtain (4.19) as desired.

4.4 Proof of Theorem 2.2

Now we combine the results of this section and Section 3 to complete the proof of
Theorem 2.2. Fix γ0 ≥ 1 and let Γ0 = C2.2γ0 logd n with C2.2 an absolute constant to be
chosen sufficiently large. We may and will assume that n is sufficiently large depending
on γ0. By Remark 2.3 we may assume

log8 n ≤ d ≤ n (4.24)

(the desired bound holds trivially for smaller values of d). Recall the boundedness event
B(K) from (2.17). From our hypotheses and the fact that ‖Sdn‖〈1〉⊥ ≤ ‖Sdn‖ = d we have

‖Sdn + Zn‖〈1〉⊥ ≤ ‖Sdn‖〈1〉⊥ + ‖Zn‖〈1〉⊥ ≤ d+ nγ0 ≤ 2nγ0 ≤ nγ0
√
d.

Thus the event B(nγ0) holds.
Set

m =
c2.5n

γ0 log2 n
, ρ = n−C2.5γ0 logd n , t =

√
n(n−Γ0 ∧ |d+ ζ|). (4.25)

Now using Lemma 4.4 we have

P
(
sn(Sdn + Zn) < n−Γ0 ∧ |d+ ζ|

)
≤ P (G(m, ρ, t)c) + P

(
D
(
c4.4md

n
,
m

4

)c)
+

2

mn

n∑
i1,i2=1

P

{
Oi1,i2

(
c4.4md

n
,
ρ

4
, t

)
∩
{∣∣(Ri1 −Ri2) · u(i1,i2)

∣∣ ≤ 8t

ρ

}}
. (4.26)

Taking C2.2 ≥ C2.5 + 1 we have t ≤ ρ. Then by Proposition 2.5 we see that

P (G(m, ρ, t)c) ≤ e−c2.5d. (4.27)

Using Lemma 4.1 and the lower bound in (4.24) (here we only need d = ω(log6 n)), we
see that

P

(
D
(
c4.4md

n
,
m

4

)c)
≤ e−n. (4.28)

EJP 23 (2018), paper 33.
Page 29/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP162
http://www.imstat.org/ejp/


Circular law for the sum of random permutation matrices

Next applying Lemma 4.6 yields that the third term in (4.26) is bounded by

2

mn
× n2 × C4.6

(
1 +

128t
√
n

ρ2

)(
log n+ log

4

ρ

)1/2√
n

c4.4md

≤ 256C4.6√
c4.4

1√
d

( n
m

)3/2 (
1 + n−Γ0+1+2C2.5γ0 logd n

)
(2 + C2.5γ0 logd n)1/2(log n)1/2

≤ Cγ0 log4 n√
d

(
1 + n−Γ0+1+2C2.5γ0 logd n

)
(4.29)

for some constant Cγ0 depending only on γ0. Taking C2.2 ≥ 3C2.5 and combining (4.26)–
(4.29) we conclude

P
(
sn(Sdn + Zn) < n−Γ0 ∧ |d+ ζ|

)
≤ e−c2.5d + e−n +

2Cγ0 log4 n√
d

≤3Cγ0 log4 n√
d

. (4.30)

The proof of Theorem 2.2 is now complete.

5 Control on traces

In this short section, we derive simple estimates on traces for permutation matrices
and for Sdn(Sdn)∗. We begin with the following simple estimate. Let πn be a random,
uniformly chosen permutation on [n], and let Pn denote the corresponding permutation
matrix.

Lemma 5.1. With notation as above,

P(TrPn ≥ k) ≤ 1

k!
, k ≥ 1. (5.1)

Proof. Let N` denote the number of cycles of length ` in πn. Note that TrPn = N1. Thus,
the event {TrPn ≥ k} is the union of the events that k particular indices are fixed points
in the permutation πn and therefore

P(TrPn ≥ k) = P(N1 ≥ k) ≤
(
n

k

)
1

n · (n− 1) · · · (n− k + 1)
=

1

k!
. (5.2)

Let now Sdn be as in (1.2). We have the following lemma.

Lemma 5.2. With notation as above, there exists absolute constants c5.2, C ′5.2, and C5.2

so that

P(TrSdn(Sdn)∗ ≥ nd+ xd2) ≤ de−d(x−e), x ≥ e, (5.3)

for any d ≥ C5.2. In particular, there exists an absolute constant C5.2 so that

ETr (Sdn(Sdn)∗)2 ≤ 2nd2 + C5.2d
4. (5.4)

Proof. Note that

Sdn(Sdn)∗ = dIn +

d∑
i6=j=1

P in(P jn)∗. (5.5)
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Therefore, using that P in(P jn)∗ with i 6= j is distributed like Pn, and that for fixed i they
are independent of each other, we get from (5.1) that

P(TrSdn(Sdn)∗ ≥ nd+ xd2)≤ P

 d∑
i 6=j=1

TrP in(P jn)∗ ≥ xd2

≤ dP
 d∑
j=2

TrP in(P 1
n)∗ ≥ xd


≤ dP

(
d∑
i=1

TrP in ≥ xd

)
.

(5.6)

From (5.1) we have that E(eTrP in) ≤ ee, and therefore, by independence and Markov’s
inequality,

P

(
d∑
i=1

TrP in ≥ xd

)
≤ e−xdeed = e−(x−e)d. (5.7)

Substituting in (5.6) we obtain that

P(TrSdn(Sdn)∗ ≥ nd+ xd2) ≤ de−(x−e)d,

which completes the proof.

Note that Lemma 5.2 together with (5.1) imply that with Qn = (z − Sdn/
√
d)(z −

Sdn/
√
d)∗,

P(TrQn > ((|z|2 + 1)n+ 2|z|
√
dx+ dx)) ≤ de−c

′dx, (5.8)

for some absolute constant c′, and d and x sufficiently large. Indeed,

TrQn ≤ |z|2n+
1

d
TrSdn(Sdn)∗ + 2|z| 1√

d
TrSdn,

and the conclusion follows by a union bound and the estimates in (5.3) and (5.7).

6 Concentration for resolvent sub-traces

In this section we derive concentration bounds on the traces of the diagonal and
the off-diagonal blocks of the resolvent G̃(Sdn). To prove Theorem 2.6 we will need to
consider the resolvent of Sdn shifted by some deterministic matrices. Hence, we introduce
the following notation. Let Mn := M be a deterministic matrix of size n×n. Fix ξ ∈ C\R,
z ∈ C and define

FM (ξ) =:

[
FM11 (ξ) FM12 (ξ)

FM21 (ξ) FM22 (ξ)

]
=: G̃M (Sdn, ξ, z)

:=

ξI −
 0

(
z − Sdn√

d
+M

)
(
z − Sdn√

d
+M

)∗
0

−1

.

Theorem 6.1. Fix z ∈ BC(0, R) and ξ ∈ C\R such that |Im ξ| ≤ C0 for some C0 ≥ 1.
Let Mn := M of size n × n be an n × n deterministic matrix with ‖M‖ ≤ C0. Then, for
i, j = 1, 2 and u ≥ 0 we have

P

(∣∣∣∣ 1nTrFMij (ξ)− E
[

1

n
TrFMij (ξ)

]∣∣∣∣ ≥ u) ≤ 4 exp
(
−c6.1n(Im ξ)4u2

)
for some constant c6.1 > 0, depending only on C0.
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The following is an immediate corollary of Theorem 6.1.

Corollary 6.2. With notation as in Theorem 6.1, there exists an n0 so that if Im ξ > n−1/16

and n > n0 then, for i, j = 1, 2,

E

[(
1

n
TrFMij (ξ)− E

[
1

n
TrFMij (ξ)

])2
]
≤ 1

n3/4
. (6.1)

We first prove Corollary 6.2 using Theorem 6.1. The proof of Theorem 6.1 follows
that.

Proof of Corollary 6.2. Let Z:=| 1nTrFij(ξ)− E
[

1
nTrFij(ξ)

]
|. Substituting u = x/n1/4 in

Theorem 6.1 gives that for x > 0 we have

P(Z > u) ≤ 4 exp
(
−c6.1x2n1/4

)
.

This completes the proof upon using integration by parts.

We next establish Theorem 6.1, using a standard martingale approach. Specifically,
we will apply a consequence of Azuma’s inequality from [28] that is conveniently phrased
for our setting. This will reduce the task to bounding the change in n−1TrFMij (ξ) under
the application of a transposition to one of the permutations π`n.

Define the Hamming distance between two permutations π, σ ∈ Sn as follows:

dH(π, σ) := |{i ∈ [n] : π(i) 6= σ(i)}| . (6.2)

We extend to a Hamming metric on product space Sdn in the natural way: for two
sequences π = (π`)`∈[d], σ = (σ`)`∈[d], set

dH(π,σ) :=

d∑
`=1

dH(π`, σ`). (6.3)

Lemma 6.3 (Concentration for Hamming-Lipschitz functions). Let f : Sdn → C be an
L-Lipschitz function with respect to the Hamming metric (6.3), and let π = (π`)`∈[d] be a
uniform random element of Sdn. Then, for any u ≥ 0,

P(|f(π)− Ef(π)| ≥ u) ≤ 4 exp

(
− u2

8ndL2

)
. (6.4)

Proof. First we note that it is enough to prove that (6.4) holds for 1-Lipschitz function.
Next, splitting f(π) into real and imaginary parts and applying the pigeonhole principle
and the union bound, it suffices to show that for f a real-valued 1-Lipschitz function on
Sdn,

P(f(π)− Ef(π) ≥ u) ≤ exp

(
− u2

8nd

)
. (6.5)

By Chebycheff’s inequality, (6.5) would follow if, for any λ > 0,

E
(
eλ(f(π)−Ef(π))

)
≤ e2ndλ2

. (6.6)

For d = 1, the inequality (6.6) follows as in the proof of [28, Corollary 4.3], using
that in Lemma 4.1 there, one actually controls the Laplace transform and not just the
probabilities. To prove the case of general d, we use tensorization. For an arbitrary
1-Lipschitz function f : Sdn 7→ R and for i ∈ [d], denote

hi(π
<i+1) := E[f |π<i+1]− E[f |π<i],
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where we recall that π<k := (π`)`∈[k−1]. For any fixed i ∈ [d] and π<i, the function
hi viewed as a function of πi is a 1-Lipschitz function with respect to the Hamming
metric while Ei[hi] = 0, where Ei denotes the expectation with respect to πi. Therefore,
applying the d = 1 case of (6.6) we obtain, for any i ∈ [d],

E
[
exp(λhi(π

<i+1))|π<i
]
≤ exp(2λ2n).

Since f −Ef =
∑d
i=1 hi and hi are measurable with respect to π<i+1, iterating the above

bound gives (6.6).

Lemma 6.3 reduces our task to showing the normalized traces of Fij(ξ) are L-
Hamming-Lipschitz for an appropriate L. For this task we will make use of the following:

Lemma 6.4 (Resolvent identity). Let A and B be two Hermitian matrices, and let
ξ ∈ C\R. Then

(ξ −A)−1 − (ξ −B)−1 = (ξ −A)−1(A−B)(ξ −B)−1 = (ξ −B)−1(A−B)(ξ −A)−1.

More generally for any two invertible matrices C and D, we have

C−1 −D−1 = C−1(D − C)D−1. (6.7)

Proof of Theorem 6.1. Fix i, j ∈ {1, 2}, ` ∈ [d] and set Hn(ξ) := 1
nTrFMij (ξ). As mentioned

above we need to show that Hn(·) is an L-Lipschitz function of π = (π1
n, . . . , π

d
n) with

respect to the Hamming distance (6.3) for an appropriate value of L. By the triangle
inequality it suffices to show it is L-Lipschitz as a function of π`n with respect to the
Hamming distance (6.2) on Sn, for arbitrary fixed ` ∈ [d].

To this end, we define

F̃M (ξ) := FM (ξ, z, S̃dn(`)), where S̃dn(`) :=
∑

k∈[d]\{`}

πkn + π̃`n,

and π̃`n is some fixed but arbitrary permutation over [n]. We similarly define F̃Mij (ξ) and

H̃n(ξ). Now using the resolvent identity we note that

FM (ξ)− F̃M (ξ) =
1√
d
FM (ξ)

(
∆`
n + (∆`

n)∗
)
F̃M (ξ),

where

∆`
n :=

[
0 (π̃`n − π`n)

0 0

]
.

Therefore,

Hn(ξ)− H̃n(ξ) =
1

n
√
d

Tr

[(
ET
i

0T

)
FM (ξ)

(
∆`
n + (∆`

n)∗
)
F̃M (ξ)(Ej 0)

]
, (6.8)

where

E1 :=

(
In
0n

)
, E2 :=

(
0n
I

)
, 0 :=

(
0n
0n

)
,

and 0n is the n×n matrix of zeros. To simplify (6.8) further, we note that the (k, n+k′)-th
entry of ∆`

n is non-zero for some k, k′ ∈ [n], if and only if π`n(k) 6= π̃`n(k) and one of π`n(k)

and π̃`n(k) equals k′. Hence, using the triangle inequality and recalling the definition of
dH(·, ·), it follows that |Hn(ξ)− H̃n(ξ)| is bounded by the sum of 4dH(π`n, π̃

`
n) terms of the

form
1

n
√
d

∣∣∣∣Tr

[(
ET
i

0T

)
FM (ξ)eke

T
k′ F̃

M (ξ)(Ej 0)

]∣∣∣∣ , (6.9)
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for some k, k′ ∈ [2n]. Here em denotes the canonical basis vector which has one in the
m-th position. Since |Im ξ|, ‖M‖ ≤ C0 we have the operator norm bounds

‖FM (ξ)‖, ‖F̃M (ξ)‖ ≤ ‖M‖+ |Im ξ|−1 ≤ 2C2
0 |Im ξ|−1

As ‖Ei‖ = 1 for i = 1, 2, we have∣∣∣∣Tr

[(
ET
i

0T

)
FM (ξ)eke

T
k′ F̃

M (ξ)(Ej 0)

]∣∣∣∣ =

∣∣∣∣eTk′ F̃M (ξ)(Ej 0)

(
ET
i

0T

)
FM (ξ)ek

∣∣∣∣
≤
∥∥∥∥F̃M (ξ)(Ej 0)

(
ET
i

0T

)
FM (ξ)

∥∥∥∥
≤ 4C4

0

(Im ξ)2
. (6.10)

Now combining (6.9)-(6.10) and (6.8), we obtain

|Hn(ξ)− H̃n(ξ)| ≤ 16C4
0dH(π`n, π̃

`
n)

n
√
d(Im ξ)2

. (6.11)

This shows that we can apply Lemma 6.3 with f(π) = Hn(ξ) and L = 16C4
0/n
√
d(Im ξ)2,

and the result follows.

7 Proof of the local law

In this section we prove Theorem 2.6. The proof consists of two key components.
First we derive an approximate fixed point equation for m̃n(ξ), the Stieltjes transform of
the symmetrized version of the empirical measure of the singular values of z − Sdn/

√
d.

Since the fixed point equation is an equation of degree three it is not apriori immediate
that m̃n(ξ) is close to the correct solution of the fixed point equation. To tackle this, we
need certain properties of the roots of that cubic equation. We also need to employ a
bootstrap argument to quantify the difference between m̃n(ξ) and its limit m̃∞(ξ) when
Im ξ approaches zero.

7.1 Derivation of the approximate fixed point equation

The main technical result of this section is the following lemma.

Lemma 7.1 (Loop equation). Fix ξ ∈ C+ such that (log n)−2 ≤ Im ξ ≤ C0 for some C0 > 0.
Fix z ∈ BC(0, R) for some R <∞. Then, there exists an event Ωn(ξ) with

P(Ωn(ξ)c) ≤ exp
(
−c7.1(log n)2

)
such that on Ωn(ξ) we have∣∣m̃n(ξ)(m̃n(ξ)− ξ)2 + (1− |z|2)m̃n(ξ)− ξ

∣∣
≤C7.1 max{d−1/2, n−1/4 log n}(Im ξ)−3(1 + |Em̃n(ξ)|), (7.1)

where c7.1 is an absolute constant and C7.1 depends only on C0 and R.

Since we have concentration bounds in Theorem 6.1, as we will see below, it will
be enough to show that inequality (7.1) holds for Em̃n(ξ). To show the same, it will be
convenient to consider the Stieltjes transform of symmetrized version of the empirical
measure of the singular values of z − Ŝdn/

√
d, where Ŝdn is now centered. For ease of

writing, let us denote Sdn :=
∑d
`=1 P

`
n, where for ` ∈ [d],

P`n :=

[
0 (P `n − EP `n)

(P `n − EP `n)∗ 0

]
,
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and {P `n} are i.i.d. uniformly distributed permutation matrices. Define the resolvent as

Ĝ(Sdn) := Ĝ(Sdn, ξ, z) :=

[
ξI2n −

[
0 zIn
z̄In 0

]
+

Sdn√
d

]−1

and denote m̂n(ξ) := 1
2nTr Ĝ(Sdn).

Lemma 7.2 (Loop equation for the sum of centered permutation matrices). Fix ξ ∈ C+

such that n−1/16 ≤ Im ξ ≤ C0 for some C0 > 0. Fix z ∈ BC(0, R) for some R <∞. Then,
there exists a constant C7.2, depending on C0 and R, such that∣∣Em̂n(ξ)(Em̂n(ξ)− ξ)2 + (1− |z|2)Em̂n(ξ)− ξ

∣∣ ≤ C7.2d
−1/2(Im ξ)−3(1+ |Em̂n(ξ)|). (7.2)

Recalling the definition of G̃(Sdn) (see (2.20)) we observe that m̃n(ξ) and m̂n(ξ) are
the normalized traces of the resolvent of two Hermitian matrices differed by a finite
rank perturbation. Therefore, one can use the following result to bound the difference
between m̃n(ξ) and m̂n(ξ). Its proof is a simple application of Cauchy’s interlacing
inequality. We include it for completeness.

Lemma 7.3. Let Ai, i = 1, 2, be two n×n Hermitian matrices such that rank(A1−A2) ≤
C1 for some absolute constant C1. For i = 1, 2, and ξ ∈ C\R, let mAi

n (ξ) denote the
Stieltjes transform of the empirical law of the eigenvalues of Ai. That is,

mAi
n (ξ) :=

∫
1

ξ − x
dLAin(x), i = 1, 2.

Then

|mA1
n (ξ)−mA2

n (ξ)| ≤ C1π

n|Im ξ|
.

Proof. Since 1
ξ−x =

∫ x
−∞

1
(t−ξ)2 dt we observe that

mAi
n (ξ) =

∫ ∞
−∞

∫ x

−∞

1

(t− ξ)2
dtdLAin(x) =

1

n

∫ ∞
−∞

ni(−∞, t]
(ξ − t)2

,

for i = 1, 2, where ni(−∞, t] denotes the number of eigenvalues of Ai in the interval
(−∞, t]. As rank(A1 − A2) ≤ C1, by Cauchy’s interlacing inequality it also follows that
|n1(−∞, t]− n2(−∞, t]| ≤ C1. Therefore,

∣∣mA1
n (ξ)−mA2

n (ξ)
∣∣ ≤ C1

n

∫
1

|ξ − t|2
dt =

C1

n

∫
1

(Im ξ)2 + t2
dt =

C1π

n|Im ξ|
.

Equipped with Lemma 7.3 and assuming Lemma 7.2 we now prove Lemma 7.1.

Proof of Lemma 7.1. Using Lemma 7.3 and the trivial bounds |m̂n(ξ)|, |m̃n(ξ)| ≤ 1/Im ξ

we obtain that |P̃ (Em̂n(ξ)) − P̃ (Em̃n(ξ))| = O(n−1/2(Im ξ)−3). Therefore, Lemma 7.2
implies that

P̃ (Em̃n(ξ)) = O
(
d−1/2(Im ξ)−3(1 + |Em̂n(ξ)|)

)
= O

(
d−1/2(Im ξ)−3(1 + |Em̃n(ξ)|)

)
,

(7.3)
where we have used Lemma 7.3 again and the fact that nIm ξ ≥ 1. It remains to show
that ∣∣∣P̃ (m̃n(ξ))− P̃ (Em̃n(ξ))

∣∣∣ = O

(
log n

n1/4(Im ξ)3

)
, (7.4)

with high probability. This will complete the proof of the lemma.
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To this end, applying Theorem 6.1, seting M = 0 there, using the trivial bound
|m̃n(ξ)| ≤ 1/Im ξ again, and the triangle inequality we obtain that

P

(
|m̃3

n(ξ)− (Em̃n(ξ))3| ≥ 3 log n

n1/2(Im ξ)4

)
≤ P

(
|m̃n(ξ)− Em̃n(ξ)| ≥ log n

n1/2(Im ξ)2

)
≤ 4e−c6.1(logn)2 (7.5)

and

P

(
|m̃2

n(ξ)− (Em̃n(ξ))2| ≥ 2 log n

n1/2(Im ξ)3

)
≤ 4e−c6.1(logn)2 . (7.6)

Since n−1/16 ≤ Im ξ ≤ C0 we also have that

log n

n1/2(Im ξ)3
= O

(
log n

n1/2(Im ξ)4

)
= O

(
log n

n1/4(Im ξ)3

)
,

yielding (7.4). The desired probability bounds (7.5)-(7.6). The proof of the lemma now
completes.

Now it remains to prove Lemma 7.2. As we will see below, to prove the same we
will first derive an approximate fixed point equation involving Em̂n(ξ) and an auxiliary
variable Eν̂n(ξ) where

ν̂n(ξ) :=
1

n

n∑
i=1

(Ĝ(Sdn))i,n+i.

Then an additional equation will be derived to eliminate Eνn(ξ) from the first equation.
To obtain these two equations we will need to consider the expectation of the entries of
product of matrices that are functions of centered permutation matrices. Hence, it will
be useful to introduce the following notation. For ease of writing, for any permutation
πn uniformly distributed on Sn, we denote

P := Pn :=

[
0 (Pn − EPn)

(Pn − EPn)∗ 0

]
, where Pn(i, j) := I(πn(i) = j). (7.7)

Equipped with the above notation we have the following lemma.

Lemma 7.4. Let M := Mn be a 2n× 2n deterministic matrix. Then

(i)

E
[
(PMPM)i,i

]
= Mi,i

 1

n

n∑
j=1

Mn+j,n+j

+O

(
‖M‖2√

n

)
,

(ii)

E
[
(PMPM)n+i,n+i

]
= Mn+i,n+i

 1

n

n∑
j=1

Mj,j

+O

(
‖M‖2√

n

)
,

(iii)

E
[
(PMPM)n+i,i

]
= Mn+i,i

 1

n

n∑
j=1

Mj,j

+O

(
‖M‖2√

n

)
,

(iv)

E
[
(PMPM)i,n+i

]
= Mi,n+i

 1

n

n∑
j=1

Mn+j,n+j

+O

(
‖M‖2√

n

)
.
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Proof. Recalling (7.7), we make the following observations:

E[Pi,n+jPn+k,`] =


1
n (1− 1

n ) if i = `, j = k

− 1
n2 if i 6= `, j = k, or i = `, j 6= k

1
n2(n−1) if i 6= `, j 6= k

(7.8)

and

E[Pi,n+jPk,n+`] =


1
n (1− 1

n ) if i = k, j = `

− 1
n2 if i 6= k, j = `, or i = k, j 6= `

1
n2(n−1) if i 6= k, j 6= `

. (7.9)

Since the diagonal blocks of P are zero it follows that

E[(PMPM)i,i] = E

 n∑
j,k,`=1

Pi,n+jMn+j,n+kPn+k,`M`,i


+ E

 n∑
j,k,`=1

Pi,n+jMn+j,kPk,n+`Mn+`,i


=: Term I + Term II. (7.10)

Using (7.8) we have

Term I =Mi,i

 1

n

n∑
j=1

Mn+j,n+j

 · (1− 1

n

)

− 1

n2

 n∑
j,`=1
` 6=i

Mn+j,n+jM`,i +Mi,i

n∑
j,k=1
j 6=k

Mn+j,n+k


+

1

n2(n− 1)

n∑
j,k,`=1
j 6=k,i 6=`

Mn+j,n+kM`,i.

Since

2n
max
`=1
|M`,i| ≤

2n∑
`=1

|M`,i| ≤

√√√√2n

2n∑
`=1

|M`,i|2 ≤
√

2n‖M‖, for all i ∈ [2n], (7.11)

we deduce from above that

Term I = Mi,i

 1

n

n∑
j=1

Mn+j,n+j

+O

(
‖M‖2√

n

)
. (7.12)

Using (7.9) and a similar argument as above we also deduce that

Term II =
1

n

n∑
j=1

M2
n+j,i +O

(
‖M‖2√

n

)
= O

(
‖M‖2√

n

)
, (7.13)

where the last step follows from (7.11). Thus, the part (i) of the lemma now follows upon
plugging the bounds (7.12)-(7.13) in (7.10). To prove (iii) we apply (7.8)-(7.9), (7.11),
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and Cauchy–Schwarz inequality to deduce that

E [(PMPM)n+i,i] = Mn+i,i

 1

n

n∑
j=1

Mj,j

+
1

n

n∑
j=1

Mj,n+iMn+j,i +O

(
‖M‖2√

n

)

= Mi,n+i

 1

n

n∑
j=1

Mn+j,n+j

+O

(
‖M‖2√

n

)
.

This yields part (iii). The proofs of parts (ii) and (iv) follow from a similar argument as
above and hence omitted.

We will apply Lemma by setting P = P`n for some ` ∈ [d] and M will be functions of
{Pjn}. For ` ∈ [d] denote

Ĝ(`)(Sdn) :=

[
ξ −

[
0 z

z̄ 0

]
+

1√
d
Sd,(`)n

]−1

,

where S
d,(`)
n :=

∑
j 6=` P

j
n, and

ν̂(`)
n (ξ) :=

1

n

n∑
i=1

(Ĝ(`)(Sdn))i,n+i.

Recall the following result regarding the inverse of a block matrix.

Lemma 7.5 (Inverse of a block matrix).[
A B

C D

]−1

=

[
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
.

Applying Lemma 7.5 wth A = D = ξI, where ξ ∈ C\R, and C = B∗ we obtain that

1

2
Tr

([
ξ B

B∗ ξ

]−1
)

= ξTr
{

(ξ2 −BB∗)−1
}

= ξTr
{

(ξ2 −B∗B)−1
}
.

This, in particular, implies that for every ` ∈ [d],

1

n

n∑
i=1

(Ĝ(`)(Sdn))n+i,n+i =
1

n

n∑
j=1

(Ĝ(`)(Sdn))j,j =
1

2n
Tr Ĝ(`)(Sdn) =: m̂(`)

n (ξ). (7.14)

We now prove Lemma 7.2.

Proof of Lemma 7.2. From the identity Ĝ(Sdn)−1Ĝ(Sdn) = I2n we obtain[
ξ −z
−z̄ ξ

]
Ĝ(Sdn) = I2n −

Sdn√
d
· Ĝ(Sdn). (7.15)

Applying the resolvent identity ((6.7) in Lemma 6.4) twice we further obtain that for any
` ∈ [d],

Ĝ(Sdn) = Ĝ(`)(Sdn)− Ĝ(`)(Sdn) · P
`
n√
d
· Ĝ(`)(Sdn) + Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(Sdn).
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Fixing ` ∈ [d] we use the above identity to expand Ĝ(Sdn), which we then plug in (7.15).
Therefore, now summing over ` ∈ [d], from (7.15) we deduce that[

ξ −z
−z̄ ξ

]
Ĝ(Sdn) = I2n −

d∑
`=1

P`n√
d
· Ĝ(`)(Sdn) +

d∑
`=1

P`n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn)

−
d∑
`=1

P`n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(Sdn). (7.16)

Next we need to simplify (7.16). To this end, for every ` ∈ [d], let E`(·) denote the
expectation with respect to the randomness of P `n and E−`(·) denote the expectation
with respect to the randomness of {P jn}j 6=`. Since {P `n} are independent we have that P `n
and Ĝ(`)(Sdn) are independent for every ` ∈ [d], which in particular implies that

E[Ĝ(`)(Sdn)P`n] = E−`

[
E`(Ĝ

(`)(Sdn)P`n)
]

= 0, ` ∈ [d], (7.17)

where we have used the fact that the entries of P`n are centered. Applying Lemma 7.4
we also note that

1

n

n∑
i=1

d∑
`=1

E

[{
P`n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn)

}
n+i,n+i

]

=
1

d

d∑
`=1

E−`

{ 1

n

n∑
i=1

(Ĝ(`)(Sdn))n+i,n+i

}
·

 1

n

n∑
j=1

(Ĝ(`)(Sdn))j,j




=
1

d

d∑
`=1

E−`

[
m̂(`)
n (ξ)2

]
+O(n−1/2(Im ξ)−2), (7.18)

where the last step follows from (7.14) and the operator norm bound ‖Ĝ(`)(Sdn)‖ ≤ 1/Im ξ.
Therefore, considering the (n + i, n + i)-th entry of the both sides of (7.16), taking an
average over i ∈ [n], followed by taking an expectation over the randomness of {P `n},
upon using (7.17), we obtain

−z̄Eν̂n(ξ) + ξEm̂n(ξ) = 1 +
1

d

d∑
`=1

E−`

[
m̂(`)
n (ξ)2

]
− Term E1 +O(n−1/2(Im ξ)−2), (7.19)

where

Term E1 :=

d∑
`=1

E

[(
P`n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(Sdn)

)
n+i,n+i

]
.

Using the resolvent identity once again we observe that for any ` ∈ [d],

‖Ĝ(`)(Sdn)− Ĝ(Sdn)‖ ≤ 1√
d
‖Ĝ(Sdn)‖ · ‖P `n − EP `n‖ · ‖Ĝ(`)(Sdn)‖ ≤ 2d−1/2(Im ξ)−2, (7.20)

where the last inequality follows from the facts that ‖Ĝ(Sdn)‖, ‖Ĝ(`)(Sdn)‖ ≤ (Im ξ)−1 and
‖P `n − EP `n‖ ≤ 2. Thus Term E1 = O(d−1/2(Im ξ)−3), which in particular implies that
the first term in the RHS of (7.19) is the dominant term. Using (7.20) we also note
that |m̂n(ξ)2 − m̂(`)(ξ)2| ≤ 4d−1/2(Im ξ)−3. Hence, from (7.19), upon using the facts that
d = O(n) and Im ξ ≤ C0, we deduce

−z̄Eν̂n(ξ) + ξEm̂n(ξ) = 1 +
1

d

d∑
`=1

E−`

[
m̂(`)
n (ξ)2

]
+O(d−1/2(Im ξ)−3) (7.21)

= 1 + E
[
m̂n(ξ)2

]
+O(d−1/2(Im ξ)−3)

= 1 + (Em̂n(ξ))
2

+O(d−1/2(Im ξ)−3),
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where the last step follows from Corollary 6.2 upon taking

M =

 0
ESdn√
d

E(Sdn)∗√
d

0

 =

[
0

√
d
n 11T

√
d
n 11T 0

]

(recall that 1 is the n-dimensional vector consisting of all ones) and observing that
d1/2(Im ξ)3 = O(n1/2) = o(n3/4).

Note that (7.21) involves Eν̂n(ξ). To derive the desired approximate fixed point
equation for Em̂n(ξ) one needs eliminate Eν̂n(ξ) from (7.21). To this end, consider the
(i, n+ i)-th entry of the both sides of (7.16), take an average over i ∈ [n], and proceed
similarly as in the steps leading to (7.19) to deduce that

ξEν̂n(ξ)− zEm̂n(ξ) =
1

d

d∑
`=1

E−`

[
ν̂(`)
n (ξ)m̂(`)

n (ξ)
]

+O(n−1/2(Im ξ)−2)− Term E2, (7.22)

where

Term E2 :=

d∑
`=1

E

[(
P`n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(`)(Sdn) · P

`
n√
d
· Ĝ(Sdn)

)
i,n+i

]
= O(d−1/2(Im ξ)−3)

and the last step follows from the operator norm bounds ‖Ĝ(Sdn)‖, ‖Ĝ(`)(Sdn)‖ ≤ (Im ξ)−1

and ‖P `n − EP `n‖ ≤ 2. Using (7.20) and the resolvent identity we also have that

|ν̂(`)
n (ξ)m̂(`)

n (ξ)− ν̂n(ξ)m̂n(ξ)| = O(d−1/2(Im ξ)−3).

On the other hand an application of Corollary 6.2 and Cauchy-Schwarz inequality yield
that

|E(m̂n(ξ)ν̂n(ξ))− Em̂n(ξ)Eν̂n(ξ)| ≤ n−3/4.

Therefore, the approximate equation (7.22) simplifies to

(Em̂n(ξ)− ξ)Eν̂n(ξ) = −zEm̂n(ξ) +O(d−1/2(Im ξ)−3). (7.23)

Finally multiplying both sides of (7.21) by (Em̂n(ξ)− ξ), using (7.23), and recalling that
Im ξ ≤ C0, |z| ≤ R, we arrive at (7.2). This completes the proof of the lemma.

7.2 Proof of Theorem 2.6

In Section 7.1 we have shown that for ξ ∈ C+ with (log n)−2 ≤ Im ξ ≤ C0 we have
P̃ (m̃n(ξ)) = o(1), with high probability, where

P̃ (m) := P̃ (m, ξ) := P̃ (m, ξ, z) = m(m− ξ)2 + (1− |z|2)m− ξ.

Since P̃ (·) it is not evident from Lemma 7.1 that |m̃n(ξ)− m̃∞(ξ)| = o(1), where m̃∞(ξ) is
the Stieltjes transform of the desired limit. Hence, it requires some additional properties
of the roots of the equation P̃ (m, ξ) = 0.

During the proof of Theorem 1.1 we will see that it is enough to show that |m̃n(ξ)−
m̃∞(ξ)| = o(1) holds for ξ purely imaginary, that is ξ = iη for some η > 0. On the other
hand, for any symmetric probability measure µ on R (i.e. µ((a, b)) = µ(((−b,−a)) for any
0 < a < b ≤ ∞), denoting mµ(ξ) to be its Stieltjes transform, we have

mµ(iη) =

∫
1

iη − x
dµ(x) = −

∫
x+ iη

x2 + η2
dµ(x) = −iη

∫
1

x2 + η2
dµ(x).
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This means that mµ(iη) = −ix for some x > 0. Therefore

P̃ (mµ(iη), iη) = ix(x+ η)2 − i(1− |z|2)x− iη. (7.24)

Thus for any symmetric probability measure µ on R, the map η 7→ P̃ (mµ(iη, iη)) is
essentially a cubic polynomial over the reals. Since m̃n(ξ) and m̃∞(ξ) are both Stieltjes
transforms of symmetric probability measures and we need to control their differences
only when ξ is purely imaginary, it is enough to derive properties of the roots of the
equation

Q(x) := Q(x, η) := Q(x, δ, η) := x(x+ η)2 − δx− η.

where δ, η > 0.

Lemma 7.6 (Stability of the fixed point equation). Fix any δ, η > 0. Then the following
properties hold for the cubic equation Q(x) = 0.

(i) There exists a unique positive root x? of the equation Q(x) = 0.

(ii) For any c0 > 0,

inf
x≥c0

|Q(x)|
|x− x?|

≥ c20.

Proof. Since Q(0) = −η < 0 and limx→∞Q(x) =∞, the number of roots of the equation
Q(x) = 0 in the interval (0,∞) is either one or three. If the number of positive roots
of the equation Q(x) = 0 is three, then the Rolle’s theorem implies that there exists
x0 ∈ (0,∞) such that Q′′(x0) = 0 which is clearly a contradiction, as we note that
Q′′(x) = 3x2 + 4η > 0 for all x ∈ R. Thus there exists a unique x? ∈ (0,∞) such that
Q(x?) = 0. Turning to prove the second part of the lemma we note that

Q(x) = Q(x)−Q(x?) = (x− x?)((x+ η)2 + x?(x+ x? + 2η)− δ)
= (x− x?)(x2 + 2xη + xx? + x2

? + η2 + 2x?η − δ)

= (x− x?)
(
x2 + 2xη + xx? +

η

x?

)
(7.25)

where the last equality follows from the fact that Q(x?) = 0. Since x, x?, η > 0, we have
that

x2 + 2xη + xx? +
η

x?
≥ c20,

for all x ≥ c0. This completes the proof of the lemma.

Recalling (7.24) we see that for any symmetric probability measure µ, P̃ (mµ(iη, iη)) =

iQ(x, η) where mµ(iη) = −ix. Therefore, Lemma 7.6(i) implies that there is a unique
symmetric probability measure µ̃∞ such that its Stieltjes transform m̃∞(ξ) satisfies the
fixed point equation P̃ (m) = 0. The second part of Lemma 7.6 ensures that

|P̃ (m̃n(iη))| ≥ |m̃n(iη)|2|m̃n(iη)− m̃∞(iη)| (7.26)

for all η > 0 and in particular

|P̃ (m̃n(iη))| ≥ c20|m̃n(iη)− m̃∞(iη)|, (7.27)

provided |m̃n(iη)| ≥ c0. The inequalities (7.26)-(7.27) will be crucially used to derive a
bound on the difference between m̃n(ξ) and m̃∞(ξ) from a bound on |P̃ (m̃n(ξ))|. However,
these inequalities need apriori lower bound on |m̃n(ξ)|. Hence, to initiate the bootstrap
argument we need to show that such lower bounds hold when ξ far away from the real
line.
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Lemma 7.7 (Preliminary lower bound). Fix z ∈ C such that |z| ≤ 1. For any positive
constant C denote

HC := {ξ ∈ C : Im ξ ≥ C, ξ ∈ BC(0, 2C)}.

Then there exist a sufficiently large absolute constant C̄7.7 and a sufficiently small
absolute constant c′7.7 such that the following holds: There exists a set Ω7.7,n such that
for every ξ ∈ HC̄7.7

, we have |m̃n(ξ)| ≥ 1/10 on the event Ω7.7,n, where

P(Ωc7.7,n) ≤ exp(−c′7.7d).

Proof. We set

Ωc7.7,n :=

{
1

n
Tr (z − Ŝdn)∗(z − Ŝdn) > C

}
,

where C is chosen to be sufficiently large and for brevity we write Ŝdn := Sdn/
√
d. Recalling

that d = O(n) and |z| ≤ 1 it follows from (5.8) that for C large,

P

(
1

n
Tr (z − Ŝdn)∗(z − Ŝdn) > C

)
≤ d exp(−c′d),

for some absolute constant c′ establishing the desired assertion on the probability bound
of Ωc7.7,n.

Now note that

−Im m̃n(ξ) =
1

2n

2n∑
i=1

Im ξ

|ξ − λi|2
≥ Im ξ

1
2n

∑2n
i=1 |ξ − λi|2

≥ Im ξ

2|ξ|2 + 1
n

∑2n
i=1 λ

2
i

,

where {λi}2ni=1 are the eigenvalues of[
0 (z − Ŝdn)

(z − Ŝdn)∗ 0

]
.

Thus,

−Im m̃n(ξ) ≥ C̄7.7

8C̄2
7.7 + 2

nTr (z − Ŝdn)∗(z − Ŝdn)
.

The desired lower bound on m̃n(ξ) on the event Ω7.7,n now follows upon setting C̄7.7 =

C.

When Im ξ is close to zero we cannot use Lemma 7.7. In that case, the desired bound
|m̃n(ξ)| can be obtained by showing that it is close to m̃∞(ξ) and then obtaining bounds
on |m̃∞(ξ)| which we derive in the lemma below.

Lemma 7.8 (Properties of m̃∞). Fix any ε > 0 and let z ∈ BC(0, 1 − ε). Fix any ξ ∈ C+

such that |ξ| ≤ ε−1. Then there exist ε0 > 0 such that for any ε < ε0 there exists constants
c7.8 and C7.8, depending only on ε, such that c7.8 ≤ |m̃∞(ξ)| ≤ C7.8.

Proof. The proof of this lemma follows from [13, Lemma 4.3]. There they analyzed
properties of the solution mc(ξ) of the cubic equation

m(1 +m)2ξ + (1− |z|2)m+ 1 = 0,

which has nonnegative imaginary part for all ξ ∈ C. In [4] it was shown that for any
ξ ∈ C+, −mc(ξ) is the Stieltjes transform of the limiting distribution of the empirical
measure of the singular values of z −An/

√
n where An is an n× n matrix of i.i.d. entries

with certain moment assumptions on its entries. Note that the limiting measure is the
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same in our set-up. Therefore m∞(ξ) = −mc(ξ) on C+. Since m̃∞(ξ) = ξm∞(ξ2), we use
the relation between m∞(ξ)and mc(ξ) to extract the properties of m̃∞(ξ).

From [13, Eqn. (4.9)] we note that

c|ξ|−1 ≤ |m∞(ξ2)| ≤ C|ξ|−1, (7.28)

whenever Im (ξ2) > 0, for some constants c and C depending only on ε. When Im (ξ2) < 0

then we note that m∞(ξ2) = m∞(ξ̄2) = mc(ξ̄2) and therefore (7.28) also holds for all
ξ such that Im (ξ2) < 0. Multiplying both sides of (7.28) by |ξ| and using the relation
between m̃∞(·) and m∞(·) we establish the desired conclusion for m̃∞(·) for all ξ such
that Re ξ 6= 0. We extend our conclusion for all ξ such that Re ξ = 0 by continuity of
m̃∞(·) on C+.

Equipped with all ingredients we are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Recall that

Sε,$ :=
{
ξ = iη : 0 < η ≤ C̄2.6,min{d1/2, n1/4(log n)−1}η3 ≥ $n

}
,

where we set C̄2.6 = 2C̄7.7. We need to show that m̃n(ξ) is close to m̃∞(ξ) uniformly
for all ξ ∈ Sε,$. Consider a decreasing sequence of positive reals {ηi}Ni=0 such that
η0 = C̄2.6, 1/(2n) < ηi − ηi+1 < 1/n and ηN ∈ Sε,$. Note that N = O(n). Denote

Υn(ξ) := 3C7.1 max{d−1/2, n−1/4 log n}(Im ξ)−3(1 + 4C7.8) (7.29)

and set

c0 =
1

4
min{c7.8, 1/10}. (7.30)

Note that Υn(ξ) = o(1) for all ξ ∈ Sε,$. Now applying Lemma 7.1 we see that on the
event Ωn(ξ0) we have

P̃ (m̃n(ξ0)) = O
(

max{d−1/2, n−1/4 log n}
)
,

as |Em̃n(ξ0)| ≤ 1/η0 < 1. From (7.26) we have that

|P̃ (m̃n(ξ0)| ≥ |m̃n(ξ0)|2|m̃n(ξ0)− m̃∞(ξ0)|.

This together with Lemma 7.7 further implies that on the event Ω7.7,n ∩ Ωn(ξ0) we have

|m̃n(ξ0)− m̃∞(ξ0)| = O
(

max{d−1/2, n−1/4 log n}
)

= o(1).

Therefore, Lemma 7.8 and the triangle inequality yields

2c0 ≤ |m̃n(ξ0)| ≤ 2C7.8 (7.31)

on the event Ω7.7,n ∩ Ωn(ξ0), for all large n. Note that we also have

|E[m̃n(ξ0)]| ≤ 2C7.8 + (Im ξ0)−1P(Ωc7.7,n ∪ Ωn(ξ0)c) ≤ 3C7.8, (7.32)

for all large n, where we use the fact that Im ξ0 > Im ξN ≥ (log n)−2.
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Now we are ready to carry out the bootstrap argument. Indeed, applying Lemma 7.1
again and using the inequality |m̃n(ξ)− m̃n(ξ′)| ≤ |ξ− ξ′|/((Im ξ) · (Im ξ′)) we deduce that

|P̃ (m̃n(ξ))|

≤ |P̃ (m̃n(ξ0))|+ |P̃ (m̃n(ξ))− P̃ (m̃n(ξ0))|

≤C7.1 max{d−1/2, n−1/2(log n)3}(Im ξ0)−3(1 + |Em̃n(ξ0)|) +O

(
(log n)8

n

)
≤ 2C7.1 max{d−1/2, n−1/2(log n)3}(Im ξ0)−3(1 + |Em̃n(ξ0)|)

≤ 2C7.1 max{d−1/2, n−1/2(log n)3}(Im ξ)−3

(
1 +O

(
(log n)8

n

))
(1 + |Em̃n(ξ0)|)

≤Υn(ξ), (7.33)

for all ξ = iη with η ∈ [η1, η0], on the event Ω7.7,n ∩ Ωn(ξ0), where in the last step we
have used (7.32). On other hand, from (7.31) and the inequality |m̃n(ξ) − m̃n(ξ′)| ≤
|ξ− ξ′|/((Im ξ) · (Im ξ′)) we obtain |m̃n(ξ)| ≥ c0 for all ξ = iη with η ∈ [η1, η0], on the event
Ω7.7,n ∩ Ωn(ξ0). This together with (7.27) implies that

|m̃n(ξ)− m̃∞(ξ)| ≤ c−2
0 Υn(ξ) (7.34)

for all ξ = iη with η ∈ [η1, η0], on the event Ω7.7,n ∩ Ωn(ξ0).
We complete the proof by induction. Indeed, we denote Ωj := ∩j−1

i=0 Ωn(ξi) ∩ Ω7.7,n. By
the induction hypothesis we assume that (7.34) holds for all ξ = iη with η ∈ [ηk, η0] on
the event Ωk. To finish the proof we need to show that (7.34) continue to hold for all
ξ = iη with η ∈ [ηk+1, ηk] on the event Ωk+1.

First we note that using Lemma 7.8 and proceeding similarly as in (7.32) we obtain
|Em̃n(ξk)| ≤ 3C7.8. Therefore, arguing similarly as in (7.33) we deduce that the conclu-
sion of (7.33) continue to hold for all ξ = iη with η ∈ [ηk+1, ηk] on the event Ωk+1. Using
this we also get that (7.34) holds for all ξ = iη with η ∈ [ηk+1, ηk] on the event Ωk+1.

Thus by induction we have shown that for all ξ = iη with η ∈ [ηN , η0] the inequality
(7.34) holds on the event ΩN . Since,

P(ΩcN ) ≤ P(Ωc7.7,n) +

N−1∑
j=0

P(Ωn(ξj)
c),

the proof of the theorem now completes from the probability bounds obtained in Lemma
7.1 and Lemma 7.7, and using the fact N = O(n). This finishes the proof.

8 Proof of Theorem 1.1

Recall that the key step in Girko’s method is the integrability of log(·) with respect
to the empirical distribution of the singular values of Sdn/

√
d− zIn for Lebesgue almost

every z ∈ C. From Theorem 2.2 we have quantitive bounds on the smallest singular
value of Sdn/

√
d− zIn. The conclusion of Theorem 2.6 will show that there are not too

many singular values in small intervals near zero. However, we note that Theorem 2.6
holds only for z ∈ BC(0, 1− ε), where ε > 0 is arbitrary but fixed. So the steps of Girko’s
method, as stated in Section 2, cannot be carried out. To overcome this difficulty we
use the replacement principle, already present e.g. in the works of Tao and Vu, see in
particular [41, Theorem 2.1]. However, their proof requires control on the small singular
values for Lebesgue almost every z ∈ C. Below we adapt their proof to obtain a version
of the replacement principle, which is suited to our purpose. Before stating the result
we introduce more definitions.
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If {Xn} is a sequence of random variables, we say that Xn is bounded in probability
if we have

lim
K→∞

lim inf
n→∞

P(|Xn| ≤ K) = 1.

Next for a matrix Bn, we denote ‖Bn‖2 to be its Frobenius norm, i.e. ‖Bn‖2 :=√
Tr (B∗nBn). Now we are ready to state the result on replacement principle.

Lemma 8.1 (Replacement lemma). Let B(1)
n and B(2)

n are two sequences of n×n random
matrices, such that
(i) The expression

1

n

∥∥∥B(1)
n

∥∥∥2

2
+

1

n

∥∥∥B(2)
n

∥∥∥2

2
, (8.1)

is bounded in probability
and
(ii) For Lebesgue almost all z ∈ D ⊂ BC(0, R) ⊂ C, for some domain D and some R finite,

1

n
log |det(B(1)

n − zIn)| − 1

n
log |det(B(2)

n − zIn)| → 0,

in probability.
Then for every f ∈ C2

c (C) supported on D,∫
f(z)dL

B
(1)
n

(z)−
∫
f(z)dL

B
(2)
n

(z)→ 0,

in probability.

Since Theorem 2.6 holds for all z ∈ BC(0, 1 − ε), for every ε > 0, we can set Dε :=

BC(0, 1−ε) and apply Lemma 8.1 to conclude that
∫
fdLSdn/

√
d →

1
2π

∫
fdm for all smooth

functions f supported on Dε, where we recall m(·) is the Lebesgue measure on C. Since
ε > 0 is arbitrary and the circular law is supported on BC(0, 1), the above is enough to
conclude the weak convergence of LSdn/

√
d (for more details see the proof of Theorem

1.1).
We now turn our attention to the proof of Lemma 8.1. A key tool is the following

dominated convergence theorem.

Lemma 8.2. ([41, Lemma 3.1]) Let (X , µ) be a finite measure space. For each integer
n ≥ 1, let fn : X → R be random functions which are jointly measurable with respect to
X and the underlying probability space. Assume that
(i) There exists δ > 0 such that

∫
X |fn(x)|1+δdµ(x) is bounded in probability.

(ii) For µ-almost every x ∈ X , fn(x) converges to zero in probability.
Then

∫
X fn(x)dµ(x) converges to zero in probability.

With the help of Lemma 8.2, one can check that the proof of Lemma 8.1 actually
follows from an easy adaptation of the alternative proof of [41, Theorem 2.1] sketched in
[41, Section 3.6]. We provide a short proof for completeness.

Proof of Lemma 8.1. From (2.1), it follows that for any f ∈ C2
c (C),∫

f(z)dL
B

(1)
n

(z)−
∫
f(z)dL

B
(2)
n

(z) (8.2)

=
1

2πn

∫
∆f(z)

(
log |det(B(1)

n − zIn)| − log |det(B(2)
n − zIn)|

)
dm(z).

Set X := D,

fn(z) :=
1

2πn
∆f(z)

(
log |det(B(1)

n − zIn)| − log |det(B(2)
n − zIn)|

)
,
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and µ to be the Lebesgue measure on D in Lemma 8.2. We see that with these choices
the assumption (ii) of Lemma 8.2 is satisfied. To prove assumption (i) of Lemma 8.2 note
that, for any λ ∈ C,∫

|∆f(z)|2
(

log |λ− z|
)2

dm(z)

≤
∫
z∈BC(λ,1)

|∆f(z)|2
(

log |λ− z|
)2

dm(z) +

∫
z/∈BC(λ,1)

|∆f(z)|22(|λ|2 + |z|2)dm(z)

≤C(1 + |λ|2),

for some positive finite constant C depending on f . Here the last step follows from the

fact that f ∈ C2
c (C). Therefore using Cauchy–Schwarz inequality, denoting λ

B(j)
n

i , i =

1, 2, . . . , n, to be the eigenvalues of B(j)
n , for j = 1, 2, we have that∫

X
|fn(z)|2dm(z) ≤ C ′

(
1 +

1

n

n∑
i=1

∣∣λB(1)
n

i

∣∣2 +
1

n

n∑
i=1

∣∣λB(2)
n

i

∣∣2),
for some another positive finite constant C ′. Finally, using assumption (i) of Lemma
8.1, and Weyl’s comparison inequality for second moment (cf. [41, Lemma A.2]), we see
that the assumption (i) of Lemma 8.2 is satisfied. Thus, recalling (8.2), the proof now
completes upon applying Lemma 8.2.

Now we are almost ready to complete the proof of Theorem 1.1. Recall that we earlier
mentioned that the control on the Stieltjes transform derived in Theorem 2.6 provides us
necessary estimates on the number of singular values near zero. Indeed, the following
lemma does that job.

Lemma 8.3. ([26, Lemma 15]) Let µ be a probability measure on R. Then for any real
y > 0,

µ
(

(−y, y)
)
≤ 2y|ImGµ(iy)|.

We now proceed to the proof of Theorem 1.1. The idea behind the proof is the
following. From Theorem 2.1 we have that sn(Sdn/

√
d− z) is not very small with large

probability. Therefore we can exclude a small region near zero while computing 〈Log, νzn〉
where we recall νzn is be the ESD of Sd,zn and Sd,zn was defined in (2.21). Then we use
Theorem 2.6 to show that the integration of log(| · |) around zero, with respect to the
probability measure νzn, is negligible. Using Theorem 2.6 we also deduce that {νzn}
converges weakly, which therefore in combination with the last observation yields Step
2 of Girko’s method. Then applying the replacement lemma we finish the proof. Below
we make this idea precise.

Proof of Theorem 1.1. Fix ε > 0 and z ∈ Dε := BC(0, 1−ε). Denote cn := e−C2.1(logn)2/ log d

and let

Ω′n :=

{
sn

(
Sdn√
d
− z
)
≥ cn

}
.

Fixing any τ > 0, on the event Ω′n, we see that∫ τ

−τ
| log(|x|)|dνzn(x) = 2

∫ τ

0

| log(x)|dνzn(x)

= 2

∫ τ

cn

| log(x)|dνzn(x)

= 2

∫ τn

cn

| log(x)|dνzn(dx) + 2

∫ τ

τn

| log(x)|dνzn(dx), (8.3)
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where we set τn := (log logn)5/6

(logn)2 .
Using Theorem 2.6, Lemma 8.3, Lemma 7.8, and the triangle inequality we obtain∫ τn

cn

| log(x)|dνzn(dx) ≤ | log cn| × νzn((0, τn))

≤ 2| log cn| · τn |m̃n(i τn)| ,

≤ 2| log cn| · τn
(
|m̃∞(iτn)|+ C̃2.6τ

−3
n ·max

{
1

d1/2
,

log n

n1/4

})
≤ 4C7.8| log cn| · τn = o(1), (8.4)

on the event Ωn ∩ Ω′n (recall the definition of Ωn from the statement of Theorem 2.6),

where we used the fact d ≥ (logn)12

(log logn)4 .
Next using integration by parts it is easy to check that for any probability measure µ

on R and 0 ≤ a1 < a2 < 1,∫ a2

a1

| log(x)|dµ(x) ≤ | log(a2)|µ((0, a2)) +

∫ a2

a1

µ((0, t))

t
dt. (8.5)

Therefore arguing similarly as above and using (8.5) we further deduce∫ τ

τn

| log(x)|dνzn(x) ≤ | log(τ)|νzn ((0, τ)) +

∫ τ

τn

νzn ((0, t))

t
dt

≤ τ | log(τ)||m̃n(iτ)|+
∫ τ

τn

|m̃n(it)|dt

≤ τ | log(τ)||m̃∞(iτ)|+
∫ τ

τn

|m̃∞(it)|dt

+ 2C̃2.6τ | log(τ)|τ−3
n ·max

{
1

d1/2
,

log n

n1/4

}
≤ 2C7.8τ | log(τ)|+ 2C̃2.6τ | log(τ)|τ−3

n ·max

{
1

d1/2
,

log n

n1/4

}
(8.6)

on the event Ωn ∩ Ω′n. Hence, combining (8.4)-(8.6) from (8.3) we see that for any given
δ > 0 there exists a τδ := τ(δ), with the property limδ→0 τδ = 0, such that

lim sup
n→∞

P

(∫ τδ

−τδ
| log |x||dνzn(x) ≥ δ

)
≤ lim sup

n→∞
P

({∫ τδ

−τδ
| log |x||dνzn(x) ≥ δ

}
∩ Ωn ∩ Ω′n

)
= 0.

(8.7)

We next recall that Theorem 2.6 also implies that, for any δ′ > 0,

lim
n→∞

P

(
sup

ξ=iη:C̄2.6/2≤η≤C̄2.6

|m̃n(ξ)− m̃∞(ξ)| > δ′

)
= 0.

This in particular implies that νzn converges weakly to νz∞, in probability (for example,
apply Montel’s theorem in conjunction with [3, Theorem 2.4.4(c)]), where νz∞ is the
probability measure corresponding to the Stieltjes transform m̃∞(ξ). Therefore∫

(−R,−τδ)∪(τδ,R)

| log |x||dνzn(x)→
∫

(−R,−τδ)∪(τδ,R)

| log |x||dνz∞(x) in probability,

(8.8)
for any R positive. Recall that for z ∈ Dε the support of νz∞ is contained in [−7, 7]. On
the other hand, using that log |x|/|x| is decreasing for |x| > e, we have that

E

∫
(−R,R)c

| log |x||dνzn(x) ≤ logR

R
E

∫
|x|dνzn(x) ≤ C logR

R
,
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where C is an absolute constant, and (5.3) was used in the last inequality. Therefore,
choosing Rδ := R(δ) sufficiently large we obtain from Markov’s inequality that

lim
δ→0

lim sup
n→∞

P

(∣∣∣∣∣
∫

(−Rδ,Rδ)c
| log |x||dνzn(x)−

∫
(−Rδ,Rδ)c

| log |x||dνz∞(x)

∣∣∣∣∣ > δ

)
= 0. (8.9)

From Lemma 7.8, using Lemma 8.3 and (8.5) one can also check that∫ τδ

−τδ
| log |x||dνz∞(x) ≤ 4C7.8τδ| log τδ|. (8.10)

Since δ > 0 is arbitrary and τδ → 0 as δ → 0, combining (8.7)-(8.10) we deduce that

〈Log, νzn〉 → 〈Log, νz∞〉, in probability. (8.11)

Now the remainder of the proof is completed using Lemma 8.1. Indeed, consider An the
n × n matrix with i.i.d. centered Gaussian entries with variance one. It is well-known
that, for Lebesgue almost all z,

1

n
log |det(An/

√
n− zIn)| → 〈Log, νz∞〉, almost surely. (8.12)

For example, one can obtain a proof of (8.12) using [12, Lemma 4.11, Lemma 4.12], [13,
Theorem 3.4], and [35, Lemma 3.3].

Thus setting D = Dε, B
(1)
n = Sdn/

√
d, and B

(2)
n = An/

√
n in Lemma 8.1 we see that

assumption (ii) there is satisfied. The assumption (i) of Lemma 8.1 follows from (5.3).
Hence, using Lemma 8.1 and the circular law for i.i.d. complex Gaussian matrices (which
follows from e.g. [4], but essentially goes back to Ginibre [23]), we obtain that for every
ε > 0 and every fε ∈ C2

c (C), supported on Dε,∫
fε(z)dµn(z)→ 1

π

∫
fε(z)dm(z), in probability, (8.13)

where for brevity we denote µn := LSdn/
√
d. To finish the proof it now remains to show

that one can extend the convergence of (8.13) to all f ∈ C2
c (C). That is we need to show

that for any δ > 0 and f ∈ C2
c (C)

P

(∣∣∣∣∣
∫
f(z)dµn(z)− 1

π

∫
BC(0,1)

f(z)dm(z)

∣∣∣∣∣ ≥ δ
)
→ 0 as n→∞. (8.14)

To this end, for any ε > 0 define a function iε ∈ C2
c (C) such that iε is supported on Dε,

iε ≡ 1 on D2ε and iε ∈ [0, 1] on Dε\D2ε. Next fix ε such that M(1− (1− 2ε)2) ≤ δ/8 where
M := supx |f(x)|. Denote fε := fiε and f̄ε := f − fε. Applying (8.13) for the function iε
and the triangle inequality we note that

P

(∣∣∣∣∫ f̄ε(z)dµn(z)

∣∣∣∣ ≥ δ/4) ≤ P(∣∣∣∣∫ (1− iε(z))dµn(z)

∣∣∣∣ ≥ δ

4M

)
≤ P

(∣∣∣∣∫ iε(z)dµn(z)− 1

π

∫
iε(z)dm(z)

∣∣∣∣ ≥ δ

8M

)
→ 0,

(8.15)

as n→∞, where we have used the fact that∣∣∣∣∣ 1π
∫
BC(0,1)

(1− iε(z))dm(z)

∣∣∣∣∣ ≤ 1

π

∫
BC(0,1)\D2ε

dm(z) ≤ δ

8M
, (8.16)
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by our choice of ε. Therefore combining (8.13), (8.15)-(8.16) and the triangle inequality
we deduce

P

(∣∣∣∣∫ f(z)dµn(z)− 1

π

∫
f(z)dm(z)

∣∣∣∣ ≥ δ)
≤P

(∣∣∣∣∫ fε(z)dµn(z)− 1

π

∫
fε(z)dm(z)

∣∣∣∣ ≥ δ/2)+ P

(∣∣∣∣∫ f̄ε(z)dµn(z)

∣∣∣∣ ≥ δ/4)→ 0,

as n→∞. This completes the proof of the theorem.
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