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Excited random walk in a Markovian environment
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Abstract

One dimensional excited random walk has been extensively studied for bounded, i.i.d.
cookie environments. In this case, many important properties of the walk including
transience or recurrence, positivity or non-positivity of the speed, and the limiting
distribution of the position of the walker are all characterized by a single parameter
δ, the total expected drift per site. In the more general case of stationary ergodic
environments, things are not so well understood. If all cookies are positive then the
same threshold for transience vs. recurrence holds, even if the cookie stacks are
unbounded. However, it is unknown if the threshold for transience vs. recurrence
extends to the case when cookies may be negative (even for bounded stacks), and
moreover there are simple counterexamples to show that the threshold for positivity
of the speed does not. It is thus natural to study the behavior of the model in the case
of Markovian environments, which are intermediate between the i.i.d. and stationary
ergodic cases. We show here that many of the important results from the i.i.d. setting,
including the thresholds for transience and positivity of the speed, as well as the
limiting distribution of the position of the walker, extend to a large class of Markovian
environments. No assumptions are made about the positivity of the cookies.
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1 Introduction and statement of results

Let Ω = [0, 1]Z×N. An excited random walk (ERW) started from position x0 in a cookie
environment ω = (ω(x, i))x∈Z,i∈N ∈ Ω is an integer-valued stochastic process (Xn)n≥0

with probability measure Pωx0
given by

Pωx0
(X0 = x0) = 1,

Pωx0
(Xn+1 = Xn + 1|X0, . . . , Xn) = ω(Xn, In),

Pωx0
(Xn+1 = Xn − 1|X0, . . . , Xn) = 1− ω(Xn, In),
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Excited random walk in a Markovian environment

where In = |{0 ≤ m ≤ n : Xm = Xn}|. The name cookie environment comes from the
following informal interpretation first given in [22]. At each site x ∈ Z we initially place
an infinite stack of “cookies”. The strength of the i-th cookie at site x is ω(x, i). Upon the
i-th visit to x the walker consumes the i-th cookie there, which biases it to jump right
with probability ω(x, i) and left with probability 1− ω(x, i).

A multi-dimensional form of this excited random walk model was first introduced in
[4], but with only a single cookie per site. Subsequently the model was extended in [22]
to the case of infinite cookie stacks and random environments, for the 1-dimensional
setting, and has since been a topic of substantial interest [10, 2, 3, 8, 12, 1, 13, 9]. For a
good and fairly recent survey the reader is referred to [11].

Henceforth, we will be concerned only with the case of 1-dimensional ERW when the
environment ω is itself random. The setup is analogous to the case of classical random
walk in random environment. We first sample ω ∈ Ω according to some probability
measure P on Ω. Then, conditional on selecting the particular environment ω, the
random walk proceeds as described above. For an initial position x ∈ Z, Pωx is called
the quenched measure of the walk in the environment ω, and the averaged or annealed
measure Px is defined by

Px(·) ≡
∫
Pωx (·)P(dω) = E[Pωx (·)]. (1.1)

Of course, to say anything meaningful about the behavior of the walk under the
averaged measure Px one must put some assumptions on the probability measure P
over cookie environments. The following assumptions have often been used in previous
works:

(IID) The sequence of cookie stacks (ω(x, ·))x∈Z is i.i.d. under P.

(SE) The sequence of cookie stacks (ω(x, ·))x∈Z is stationary and ergodic under P.

(BD) The cookie stacks are of uniform bounded height. That is, there exists a determin-
istic M ∈ N such that ω(x, i) = 1/2 a.s., for all i > M and x ∈ Z.

(POS) The cookies are positive (or right biased): ω(x, i) ≥ 1/2 a.s., for all x ∈ Z and
i ∈ N.

(ELL) The cookie environment is elliptic: ω(x, i) ∈ (0, 1) a.s., for all x ∈ Z and i ∈ N.

If the measure P satisfies either (IID) or (SE) and either (POS) or (BD) then the total
expected drift per site

δ ≡
∞∑
i=1

(
2E[ω(x, i)]− 1

)
(1.2)

is well defined (possibly +∞) and independent of x, and it turns out that many key
properties of the walk depend on this parameter δ. The (ELL) condition is only a
technical assumption that is necessary to avoid certain trivialities, and some weaker
forms have been used instead in certain instances.

1.1 Summary of known results

Here we list some important known results about the ERW model relevant to our
work. Some of these results hold (and were initially stated) with a somewhat weaker
form of ellipticity than the (ELL) condition given above, but these differences will not be
important for us. The following terminology will be used in our statements, as well as in
the statements of the new results that follow in Section 1.2.
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• We say that the random walk (Xn) is recurrent if P0(Xn = 0, i.o.) = 1, right
transient if P0(Xn → +∞) = 1, and left transient if P0(Xn → −∞) = 1.

• We say that the random walk (Xn) satisfies a law of large numbers with velocity
v ∈ R if limn→∞Xn/n = v, P0 a.s. If v 6= 0, we say the random walk is ballistic.

Theorem 1.1. (Zero-One Law for Directional Transience, Theorem 1.2 of [1])
Assume P is (SE) and (ELL). Then P0(Xn → +∞) ∈ {0, 1} and P0(Xn → −∞) ∈ {0, 1}.

Theorem 1.2. (Law of Large Numbers, Theorem 4.1 of [11])
If P is (SE) and the conclusion of Theorem 1.1 holds, then (Xn) satisfies a law of large
numbers with some velocity v ∈ [−1, 1]. In particular, if P is (SE) and (ELL), then (Xn)

satisfies a law of large numbers.

Theorem 1.3. (Transience vs. Recurrence Threshold)

(i) (Theorem 1 of [10]). Assume P satisfies (IID), (BD), and (ELL) and let δ be as in (1.2).
Then (Xn) is recurrent if δ ∈ [−1, 1], right transient if δ > 1, and left transient if δ < −1.

(ii) (Theorem 12 of [22]) Assume P satisfies (SE), (POS), and (ELL) and let δ be as in (1.2).
Then (Xn) is recurrent if δ ∈ [0, 1] and right transient if δ > 1.

Theorem 1.4. (Ballisticity Threshold, Theorem 2 of [10])
Assume P satisfies (IID), (BD), and (ELL) and let δ be as in (1.2). Also, let v be the

velocity from Theorem 1.2. Then v = 0 if δ ∈ [−2, 2], v > 0 if δ > 2, and v < 0 if δ < −2.

Theorem 1.5. (Limit Laws, Theorem 6.5 of [11]) Assume that P satisfies (IID), (BD), and
(ELL) and let δ be as in (1.2). Also, let v be the velocity from Theorem 1.2. For α ∈ (0, 2]

and b > 0, let Zα,b be a random variable with totally asymmetric stable law of index α,
defined by its characteristic function

φα,b(t) ≡ E[eitZα,b ] =

{
exp

[
− b|t|α

(
1− i tan(πα2 )sgn(t)

)]
, α 6= 1,

exp
[
− b|t|

(
1 + 2i

π log |t|sgn(t)
)]
, α = 1.

(1.3)

(Note that Z2,b is simply a normal random variable with mean 0 and variance 2b.)

(i) If δ ∈ (1, 2) then there is some b > 0 such that

Xn

nδ/2
→ (Zδ/2,b)

−δ/2 in distribution, as n→∞. (1.4)

(ii) If δ = 2 then there exist constants a, b > 0 and a sequence Γ(n) ∼ an/ log(n) such
that

Xn − Γ(n)

a2n/ log2(n)
→ −Z1,b in distribution, as n→∞. (1.5)

(iii) If δ ∈ (2, 4) then there is some b > 0 such that

Xn − vn
n2/δ

→ −Zδ/2,b in distribution, as n→∞. (1.6)

(iv) If δ = 4 then there is some b > 0 such that

Xn − vn√
n log(n)

→ Z2,b in distribution, as n→∞. (1.7)

(v) If δ > 4 then there is some b > 0 such that

Xn − vn√
n

→ Z2,b in distribution, as n→∞. (1.8)
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Remark 1.6. Analogous results to Theorem 1.5 hold in the case of negative δ by symme-
try.

Remark 1.7. Reference [11] is a review paper and many of the results there were
proved earlier in other places (either partially or completely). Case (v) of Theorem 1.5
was originally proven in [10]. Cases (iii) and (iv) were originally proven in [8]. Case (i)
under some stronger hypothesis was first shown in [3]. The extension to the (IID), (BD),
(ELL) case follows from the same methods used in [8], as noted in that work.

Remark 1.8. If the cookie stacks are unbounded and negative cookies are allowed then
δ is not necessarily well defined. However, recent work in [13] and [9] has considered
extensions of the parameter δ to certain unbounded environments with both positive and
negative cookies. Specifically, in [13] the authors consider deterministic, periodic cookie
stacks, which are the same at each site x. Then, in [9] this model is extended to the case
where the cookie stack (ω(x, i))i∈N at each site x is a finite state Markov chain, started
from some distribution η that is the same for all x. In this latter case of Markovian cookie
stacks, analogs of Theorems 1.3, 1.4, and 1.5 are all proved for the random walk (Xn), in
terms of some parameters δ and δ̃, which are generalized versions of the δ given in (1.2)
and its negative. This work extends many of the old results from (IID), (BD), and (ELL)
environments by removing the (BD) assumption while maintaining the (IID) assumption.
Our Assumption (A) presented in the following section will go in a somewhat different
direction. We will maintain the (BD) assumption, but weaken the (IID) condition.

1.2 Statement of new results

In light of Theorems 1.3-(i), 1.4, and 1.5 we see that the behavior of the random
walk (Xn) is fairly well understood in the case of (IID), (BD), and (ELL) environments.
On the other hand, much less is known if the (IID) assumption is weakened to (SE). A
zero-one law for directional transience and law of large numbers still hold, but it is
generally not well understood when the walk will be transient or ballistic. In the case
that the cookies are all positive, Theorem 1.3-(ii) implies that the same threshold for
transience as the (IID) case holds, without the boundedness assumption on the cookie
stacks. However, even in the case of bounded cookie stacks, it is still unknown whether
the same transience/recurrence threshold is always valid for (SE) environments with
both positive and negative cookies. Furthermore, there are simple counterexamples
(given in Section 1.3) which indicate that the ballisticity threshold of Theorem 1.4 is not,
in general, valid for (SE) environments, even if (BD), (ELL), and (POS) are all assumed.

It is thus reasonable to wonder if there are classes of non-(IID) environments for
which an explicit characterization of the behavior of the random walk (Xn) is possible,
similar to the (IID) case. A natural first step in this direction is to consider Markovian
environments, and we will show that in fact Theorems 1.3-(i), 1.4, and 1.5 all extend to a
large class of Markovian environments.

Definition 1.9. Let S be a countable (either finite or countably infinite) set, and let
(Sn) be a discrete time Markov chain on state space S with transition matrix K =

{K(s, s′)}s,s′∈S . The Markov chain (Sn) is said to be ergodic if it is irreducible, aperiodic,
and positive recurrent. In this case (see [14, Theorem 21.14]), there exists a unique
stationary distribution π on S satisfying π = πK, and

lim
n→∞

‖Kn(s, ·)− π‖TV = 0, for each s ∈ S, (1.9)

where ‖µ − ν‖TV ≡ 1
2‖µ − ν‖1 is the total variational norm between two probability

distributions µ and ν on S. The Markov chain (Sn) is said to be uniformly ergodic if the
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rate of convergence in (1.9) is uniform in the initial state. That is, if

lim
n→∞

[
sup
s∈S
‖Kn(s, ·)− π‖TV

]
= 0. (1.10)

Of course, all irreducible, aperiodic Markov chains on a finite state space are uni-
formly ergodic, and many natural positive recurrent Markov chains on a countably
infinite state space are also uniformly ergodic. The positive recurrent assumption is
clearly necessary to give some asymptotic form of stationarity for the Markov chain (Sn),
which, in attempt to partially extend from (IID) environments to (SE) environments, is
what we will want to have.

For given M ∈ N, we denote by S∗M the set of all elliptic cookie stacks of height M :

S∗M = {s = (s(i))i∈N : s(i) ∈ (0, 1) for i = 1, . . . ,M and s(i) = 1/2 for i > M}.

If S ⊂ S∗M and (Sk)k∈Z is a stochastic process taking values in S, then we can define a
bounded, elliptic cookie environment ω = (ω(k, i))k∈Z,i∈N by

ω(k, i) = Sk(i) , k ∈ Z and i ∈ N. (1.11)

In the theorems below we will always make the following assumption on our cookie
environments.

Assumption (A)
The probability measure P on cookie environments ω ∈ Ω is the probability measure
obtained when ω is defined by (1.11) and the process (Sk)k∈Z is as follows: M ∈ N is a
positive integer, S ⊂ S∗M is a countable set, and (Sk)k∈Z and (Rk)k∈Z are both uniformly
ergodic Markov chains on the state space S, where Rk ≡ S−k, k ∈ Z.

Remark 1.10. If (Sk) is an ergodic Markov chain on a countable state space S, then
the reversed process (Rk) defined by Rk = S−k, k ∈ Z, is also always an ergodic
Markov chain. However, if (Sk) is a uniformly ergodic Markov chain, then the reversed
process (Rk) is not necessarily uniformly ergodic. We assume explicitly that both the
stack sequence (Sk) and its reversal (Rk) are uniformly ergodic Markov chains, so that
our Assumption (A) is symmetric with respect to spatial directions of the model. This
condition is satisfied in many natural cases, e.g. when the Markov chain (Sk) is uniformly
ergodic and reversible, or when the state space S is finite and (Sk) is irreducible and
aperiodic.

With our current methods of proof, this symmetric assumption of bi-directional
uniform ergodicity is necessary for a complete extension of the results from the (IID)
setting given in Theorems 1.3-(i), 1.4, and 1.5. If one assumes instead only that (Sk) is
uniformly ergodic (or only that (Rk) is uniformly ergodic) then the transience/recurrence
characterization of Theorem 1.3-(i) still extends fully (with only minor modifications
of the proof given in this paper). However, the results of Theorem 1.4 on ballisticity
and Theorem 1.5 on limiting distributions do not quite fully extend (only one-sided
versions are available, for δ > 0 when (Rk) is uniformly ergodic, or for δ < 0 when (Sk)

is uniformly ergodic).

In the case Assumption (A) is satisfied we will denote the transition matrix for the
Markov chain (Sk)k∈Z by K = {K(s, s′)}s,s′∈S and the marginal distribution of S0 by
φ = (φ(s))s∈S . Together the pair (K, φ) completely determines the law of the process
(Sk), and, hence, the probability measure P. If φ = π is the stationary distribution of the
Markov chain, then (Sk)k∈Z is a stationary and ergodic stochastic process. Thus, the (SE)
assumption is satisfied for the environment ω, and the δ defined in (1.2) is, indeed, well
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defined. If φ 6= π, then the process (Sk)k∈Z is no longer stationary, so the definition (1.2)
is no longer directly applicable, because it is not the same for each site x. Nevertheless,
asymptotically, for |k| large, Sk has distribution close to π, whatever the distribution φ
on S0 is. We, thus, extend the definition of δ as follows when Assumption (A) is satisfied:

δ ≡
∑
s∈S

π(s) · δ(s) where δ(s) ≡
∞∑
i=1

(
2s(i)− 1

)
=

M∑
i=1

(
2s(i)− 1

)
. (1.12)

Our first theorem gives a threshold for transience vs. recurrence of the random walk
(Xn), analogous to Theorem 1.3.

Theorem 1.11. Assume that Assumption (A) is satisfied for the probability measure P
on cookie environments, and let δ be as in (1.12). Then the ERW (Xn)n≥0 is recurrent if
δ ∈ [−1, 1], right transient if δ > 1, and left transient if δ < −1.

Our next theorem gives a threshold for ballisticity of the random walk, analogous to
Theorem 1.4.

Theorem 1.12. Assume that Assumption (A) is satisfied for the probability measure P
on cookie environments, and let δ be as in (1.12). Then there exists a deterministic
v ∈ [−1, 1] such that Xn/n→ v, P0 a.s. Moreover, v = 0 if δ ∈ [−2, 2], v > 0 if δ > 2, and
v < 0 if δ < −2.

Our final theorem characterizes the limiting distribution of (Xn), analogous to Theo-
rem 1.5.

Theorem 1.13. Assume that Assumption (A) is satisfied for the probability measure
P on cookie environments, and let δ be as in (1.12). Also, let v be the velocity of the
random walk (Xn) as in Theorem 1.12. Then (i)-(v) of Theorem 1.5 all hold.

Remark 1.14. Just as for Theorem 1.5 in the (IID) case, analogous results to Theorem
1.13 also hold in the case of negative δ. This follows from the fact that Assumption (A)
is preserved when spatial directions of the model are interchanged (see Remark 3.4
below).

Remark 1.15. In fact, Assumption (A) in Theorems 1.11-1.13 can be weakened to the
somewhat more general hidden Markov Assumption (B) given below. The proofs are
essentially unchanged; it is only for convenience of notation and language that our proofs
are written using Assumption (A) instead of (B).

Assumption (B)
The probability measure P on cookie environments ω ∈ Ω is the probability measure
obtained when ω is defined by (1.11) and the process (Sk)k∈Z is as follows: (Zk)k∈Z is a
uniformly ergodic Markov chain on a countable state space Z such that the reversed
Markov chain (Z−k)k∈Z is also uniformly ergodic, M ∈ N is a positive integer, S ⊂ S∗M is
a countable set, and Sk = f(Zk) where f : Z → S is some observation function (f not
necessarily 1-1).

1.3 Counterexamples

In this section we present three closely related counterexamples, which indicate that
the threshold for positivity of the speed given in Theorem 1.4 (and also as a consequence
the limiting distributions presented in Theorem 1.5 when δ > 2), do not extend as far
as one might hope from the (IID), (BD), (ELL) case. The first example shows that the
threshold for ballisticity does not in general hold for (POS) and (SE) environments. The
second, which is a modification of the first, shows that the same conclusion is true if one
adds (BD) and (ELL) to the (POS) and (SE) assumptions. These examples are known,
see e.g. [11, Example 5.7] (and also [15, page 290] for an earlier and somewhat related
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example). The final example, which we present here for the first time, is a modification
of the second. It shows that if one considers Markovian environments as in Assumption
(A) with bounded and elliptic cookie stacks, but assumes only that the Markov chain
(Sk)k∈Z is ergodic (rather than uniformly ergodic), then again the threshold of Theorem
1.4 for ballisticity is not in general valid1. Thus, our uniformly ergodic assumption on
the Markov chains (Sk) and (Rk), or at least some assumption beyond ergodicity, is
necessary for the (IID) results to translate completely.

The following definition and lemma on monotonicity of the speed will be needed for
our examples.

Definition 1.16. If ω1, ω2 ∈ Ω are two cookie environments, we say that ω1 dominates
ω2 if ω1(x, i) ≥ ω2(x, i), for all x ∈ Z and i ∈ N. If P1 and P2 are two probability measures
on Ω, we say that P1 dominates P2 if there exists some joint probability measure P on
Ω× Ω with marginals P1 and P2 such that P

(
{(ω1, ω2) ∈ Ω2 : ω1 dominates ω2}

)
= 1.

Lemma 1.17 (Special case of Proposition 4.2 from [11]). Let P1 and P2 be two (SE) and
(ELL) probability measures on Ω such that P1 dominates P2, and let v1 and v2 be the
corresponding velocities of the associated ERWs (as in Theorem 1.2). Then v1 ≥ v2.

Example 1. Define cookie stacks s0 and s1 by s0(i) = 1 for all i ∈ N, s1(i) = 1/2 for
all i ∈ N. That is, s0 is an infinite stack of completely right biased cookies, and s1 is
an infinite stack of “placebo cookies” which induce no bias on the random walker. Let
S = {s0, s1}, and let (Sk)k∈Z be a stationary and ergodic process taking values in S such
that the intervals between consecutive occurrences of s0 in the process (Sk) are i.i.d.
Define the random environment ω ∈ Ω by (1.11). Also, define τ1 = inf{k > 0 : Sk = s0}
and τi+1 = inf{k > τi : Sk = s0}, for i ≥ 1, and let Ti = inf{n > 0 : Xn = τi}. That is,
Ti is the time at which the walker first reaches the i-th position to the right of 0 which
has an s0 stack. Assume that the distribution of the random variable (τ2 − τ1), i.e. the
distribution of the distance between consecutive occurrences of stack s0 in the process
(Sk), is such that E(τ2 − τ1) <∞, but E

(
(τ2 − τ1)2

)
=∞. Then the following all hold.

1. δ =∞ > 2.

2. E(T2 − T1) =∞, since E(T2 − T1|τ2 − τ1 = `) = `2.

3. v ≡ limn→∞Xn/n = limi→∞ τi/Ti =
E(τ2 − τ1)

E(T2 − T1)
= 0.

Example 2. Let M ∈ N and p ∈ (1/2, 1), and modify Example 1 so that the stack s0

is defined as follows: s0(i) = p for i = 1, . . . ,M and s0(i) = 1/2 for i > M . Then the
natural coupling between environments shows that the probability measure P1 on cookie
environments from Example 1 dominates the new probability measure P2. Thus, by
Lemma 1.17, v2 ≤ v1 = 0, where v1 and v2 are the associated velocities of the random
walks. This construction works for any M ∈ N, and so we may choose M sufficiently
large that δ = M(2p − 1)/E(τ2 − τ1) > 2 in the new modified case. Then we have a
(SE), (POS), (BD), (ELL) probability measure on cookie environments with velocity 0, but
δ > 2.

Example 3. Let s0, s1 and the process (Sk)k∈Z be as in Example 2. Assume that M is
sufficiently large that M(2p−1)

E(τ2−τ1) > 3, and that the distribution of (τ2 − τ1) has support on

all of N. Let S̃ = {s̃j : j ≥ 0} where the stacks s̃j are defined by s̃0 = s0 and, for j ≥ 1,

s̃j(1) = 1/2− 1

3j
and s̃j(i) = 1/2, i > 1.

1In fact, although this is not explicit in their descriptions, the first two examples are of the hidden Markov
type as in Assumption (B), but where the underlying Markov chain (Zk)k≥0 is not uniformly ergodic.
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Now, define a new process (S̃k)k∈Z from the process (Sk)k∈Z by the following projection:

S̃k = s̃j , where j = k − ` and ` = sup{m ≤ k : Sm = s0}.

Thus, S̃k is equal to s̃0 if Sk = s0, and otherwise S̃k equals s̃j where j is the number of
time steps since the last occurrence of s0 for the process (Sm)m∈Z. With this construction
(S̃k)k∈Z is a Markov chain with transition probabilities

P (S̃k+1 = s̃0|S̃k = s̃j) = P (τ2 − τ1 = j + 1|τ2 − τ1 > j),

P (S̃k+1 = s̃j+1|S̃k = s̃j) = P (τ2 − τ1 > j + 1|τ2 − τ1 > j).

Moreover, the state space S̃ of this Markov chain has only bounded, elliptic stacks, and
the Markov chain (S̃k) itself is stationary (since (Sk) is), irreducible and aperiodic (since
(τ2 − τ1) has support on all of N), and positive recurrent (since E(τ2 − τ1) <∞). Finally,
for the probability measure P3 on environments ω constructed from the (S̃k) process and
associated parameter δ the following hold:

1. P3 is dominated by the probability measure P2 from Example 2. Hence, by Lemma
1.17, v3 ≤ v2 = 0, where v3 and v2 are associated velocities.

2. Let δ(s̃j) =
∑∞
i=1(2s̃j(i) − 1) be the net drift in stack s̃j , and let π = (πj)j≥0 be

the stationary distribution of the Markov chain (S̃k). Then δ(s̃0) = M(2p− 1) and
−2/3 = δ(s̃1) < δ(s̃2) < δ(s̃3) < . . ., so

δ =

∞∑
j=0

πjδ(s̃j) > π0δ(s̃0) +

∞∑
j=1

πjδ(s̃1)

=
1

E(τ2 − τ1)
M(2p− 1) +

[
1− 1

E(τ2 − τ1)

]
(−2/3) > 2.

In summary, the stack sequence (S̃k)k∈Z (hence also the reversed sequence (R̃k)k∈Z)

are stationary and ergodic Markov chains, and δ > 2, but the velocity v3 ≤ 0. So, the
ballisticity threshold of Theorem 1.12 does not extend to the case when the sequence of
cookies stacks is simply an ergodic Markov chain rather than a uniformly ergodic one.
Indeed, to the best of our knowledge, it is not even known for this example whether the
walk is transient or recurrent since the environment does not satisfy the (POS) condition
(and, thus, Theorem 1.3-(ii) is not applicable).

1.4 Outline of paper

An outline of the remainder of the paper is as follows. In Section 1.5 we introduce
some basic notation and conventions that will be used throughout. In Section 2 we review
a well known connection between ERW and certain branching processes, called the
forward branching process and backward branching process. We also introduce some
related processes, which are easier to analyze, and give some concentration estimates
and expectation and variance calculations for these related processes. In Section 3
we prove Theorem 1.11. The proof is based on the connection between the ERW and
forward branching process, and follows the general approach used in [13]. In Section
4 we prove Theorems 1.12 and 1.13. The proofs are based on a connection between
the ERW and backward branching process and follow the general approach used in
[8], [9]. Central to these arguments is a diffusion approximation limit for the backward
branching process introduced in [8]. The proofs of several technical results are deferred
to the appendices.

EJP 23 (2018), paper 43.
Page 8/60

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP155
http://www.imstat.org/ejp/


Excited random walk in a Markovian environment

1.5 Notation

The positive integers are denoted by N (as above), and the non-negative integers by
N0. The infimum of the empty set is defined to be∞, and

∑k
i=j zi ≡ 0, for any j > k and

sequence (zi). For a stochastic process Z = (Zn)n≥0, τZx ≡ inf{n > 0 : Zn = x}. The same
notation is also used for a continuous time process (Z(t))t≥0 with continuous sample
paths. For sequences of real numbers (an), (bn) we write an ∼ bn if limn→∞ an/bn = 1.
Similarly, f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1, for real valued functions f and g.
Constants of the form ci are assumed to carry over between the various propositions
and lemmas throughout. Other constants C, c, Ci,Ki, ... etc. are particular only to the
specific lemma or proposition where they are introduced.

Unless otherwise specified it is assumed in the remainder of the paper that Assump-
tion (A) holds for the probability measure P on cookie environments. The stack height M ,
state set S ⊂ S∗M , and transition matrix K for the Markov chain (Sk)k∈Z are all assumed
to be fixed. The marginal distribution of S0 (according to P) is denoted by φ, and the
stationary distribution of the Markov chain (Sk) is denoted by π. Also, δ is given by
(1.12). By a slight abuse of notation, we will use P as the probability measure for the
Markov chain (Sk) itself, as well as the environment ω derived from it according to (1.11).
The probability measures Ps, s ∈ S, and Pπ are the modified probability measures for
the Markov chain (Sk) (or equivalently for the environment ω) when S0 = s or S0 ∼ π:

Ps(·) ≡ P(·|S0 = s) and Pπ(·) ≡
∑
s∈S

π(s)Ps(·).

Expectations with respect to Ps and Pπ are denoted by Es and Eπ, respectively, and the
corresponding averaged measures for the random walk (Xn) started from position x are

Px,s(·) ≡ Es[P
ω
x (·)] and Px,π(·) ≡ Eπ[Pωx (·)].

The probability measure P and corresponding expectation operator E will be used
generically for auxiliary random variables living on outside probability spaces, separate
from those of the environment ω and random walk (Xn).

2 Branching processes

In this section we introduce our main tool in the analysis of the ERW, which is
a connection with two related branching processes known as the forward branching
process and backward branching process. The definition of the forward branching
process is given in Section 2.1, and the definition of the backward branching process
in Section 2.2. Some related branching processes which are easier to analyze are
introduced in Section 2.3. Various concentration estimates and expectation and variance
calculations for some of the related branching processes are given in Section 2.4.

2.1 The forward branching process

The construction of both the forward and backward branching processes is based on
the coin tossing construction of the ERW introduced in [10]. For a fixed environment
ω ∈ Ω, we initially flip an infinite sequence of coins at each site k, where the i-th coin
at site k has probability ω(k, i) of landing heads. The walker begins its walk at some
given site x, and if it ever reaches site k for the i-th time, then it jumps right if the
i-th coin toss at site k was heads and left otherwise. More formally, let ξki , k ∈ Z and
i ∈ N, be independent random variables such that ξki has Bernoulli distribution with
parameter p = ω(k, i). Then the random walk (Xn)n≥0 started from position x in the
given environment ω can be constructed from the ξki ’s as follows:

X0 = x and Xn+1 = (2ξXnIn − 1) +Xn (2.1)
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where In = |{0 ≤ m ≤ n : Xm = Xn}|. We will say that ξki is a success if ξki = 1 (i.e.
heads) and a failure if ξki = 0 (i.e. tails). The forward branching process (Uk)k≥0 started
from level u0 ∈ N0 is defined by

U0 = u0 and Uk+1 = inf
{
m :

m∑
i=1

1{ξk+1
i = 0} = Uk

}
− Uk. (2.2)

That is, Uk+1 is the number of successes in the sequence (ξk+1
i )i∈N before the Uk-th

failure2. If we define Gki to be the number of successes in the sequence (ξkj )j∈N between
the (i− 1)-th and i-th failures then we have, for each k ≥ 0,

Uk+1 =

Uk∑
i=1

Gk+1
i , where (Gki )i>M,k≥1 are i.i.d. Geo(1/2) random variables. (2.3)

Thus, the process (Uk)k≥0 may be seen as a type of branching process with a time de-
pendent migration term. More precisely, the k-th step of the process may be interpreted
as a combination of the following 3 things:

• First, Uk ∧M individuals emigrate out of the population before reproducing.
• Then, all remaining individuals (if any) have a Geo(1/2) number of offspring inde-

pendently.
• Finally,

∑Uk∧M
i=1 Gk+1

i individuals immigrate into the population after reproduction.

Now, this construction for the process U = (Uk)k≥0 has been for a fixed environment
ω, but one can also consider the same process when the environment ω is first chosen
randomly according to some probability measure. We will denote by PU,ωu0

the probability
measure for the process U started from level u0 in a fixed environment ω, as constructed
above, and by PUu0,s the probability measure for the joint process (Uk, Sk)k≥0 when U0 =

u0 and S0 = s. That is, we first sample (Sk)k∈Z according to Ps to get an environment
ω = (ω(k, i))k∈Z,i∈N = (Sk(i))k∈Z,i∈N, and then we sample (Uk)k≥0 according to PU,ωu0

.
This two step procedure gives a joint measure on3 (Uk, Sk)k≥0 which is the measure
PUu0,s. The measures PUu0,π and PUu0

are the averaged measures when S0 is distributed
according to π or φ, respectively:

PUu0,π(·) ≡
∑
s∈S

π(s)PUu0,s(·) and PUu0
(·) ≡

∑
s∈S

φ(s)PUu0,s(·).

Under any of these measures PUu0,s, P
U
u0,π, and PUu0

the joint process (Uk, Sk)k≥0 is a
time-homogeneous Markov chain with transition probabilities pU(u,r)(u′,r′) ≡ Prob(Uk+1 =

u′, Sk+1 = r′|Uk = u, Sk = r) given by

pU(u,r)(u′,r′) = K(r, r′)PU,ωr′u (U1 = u′), (2.4)

where K is the transition matrix for the Markov chain (Sk) and ωr′ is the deterministic
environment with stack r′ at each site: ωr′(x, i) = r′(i), for all x ∈ Z and i ∈ N.

The main interest in the forward branching process is its connection to a related
process (U ′k)k≥1 defined by

U ′k = |{0 ≤ n < τX0 : Xn = k,Xn+1 = k + 1}|.

Clearly, survival of the process (U ′k), i.e. occurrence of the event {U ′k > 0,∀k > 0}, is
closely related to right transience of the random walk (Xn). The following lemma is
standard, but we will provide a proof for the convenience of the reader.

2In the case Uk =∞ (when (2.2) is no longer directly meaningful) we will extend this interpretation, so that
Uk+1 is then defined to be the total number of successes in the sequence (ξk+1

i )i∈N.
3Note that the process (Uk)k≥0 depends only on Sk(i) = ω(k, i), for i, k ≥ 1. So, we do not need to

completely specify ω to construct (Uk)k≥0. It is sufficient to consider (Sk)k≥0.

EJP 23 (2018), paper 43.
Page 10/60

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP155
http://www.imstat.org/ejp/


Excited random walk in a Markovian environment

Lemma 2.1. Assume the process (Uk)k≥0 is started from level u0 = 1 and that (Xn)n≥0

is started from position X0 = 1. Then, for any realization of the random variables
(ξki )k∈Z,i∈N, U ′k ≤ Uk for all k ≥ 1. Moreover, for any realization of the random variables
(ξki )k∈Z,i∈N such that τX0 <∞, U ′k = Uk for all k ≥ 1.

Note: The lemma does not specify anything about the probability measure on the
environment ω. The relation between Uk and U ′k is a deterministic function of the values
of (ξki )k∈Z,i∈N, from which both processes (Uk) and (U ′k) are constructed.

Proof. First fix a realization (ξki )k∈Z,i∈N such that τX0 < ∞. By definition U ′1 is the
number of right jumps from site 1 before time τX0 , which (if τX0 < ∞) is simply the
number of right jumps from site 1 before the first left jump from this site, or equivalently
the number of successes in the sequence (ξ1

i )i∈N before the first failure. Since we
assume u0 = 1, the latter quantity is exactly U1, so we have U ′1 = U1. Now suppose
that Uk = U ′k = m ≥ 0, for some k ≥ 1. Then, by the definition of the (U ′j) process, the
random walk (Xn) must jump right from site k exactly m times prior to time τX0 . Thus,
the walk must jump left from site k + 1 exactly m times prior to time τX0 . Thus, the
number of right jumps from site k + 1 prior to time τX0 is exactly the number of right
jumps from site k + 1 before there are m left jumps from it, or equivalently the number
of successes in the sequence (ξk+1

i )i∈N before the m-th failure. Since Uk = m, this shows
that U ′k+1 = Uk+1. It follows, by induction, that U ′k = Uk for all k ≥ 1.

Now, fix a realization (ξki )k∈Z,i∈N such that τX0 = ∞. Then, for each k ≥ 1, U ′k is
simply the total number of right jumps from site k by the random walk (Xn). Because
the walk never jumps left from site 1, the total number of right jumps from site 1 is at
most the number of successes in the sequence (ξ1

i )i∈N before the first failure. So, we
have U ′1 ≤ U1. Now suppose that Uk = ` and U ′k = m for some 0 ≤ m ≤ ` ≤ ∞ and k ≥ 1.
If m = 0, then the walk never jumps right from site k, so it never reaches site k + 1, so
U ′k+1 = 0, so U ′k+1 ≤ Uk+1. If 1 ≤ m <∞, then the walk jumps right from site k exactly
m times total, so either it jumps left from site k + 1 exactly (m− 1) times or it jumps left
from site k + 1 exactly m times and never returns to site k + 1 after the m-th left jump.
Either way, the total number of right jumps from site k + 1 can be at most the number of
successes in (ξk+1

i )i∈N before the m-th failure, which is at most the number of successes
in (ξk+1

i )i∈N before the `-th failure. Hence, again, U ′k+1 ≤ Uk+1. Finally, if m =∞ then
the walk must jump right from site k infinitely many times, so it must jump left from site
k + 1 infinitely many times, so it must visit site k + 1 infinitely often, so the total number
of right jumps from site k + 1 is simply the total number of successes in the sequence
(ξk+1
i )i∈N, which is equal to Uk+1 (since ` = ∞, with m = ∞ and ` ≥ m). Thus, in all

possible cases U ′k+1 ≤ Uk+1, so it follows, by induction, that U ′k ≤ Uk for all k ≥ 1.

In Appendix A we will prove the following basic fact using a finite modification
argument.

Lemma 2.2. Define A+ = {Xn > 0,∀n > 0 and limn→∞Xn = +∞}. Then, for each
x ∈ N and s ∈ S, Px,s(A+) > 0 if and only if Px,s(Xn → +∞) > 0.

Using this fact along with Lemma 2.1 and Theorem 1.1, we now establish an explicit
criteria relating transience/recurrence of the random walk (Xn) to the forward branching
process (Uk). This criteria will be used to prove Theorem 1.11 in Section 3. For the
statement of the lemma recall that PUu0,s(·) is the joint probability measure for (Uk, Sk)k≥0

when U0 = u0 and S0 = s.

Lemma 2.3. The following hold:

If ∃s ∈ S such that PU1,s(Uk > 0,∀k > 0) > 0, then P0(Xn → +∞) = 1.

If ∃s ∈ S such that PU1,s(Uk > 0,∀k > 0) = 0, then P0(Xn → +∞) = 0.
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Proof. We will say that “Uk survives” if Uk > 0 for all k > 0, and similarly for U ′k. Also,
we extend the probability measure Px,s for the random walk (Xn) to the process (U ′k)

derived from it. By Theorem 1.1, P1,π(Xn → +∞) = P0,π(Xn → +∞) ∈ {0, 1}. Since
π(s) > 0 for all s ∈ S, this implies that either

(a) P1,s(Xn → +∞) = P0,s(Xn → +∞) = 1, for all s ∈ S, or

(b) P1,s(Xn → +∞) = P0,s(Xn → +∞) = 0, for all s ∈ S.

We consider these two cases separately.

Case (a):
In this case, it follows from Lemma 2.2 that P1,s(A

+) > 0, for each s ∈ S. Hence,
P1,s(U

′
k survives) > 0, for each s ∈ S. By Lemma 2.1 this implies PU1,s(Uk survives) > 0,

for each s ∈ S.

Case (b):
Since ω(x, i) = 1/2 for each i > M and x ∈ Z, Ps a.s., we have P1,s(lim infn→∞Xn = x) =

0, for each x ∈ Z. Thus, if P1,s(Xn → +∞) = 0 for each s ∈ S, then P1,s(lim infn→∞Xn =

−∞) = 1 for each s ∈ S, and in particular, P1,s(τ
X
0 <∞) = 1 for each s ∈ S. By Lemma

2.1 and the definition of the (U ′k) process this implies PU1,s(Uk survives) = 0 for each s ∈ S.

Thus, we have established the following dichotomy: Either

(a’) PU1,s(Uk survives) > 0 for each s ∈ S and (a) holds, or

(b’) PU1,s(Uk survives) = 0 for each s ∈ S and (b) holds.

Since P0(Xn → +∞) = 1 if (a) holds, and P0(Xn → +∞) = 0 if (b) holds, this establishes
the lemma.

2.2 The backward branching process

Let the random variables (ξki )k∈Z,i∈N be as above in Section 2.1. We continue to
assume the random walk (Xn) is constructed from these random variables using (2.1).
Also, we recall that (Rk)k∈Z is the spatial reversal of the stack sequence (Sk)k∈Z:

Rk = S−k , k ∈ Z. (2.5)

The backward branching process (Vk)k≥0 started from level v0 ∈ N0 is defined by

V0 = v0 and Vk+1 = inf
{
m :

m∑
i=1

1{ξ−(k+1)
i = 1} = Vk + 1

}
− (Vk + 1). (2.6)

That is, Vk+1 is the number of failures in the sequence (ξ
−(k+1)
i )i∈N (i.e. at stack Rk+1)

before there are Vk + 1 successes. If we let Hk
i be the number of failures in the sequence

(ξ−kj )j∈N between the (i− 1)-th and i-th successes then

Vk+1 =

Vk+1∑
i=1

Hk+1
i , where (Hk

i )i>M,k≥1 are i.i.d. Geo(1/2) random variables. (2.7)

Thus, by similar reasoning as for the forward branching process (Uk)k≥0, this process
(Vk)k≥0 may also be seen as a type of branching process with a time dependent migration
term.
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In fact, the definition of the backward branching process (Vk) is almost exactly sym-
metric to the definition of the forward branching process (Uk) with successes replaced
by failures and Sk replaced by Rk, but there is one notable difference: In the backward
process we count failures until Vk + 1 successes, whereas in the forward process we only
count successes until Uk failures. This “+1” is important, because it means that 0 is not
an absorbing state for the process (Vk), as it is for the process (Uk).

Our interest in the backward branching process stems from the following lemma
about down crossings. The analog in the case of (IID) environments is well known.

Lemma 2.4. Assume that δ > 1 and X0 = V0 = 0. For n ∈ N and k ≤ n, let

Dn,k = |{0 ≤ m < τXn : Xm = k,Xm+1 = k − 1}|

be the number of down crossings of the edge (k, k − 1) by the random walk (Xm) up to
time τXn . Then (V0, V1, . . . , Vn) and (Dn,n, Dn,n−1, . . . , Dn,0) have the same distribution if
the environment ω is chosen according to the stationary measure Pπ.

Proof. Since we assume that δ > 1, it follows from Theorem 1.11 that τXn is P0,π a.s.
finite4 for each n. Fix n ∈ N and any realization of the random variables (ξki )k∈Z,i∈N such

that τXn is finite. Then, define ξ̃ki = ξk+n
i , for k ∈ Z and i ∈ N. Let Dn,k, 0 ≤ k ≤ n, be as

in the statement of the lemma when the random walk (Xm) is generated according to
the specific fixed values of (ξki )k∈Z,i∈N, and let (Ṽk)k≥0 be defined as in (2.6) with v0 = 0,

but ξ−(k+1)
i replaced with ξ̃

−(k+1)
i . We claim that, in this case, Dn,n−k = Ṽk, for each

0 ≤ k ≤ n.
The proof is by induction on k. For k = 0 we have Ṽ0 = 0, by assumption, and

Dn,n = 0, since the walk cannot down cross the edge (n, n− 1) before first hitting site n.

Now assume Dn,n−k = Ṽk = ` for some 0 ≤ k < n and ` ≥ 0. Then the walk (Xm) must
jump left from site n− k exactly ` times prior to time τXn . Thus, the walk must jump right
from site n− (k + 1) exactly `+ 1 times prior to τXn . Thus, the number of left jumps from
site n− (k + 1) prior to time τXn is exactly the number of left jumps from site n− (k + 1)

before the (`+ 1)− th right jump. So, we have:

Dn,n−(k+1) = # left jumps from site n− (k + 1) prior to time τXn

= # left jumps from site n− (k + 1) before (`+ 1)-th right jump

= # failures in (ξ
n−(k+1)
i )i∈N before (`+ 1)-th success

= # failures in (ξ̃
−(k+1)
i )i∈N before (`+ 1)-th success

= # failures in (ξ̃
−(k+1)
i )i∈N before (Ṽk + 1)-th success

= Ṽk+1.

This completes the proof that Dn,n−k = Ṽk, for each 0 ≤ k ≤ n, using the specific

fixed values of (ξki )k∈Z,i∈N and associated values of ξ̃ki = ξk+n
i . The lemma now follows

since (Sk)k∈Z is stationary under Pπ, so the stochastic process (ξki )k∈Z,i∈N has the same
distribution as the process (ξk+n

i )k∈Z,i∈N.

The importance of the down crossings is their relation to hitting times for the random
walk (Xn). If X0 = 0, then for each n ∈ N

τXn = n+ 2
∑
k≤n

Dn,k = n+ 2

n∑
k=0

Dn,k + 2
∑
k<0

Dn,k. (2.8)

4Theorem 1.11 will not be proved till later in Section 3, but the proof uses only the forward branching
process described above, and is thus independent of the development in this section. The theorem is stated
when ω is chosen according to P ≡ Pφ, rather than Pπ , but φ is allowed to be any initial distribution on S in
the theorem. So, in particular, the conclusion is valid when φ = π.
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If δ > 1, so that the random walk is right transient, then limn→∞
∑
k<0Dn,k is a.s. finite,

and thus the asymptotic distribution of τXn is determined by the asymptotic distribution
of
∑n
k=0Dn,k. By Lemma 2.4, the latter sum has the same distribution as

∑n
k=0 Vk

(assuming that φ = π). The general proof strategy for Theorems 1.12 and 1.13 is to
analyze asymptotic properties of

∑n
k=0 Vk, relate these to asymptotic properties of the

hitting times τXn , and then relate those to asymptotic properties of the random walk (Xn)

itself. This basic approach has been employed many times before in the study of excited
random walks, e.g. [10], [3], [8], [9]. (See also [7], [20], [21], and [18] for similar uses of
branching processes in analyzing one dimensional self-interacting random walks and
random walk in random environment.)

In the sequel we will use the following notation for the backward branching process
V = (Vk)k≥0, similar to that for the forward branching process (Uk)k≥0. PV,ωv0 is the
probability measure for (Vk)k≥0 started from level v0 in a fixed environment ω, and, for
s ∈ S, PVv0,s is the probability measure for the joint process (Vk, Rk)k≥0 when V0 = v0 and
R0 = s. The measures PVv0,π and PVv0 are defined by

PVv0,π(·) ≡
∑
s∈S

π(s)PVv0,s(·) and PVv0(·) ≡
∑
s∈S

φ(s)PVv0,s(·).

Under any of these measures PVv0,s, P
V
v0,π, and PVv0 the joint process (Vk, Rk)k≥0 is a

time-homogeneous Markov chain with transition probabilities pV(v,r)(v′,r′) ≡ Prob(Vk+1 =

v′, Rk+1 = r′|Vk = v,Rk = r) given by

pV(v,r)(v′,r′) = K̃(r, r′)PV,ωr′v (V1 = v′), (2.9)

where K̃ is the transition matrix for the Markov chain (Rk) given by K̃(r, r′) = K(r′, r) ·
π(r′)
π(r) and ωr′ is the deterministic environment with stack r′ at each site: ωr′(x, i) = r′(i),
for all x ∈ Z and i ∈ N.

2.3 Related processes

The branching processes (Uk) and (Vk) are difficult to analyze directly because their
transition probabilities depend on the underlying environment ω, and therefore these
processes are not Markovian when ω is chosen randomly according to P (or Pπ or Ps),
and are not time-homogeneous in a fixed environment ω. In this section we introduce
some simpler related processes, which are both Markovian and time-homogeneous and,
thus, easier to analyze.

2.3.1 The processes (Ûk)k≥0 and (V̂k)k≥0

Throughout this section and the remainder of the paper s ∈ S is an arbitrary but fixed
stack. We define stopping times (τk)k≥0 and (τ ′k)k≥0 by

τ0 = inf{j ≥ 0 : Rj = s} and τk+1 = inf{j > τk : Rj = s} , k ≥ 0; (2.10)

τ ′0 = inf{j ≥ 0 : Sj = s} and τ ′k+1 = inf{j > τ ′k : Sj = s} , k ≥ 0. (2.11)

Then we define processes (V̂k)k≥0 and (Ûk)k≥0 by

V̂k = Vτk and Ûk = Uτ ′k . (2.12)

In other words, the processes (V̂k) and (Ûk) are constructed from (Vk) and (Uk) by
observing the latter only at times j when Rj = s or Sj = s, respectively.

Since the process (Uk, Sk)k≥0 is a time-homogeneous Markov chain (under PUx , PUx,π,
and PUx,r, r ∈ S) and the process (Vk, Rk)k≥0 is a time-homogeneous Markov chain (under
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PVx , PVx,π, and PVx,r), the processes (Ûk)k≥0 and (V̂k)k≥0 are also time homogeneous
Markov chains (under these same measures) with transition probabilities5

PUx,r(Ûk+1 = y|Ûk = z) = PUx,π(Ûk+1 = y|Ûk = z) = PUx (Ûk+1 = y|Ûk = z) = PUz,s(UτSs = y),

(2.13)

PVx,r(V̂k+1 = y|V̂k = z) = PVx,π(V̂k+1 = y|V̂k = z) = PVx (V̂k+1 = y|V̂k = z) = PVz,s(VτRs = y)

(2.14)

for x, y, z, k ∈ N0, where (in accordance with our conventions in Section 1.5)

τSs ≡ inf{j > 0 : Sj = s} and τRs ≡ inf{j > 0 : Rj = s}.

In words, the probability of transitioning from z to y for the Markov chain (Ûk) is the
probability the process (Uk) transitions from level z to level y during the time period
that the process (Sk) makes one excursion from state s. Similarly, the probability of
transitioning from z to y for the Markov chain (V̂k) is the probability the process (Vk)

transitions from level z to level y during the time period that the process (Rk) makes one
excursion from state s. Although the transition probabilities for these Markov chains are
complicated because they depend on the random return times τSs and τRs , we will see in
Section 2.4 that they can be analyzed reasonably well. By contrast, trying to analyze the
processes (Uk) and (Vk) directly, under any of the above averaged measures, appears
difficult, because they are not Markovian.

2.3.2 The dominating processes (U±k )k≥0 and (V ±k )k≥0

To analyze the transition probabilities for the processes (Ûk) and (V̂k) it will be helpful to
introduce some additional auxiliary processes, which dominate the processes (Uk) and
(Vk), from both above and below. Recall that the forward branching process (Uk)k≥0 and
the backward branching process (Vk)k≥0, started from level x, are defined in terms of
the random variables (ξki )k∈Z,i∈N by

U0 = x and Uk+1 = inf
{
m :

m∑
i=1

1{ξk+1
i = 0} = Uk

}
− Uk,

V0 = x and Vk+1 = inf
{
m :

m∑
i=1

1{ξ−(k+1)
i = 1} = Vk + 1

}
− (Vk + 1).

That is, Uk+1 is the number of successes in the sequence (ξk+1
i )i∈N prior to the Uk-th

failure, and Vk+1 is the number of failures in the sequence (ξ
−(k+1)
i )i∈N prior to the

(Vk + 1)-th success. Let us define modified processes (U+
k )k≥0, (V +

k )k≥0, (U−k )k≥0, and

5Note that we extend here the probability measures PUx , PUx,π , PUx,r for the joint process (Uk, Sk)k≥0 to the

process (Ûk)k≥0 derived from it. The initial value x is still for U0. This is not, in general, the same as the

initial value Û0, except under PUx,s where S0 = s deterministically. Similar remarks apply to the process (V̂k)

with respect to the probability measures PVx , PVx,π , PVx,r .
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(V −k )k≥0, all started from level x as follows6:

U+
0 =x and U+

k+1 = inf
{
m≥M :

m∑
i=M+1

1{ξk+1
i = 0} = U+

k + 1
}
− (U+

k + 1),

V +
0 =x and V +

k+1 = inf
{
m≥M :

m∑
i=M+1

1{ξ−(k+1)
i = 1} = V +

k + 1
}
− (V +

k + 1),

U−0 =x and U−k+1 = inf
{
m≥M :

m∑
i=M+1

1{ξk+1
i = 0} = (U−k −M)+

}
− (U−k −M)+ −M,

V −0 =x and V −k+1 = inf
{
m≥M :

m∑
i=M+1

1{ξ−(k+1)
i = 1}= (V −k −M)+

}
− (V −k −M)+−M.

In words, U+
k+1 is the number of successes in the sequence (ξk+1

i )i∈N before the (U+
k + 1)-

th failure, when we condition that ξk+1
1 , . . . , ξk+1

M are all successes, and U−k+1 is the

number of successes in the sequence (ξk+1
i )i∈N before the U−k -th failure, when we

condition that ξk+1
1 , . . . , ξk+1

M are all failures. The interpretations for V +
k+1 and V −k+1 are

the same with “success” replaced by “failure” and “ ξk+1
i ” replaced by “ ξ−(k+1)

i ”.
By construction we have

U−k ≤ Uk ≤ U
+
k , for all k and V −k ≤ Vk ≤ V

+
k , for all k (2.15)

if all processes are started from the same level x. Also, since (ξki )k∈Z,i>M are i.i.d.
Ber(1/2) random variables, for any values of the cookie stacks (Sk)k∈Z, each of the
processes (U+

k ), (U−k ), (V +
k ), (V −k ) is a time-homogeneous Markov chain and

(U−k , U
+
k )k≥0 ⊥ (Sk)k∈Z and (V −k , V

+
k )k≥0 ⊥ (Sk)k∈Z. (2.16)

These statements hold for any initial values U−0 , U
+
0 , V

−
0 , V +

0 and any marginal distribu-
tion ρ on S0 (including φ, π, or a point mass at r ∈ S). For the same reason (i.e. that
(ξki )k∈Z,i>M are i.i.d. Ber(1/2)), we also have

(U−k , U
+
k )k≥0

law
= (V −k , V

+
k )k≥0 (2.17)

when all processes are started from the same level x (again for any marginal distribution
on S0).

To analyze the processes (U±k ) and (V ±k ) it will be helpful to represent them in a form
similar to (2.3) and (2.7) for the processes (Uk) and (Vk). Define Gki to be the number of
successes in the sequence (ξkj )j>M between the (i− 1)-th and i-th failures, and define

Hki to be the number of failures in the sequence (ξ−kj )j>M between the (i− 1)-th and i-th
successes. Then

U+
k+1 = M +

U+
k +1∑
i=1

Gk+1
i and U−k+1 =

(U−k −M)+∑
i=1

Gk+1
i (2.18)

where (Gki )k∈Z,i∈N are i.i.d. Geo(1/2) random variables, and

V +
k+1 = M +

V +
k +1∑
i=1

Hk+1
i and V −k+1 =

(V −k −M)+∑
i=1

Hk+1
i (2.19)

where (Hki )k∈Z,i∈N are i.i.d. Geo(1/2) random variables.

6Note that, by our conventions for empty sums, the infimum in the last two equations is defined to be M if
U−k ≤M or V −k ≤M . Thus, in these cases the whole right hand side is 0.
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2.4 Expectation, variance, and concentration estimates

In this section we use the dominating processes (U±k ) and (V ±k ) to analyze the

transition probabilities (2.13) and (2.14) for the processes (Ûk) and (V̂k). We also prove,
slightly more generally, concentration estimates for the processes (Uk) and (Vk) up to
the random stopping times τSs and τRs , when (Sk) and (Rk), respectively, are started from
an arbitrary initial state r ∈ S, rather than s. Finally, we prove a type of “overshoot
lemma” for the processes (Ûk) and (V̂k) analogous to Lemma 5.1 of [8].

Throughout it is assumed, when not otherwise specified, that the processes (Uk),
(U+

k ), (U−k ) are all started from the same level x, and the processes (Vk), (V +
k ), (V −k ) are

all started from the same level x. The probability measure PUx,r will be used for all these
“U -processes” started from level x when S0 = r, and the probability measure PVx,r will be
used for all these “V -processes” started from level x when R0 = r. The following general
fact will be needed in our analysis of the “U -processes” and “V -processes” below, as well
as in several other parts of the paper.

Lemma 2.5. Let Z be a random variable with mean µ and exponential tails, and let
Z1, Z2, . . . be i.i.d. random variables distributed as Z. Then for any ε0 ∈ (0,∞) there exist
constants C1(ε0), C2(ε0) > 0 such that the empirical means Zn ≡ 1

n

∑n
i=1 Zi satisfy:

P(|Zn − µ| ≥ ε) ≤ C1 exp(−C2ε
2n) , for all 0 < ε ≤ ε0 and n ∈ N. (2.20)

P(|Zn − µ| ≥ ε) ≤ C1 exp(−C2εn) , for all ε ≥ ε0 and n ∈ N. (2.21)

Proof. The exponential tails condition on the random variable Z implies there exist some
positive constants b, c such that for all λ ∈ [−b, b], E(eλ(Z−µ)) ≤ ecλ2

andE(eλ(µ−Z)) ≤ ecλ2

.
Thus, the lemma is a consequence of [17, Theorem III.15].

Using Lemma 2.5 along with (2.18) and (2.19) and a small bit of analysis one may
obtain the following concentration estimates for the differences (U±k − U

±
k−1) and (V ±k −

V ±k−1).

Lemma 2.6. For each ε0 ∈ (0,∞), there exist constants c1(ε0), c2(ε0) > 0 such that the
following hold for all r ∈ S, x, y ∈ N0, and k ∈ N :

PUx,r

(
|U−k − U

−
k−1| ≥ εy

∣∣∣U−k−1 = y
)
≤ c1e−c2ε

2y , for 0 < ε ≤ ε0. (2.22)

PUx,r

(
|U−k − U

−
k−1| ≥ εy

∣∣∣U−k−1 = y
)
≤ c1e−c2εy , for ε ≥ ε0. (2.23)

PUx,r

(
|U+
k − U

+
k−1| ≥ εy

∣∣∣U+
k−1 = y

)
≤ c1e−c2ε

2y , for 0 < ε ≤ ε0. (2.24)

PUx,r

(
|U+
k − U

+
k−1| ≥ εy

∣∣∣U+
k−1 = y

)
≤ c1e−c2εy , for ε ≥ ε0. (2.25)

Moreover, the equivalent statements also hold for (V +
k ) and (V −k ) with the same constants

c1, c2.

Remark 2.7. Note that since (U+
k ) and (U−k ) are each time-homogeneous Markov chains

independent of (Sk)k∈Z the probabilities on the left hand side of these equations do not
depend on x, r, or k. Similar statements also apply for the processes (V +

k ) and (V −k ).

We wish now to extend these concentration estimates for the single time step differ-
ences in the processes (U±k ) and (V ±k ) to concentration estimates for these processes
up to the random stopping times τSs and τRs . This is where we will need the uniform
ergodicity hypothesis on the Markov chains (Sk) and (Rk). Due to Lemma 2.8 below and
uniform ergodicity of (Sk) and (Rk) there exist some constants c3, c4 > 0 such that:

Pr(τ
S
s ≥ t) ≤ c3e−c4t , for all r ∈ S and t ∈ [0,∞).

Pr(τ
R
s ≥ t) ≤ c3e−c4t , for all r ∈ S and t ∈ [0,∞). (2.26)
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Here, as described in Section 1.5, Pr is the probability measure for the process (Sk)

itself (equivalently the process (Rk)) when S0 = R0 = r.

Lemma 2.8. Let (Zk) be a uniformly ergodic Markov chain on a countable state space Z,
and let Px(·) be the probability measure for the Markov chain (Zk) started from Z0 = x.
Then, for each z ∈ Z, there exist constants C > 0 and 0 < α < 1 such that

Px(τZz > n) ≤ Cαn , for all x ∈ Z, n ∈ N0.

Proof. Fix z ∈ Z. Let ρ = (ρ(x))x∈Z denote the stationary distribution of the Markov
chain (Zk), and letM = {M(x, y)}x,y∈Z be its transition matrix. Also, let ε = ρ(z). By
uniform ergodicity of (Zk), there is some ` ∈ N such that ‖M`(y, ·)− ρ(·)‖TV ≤ ε/2, for
all y ∈ Z. This implies Py(Z` = z) =M`(y, z) ≥ ε/2, for all y ∈ Z. Thus, starting from
any initial state x we have

Px(τZz > n · `) =

n−1∏
m=0

Px(τZz > (m+ 1)`|τZz > m`) ≤ (1− ε/2)n = α`n,

where α ≡ (1− ε/2)1/` ∈ (0, 1). It follows that Px(τZz > n) ≤ Cαn, for all n ≥ 0 and x ∈ Z,
with C ≡ 1/α`.

Lemma 2.9. There exist constants c5, c6 > 0 such that the following hold for each r ∈ S :

PUx,r

(
max

0≤k≤τSs
|U−k − x| ≥ εx

)
≤ c5(1 + ε2/3x1/3)e−c6ε

2/3x1/3

, for all x ∈ N0 and 0 < ε ≤ 1.

(2.27)

PUx,r

(
max

0≤k≤τSs
|U−k − x| ≥ εx

)
≤ c5(1 + ε1/3x1/3)e−c6ε

1/3x1/3

, for all x ∈ N0 and ε ≥ 1.

(2.28)

PUx,r

(
max

0≤k≤τSs
|U+
k − x| ≥ εx

)
≤ c5(1 + ε2/3x1/3)e−c6ε

2/3x1/3

, for all x ∈ N0 and 0 < ε ≤ 1.

(2.29)

PUx,r

(
max

0≤k≤τSs
|U+
k − x| ≥ εx

)
≤ c5(1 + ε1/3x1/3)e−c6ε

1/3x1/3

, for all x ∈ N0 and ε ≥ 1.

(2.30)

Moreover, the equivalent statements (with τSs replaced by τRs ) also hold for the processes
(V +
k ) and (V −k ) with the same constants c5, c6.

All statements are trivially true if x = 0 (taking any c5 ≥ 1 and any c6 > 0), so we will
assume x ≥ 1. We will prove (2.27) and (2.28). The proof of (2.29) is identical to that of
(2.27) with U−k replaced by U+

k line by line, and the proof of (2.30) is almost identical
to that of (2.28) with U−k replaced by U+

k line by line7. The equivalent statements to
(2.27)-(2.30) for the processes (V −k ) and (V +

k ) are also proved exactly the same way; all
the proofs use is Lemma 2.6 and (2.26), and these estimates are the same for (V ±k ) and
(U±k ) and for τRs and τSs . The proofs of (2.27) and (2.28) will be given separately and the
constants c5, c6 obtained in the two cases will not be the same. To find a single c5 and c6
that hold in both cases simply take c5 to be the maximum of the c5’s from the two proofs
and c6 to be the minimum of the c6’s from the two proofs.

7In the derivation of (2.44) the case z = 0 must be considered separately for both proofs. For the process
(U−k ) we have U−k = 0 (deterministically) if U−k−1 = z = 0, as noted in the proof of (2.28) below. For the

process (U+
k ) this is not the case. However, if we start with U+

0 = x ≥ 1, as we assume, then it is actually

impossible that U+
k is 0 for any k ≥ 0 (indeed, U+

k ≥M for all k ≥ 1). So we do not have this problem to deal
with.
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Proof of Lemma 2.9, Equation (2.27), with x ≥ 1. Fix ε ≤ 1 and denote M =

max0≤k≤τSs

∣∣U−k − x∣∣. Then

PUx,r(M≥ εx) = PUx,r

(
τSs ≤

1

2
ε2/3x1/3

)
PUx,r

(
M≥ εx

∣∣∣τSs ≤ 1

2
ε2/3x1/3

)
+ PUx,r

(
τSs >

1

2
ε2/3x1/3

)
PUx,r

(
M≥ εx

∣∣∣τSs >
1

2
ε2/3x1/3

)
≤ max

0≤n≤ 1
2 ε

2/3x1/3
PUx,r

(
M≥ εx

∣∣∣τSs = n
)

+ PUx,r

(
τSs >

1

2
ε2/3x1/3

)
. (2.31)

By (2.26),

PUx,r

(
τSs >

1

2
ε2/3x1/3

)
= Pr

(
τSs >

1

2
ε2/3x1/3

)
≤ c3e−c4·

1
2 ε

2/3x1/3

. (2.32)

So, we need only bound PUx,r(M≥ εx|τSs = n), for n ≤ 1
2ε

2/3x1/3. Fix such an n and define

events Ak, k ≥ 1, by Ak =
{∣∣U−k − U−k−1

∣∣ ≤ ε1/3x2/3
}

. Then, for 0 ≤ k ≤ n, we have

U−k ≤ x+ n · ε1/3x2/3 ≤ x+ x/2 < 2x , on the event A1 ∩ . . . ∩Ak (2.33)

and

U−k ≥ x− n · ε
1/3x2/3 ≥ x− x/2 = x/2 , on the event A1 ∩ . . . ∩Ak. (2.34)

Also, by Lemma 2.6, there exist some constants c1, c2 > 0 such that

PUx,r

(
|U−k − U

−
k−1| > ε̃z

∣∣∣U−k−1 = z
)
≤ c1 exp(−c2 · ε̃2 · z) , for each k, z and 0 < ε̃ ≤ 2.

(2.35)

Since ε ≤ 1 and x ≥ 1, ε1/3x2/3/z ≤ 2 for all z ≥ x/2. Thus, for each x/2 ≤ z ≤ 2x, we
have

PUx,r(A
c
k|U−k−1 = z) = PUx,r

(
|U−k − U

−
k−1| >

(ε1/3x2/3

z

)
· z
∣∣∣U−k−1 = z

)
≤ c1 exp

(
− c2

(ε1/3x2/3)2

2x

)
= c1 exp

(
− c2

2
ε2/3x1/3

)
. (2.36)

Combining (2.33), (2.34), and (2.36) and using the fact that (U−k ) is a Markov chain
shows

PUx,r(A
c
k|A1, . . . , Ak−1) ≤ c1 exp

(
−c2

2
ε2/3x1/3

)
, for 1 ≤ k ≤ n.

Hence,

PUx,r

(
n⋃
k=1

Ack

)
≤ n · c1 exp

(
−c2

2
ε2/3x1/3

)
≤ 1

2
ε2/3x1/3 · c1 exp

(
−c2

2
ε2/3x1/3

)
.

Now, when τSs = n,M≤ n · ε1/3x2/3 ≤ 1
2εx on the event ∩nk=1Ak. So,

PUx,r(M≥ εx|τSs = n) ≤ 1

2
ε2/3x1/3 · c1 exp

(
−c2

2
ε2/3x1/3

)
. (2.37)

Since, (2.37) is valid for each n ≤ 1
2ε

2/3x1/3 it follows from (2.31) and (2.32) that

PUx,r(M≥ εx) ≤ c5(1 + ε2/3x1/3) exp(−c6ε2/3x1/3)

where c5 = max{ c12 , c3} and c6 = min{ c22 ,
c4
2 }.
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Remark 2.10. If we define the deterministic time tε,x =
⌊

1
2ε

2/3x1/3
⌋
, for 0 < ε ≤ 1 and

x ∈ N, then the same exact steps used in the derivation of (2.37) for an arbitrary n ≤ tε,x
show that

PUx,r

(
max

0≤k≤tε,x
|U−k − x| ≥ εx

)
≤ c1tε,x exp (−c2tε,x) . (2.38)

We isolate this observation, as it will be needed later in the proof of Lemma 2.12.

Proof of Lemma 2.9, Equation (2.28), with x ≥ 1. As above, let M = max0≤k≤τSs

∣∣U−k −
x
∣∣. We will assume that ε > 1, as the case ε = 1 follows from (2.27). Then

PUx,r(M≥ εx) = PUx,r

(
τSs < ε1/3x1/3

)
PUx,r

(
M≥ εx

∣∣∣τSs < ε1/3x1/3
)

+ PUx,r

(
τSs ≥ ε1/3x1/3

)
PUx,r

(
M≥ εx

∣∣∣τSs ≥ ε1/3x1/3
)

≤ max
0≤n<ε1/3x1/3

PUx,r

(
M≥ εx

∣∣∣τSs = n
)

+ PUx,r

(
τSs ≥ ε1/3x1/3

)
. (2.39)

By (2.26),

PUx,r(τ
S
s ≥ ε1/3x1/3) = Pr(τ

S
s ≥ ε1/3x1/3) ≤ c3e−c4ε

1/3x1/3

. (2.40)

So, we need only bound PUx,r(M≥ εx|τSs = n), for n < ε1/3x1/3. Fix such an n and define

events Ak, k ≥ 1, by Ak =
{∣∣U−k − U−k−1

∣∣ ≤ ε2/3x2/3
}

. Then, for 0 ≤ k ≤ n, we have

U−k ≤ x+ n · ε2/3x2/3 ≤ x+ εx ≤ 2εx , on the event A1 ∩ . . . ∩Ak. (2.41)

Also, by Lemma 2.6, there exist some constants c1, c2 > 0 such that:

PUx,r

(
|U−k − U

−
k−1| > ε̃z

∣∣∣U−k−1 = z
)
≤ c1 exp(−c2 · ε̃2 · z) , for each k, z and 0 < ε̃ ≤ 1.

PUx,r

(
|U−k − U

−
k−1| > ε̃z

∣∣∣U−k−1 = z
)
≤ c1 exp(−c2 · ε̃ · z) , for each k, z and ε̃ ≥ 1. (2.42)

Thus, for each ε2/3x2/3 ≤ z ≤ 2εx and 1 ≤ k ≤ n,

PUx,r(A
c
k|U−k−1 = z) = PUx,r

(
|U−k − U

−
k−1| >

(ε2/3x2/3

z

)
· z
∣∣∣U−k−1 = z

)
≤ c1 exp

(
− c2

(ε2/3x2/3)2

2εx

)
= c1 exp

(
− c2

2
ε1/3x1/3

)
(2.43)

and, for each z < ε2/3x2/3 and 1 ≤ k ≤ n,

PUx,r(A
c
k|U−k−1 = z) = PUx,r

(
|U−k − U

−
k−1| >

(ε2/3x2/3

z

)
· z
∣∣∣U−k−1 = z

)
≤ c1 exp

(
− c2ε2/3x2/3

)
.

(2.44)

Note that the inequality (2.44) remains valid when z = 0 (even though the derivation
above has an issue dividing by 0), since in this case U−k = U−k−1 = 0, deterministically.
Now, since ε, x ≥ 1, by assumption, and the process (U−k ) is a Markov chain, it follows
from (2.41), (2.43), and (2.44) that

PUx,r(A
c
k|A1, . . . , Ak−1) ≤ c1 exp

(
−c2

2
ε1/3x1/3

)
, for 1 ≤ k ≤ n.

Thus,

PUx,r

(
n⋃
k=1

Ack

)
≤ n · c1 exp

(
−c2

2
ε1/3x1/3

)
< ε1/3x1/3 · c1 exp

(
−c2

2
ε1/3x1/3

)
.
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Now, when τSs = n,M≤ n · ε2/3x2/3 < ε1/3x1/3 · ε2/3x2/3 = εx on the event ∩nk=1Ak. So,

PUx,r(M≥ εx|τSs = n) < ε1/3x1/3 · c1 exp
(
−c2

2
ε1/3x1/3

)
. (2.45)

Since (2.45) is valid for each n < ε1/3x1/3 it follows from (2.39) and (2.40) that

PUx,r(M≥ εx) ≤ c5(1 + ε1/3x1/3) exp(−c6ε1/3x1/3)

where c5 = max{c1, c3} and c6 = min{ c22 , c4}.

Using (2.15) the concentration estimates for the processes (U±k ) and (V ±k ) proven
above in Lemma 2.9 yield the following concentration estimates for the processes (Uk)

and (Vk).

Lemma 2.11. Let c7 = 2c5. Then the following hold for each r ∈ S :

PUx,r

(
max

0≤k≤τSs
|Uk − x| ≥ εx

)
≤ c7(1 + ε2/3x1/3)e−c6ε

2/3x1/3

, for all x ∈ N0 and 0 < ε ≤ 1.

(2.46)

PUx,r

(
max

0≤k≤τSs
|Uk − x| ≥ εx

)
≤ c7(1 + ε1/3x1/3)e−c6ε

1/3x1/3

, for all x ∈ N0 and ε ≥ 1.

(2.47)

PVx,r

(
max

0≤k≤τRs
|Vk − x| ≥ εx

)
≤ c7(1 + ε2/3x1/3)e−c6ε

2/3x1/3

, for all x ∈ N0 and 0 < ε ≤ 1.

(2.48)

PVx,r

(
max

0≤k≤τRs
|Vk − x| ≥ εx

)
≤ c7(1 + ε1/3x1/3)e−c6ε

1/3x1/3

, for all x ∈ N0 and ε ≥ 1.

(2.49)

The next two lemmas give estimates for the expectation and variance of UτSs and VτRs
in the case that S0 = R0 = s. For these lemmas, and the remainder of this section, EUx,s,

VarUx,s, and CovUx,s are used to denote, respectively, expectation, variance, and covariance

under the probability measure PUx,s. Similarly, EVx,s, VarVx,s, and CovVx,s are used to denote
expectation, variance, and covariance with respect to PVx,s. Also, we define

µs ≡ Es(τ
S
s ) = Es(τ

R
s )

to be the mean return time to state s for the Markov chain (Sk), or equivalently for the
Markov chain (Rk). Note that EUx,s(τ

S
s ) = EVx,s(τ

R
s ) = µs, for any x.

Lemma 2.12. As x→∞,

EUx,s(UτSs ) = x + δ · µs + O(e−x
1/4

) and EVx,s(VτRs ) = x + (1− δ) · µs + O(e−x
1/4

).

Proof. We will prove the statement about the expectation of UτSs . The proof of the
analogous claim for the expectation of VτRs is very similar.

Fix a realization (sk)k∈Z of the random variables (Sk)k∈Z with s0 = s, and let ω =

(ω(k, i))k∈Z,i∈N be the corresponding cookie environment defined by ω(k, i) = sk(i). Also,
let tSs = inf{k > 0 : sk = s} be the corresponding realization of the random variable τSs .
We will consider first the process (Uk)k≥0 started from level x in this fixed environment ω.

For k ∈ Z, we define δk =
∑M
i=1(2ω(k, i)− 1) to be the net drift induced by consuming all

cookies in stack sk. Also, we denote by EU,ωx expectation with respect to the probability
measure PU,ωx for the process (Uk)k≥0 in this fixed environment ω.
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We decompose EU,ωx (UtSs ) as

EU,ωx (UtSs ) = EU,ωx (U0) +

tSs∑
k=1

EU,ωx (Uk − Uk−1) = x+

tSs∑
k=1

EU,ωx (Uk − Uk−1). (2.50)

Straightforward calculations show that

EU,ωx (Uk − Uk−1|Uk−1 = m) = δk , for each k ≥ 1 and m ≥M , and∣∣EU,ωx (Uk − Uk−1|Uk−1 = m)
∣∣ ≤M , for each k ≥ 1 and m ≥ 0.

Thus,∣∣EU,ωx (Uk − Uk−1)− δk
∣∣ =

∣∣∣PU,ωx (Uk−1 ≥M) · EU,ωx (Uk − Uk−1|Uk−1 ≥M)

+ PU,ωx (Uk−1 < M) · EU,ωx (Uk − Uk−1|Uk−1 < M)− δk
∣∣∣

≤
∣∣PU,ωx (Uk−1 ≥M) · δk − δk

∣∣+ PU,ωx (Uk−1 < M) ·M
≤ 2M · PU,ωx (Uk−1 < M).

Plugging into (2.50) gives

∣∣∣EU,ωx (UtSs )− x−
tSs∑
k=1

δk

∣∣∣ ≤ 2M

tSs∑
k=1

PU,ωx (Uk−1 < M). (2.51)

So far our analysis has been for a fixed environment ω. To prove the lemma we will
need to take expectations with respect to the probability measure Ps on environments.
Recall that, for r ∈ S, δ(r) ≡

∑M
i=1(2r(i) − 1) is the net drift induced by all cookies in

stack r. Taking expectation of the random variable g(ω) =
∑tSs (ω)
k=1 δk(ω) with respect to

Ps gives

Es

 tSs∑
k=1

δk

 = Es

 tSs∑
k=1

∑
r∈S

δ(r) · 1{sk = r}

 = Es

∑
r∈S

tSs∑
k=1

δ(r) · 1{sk = r}


(∗)
=
∑
r∈S

Es

 tSs∑
k=1

δ(r)1{sk = r}

 =
∑
r∈S

δ(r) ·
[
π(r) · µs

]
= δ · µs. (2.52)

In step (*) we have used Fubini’s Theorem to interchange the sum with the expectation;

this is applicable since Es
(∑

r∈S

∣∣∣∑tSs
k=1 δ(r) · 1{sk = r}

∣∣∣) ≤ Es(M · tSs ) = Mµs < ∞.

Combining (2.51) and (2.52), and using the fact that Es[EU,ωx (UtSs )] = EUx,s(UτSs ), gives

∣∣∣EUx,s(UτSs )−x− δ · µs
∣∣∣=

∣∣∣∣∣∣Es
EU,ωx (UtSs )−x−

tSs∑
k=1

δk

∣∣∣∣∣∣ ≤ 2M ·Es

 tSs∑
k=1

PU,ωx (Uk−1<M)

 .

(2.53)

Denote px,k = PUx,s(U
−
k < M) and qn = Ps(τSs = n). By construction of the process

(U−k )k≥0, PU,ωx (Uk−1 < M) ≤ PU,ωx (U−k−1 < M) = px,k−1, for Ps a.e. ω. Thus, it follows
from (2.53) that ∣∣∣EUx,s(UτSs )− x− δ · µs

∣∣∣ ≤ 2M

∞∑
n=1

qn

n∑
k=1

px,k−1. (2.54)
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We define n0 =
⌊
(1/2)5/3x1/3

⌋
. Splitting the sum at n0, the right hand side of (2.54) may

be bounded as follows:

2M

∞∑
n=1

qn

n∑
k=1

px,k−1 ≤ 2M ·

[
n0∑
n=1

qn

n0∑
k=1

px,k−1 +
∑
n>n0

qn

n∑
k=1

px,k−1

]

≤ 2M ·

[
n0∑
k=1

px,k−1 +
∑
n>n0

qn · n

]
. (2.55)

By (2.26), ∑
n>n0

qn · n ≤
∑
n>n0

c3e
−c4n · n = O(e−x

1/4

). (2.56)

Also, using (2.38) with ε = 1/2 shows that, for all x > 2M and 0 ≤ k ≤ n0,

px,k ≤ PUx,s
(
|U−k − x| >

1

2
x

)
≤ PUx,s

(
max

0≤j≤n0

|U−j − x| >
1

2
x

)
≤ c1n0e

−c2n0 ,

for some constants c1, c2 > 0. Hence,

n0∑
k=1

px,k−1 ≤ n0 · c1n0e
−c2n0 = O(e−x

1/4

). (2.57)

Combining (2.54)-(2.57) shows that
∣∣∣EUx,s(UτSs ) − x − δ · µs

∣∣∣ = O(e−x
1/4

), which proves

the lemma.

Lemma 2.13. As x→∞,

VarUx,s(UτSs ) = 2x · µs +O(x1/2) and VarVx,s(VτRs ) = 2x · µs +O(x1/2).

Proof. We will prove the statement about the variance of UτSs . The proof of the analogous
statement for the variance of VτRs is again very similar. A central element of the proof is
the following claim.

Claim: There exists a non-negative random variable ∆ with finite variance (defined on
some outside probability space, separate from the (U+

k ) and (U−k ) processes) such that

U+
τSs
− U−

τSs

stoch
≤ ∆ , under PUx,s, for any x ∈ N0. (2.58)

Note that although the distributions of U+
τSs

and U−
τSs

do depend on the initial value

U+
0 = U−0 = x, the random variable ∆ does not.

The proof of the claim will be given after the main proof of the lemma. The basic idea
for the proof of the lemma is to approximate the process (Uk)k≥0 by the process (U∗k )k≥0

defined by

U∗0 = U0 = x and U∗k+1 =

U∗k∑
i=1

Gk+1
i , k ≥ 0

where the random variables Gki are as in (2.18). This process (U∗k )k≥0 is a standard
Galton-Watson branching process with Geo(1/2) offspring distribution, independent of
(Sk), and satisfies

U−k ≤ U
∗
k ≤ U+

k , for all k ≥ 0. (2.59)
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We express UτSs as

UτSs = U∗τSs + ∆̃, where ∆̃ ≡ UτSs − U
∗
τSs
. (2.60)

By (2.15) and (2.59), along with the claim (2.58), |∆̃|
stoch
≤ ∆, for a random variable ∆

with finite variance (not depending on x). The first term U∗τSs
can be analyzed exactly.

Since (U∗k )k≥0 is a standard Geo(1/2) Galton-Watson branching processes started from
level x, we have

EUx,s(U
∗
k ) = x and VarUx,s(U

∗
k ) = 2xk

for any fixed k > 0. Thus, since the stopping time τSs is independent of the process (U∗k )

and a.s. finite,

VarUx,s(U
∗
τSs

) = EUx,s[VarUx,s(U
∗
τSs
|τSs )] + VarUx,s[E

U
x,s(U

∗
τSs
|τSs )] (2.61)

= EUx,s(2x · τSs ) + VarUx,s(x) = 2xµs. (2.62)

Expanding (2.60) gives,

VarUx,s(UτSs ) = VarUx,s(U
∗
τSs

) + VarUx,s(∆̃) + 2CovUx,s(U
∗
τSs
, ∆̃). (2.63)

By the calculation above, the first term on the right hand side of (2.63) is exactly equal
to 2xµs. The second two terms may be bounded as follows:

|VarUx,s(∆̃)| ≤ EUx,s(∆̃2) ≤ E(∆2) ≡ C <∞. (2.64)

|2CovUx,s(U
∗
τSs
, ∆̃)| ≤ 2

[
VarUx,s(U

∗
τSs

)
]1/2 [

VarUx,s(∆̃)
]1/2

≤ 2 · (2xµs)1/2 · C1/2. (2.65)

Combining (2.61)-(2.65) shows that VarUx,s(UτSs ) = 2xµs +O(x1/2). Thus, it remains only
to prove the claim (2.58)

Proof of Claim: Fix any x ∈ N0 and assume throughout that U+
0 = U−0 = x. Let (Bk)k≥0

be a standard Galton-Watson branching processes with Geo(1/2) offspring distribution,
started from B0 = 1. Also, let (βk,i)k≥0,i∈N and (β̃k,i)k≥0,i∈N all be independent random

variables such that βk,i
law
= β̃k,i

law
= Bk. Finally, let T be a random time with the same

distribution as τSs (under PUx,s) which is defined on the same probability space as the

β and β̃ random variables, but independently of them. We will denote the probability
measure for this probability space by P, and the corresponding expectation operator by
E. We claim that

U+
n − U−n

stoch
≤ ∆n ≡

n∑
k=1

M+1∑
i=1

βk,i +

n−1∑
k=0

M∑
i=1

β̃k,i, for all n ∈ N. (2.66)

Since (U+
n , U

−
n )n∈N ⊥ τSs , (∆n)n∈N ⊥ T , and τSs

law
= T it follows from this that

U+
τSs
− U−

τSs

stoch
≤ ∆ ≡

∞∑
n=1

∆n · 1{T = n}.

Direct computations using E(βk,i) = E(β̃k,i) = 1 and Var(βk,i) = Var(β̃k,i) = 2k, along
with independence, give

E(∆n) = (2M + 1)n , Var(∆n) = 2Mn2 + n2 + n , E(∆2
n) = (2M + 1)(2M + 2)n2 + n.
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Thus, since T has an exponential tail and the random variables ∆n are independent of T ,

E(∆2) =

∞∑
n=1

P(T = n)E(∆2|T = n) =

∞∑
n=1

P(T = n) · E(∆2
n) <∞.

So, it remains only to show (2.66).
To this end, recall again that the processes (U+

k )k≥0 and (U−k )k≥0 may be represented
in terms of the independent Geo(1/2) random variables Gki according to (2.18). Let us
define a new process (Zk)k≥0 as follows:

Z0 = x and Zk+1 = M +

`k+1∑
i=1

Gk+1
i where `k = (U−k −M)+ + M + (Zk − U−k ).

We claim that Zk ≥ U+
k , for all k ≥ 0. The proof is by induction on k. For k = 0, we have

U+
0 = Z0 = x, by assumption. Now, assume that Zk ≥ U+

k . By the definition `k ≥ Zk, so it

follows that `k ≥ U+
k , and therefore Zk+1 = M +

∑`k+1
i=1 G

k+1
i ≥M +

∑U+
k +1

i=1 Gk+1
i = U+

k+1.

This shows that Zk ≥ U+
k , for all k. So, U+

k − U
−
k ≤ Zk − U−k ≡ Wk, for all k. So, to

establish (2.66) it will suffice to show that

Wn
law
= ∆n , for all n. (2.67)

To prove (2.67) observe that W0 = 0 and, for all k ≥ 0,

Wk+1 =

[
M +

`k+1∑
i=1

Gk+1
i

]
−

(U−k −M)+∑
i=1

Gk+1
i

 = M +

(U−k −M)+ + Wk + (M+1)∑
i=(U−k −M)+ + 1

Gk+1
i .

Thus, the process (Wk)k≥0 has the same distribution as the process (W̃k)k≥0 defined by

W̃0 = 0 and W̃k+1 = M +

W̃k+(M+1)∑
i=1

G̃k+1
i (2.68)

where (G̃ki )i,k∈N are i.i.d. Geo(1/2) random variables (living on some probability space).
To see this note that, for each ~u = (u0, . . . , un) ∈ Nn+1

0 , occurrence of the event E(~u) ≡
{U−0 = u0, . . . , U

−
n = un} is a deterministic function of the random variables Gki such

that 1 ≤ k ≤ n and, for each such k, 1 ≤ i ≤ (uk−1 −M)+. Thus, the conditional law of
the random variables Gki such that 1 ≤ k ≤ n and i > (uk−1 −M)+ on the event E(~u) is
still i.i.d. Geo(1/2). Thus, conditional on the event E(~u), (Wk)nk=0 has the same law as

(W̃k)nk=0. And since that holds for all n ∈ N and ~u = (u0, . . . , un) with PUx,s(E(~u)) > 0, it

follows that the entire process (Wk)k≥0 has the same (unconditional) law as (W̃k)k≥0.

Now, the process (W̃k) defined by (2.68) may be understood as a type of branching
process with migration where, at each step k, in addition to all the “regular children”
created by the branching mechanism we also introduce M + 1 immigrants prior to the
reproduction stage (the M + 1 in the upper limit of the sum) along with M additional
immigrants after the reproduction stage (the M in front of the sum). It follows that, for
each n,

W̃n
law
= ∆n ≡

n∑
k=1

M+1∑
i=1

βk,i +

n−1∑
k=0

M∑
i=1

β̃k,i. (2.69)

The β̃k,i sum corresponds to the descendants of the M immigrants coming in after
the reproduction stage in each generation that are alive at time n, and the βk,i sum
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corresponds to the descendants of the (M + 1) immigrants coming in prior to the

reproduction stage in each generation that are alive at time n. Since Wn
law
= W̃n for all n,

(2.69) implies (2.67).

Our final result of this section is an “overshoot lemma” which gives concentration
estimates for (V̂k) when exiting certain intervals. Analogous statements also hold for the
process (Ûk), but we will not need these.

Lemma 2.14. Let τ V̂x+ = inf{k > 0 : V̂k ≥ x} and τ V̂x− = inf{k > 0 : V̂k ≤ x}. Then there
exist constants c8, c9 > 0 and N ∈ N such that for all x ≥ N the following hold:

(i) sup0≤z<x P
V
z,s(V̂τ V̂

x+
>x+ y|τ V̂x+ <τ V̂0 )≤

{
c8(1 + y2/3x−1/3)e−c9y

2/3x−1/3

, for 0 ≤ y ≤ x
c8(1 + y1/3)e−c9y

1/3

, for y ≥ x.

(ii) supx<z<4x P
V
z,s(V̂τ V̂

x−
∧τ V̂

(4x)+
< x− y) ≤ c8(1 + y2/3x−1/3)e−c9y

2/3x−1/3

, for 0 ≤ y ≤ x.

Before proceeding to the main proof we isolate an important piece as its own lemma.
For the statement of this lemma recall that PV,ωv0 is the probability measure for the
backward branching process (Vk)k≥0 defined by (2.6) in the particular environment
ω ∈ Ω, started from V0 = v0.

Lemma 2.15. There exist constants C, c > 0 such that for any environment ω satisfying
ω(k, i) = 1/2 for all k ∈ Z and i > M ,

PV,ωz (V1 > x+ y|V1 ≥ x) ≤ C(e−cy
2/x + e−cy) (2.70)

for each y ≥ 6M , x ≥ 2M + 1, and 0 ≤ z < x.

Proof. This is implicit in the proof of Lemma 5.1 in [8]. That lemma is stated for the
process (Vk) under the averaged measure on environments in an (IID) and (BD) setting,
rather than for a fixed environment ω. But the proof of the equivalent statement to (2.70)
in this setting (given within the proof of Lemma 5.1 in [8]) uses only the fact that all
cookies stacks are of bounded height M .

Proof of Lemma 2.14. We will prove (i) under the assumption that y ≥ 12M and x ≥
N ≡ 2M + 1. By increasing the constant c8 if necessary, the desired inequalities in (i)
will then hold for all y ≥ 0. A similar proof gives (ii) with some different values of the
constants.

Under the measure PVz,s we have V̂0 = V0 = z < x, so τ V̂x+ > 0. Define a random

variable k0 as follows: Given that τ V̂x+ = j + 1, for some j ∈ N0, let k0 = inf{k > τj :

Vk ≥ x}. In other words, (j + 1) is the first time ` that the process (V̂`) reaches level x
or above, and k0 is the first time k > τj that the process (Vk) reaches level x or above.
Since the process (Vk, Rk) is Markovian under PVz,s it follows that, for each y ∈ N,

PVz,s(V̂τ V̂
x+

> x+ y|τ V̂x+ < τ V̂0 )

≤ sup
k∈N,0≤w<x,r∈S

PVz,s(V̂τ V̂
x+

> x+ y|τ V̂x+ < τ V̂0 , k0 = k,Rk−1 = r, Vk−1 = w)

= sup
0≤w<x,r∈S

PVw,r(VτRs > x+ y|V1 ≥ x, VτRs ≥ x)

= sup
0≤w<x,r∈S

PVw,r(VτRs > x+ y|V1 ≥ x)

PVw,r(VτRs ≥ x|V1 ≥ x)
.

Thus, it will suffice to show the following two claims to establish the lemma.
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Claim 1: There exist C1, C2 > 0 such that for all y ≥ 12M , x ≥ 2M + 1, 0 ≤ w < x, and
r ∈ S

PVw,r(VτRs > x+ y|V1 ≥ x) ≤

{
C1(1 + y2/3x−1/3)e−C2y

2/3x−1/3

, if y ≤ x
C1(1 + y1/3)e−C2y

1/3

, if y ≥ x.

Claim 2: There exists C3 > 0 such that for each x ≥ 2M + 1, 0 ≤ w < x, and r ∈ S

PVw,r(VτRs ≥ x|V1 ≥ x) ≥ C3.

Proof of Claim 1. Fix any x ≥ 2M + 1, 0 ≤ w < x, and r ∈ S. For each y ≥ 12M we have

PVw,r(VτRs > x+ y|V1 ≥ x) =
PVw,r(VτRs > x+ y, V1 ≥ x)

PVw,r(V1 ≥ x)

=
PVw,r(VτRs > x+ y, x ≤ V1 ≤ x+ y/2)

PVw,r(V1 ≥ x)
+
PVw,r(VτRs > x+ y, V1 > x+ y/2)

PVw,r(V1 ≥ x)

≤
PVw,r(VτRs > x+ y, x ≤ V1 ≤ x+ y/2)

PVw,r(x ≤ V1 ≤ x+ y/2)
+
PVw,r(V1 > x+ y/2)

PVw,r(V1 ≥ x)

= PVw,r(VτRs > x+ y|x ≤ V1 ≤ x+ y/2) + PVw,r(V1 > x+ y/2|V1 ≥ x). (2.71)

By Lemma 2.15,

PVw,r(V1 > x+ y/2|V1 ≥ x) ≤ C(e−cby/2c
2/x + e−cby/2c) (2.72)

for some C, c > 0. So, we need only bound PVw,r(VτRs > x + y|x ≤ V1 ≤ x + y/2). Define
w0 = bx+ y/2c. By monotonicity of (Vk) with respect to its initial condition and Lemma
2.11,

PVw,r(VτRs > x+ y|x ≤ V1 ≤ x+ y/2) ≤ sup
r′∈S

PVw0,r′(VτRs > x+ y)

≤ sup
r′∈S

PVw0,r′(|VτRs − w0| > y/2) ≤ c7(1 + (y/2)2/3w
−1/3
0 )e−c6(y/2)2/3w

−1/3
0 .

Now, for x ≤ y we have 1
8y < (y/2)2w−1

0 < y, and for x ≥ y we have 1
8y

2/x < (y/2)2w−1
0 <

y2/x. So, it follows that

PVw,r(VτRs > x+ y|x ≤ V1 ≤ x+ y/2) ≤

{
c7(1 + y2/3x−1/3)e−

1
2 c6y

2/3x−1/3

, if y ≤ x
c7(1 + y1/3)e−

1
2 c6y

1/3

, if y ≥ x.
(2.73)

Combining (2.71), (2.72), and (2.73) proves the claim.

Proof of Claim 2. Let (H̃i)i∈N be i.i.d. Geo(1/2) random variables, and let q =

infy≥2M+1P
(∑y−M

i=1 H̃i ≥ y
)

. By the central limit theorem, limy→∞P
(∑y−M

i=1 H̃i ≥ y
)

=

1/2, so q > 0. Further, since (V −k )k≥0 is a Markov chain independent of (Rk)k≥0 it follows
from (2.15) and (2.19) that, for any (r0, . . . , rm) ∈ Sm+1 and n ≥ x ≥ 2M + 1,

PVn,r0(Vm ≥ x|R0 = r0, . . . , Rm = rm) ≥ PVn,r0(V −m ≥ x|R0 = r0, . . . , Rm = rm)

= PVn,r0(V −m ≥ x) ≥
m∏
j=1

PVn,r0(V −j ≥ V
−
j−1|V

−
j−1 ≥ . . . ≥ V

−
1 ≥ V

−
0 ) ≥ qm.

To complete the proof we note that by (2.26) there exist some m0 ∈ N and p > 0 such
that Pr(τRs ≤ m0) ≥ p, for each r ∈ S. Therefore, for any x ≥ 2M + 1, 0 ≤ w < x, and
r′ ∈ S,

PVw,r′(VτRs ≥ x|V1 ≥ x) ≥ inf
n≥x,r∈S

PVn,r(VτRs ≥ x) ≥ p · qm0 ≡ C3 > 0.
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3 Proof of Theorem 1.11

The proof of Theorem 1.11 relies on the following lemma concerning transience vs.
recurrence of integer-valued Markov chains, which will be proved in Appendix B.

Lemma 3.1. Let (Zk)k≥0 be an irreducible, time-homogeneous Markov chain on state
space N0. Let Px be the probability measure for (Zk) started from Z0 = x, and let Ex be
the corresponding expectation operator. Assume that there exist constants C1, C2 > 0

and x0 ∈ N such that:

Px(|Z1 − x| ≥ εx) ≤ C1(1 + ε2/3x1/3)e−C2ε
2/3x1/3

, for all 0 < ε ≤ 1 and x ≥ x0.

Px(|Z1 − x| ≥ εx) ≤ C1(1 + ε1/3x1/3)e−C2ε
1/3x1/3

, for all ε ≥ 1 and x ≥ x0. (3.1)

Define ρ(x), ν(x), and θ(x) by

ρ(x) = Ex(Z1 − x) , ν(x) =
Ex[(Z1 − x)2]

x
, θ(x) =

2ρ(x)

ν(x)
(3.2)

and assume also that lim infx→∞ ν(x) > 0. Then the following hold.

(i) If there exists some a ∈ (1,∞) such that θ(x) ≤ 1 +
1

a ln(x)
for all sufficiently large

x, then the Markov chain (Zk) is recurrent.

(ii) If there exists some a ∈ (1,∞) such that θ(x) ≥ 1 +
2a

ln(x)
for all sufficiently large x,

then the Markov chain (Zk) is transient.

Corollary 3.2. Let (Zk)k≥0 be a time-homogeneous Markov chain on state space N0 and
define ρ(x), ν(x), and θ(x) as in Lemma 3.1. Assume that the concentration condition
(3.1) is satisfied and lim infx→∞ ν(x) > 0. Assume also that

Px(Z1 = y) > 0, for all x ≥ 1 and y ≥ 0. (3.3)

Then the following hold.

(i) If there exists some a ∈ (1,∞) such that θ(x) ≤ 1 + 1
a ln(x) for all sufficiently large x,

then Pz(Zk > 0,∀k > 0) = 0, for each z ≥ 1.

(ii) If there exists some a ∈ (1,∞) such that θ(x) ≥ 1 + 2a
ln(x) for all sufficiently large x,

then Pz(Zk > 0,∀k > 0) > 0, for each z ≥ 1.

Remark 3.3. Note that we do not assume in the corollary that the Markov chain (Zk)

is irreducible. State 0 may be absorbing, and in fact when we apply the corollary in
the proof of Theorem 1.11 below it will be for the Markov chain (Ûk), where state 0 is
absorbing.

Proof of Corollary 3.2. The Markov chain (Zk)k≥0 is not necessarily irreducible since
state 0 may be absorbing, but the modified Markov chain (Z̃k)k≥0 with transition proba-
bilities

P̃0(Z̃1 = 1) = 1 and P̃x(Z̃1 = y) = Px(Z1 = y), x ≥ 1 and y ≥ 0

is certainly irreducible. Due to (3.3), this modified chain (Z̃k), like the original chain
(Zk), has positive transition probabilities from each state x ≥ 1 to each state y ≥ 0. Thus,
if (Z̃k) is transient it has positive probability never to hit state 0 started from any state
z ≥ 1. Applying Lemma 3.1 shows that (i) and (ii) of the corollary hold for the Markov
chain (Z̃k). This implies (i) and (ii) also hold for (Zk), since (Zk) and (Z̃k) have the same
transition probabilities from all non-zero states.
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Before proceeding to the proof of Theorem 1.11 we isolate one important observation
in the following remark. This observation will also be necessary for the proof of Theorem
1.12 in Section 4.1.

Remark 3.4 (Invariance of Assumption (A) under interchange of spatial directions).
Assume that Assumption (A) is satisfied for the probability measure P, and let (Sk) be
the associated stack sequence and Rk = S−k, k ∈ Z. Construct the spatially reversed
probability measure P̃ on environments ω̃ by the following coupling: ω̃(k, i) = S̃k(i), for
k ∈ Z and i ∈ N, where the process (S̃k) is given by S̃k(i) = 1 − S−k(i) = 1 − Rk(i).
Thus, the probability of jumping right (left) on the i-th visit to site k for the random walk
(X̃n) in the spatially reversed environment ω̃ is the same as the probability of jumping
left (right) on the i-th visit to site −k for the original random walk (Xn). With this
construction there is also a natural coupling between the random walks (X̃n) and (Xn),
when both are started from site 0, such that (X̃n) jumps right whenever (Xn) jumps left,
and vice versa. This implies X̃n = −Xn, for all n, and so we may consider (X̃n) as the
spatially reversed version of the random walk (Xn).

Moreover, since the original model with probability measure P is assumed to satisfy
Assumption (A), we know that (Rk) is a uniformly ergodic Markov chain, which implies
(S̃k) is also a uniformly ergodic Markov chain. Similarly, since the original model is
assumed to satisfy Assumption (A), we know that (Sk) is a uniformly ergodic Markov
chain, which implies (R̃k) is a uniformly ergodic Markov chain (where R̃k ≡ S̃−k). Thus,
the spatially reversed probability measure P̃ also satisfies Assumption (A). Finally, note
that δ̃ = −δ, where δ̃ and δ are the drift parameters for the probability measures P̃ and
P on environments.

Proof of Theorem 1.11. Since ω(k, i) = 1/2 for each i > M and k ∈ Z, Pπ a.s., we have

P0,π(lim inf
n→∞

Xn = k) = P0,π(lim sup
n→∞

Xn = k) = 0 , for each k ∈ Z.

It follows from this and Theorem 1.1 that one of the following must hold:

(a) P0,π(Xn → +∞) = 1, (b) P0,π(Xn → −∞) = 1, or (c) P0,π(Xn = 0, i.o.) = 1.

Since the probability measure π places positive probability on each states r ∈ S we must
have the same trichotomy under the measure P0. That is, either

(a’) P0(Xn → +∞) = 1, (b’) P0(Xn → −∞) = 1, or (c’) P0(Xn = 0, i.o.) = 1

where (a) holds if and only if (a’) holds, (b) holds if and only if (b’) holds, and (c) holds if
and only if (c’) holds. We will show below that (a’) holds if δ > 1, and (a’) does not hold if
δ ≤ 1. It follows from this by interchanging spatial directions of the model, as described
in Remark 3.4, that (b’) holds if δ < −1, and (b’) does not hold if δ ≥ −1. Together these
facts imply (c’) must hold when δ ∈ [−1, 1]. Thus, it remains only to show the claim about
(a’) to establish the lemma.

To do this we will apply Corollary 3.2 to the Markov chain (Ûk)k≥0 with transition
probabilities given by (2.13). We consider this Markov chain under the family of measures
PUx,s, x ∈ N0, so that Û0 = U0 = x deterministically. Thus, the measure PUx,s for the Markov

chain (Ûk) is the equivalent of the measure Px for the Markov chain (Zk) considered in
the corollary. Condition (3.3) of the corollary is satisfied since the cookie stacks r ∈ S
are all elliptic. Also, the concentration condition (3.1) is satisfied due to Lemma 2.11.
Finally, by Lemmas 2.12 and 2.13,

ρ(x) = δ · µs +O(e−x
1/4

) and ν(x) = 2µs +O(x−1/2).
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Thus, lim infx→∞ ν(x) > 0, as required by the corollary, and θ(x) = 2ρ(x)/ν(x) = δ +

O(x−1/2). Applying the corollary with z = 1 we have

PU1,s(Ûk > 0,∀k > 0) > 0 , if δ > 1 and PU1,s(Ûk > 0,∀k > 0) = 0 , if δ ≤ 1.

Since 0 is an absorbing state for the process (Uk)k≥0 it follows also that

PU1,s(Uk > 0,∀k > 0) > 0 , if δ > 1 and PU1,s(Uk > 0,∀k > 0) = 0 , if δ ≤ 1.

Hence, by Lemma 2.3,

P0(Xn → +∞) = 1 , if δ > 1 and P0(Xn → +∞) = 0 , if δ ≤ 1

which establishes the claim about (a’).

4 Proof of Theorems 1.12 and 1.13

The proofs of Theorems 1.12 and 1.13 are based on an analysis of the backward
branching process (Vk)k≥0, and follow the general strategy used in [8]. However, there
is an additional complication due to our different probability measure P on environments.
If P is (IID), as considered in [8], then the process (Vk)k≥0 is Markovian. However, if P is
Markovian, as we consider, then the process (Vk)k≥0 is not. Thus, we will instead analyze
the modified process (V̂k)k≥0, which is Markovian, and then translate the results from
the (V̂k) process back to the (Vk) process. The outline for our proofs and the remainder
of this section is described below.

Step 1 : In Appendix C we will establish the following two propositions which are
analogous to Theorems 2.1 and 2.2 of [8]. The general methodology is very similar to
that in [8], so we will provide only a general outline and reprove a few key lemmas from
which everything else follows just as in [8].

Proposition 4.1. If δ > 1 then there exists some c10 > 0 such that

PV0,s

(
τ V̂0 > x

)
∼ c10 · x−δ.

Proposition 4.2. If δ > 1 then there exists some c11 > 0 such that

PV0,s

(∑τ V̂0
k=0 V̂k > x

)
∼ c11 · x−δ/2.

Step 2 : Define σV0 = inf{k > 0 : Vk = 0 and Rk = s}. In Appendix D we will translate the

above results for the process (V̂k) to the process (Vk) proving the following propositions.

Proposition 4.3. If δ > 1 then PV0,s
(
σV0 > x

)
∼ c12 · x−δ, where c12 ≡ c10 · µδs.

Proposition 4.4. If δ > 1 then PV0,s

(∑σV0
k=0 Vk > x

)
∼ c13 · x−δ/2, where c13 ≡ c11 · µδ/2s .

Step 3 : In Section 4.1 we will use Propositions 4.3 and 4.4 to prove Theorem 1.12.

Step 4 : In Section 4.2 we will use Propositions 4.3 and 4.4 to prove Theorem 1.13.

For future reference we observe the following simple corollary of Proposition 4.3.

Corollary 4.5. If δ > 1 then, for each x ∈ N0 and r ∈ S, PVx,r
(
σV0 <∞

)
= 1.

Proof. The process (Vk, Rk)k≥0 is a time-homogeneous Markov chain under PVx,r, for any
x, r. Furthermore since the Markov chain (Rk) is irreducible and the cookie stacks in S
are elliptic this Markov chain on pairs (Vk, Rk) is also irreducible. By Propostion 4.3 the
pair (0, s) is a recurrent state for the Markov chain (Vk, Rk), so the Markov chain itself is
recurrent, so the hitting time of state (0, s) is a.s. finite starting from any initial state
(x, r).
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4.1 Proof of Theorem 1.12

Define stopping times (σi)i≥0 by

σ0 = inf{k ≥ 0 : Vk = 0, Rk = s} and σi+1 = inf{k > σi : Vk = 0, Rk = s} , i ≥ 0.

Also, define ∆σ,i = σi − σi−1, for i ≥ 1, and let

Q0 =

σ0∑
k=0

Vk and Qi =

σi∑
k=σi−1+1

Vk , i ≥ 1.

Since (Vk, Rk)k≥0 is a time-homogeneous Markov chain (under any of the measures PVx ,
PVx,π, or PVx,r), it follows from Corollary 4.5 that if δ > 1 then (under any of these same
measures)

The times σi, i ≥ 0, are all a.s. finite and

(Qi)i≥1 and (∆σ,i)i≥1 are each i.i.d sequences. (4.1)

We denote the mean of the Qi’s by µQ and the mean of the ∆σ,i’s by µσ.

Proof of Theorem 1.12. By Theorem 1.2 there exists some deterministic v ∈ [−1, 1] such
that Xn/n → v, P0,π a.s. Since the probability measure π places positive probability
on each states r ∈ S, it follows that Xn/n → v, P0,r a.s., for each r ∈ S. Hence, also
Xn/n → v, P0 a.s. By Theorem 1.11, the walk is recurrent for δ ∈ [−1, 1], so we must
have v = 0 in this case. We will show that

v > 0 if δ > 2 and v = 0 if δ ∈ (1, 2]. (4.2)

It follows from this by interchanging spatial directions of the model (see Remark 3.4)
that v < 0 if δ < −2 and v = 0 if δ ∈ [−2,−1).

For the remainder of the proof we assume δ > 1. For n ∈ N, define in by

in =

{
sup{i ≥ 0 : σi ≤ n} , if n ≥ σ0

−1 , if n < σ0.

Observe that (with the convention σ−1 ≡ 0)

σin ≤ n < σin+1 and
in∑
j=1

Qj ≤
n∑
k=0

Vk ≤
in+1∑
j=0

Qj , for each n ∈ N. (4.3)

Thus, by (4.1) and the strong law of large numbers,

lim sup
n→∞

1

n

n∑
k=0

Vk ≤ lim sup
n→∞

in
σin
·

 1

in

in+1∑
j=0

Qj

 = lim sup
i→∞

i

σi
·

1

i

i+1∑
j=0

Qj

 =
µQ
µσ

, PV0,π a.s.

and

lim inf
n→∞

1

n

n∑
k=0

Vk ≥ lim inf
n→∞

in + 1

σin+1
·

 1

in + 1

in∑
j=1

Qj


= lim inf

i→∞

i+ 1

σi+1
·

 1

i+ 1

i∑
j=1

Qj

 =
µQ
µσ

, PV0,π a.s.
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So, 1
n

∑n
k=0 Vk →

µQ
µσ

a.s. (and in probability) under PV0,π. Hence, by Lemma 2.4,
1
n

∑n
k=0Dn,k → µQ

µσ
, in probability under P0,π. Now, since the random walk (Xn) is right

transient with δ > 1, lim supn→∞
∑
k<0Dn,k <∞, P0,π a.s. So, it follows from (2.8) that

τXn /n→ 1 +
2µQ
µσ

in probability under P0,π. Since we know a priori that Xn/n→ v, P0,π

a.s. (for some unknown v ∈ [−1, 1]), this in fact implies τXn /n→ 1 +
2µQ
µσ

, P0,π a.s., and

v =
1

1 + 2
µQ
µσ

. (4.4)

Now, by Proposition 4.3, µσ is finite for all δ > 1, and by Proposition 4.4, µQ is finite for
δ > 2 but infinite for δ ∈ (1, 2]. So, it follows that (4.2) holds.

4.2 Proof of Theorem 1.13

Throughout Section 4.2 the random variables Zα,b are as in (1.3), the random vari-
ables Qi, σi, ∆σ,i and in are as in Section 4.1, and mn ≡ bn/µσc. The general proof
strategy for Theorem 1.13 will be to first prove a limiting distribution for

∑n
k=0 Vk, then

translate to a limiting distribution for the hitting times τXn using (2.8) and Lemma 2.4,
then translate to a limiting distribution for the walk (Xn) itself. This basic approach has
been used before in [3, 8, 9], and our methods will be quite similar to these works, but
the details differ a bit because the process (Vk) is not Markovian when the environment
is not (IID). Thus, we must consider renewal times (σi)i≥0, rather than simply successive
times at which Vk = 0. Also, we have the additional minor complication of the Q0 and σ0

terms to deal with (which would be 0 in the (IID) case).
Unless other specified it is assumed throughout that V0 = 0 and the probability

measure on environments is Pπ (rather than P). Everything will be proved initially under
the stationary measure Pπ, and then at the very end after proving Theorem 1.13 under
the stationary measure Pπ we will translate the result to the given measure P.

To state our first lemma for the limiting distribution of
∑n
k=0 Vk we first need to

introduce a little notation. Let µQ(t) be the truncated expectation of the random variables
Qi: µQ(t) ≡ EV0,π[Qi · 1{Qi≤t}], i ≥ 1, where EV0,π(·) is expectation with respect to the
probability measure PV0,π. Also, let Z1,b,c be a random variable with characteristic function

E[eitZ1,b,c ] = exp
[
itc− b|t|

(
1 +

2i

π
log |t|sgn(t)

)]
, (4.5)

for b > 0 and c ∈ R. For future reference we note the following scaling relations hold for
the stable random variables Zα,b and Z1,b,c:

aZα,b
d.
= Zα,baα , for all α ∈ (0, 1) ∪ (1, 2], b > 0, a > 0. (4.6)

a1Z1,b,c + a2
d.
= Z1,ba1,[ca1+a2− 2

π ba1 log(a1)] , for all b > 0, c ∈ R, a1 > 0, a2 ∈ R. (4.7)

Also, we note that µσ is finite for all δ > 1 by Propositions 4.3, and µQ is finite for all
δ > 2 by Proposition 4.4.

Lemma 4.6. Under the probability measure PV0,π for the process (Vk)k≥0 the following
hold:

(i) If δ ∈ (1, 2) then there is some b > 0 such that

∑n
k=0 Vk
n2/δ

d.−→ Zδ/2,b, as n→∞.

(ii) If δ = 2 then there are constants b > 0 and c ∈ R such that

∑n
k=0 Vk −

µQ(n/µσ)
µσ

n

n

d.−→
Z1,b,c, as n→∞.
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(iii) If δ ∈ (2, 4) then there is some b > 0 such that

∑n
k=0 Vk −

µQ
µσ
n

n2/δ

d.−→ Zδ/2,b, as
n→∞.

(iv) If δ = 4 then there is some b > 0 such that

∑n
k=0 Vk −

µQ
µσ
n

[n log(n)]1/2
d.−→ Z2,b, as n→∞.

(v) If δ > 4 then there is some b > 0 such that

∑n
k=0 Vk −

µQ
µσ
n

n1/2

d.−→ Z2,b, as n→∞.

To prove Lemma 4.6 we will need two general results about the limiting distributions
of sums of i.i.d. random variables. The first result is a particular case of convergence to
stable distributions for sums of i.i.d. random variables with regularly varying tails. The
second result concerns sums of a random number of i.i.d. random variables with finite
variance.

Theorem 4.7 (Special case of Theorem 1, page 172 (for α ≥ 2) and Theorem 2, page 175
(for α < 2) in [5]). Let Z be a random variable with distribution such that:

P(Z > x) ∼ Cx−α, as x→∞, for some constants C > 0 and α > 0.

P(Z < x0) = 0, for some x0 ∈ (−∞, 0].

Also, let Z1, Z2, . . . be i.i.d. random variables distributed as Z. Then the following hold:

(i) If α ∈ (0, 1),

∑n
k=1 Zk
n1/α

d.−→ Zα,b, for some b > 0.

(ii) If α = 1,

∑n
k=1 Zk − n · E[Z · 1{Z≤n}]

n

d.−→ Z1,b,c, for some b > 0 and c ∈ R.

(iii) If α ∈ (1, 2),

∑n
k=1 Zk − n · E(Z)

n1/α

d.−→ Zα,b, for some b > 0.

(iv) If α = 2,

∑n
k=1 Zk − n · E(Z)

[n log(n)]1/2
d.−→ Z2,b, for some b > 0.

(v) If α > 2,

∑n
k=1 Zk − n · E(Z)

n1/2

d.−→ Z2,b, for some b > 0.

Theorem 4.8 (Theorem 3.1, page 17 in [6]). Let (Zk)k≥1 be i.i.d. random variables
with E(Zk) = 0 and Var(Zk) = σ2

Z ∈ (0,∞). Also, let (Nn)n≥1 be a sequence of
random variables such that Nn/n → θ, in probability, for some θ ∈ (0,∞). Then(∑Nn

k=1 Zk
)/(

σZ
√
nθ
) d.−→ N(0, 1), as n→∞.

In addition to these two theorems we will also need the following lemma for the proof
of part (v) of Lemma 4.6.

Lemma 4.9. For any δ > 1 the following hold:

(i) in/n→ 1/µσ a.s. under PV0,π.

(ii) There exists some constant c14 > 0 such that:

lim
n→∞

PV0,π(n− σin > k) ≤ c14 · k1−δ , for each k ∈ N.

lim
n→∞

PV0,π(σin+1 − n > k) ≤ c14 · k1−δ , for each k ∈ N.

Proof of Lemma 4.9 (i). Since ∆σ,i, i ≥ 1, are i.i.d., the times (σi)i≥0 are the renewal
times for a (delayed) renewal process. By definition in is the number of renewals up to
time n (excluding σ0). So, by [19, Proposition 3.5.1] in/n→ 1/µσ a.s.
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Proof of Lemma 4.9 (ii). Since the Markov chain (Rk) is uniformly ergodic it is aperiodic,
which implies the Markov chain on pairs (Vk, Rk) is aperiodic (due to ellipticity of
the cookie stacks), which implies the discrete renewal process with renewal times
(σi)i≥0 is itself aperiodic. Let Am,k be the event that there are no renewal times σi in
{m,m+1, . . . ,m+k−1} and let ∆σ be a random variable (on some probability space) with
the common distribution of the random variables ∆σ,i, i ≥ 1. It follows from aperiodicity
and [19, Example 4.3 (C)] that PV0,π(Am,k) → E[(∆σ − k)+]/E[∆σ] as m → ∞, for each
fixed k ∈ N. Moreover, by Proposition 4.3, E[(∆σ − k)+]/E[∆σ] ≤ c14 · k1−δ, for some
c14 > 0 and all k ∈ N. Thus,

lim
n→∞

PV0,π(n− σin > k) = lim
n→∞

PV0,π(no renewals times in {n− k, n− k + 1, . . . , n})

= lim
n→∞

PV0,π(An−k,k+1) ≤ lim
n→∞

PV0,π(An−k,k) ≤ c14 · k1−δ.

and

lim
n→∞

PV0,π(σin+1 − n > k) = lim
n→∞

PV0,π(no renewals times in {n+ 1, . . . , n+ k})

= lim
n→∞

PV0,π(An+1,k) ≤ c14 · k1−δ.

Proof of Lemma 4.6. The proofs of the various parts of the lemma will be given sepa-
rately, but we begin with one important general observation that is necessary for the
proof of several parts. If 1 ≤ ` ≤ mn and |σmn − n| ≤ `, then∣∣∣∣∣

n∑
k=0

Vk −
mn∑
i=1

Qi

∣∣∣∣∣ ≤ Q0 +

σmn+`∑
k=σmn−`

Vk ≤ Q0 +

σ(mn+`)∑
k=σ(mn−`)

Vk = Q0 +

mn+`∑
i=mn−`+1

Qi

since the random variables Vk are nonnegative and σmn−` ≤ σmn − ` < σmn + ` ≤ σmn+`.
Thus, if (an) and (bn) are any sequences of positive real numbers such that bn →∞ and
an →∞ with an = o(n), then

lim sup
n→∞

PV0,π

(∣∣∣ n∑
k=0

Vk −
mn∑
i=1

Qi

∣∣∣ > 2bn

)

≤ lim sup
n→∞

PV0,π(|σmn − n| > an) + PV0,π(Q0 > bn) + PV0,π

( mn+banc∑
i=mn−banc+1

Qi > bn

)
≤ lim sup

n→∞
PV0,π(|σmn − n| > an) + lim sup

n→∞
PV0,π

( 2banc∑
i=1

Qi > bn

)
. (4.8)

In the last line we have used the fact that the random variables (Qi)i≥1 are i.i.d., and also
the fact that Q0 is PV0,π a.s. finite (due to Corollary 4.5), which implies PV0,π(Q0 > bn)→ 0,
if bn →∞.

Proof of (i):

With δ ∈ (1, 2) it follows from Proposition 4.3 and Theorem 4.7-(iii) that
∑m
i=1 ∆σ,i−mµσ

m1/δ

d.−→
Zδ,B1 , as m → ∞, for some B1 > 0. Also, since σ0 is a.s. finite σ0+(mnµσ−n)

m
1/δ
n

→ 0 a.s, as

n→∞. Hence,

σmn − n
m

1/δ
n

=

[
σ0 + (mnµσ − n)

m
1/δ
n

+

∑mn
i=1 ∆σ,i −mnµσ

m
1/δ
n

]
d.−→ Zδ,B1 , as n→∞. (4.9)

Further, by Proposition 4.4 and Theorem 4.7-(i), there is some B2 > 0 such that∑m
i=1Qi
m2/δ

d.−→ Zδ/2,B2
, as m→∞. (4.10)
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Now, ∑n
k=0 Vk
n2/δ

=

(
m

2/δ
n

n2/δ
·
∑mn
i=1Qi

m
2/δ
n

)
+

∑n
k=0 Vk −

∑mn
i=1Qi

n2/δ
≡ (I) + (II).

Since m2/δ
n

n2/δ → (1/µσ)2/δ it follows from (4.10) and (4.6) that (I)
d.−→ Zδ/2,b, for some b > 0.

So it will suffice to show that (II)
p.−→ 0. To do this, fix an arbitrary ε > 0. Applying (4.8)

with an = np, p ∈ (1/δ, 1), and bn = εn2/δ gives

lim sup
n→∞

PV0,π

(∣∣∣ n∑
k=0

Vk −
mn∑
i=1

Qi

∣∣∣ > 2εn2/δ
)

≤ lim sup
n→∞

PV0,π(|σmn − n| > np) + lim sup
n→∞

PV0,π

( 2bnpc∑
i=1

Qi > εn2/δ
)
.

The first term on the right hand side is 0 by (4.9), and the second term on the right hand
side is 0 by (4.10). Since ε > 0 is arbitrary, it follows that (II)

p.−→ 0.

Proof of (ii):
With δ = 2 it follows from Proposition 4.4 that PV0,π(Qi > x) ∼ c13x

−1, for i ≥ 1, which
implies

µQ(t) ∼ c13 log(t), as t→∞ and lim
n→∞

[µQ(n/µσ)− µQ(mn)] = 0. (4.11)

Also, similar arguments as in the proof of part (i) of the lemma using Propositions 4.3 and
4.4 along with parts (ii) and (iv) of Theorem 4.7 show that there are constants B1, B2 > 0

and C ∈ R such that:

σmn − n√
mn log(mn)

d.−→ Z2,B1 , as n→∞. (4.12)∑m
i=1Qi −mµQ(m)

m

d.−→ Z1,B2,C , as m→∞. (4.13)

Now,∑n
k=0 Vk −

µQ(n/µσ)
µσ

n

n

=

(
mn

n
·
∑mn
i=1Qi −mnµQ(mn)

mn

)
+
mnµQ(mn)− n

µσ
µQ(n/µσ)

n
+

∑n
k=0 Vk −

∑mn
i=1Qi

n

≡ (I) + (II) + (III).

Since mn/n → 1/µσ it follows from (4.13) and (4.7) that (I)
d.−→ Z1,b,c, for some b > 0

and c ∈ R. Also, by (4.11), (II) → 0 (deterministically). So, it will suffice to show that

(III)
p.−→ 0. To do this, fix an arbitrary ε > 0. Applying (4.8) with an = np, p ∈ (1/2, 1),

and bn = εn gives

lim sup
n→∞

PV0,π

(∣∣∣ n∑
k=0

Vk −
mn∑
i=1

Qi

∣∣∣ > 2εn
)

≤ lim sup
n→∞

PV0,π(|σmn − n| > np) + lim sup
n→∞

PV0,π

( 2bnpc∑
i=1

Qi > εn
)
.
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The first term on the right hand side is 0 by (4.12), and the second term on the right
hand side is 0 by (4.11) and (4.13). Since ε > 0 is arbitrary, it follows that (III)

p.−→ 0.

Proof of (iii) and (iv):
Define d(n) = n2/δ if δ ∈ (2, 4) and d(n) = [n log(n)]1/2 if δ = 4. We wish to show that∑n

k=0 Vk −
µQ
µσ
n

d(n)

d.−→ Zδ/2,b , for some b > 0.

Similar arguments as in the proof of part (i) of the lemma using Propositions 4.3 and
4.4 along with parts (iii), (iv), and (v) of Theorem 4.7 show that there are constants
B1, B2 > 0 such that:

σmn − n
m

1/2
n

d.−→ Z2,B1 , as n→∞. (4.14)∑m
i=1Qi −mµQ

d(m)

d.−→ Zδ/2,B2
, as m→∞. (4.15)

Now,∑n
k=0 Vk −

µQ
µσ
n

d(n)
=

(
d(mn)

d(n)
·
∑mn
i=1Qi −mnµQ

d(mn)

)
+
µQ(mn − n/µσ)

d(n)
+

∑n
k=0 Vk −

∑mn
i=1Qi

d(n)

≡ (I) + (II) + (III).

Since d(mn)/d(n) → (1/µσ)2/δ it follows from (4.15) and (4.6) that (I)
d.−→ Zδ/2,b, for

some b > 0. Also, (II)→ 0 (deterministically). So, it will suffice to show that (III)
p.−→ 0.

To do this, fix an arbitrary ε > 0. Applying (4.8) with an = n1/2(log n)1/4 and bn = εd(n)

gives

lim sup
n→∞

PV0,π

(∣∣∣ n∑
k=0

Vk −
mn∑
i=1

Qi

∣∣∣ > 2εd(n)
)

≤ lim sup
n→∞

PV0,π

(
|σmn − n| > n1/2(log n)1/4

)
+ lim sup

n→∞
PV0,π

( 2bn1/2(logn)1/4c∑
i=1

Qi > εd(n)
)
.

The first term on the right hand side is 0 by (4.14), and the second term on the right
hand side is 0 by (4.15). Since ε > 0 is arbitrary, it follows that (III)

p.−→ 0.

Proof of (v):
Let Zi = Qi − µQ

µσ
∆σ,i, i ≥ 1. Note that with δ > 4 the random variables (Zi)i≥1 are i.i.d.

under PV0,π with mean 0 and finite variance, due to Propositions 4.3 and 4.4. By (4.3),∑n
k=0 Vk −

µQ
µσ
n

n1/2
≥
∑in
i=1 Zi
n1/2

+

µQ
µσ

(σin − σ0 − n)

n1/2
≡ (I) + (II)

and ∑n
k=0 Vk −

µQ
µσ
n

n1/2
≤
∑in+1
i=1 Zi
n1/2

+

µQ
µσ

(σin+1 − σ0 − n) +Q0

n1/2
≡ (I ′) + (II ′).

By Lemma 4.9-(i), in/n
p.−→ 1/µσ. So, it follows from Theorem 4.8 that (I)

d.−→ Z2,b and

(I ′)
d.−→ Z2,b where b ≡ Var(Zi)/(2µσ). Furthermore, by Corollary 4.5 and Lemma 4.9-(ii),

(II)
p.−→ 0 and (II ′)

p.−→ 0. This completes the proof.
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The next lemma gives the limiting distribution of the hitting times τXn .

Lemma 4.10. Let v = 1/(1 + 2
µQ
µσ

) be the velocity of the ERW (Xn)n≥0 from (4.4). Then
under the probability measure P0,π for the ERW (Xn) the following hold:

(i) If δ ∈ (1, 2) then there is some b > 0 such that
τXn
n2/δ

d.−→ Zδ/2,b, as n→∞.

(ii) If δ = 2 then there are constants b > 0 and c ∈ R such that
τXn −

[
1 +

2µQ(n/µσ)
µσ

]
n

n

d.−→
Z1,b,c, as n→∞.

(iii) If δ ∈ (2, 4) then there is some b > 0 such that
τXn − 1

vn

n2/δ

d.−→ Zδ/2,b, as n→∞.

(iv) If δ = 4 then there is some b > 0 such that
τXn − 1

vn

[n log(n)]1/2
d.−→ Z2,b, as n→∞.

(v) If δ > 4 then there is some b > 0 such that
τXn − 1

vn

n1/2

d.−→ Z2,b, as n→∞.

Proof. Since (Xn) is P0,π a.s. right transient with any δ > 1, lim supn→∞
∑
k<0Dn,k is

P0,π a.s. finite. So,
(∑

k<0Dn,k

)
/nα

p.−→ 0, for any α > 0. Thus, parts (i)-(v) of this lemma
follow directly from (i)-(v) of Lemma 4.6 using (2.8) and Lemma 2.4, along with (4.7) for
part (ii) and (4.6) for the other parts. (Note that the constants b, c are modified from
Lemma 4.6.)

The proof of Theorem 1.13 below will be based on Lemma 4.10, but first we will need
one final lemma about backtracking probabilities. The same statement has been given in
[16, Lemma 6.1] for the case of (IID) environments, and our proof will be very similar,
but must be adjusted slightly to use the renewal times (σi)i≥0, instead of the successive
times at which Vk = 0.

Lemma 4.11. Assume that δ > 1 and let c14 be as in Lemma 4.9. Then

P0,π

(
inf

m≥τXn+k

Xm ≤ n
)
≤ c14 · k1−δ , for all k, n ∈ N.

In particular, P0,π

(
inf

m≥τXn+k

Xm ≤ n
)
→ 0, as k →∞, uniformly in n.

Proof. As in the proof of Lemma 4.9 we consider the renewal times σi and note that, for
each fixed k,

lim
N→∞

PV0,π

(
no renewals in times {N,N + 1, . . . , N + k − 1}

)
≤ c14 · k1−δ.

Using this along with Lemma 2.4 gives

P0,π

(
inf

m≥τXn+k

Xm ≤ n
)

= lim
N→∞

P0,π

(
inf

τXn+k≤m<τ
X
N

Xm ≤ n
)

≤ lim
N→∞

P0,π

(
DN,j ≥ 1,∀j ∈ {n+ 1, n+ 2, . . . , n+ k}

)
= lim
N→∞

PV0,π

(
Vj ≥ 1,∀j ∈ {N − n− k, . . . , N − n− 1}

)
≤ lim
N→∞

PV0,π

(
no renewals in times {N − n− k, . . . , N − n− 1}

)
≤ c14 · k1−δ.
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Proof of Theorem 1.13. Recall that for the probability measure P on environments, the
marginal distribution of S0 is φ. We will first prove the theorem in the case that φ = π is
the stationary distribution. We will then extend to the case of general φ.

Case 1: φ = π.
Let X+

n = supi≤nXi and X−n = infi≥nXi. Since X−n ≤ Xn ≤ X+
n , for all n, it will suffice

to show that

(a) Parts (i)-(v) of the theorem all hold with Xn replaced with X+
n , and

(b) Parts (i)-(v) of the theorem all hold with Xn replaced with X−n .

Now observe that, for any n,m, k ∈ N,

{X+
n < m} = {τXm > n} (4.16)

and

{X+
n < m} ⊂ {X−n < m} ⊂

(
{X+

n < m+ k} ∪
{

inf
i≥τXm+k

Xi < m
})
. (4.17)

Standard computations using (4.16) and Lemma 4.10 give (a) for parts (i), (iii), (iv),
and (v) of the theorem (with a modified value of the constant b in parts (iii)-(v)). The
proof of (a) for part (ii) of the theorem is a bit more subtle and will be given below,
following closely the method in [9, Appendix B]. The second statement (b) follows from
(a) using (4.17) and Lemma 4.11.

We proceed now to the proof of (a) for part (ii) of the theorem. Assume δ = 2 and
define D(t) = c + 1 +

2µQ(t/µσ)
µσ

and a = µσ/(2c13), where c is the same constant from
Lemma 4.10-(ii). Then, by Lemma 4.10-(ii) and (4.7),

τXn −D(n)n

n

d.−→ Z1,b, for some b > 0. (4.18)

Also, since PV0,π(Qi > x) ∼ c13x
−1, i ≥ 1, it follows from the definition of µQ(t) that

D(t) ∼ 1

a
log(t), as t→∞ and lim

n→∞
D(kn)−D(n) = 0, if kn ∼ n. (4.19)

For t > 0, let Γ(t) = inf{s > 0 : sD(s) ≥ t}. Note that D(t) ∼ 1
a log(t) =⇒ Γ(t) ∼ at/ log(t).

Further we claim that

Γ(t)D(Γ(t)) = t+ o(Γ(t)), as t→∞. (4.20)

To see this note that the function g(s) = sD(s) is right continuous and strictly increasing
for all sufficiently large s. Moreover, jump discontinuities in this function g(s) can occur
only at s = kµσ for integer k, and at such an s the size of the jump discontinuity is
s[ 2
µσ
· s
µσ
PV0,π(Qi = s

µσ
)] = 2( s

µσ
)2PV0,π(Qi = s

µσ
). It follows from these observations and

the definition of Γ(t) that

|Γ(t)D(Γ(t))− t| ≤ 2(Γ(t)/µσ)2PV0,π(Qi = Γ(t)/µσ), (4.21)

for all sufficiently large t. Now, since PV0,π(Qi > x) ∼ c13x
−1, we have xPV0,π(Qi = x)→ 0,

as x→∞. So, the right hand side of (4.21) is o(Γ(t)), which proves (4.20).
Now, for x ∈ R and n ∈ N, let kn,x = max{dΓ(n) + xn

(logn)2 e, 0}. Note that kn,x ∼ Γ(n)

as n → ∞, since Γ(n) ∼ an/ log(n). Using this fact along with (4.19) and (4.20) and,
again, the tail asymptotics for Γ(n) shows that, for any fixed x,

lim
n→∞

n− kn,xD(kn,x)

kn,x
= lim
n→∞

n−
[
Γ(n) + xn

(logn)2

]
D(Γ(n))

Γ(n) + xn
(logn)2

=
−x
a2
. (4.22)
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Further, since X+
n takes only integer values it follows from (4.16) that, for all sufficiently

large n,

PV0,π

(
X+
n − Γ(n)

n/(log n)2
< x

)
= PV0,π

(
τXkn,x − kn,xD(kn,x)

kn,x
>
n− kn,xD(kn,x)

kn,x

)
.

Taking the limit of both sides as n → ∞ and using (4.18) and (4.22) shows that

limn→∞ PV0,π

(
X+
n−Γ(n)

n/(logn)2 < x
)

= P(Z1,b > −x/a2), which implies X+
n−Γ(n)

a2n/(logn)2
d.−→ −Z1,b.

Case 2: General φ.
We will extend from Case 1 using a coupling argument. Let (Sφk )k∈Z and (Sπk )k∈Z denote
the stack sequences when S0 has marginal distribution φ and π respectively. Couple
these processes as follows. First sample (Sφk )k≤0 and (Sπk )k≤0 independently. Then run

the Markov chains (Sφk ) and (Sπk ) forward in time independently, starting from the given

values of Sφ0 and Sπ0 , until the first time N > 0 such that SφN = SπN (due to the uniform
ergodicity hypothesis N is a.s. finite). After the chains first meet at time N , run them
forward together, so that Sφk = Sπk , for all k ≥ N .

Now, let ωφ and ωπ be the corresponding environments given by ωφ(k, i) = Sφk (i)

and ωπ(k, i) = Sπk (i), as in (1.11), and couple the random walks (Xφ
n) and (Xπ

n ) in these
environments as follows:

• Let (θk,i)k∈Z,i∈N be i.i.d. Uniform([0,1]) random variables.

• Set Xφ
0 = Xπ

0 = 0. Then define inductively:

Xφ
n+1 =

{
Xφ
n + 1 , if θXφn ,Iφn < ωφ(Xφ

n , I
φ
n)

Xφ
n − 1 , else

and

Xπ
n+1 =

{
Xπ
n + 1 , if θXπn ,Iπn < ωπ(Xπ

n , I
π
n )

Xπ
n − 1 , else

where Iφn = |{0 ≤ m ≤ n : Xφ
m = Xφ

n}| and Iπn = |{0 ≤ m ≤ n : Xπ
m = Xπ

n}|.

In words, the walk (Xφ
n) jumps right on its i-th visit to site k if θk,i < ωφ(k, i), and left

otherwise. Similarly, the walk (Xπ
n ) jumps right on its i-th visit to site k if θk,i < ωπ(k, i),

and left otherwise.
With this construction both walks (Xπ

n ) and (Xφ
n) have the correct averaged laws.

Moreover, due to the coupling between environments ωπ(k, i) = ωφ(k, i), for all k ≥ N

and i ∈ N. So, both walks (Xπ
n ) and (Xφ

n) have the same theoretical “jump sequence” at
each site k ≥ N . That is, both walks will jump the same direction from any site k ≥ N on
their i-th visit to that site, if such an i-th visit occurs.

Now, since it is assumed that δ > 1 in all cases of the theorem, we know both walks
are right transient. So, with probability 1, each walk eventually reaches site N and also
returns to this site after any leftward excursion from it. Combining this with the previous
observation about matching jump sequences at all sites k ≥ N shows that

lim sup
n→∞

|Xφ
n −Xπ

n | <∞ a.s.

Since (1.4)-(1.8) hold with Xn = Xπ
n , by Case 1, it follows that (1.4)-(1.8) also hold with

Xn = Xφ
n .

A Proof of Lemma 2.2

Proof of Lemma 2.2. Fix x ∈ N. Clearly, Px,s(A+) = 0 if Px,s(Xn → +∞) = 0, so we need
only show that Px,s(A+) > 0 if Px,s(Xn → +∞) > 0. By definition, Px,s(A+) = Es[Pωx (A+)]
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and Px,s(Xn → +∞) = Es[Pωx (Xn → +∞)], so it will suffice to show the following claim.

Claim: Let ω ∈ Ω be any environment satisfying ω(k, i) ∈ (0, 1), for all k ∈ Z and i ∈ N.
Then Pωx (A+) > 0 if Pωx (Xn → +∞) > 0.

Proof of Claim: For m ∈ N and any nearest neighbor path ζ = (x0, . . . , xm) ∈ Zm+1 with
x0 = x, define the events Am and Aζ by

Am = {Xn > x,∀n ≥ m and Xn → +∞} and Aζ = Am ∩ {X0 = x0, . . . , Xm = xm}.

If Pωx (Xn → +∞) > 0, then there must be some finite path ζ = (x0, . . . , xm) such that
x0 = x, xm = x+ 1, and Pωx (Aζ) > 0. This, of course, implies Pωx (Am|X0 = x0, . . . , Xm =

xm) > 0.
We construct from ζ = (x0, . . . , xm) the reduced path ζ̃ = (x̃0, . . . , x̃m̃) by setting

x̃0 = x0 = x, and then removing from the tail (x1, . . . , xm) all steps in any leftward
excursions from site x. For example,

if ζ = (x, x− 1, x− 2, x− 1, x, x+ 1, x, x− 1, x, x− 1, x, x+ 1, x+ 2, x+ 3, x+ 2, x+ 1)

then ζ̃ = (x, x+ 1, x, x+ 1, x+ 2, x+ 3, x+ 2, x+ 1)

(where we denote the removed steps in bold for visual clarity). By construction, x̃m̃ =

xm = x+1 and the number of visits to each site k ≥ x+1 up to time m if (X0, . . . , Xm) = ζ

is exactly the same as the number of visits to each site k ≥ x + 1 up to time m̃ if
(X0, . . . , Xm̃) = ζ̃. Thus,

Pωx (Am̃|X0 = x̃0, . . . , Xm̃ = x̃m̃) = Pωx (Am|X0 = x0, . . . , Xm = xm) > 0,

which implies

Pωx (A+) ≥ Pωx (X0 = x̃0, . . . , Xm̃ = x̃m̃) · Pωx (A+|X0 = x̃0, . . . , Xm̃ = x̃m̃)

≥ Pωx (X0 = x̃0, . . . , Xm̃ = x̃m̃) · Pωx (Am̃|X0 = x̃0, . . . , Xm̃ = x̃m̃) > 0.

(Note that Pωx (X0 = x̃0, . . . , Xm̃ = x̃m̃) > 0, since we assume ω(k, i) ∈ (0, 1), ∀k ∈ Z,
i ∈ N.)

B Proof of Lemma 3.1

The proof of Lemma 3.1 is based on the following much more general, but less explicit,
condition for transience vs. recurrence of Markov chains on the nonnegative integers
given in [13].

Lemma B.1 (Theorem A.1 of [13]). Let (Zk)k≥0 be an irreducible, time-homogenous
Markov chain on state space N0. Let Px(·) be the probability measure for the Markov
chain started from Z0 = x, and let Ex(·) be the corresponding expectation operator.

(i) If there exists a function F : N0 → (0,∞) such that limx→∞ F (x) = ∞ and
Ex[F (Z1)] ≤ F (x) for all sufficiently large x, then the Markov chain (Zk) is re-
current.

(ii) If there exists a function F : N0 → (0,∞) such that limx→∞ F (x) = 0 and
Ex[F (Z1)] ≤ F (x) for all sufficiently large x, then the Markov chain (Zk) is tran-
sient.

The function F (x) is called a Lyapunov function. Our proof of Lemma 3.1 using
Lemma B.1 follows closely the proof of Theorem 1.3 in [13]. In particular, we will use
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the same choice of Lyapunov functions F (x) and Taylor expand in the same fashion.
However, controlling the error term in the Taylor expansion becomes somewhat more
involved, because of the weaker concentration condition we assume for the transition
probabilities.

Proof of Lemma 3.1 (i). Let F (x) : [0,∞)→ (0,∞) be a smooth function such that F (x) =

ln ln(x), for x > 3. Then for all x > 3

F ′(x) =
1

x ln(x)
,

F ′′(x) = − 1

x2 ln(x)
− 1

x2 ln2(x)
,

F ′′′(x) =
2

x3 ln(x)
+

3

x3 ln2(x)
+

2

x3 ln3(x)
. (B.1)

By Taylor’s Theorem with remainder

F (Z1) = F (x) + F ′(x)(Z1 − x) +
1

2
F ′′(x)(Z1 − x)2 +

1

6
F ′′′(ξ)(Z1 − x)3, for each x ∈ N,

where ξ is some (random, depending on Z1) number between Z1 and x. Thus, for all
positive integer x > 3,

Ex[F (Z1)]

= F (x) +
Ex[Z1 − x]

x ln(x)
+

1

2

[
− 1

x2 ln(x)
− 1

x2 ln2(x)

]
Ex[(Z1 − x)2] +

1

6
Ex[F ′′′(ξ)(Z1 − x)3]

= F (x) +
1

x ln(x)

[
ρ(x)− 1

2

(
1 +

1

ln(x)

)
ν(x)

]
+

1

6
Ex[F ′′′(ξ)(Z1 − x)3].

So,

Ex[F (Z1)] ≤ F (x) ⇐⇒ 1

x ln(x)

[
ρ(x)− 1

2

(
1 +

1

ln(x)

)
ν(x)

]
+

1

6
Ex[F ′′′(ξ)(Z1 − x)3] ≤ 0

⇐⇒ θ(x) ≤ 1 +
1

ln(x)
− 1

3

x ln(x)

ν(x)
Ex[F ′′′(ξ)(Z1 − x)3].

Therefore, in light of Lemma B.1 and the assumption that lim infx→∞ ν(x) > 0, it will
suffice to show

Ex[F ′′′(ξ)(Z1 − x)3] = o
( 1

x ln2(x)

)
. (B.2)

Now,∣∣Ex[F ′′′(ξ)(Z1 − x)3]
∣∣ ≤ Ex ∣∣F ′′′(ξ)(Z1 − x)3

∣∣
=

{
Ex
∣∣F ′′′(ξ)(Z1 − x)31{Z1 ≤ x/2}

∣∣+ Ex
∣∣F ′′′(ξ)(Z1 − x)31{x/2 < Z1 ≤ 2x}

∣∣
+ Ex

∣∣F ′′′(ξ)(Z1 − x)31{Z1 > 2x}
∣∣

≡ (I) + (II) + (III). (B.3)

Below we will show that (I) = O
(
e−x

1/4
)

, (II) = O

(
1

ln(x) · x4/3

)
, and (III) = O

(
e−x

1/4
)

,

which establishes (B.2).
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Bound on (I) : Define C = maxx∈[0,∞) |F ′′′(x)| <∞. Using (3.1) gives,

(I) ≡ Ex
∣∣F ′′′(ξ)(Z1 − x)31{Z1 ≤ x/2}

∣∣ ≤ Cx3 · Px(Z1 ≤ x/2) ≤ Cx3 · Px(|Z1 − x| ≥ x/2)

≤ Cx3 · C1

[
1 + (1/2)2/3x1/3

]
e−C2(1/2)2/3x1/3

= O
(
e−x

1/4
)
.

Bound on (II) : By (B.1), for all x > 6,

(II) ≡ Ex
∣∣F ′′′(ξ)(Z1 − x)31{x/2 < Z1 ≤ 2x}

∣∣
≤ 7

(x/2)3 ln(x/2)
Ex

(
|Z1 − x|31{x/2 < Z1 ≤ 2x}

)
. (B.4)

We define Z̃1 = Z1 · 1{x/2<Z1≤2x} + x · 1{Z1 6∈(x/2,2x]}, and bound the expectation on the
right hand side as follows:

Ex

(
|Z1 − x|31{x/2 < Z1 ≤ 2x}

)
= Ex

(
|Z̃1 − x|3

)
=

∫ x

0

Px(|Z̃1 − x| > y) · 3y2dy

≤ 3

∫ x

0

Px(|Z1 − x| > y) · y2dy

= 3

∫ 1

0

Px(|Z1 − x| > εx) · x3ε2dε (substitute y = εx)

≤ 3x3

∫ 1

0

ε2 · C1(1 + ε2/3x1/3)e−C2ε
2/3x1/3

dε (by (3.1))

=
9

2
x3

∫ 1

0

C1(t7/2 + t9/2x1/3)e−C2x
1/3tdt (substitute t = ε2/3)

≤ 9

2
x3

∫ 1

0

C1(t3 + t4x1/3)e−C2x
1/3tdt

= O
(
x5/3

)
(repeated integration by parts). (B.5)

Combining (B.4) and (B.5) shows that (II) = O

(
1

ln(x) · x4/3

)
.

Bound on (III) : By (B.1), for all x > 3,

(III) ≡ Ex
∣∣F ′′′(ξ)(Z1 − x)31{Z1 > 2x}

∣∣ ≤ 7

x3 ln(x)
Ex

(
|Z1 − x|31{Z1 > 2x}

)
. (B.6)

We define Z̃1 = Z1 · 1{Z1>2x} + x · 1{Z1≤2x} and write the expectation on the right hand
side as

Ex

(
|Z1 − x|31{Z1 > 2x}

)
= Ex

(
|Z̃1 − x|3

)
=

∫ ∞
0

Px(|Z̃1 − x| > y) · 3y2dy

= 3

[∫ x

0

Px(Z1 − x > x)y2dy +

∫ ∞
x

Px(Z1 − x > y)y2dy

]
. (B.7)

The first integral in the brackets on the right hand side of (B.7) is easily bounded using
(3.1):∫ x

0

Px(Z1 − x > x)y2dy ≤
∫ x

0

[
C1

(
1 + x1/3

)
e−C2x

1/3
]
y2dy = O

(
e−x

1/4
)
. (B.8)
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The second integral in the brackets on the right hand side of (B.7) is bounded as follows:∫ ∞
x

Px(Z1 − x > y)y2dy =

∫ ∞
x

Px(|Z1 − x| > y)y2dy (Z1 is nonnegative)

=

∫ ∞
1

Px(|Z1 − x| > εx)x3ε2dε (substitute y = εx)

≤ x3

∫ ∞
1

ε2 · C1

(
1 + x1/3ε1/3

)
e−C2x

1/3ε1/3dε (by (3.1))

= 3x3

∫ ∞
1

C1(t8 + t9x1/3)e−C2x
1/3tdt (substitute t = ε1/3)

= O
(
e−x

1/4
)

(repeated integration by parts). (B.9)

Combining (B.7), (B.8), and (B.9) shows that

Ex

(
|Z1 − x|31{Z1 > 2x}

)
= O

(
e−x

1/4
)
. (B.10)

Hence, by (B.6), (III) = O
(
e−x

1/4
)

.

Proof of Lemma 3.1 (ii). Let F (x) : [0,∞) → (0,∞) be a smooth function such that

F (x) =
1

ln(x)
, for x > 2. Then for all x > 2

F ′(x) = − 1

x ln2(x)
,

F ′′(x) =
1

x2 ln2(x)
+

2

x2 ln3(x)
,

F ′′′(x) = − 2

x3 ln2(x)
− 6

x3 ln3(x)
− 6

x3 ln4(x)
. (B.11)

Thus, by Taylor’s Theorem with remainder, for all positive integer x > 2

Ex[F (Z1)]

= F (x)− Ex[Z1 − x]

x ln2(x)
+

1

2

[
1

x2 ln2(x)
+

2

x2 ln3(x)

]
Ex[(Z1 − x)2] +

1

6
Ex[F ′′′(ξ)(Z1 − x)3]

= F (x) +
1

x ln2(x)

[
−ρ(x) +

1

2

(
1 +

2

ln(x)

)
ν(x)

]
+

1

6
Ex[F ′′′(ξ)(Z1 − x)3]

where ξ is some (random) number between Z1 and x. So,

Ex[F (Z1)] ≤ F (x)

⇐⇒ 1

x ln2(x)

[
−ρ(x) +

1

2

(
1 +

2

ln(x)

)
ν(x)

]
+

1

6
Ex[F ′′′(ξ)(Z1 − x)3] ≤ 0

⇐⇒ θ(x) ≥ 1 +
2

ln(x)
+

1

3

x ln2(x)

ν(x)
Ex[F ′′′(ξ)(Z1 − x)3].

Therefore, in light of Lemma B.1 and the assumption that lim infx→∞ ν(x) > 0, it will
suffice to show

Ex[F ′′′(ξ)(Z1 − x)3] = o
( 1

x ln3(x)

)
. (B.12)

Now, |Ex[F ′′′(ξ)(Z1 − x)3]| ≤ (I) + (II) + (III), where terms (I), (II), and (III) are defined
just as in (B.3), but with our new Lyapunov function F (x) = 1/ ln(x). The exact same
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proof as above for part (i) of the lemma shows that (I) = O
(
e−x

1/4
)

. The bounds on (II)

and (III) are also quite similar:

(II)
(B.11)
≤

[
14

(x/2)3 ln2(x/2)

]
· Ex

(
|Z1 − x|31{x/2 < Z1 ≤ 2x}

)
(B.5)
= O

(
1

ln2(x) · x4/3

)
.

(III)
(B.11)
≤

[
14

x3 ln2(x)

]
· Ex

(
|Z1 − x|31{Z1 > 2x}

)
(B.10)

= O
(
e−x

1/4
)
.

Combining these estimates on (I), (II), and (III) shows that Ex[F ′′′(ξ)(Z1 − x)3] =

O

(
1

ln2(x) · x4/3

)
, which implies (B.12).

C Proof of Propositions 4.1 and 4.2

Our proof of Propositions 4.1 and 4.2 is based on the following slightly more general
proposition, which we isolate in this form because it seems it may be applicable for
analyzing other critical branching (or branching-type) processes.

Proposition C.1. Let (Zk)k≥0 be an irreducible, time-homogeneous Markov chain on
state space N0, and denote by PZx the probability measure for the Markov chain (Zk)

started from Z0 = x. Also, let EZx and VarZx denote, respectively, expectation and variance
with respect to the measure PZx . Assume that the following four conditions are satisfied.

(A) Monotonicity: For any x, y, z ∈ N0 with x > y 8,

PZx (Z1 ≥ z) ≥ PZy (Z1 ≥ z). (C.1)

(B) Expectation and Variance: There exist constants α > 0 and β < 0 such that

EZx (Z1) = x+ αβ +O(x−1/3) and VarZx (Z1) = 2αx+O(x2/3). (C.2)

(C) Single Step Concentration Estimate: There exist constants C1, C2 > 0 such that:

PZx (|Z1 − x| ≥ εx) ≤ C1(1 + ε2/3x1/3)e−C2ε
2/3x1/3

, for all x ∈ N and 0 < ε ≤ 1.

PZx (|Z1 − x| ≥ εx) ≤ C1(1 + ε1/3x1/3)e−C2ε
1/3x1/3

, for all x ∈ N and ε ≥ 1. (C.3)

(D) Exit Probability Concentration Estimates: There exist constants C3, C4 > 0 and
N ∈ N such that for all x ≥ N the following hold:

sup
0≤z<x

PZz (ZτZ
x+

> x+ y|τZx+ < τZ0 ) ≤

{
C3(1 + y2/3x−1/3)e−C4y

2/3x−1/3

, for 0 ≤ y ≤ x
C3(1 + y1/3)e−C4y

1/3

, for y ≥ x
(C.4)

sup
x<z<4x

PZz (ZτZ
x−
∧τZ

(4x)+
< x− y) ≤ C3(1 + y2/3x−1/3)e−C4y

2/3x−1/3

, for 0 ≤ y ≤ x.

(C.5)

Here, as usual, τZx = inf{k > 0 : Zk = x}, and τZx+ , τZx− are defined by τZx+ = inf{k >
0 : Zk ≥ x}, τZx− = inf{k > 0 : Zk ≤ x}.

8Note that this condition (along with the Markov property) implies one can couple together versions of the

process (Zk) starting from two different initial conditions x > y in such a way that Z
(x)
k ≥ Z(y)

k , for all k ≥ 0.
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Then there exist constants C5, C6 > 0 such that, as t→∞,

PZ0 (τZ0 > t) ∼ C5t
(β−1) and PZ0

( τZ0∑
k=0

Zk > t
)
∼ C6t

(β−1)/2. (C.6)

Proof of Propositions 4.1 and 4.2. We simply apply Proposition C.1 to the (irreducible,
time-homogeneous) Markov chain (V̂k)k≥0 with transition probabilities give by (2.14). We
consider this Markov chain under the family of measure PVx,s, x ∈ N0, so that V̂0 = V0 = x

deterministically. Thus, the measure PVx,s for (V̂k) is the equivalent of the measure PZx
for the Markov chain (Zk) in Proposition C.1.

By construction the Markov chain (V̂k) satisfies the monotonicity condition (A) of
Proposition C.1. Also, by Lemmas 2.12 and 2.13, condition (B) is satisfied with α =

µs > 0 and β = (1 − δ) < 0. Finally, condition (C) is satisfied due to Lemma 2.11 and
condition (D) is satisfied due to Lemma 2.14. Thus, the proposition is applicable and

we have PV0,s(τ
V̂
0 > t) ∼ c10t

−δ and PV0,s

(∑τ V̂0
k=0 V̂k > t

)
∼ c11t

−δ/2 for some constants

c10, c11 > 0.

Proof of Proposition C.1 (Sketch). Our proof of Proposition C.1 follows very closely the
approach used in [8] to prove Theorems 2.1 and 2.2, so we will provide only a rough
sketch. Throughout we will use italics when referring to all theorems, lemmas, sections...
etc. from [8], to distinguish from the corresponding items in our paper. For the sake of
comparison we restate Theorems 2.1 and 2.2 below explicitly.

Theorem C.2 (Theorems 2.1 and 2.2 of [8]). Let P̃ be a probability measure on cookie
environments satisfying (IID), (BD), and (ELL), and let (Ṽk)k≥0 be the associated back-
ward branching process for ERW in this environment. Assume δ > 0 (where δ is given by
(1.2)). Then there exists constants C̃1, C̃2 > 0 such that

P Ṽ0 (τ Ṽ0 > x) ∼ C̃1x
−δ and P Ṽ0

( τ Ṽ0∑
k=0

Ṽk > x
)
∼ C̃2x

−δ/2. (C.7)

The Markov chain (Zk)k≥0 of our proposition is the equivalent of the process (Ṽk)k≥0,
under the correspondence β = 1−δ. More precisely, if δ > 1 then (Ṽk) satisfies conditions
(A)-(D) of the proposition with β = 1− δ and α = 1, and the decay rates in (C.6) and (C.7)
are the same with β = 1− δ. The value of α does not effect the decay rates in (C.6), only
the constants C5 and C6.

The main elements of the proof of Theorems 2.1 and 2.2 in [8] are Lemmas 3.1-3.3
and 3.5 in Section 3, and Lemmas 5.1-5.3 and Corollary 5.5 in Section 5. Lemma 3.1
establishes convergence of the discrete process (Ṽk) to a limiting diffusion (Ỹt), and
the other lemmas in Section 3 give properties of the limiting diffusion. The lemmas of
Section 5 then give tight estimates on exit probabilities of the process (Ṽk) from certain
intervals. The entire series of additional lemmas and propositions used to establish
Theorems 2.1 and 2.2 in Sections 4, 6, 7 and 8 use only the results of Sections 3 and 5,
along with the fact that the process (Ṽk) is an irreducible Markov chain on state space
N0 that is monotonic in the sense of (C.1). Essentially the goal of these other sections
is to show that the discrete process (Ṽk) has the same type of scaling properties as the
limiting diffusion (Ỹt), and to do this requires some technical work, using the estimates
of Section 5.

Now, let us compare to our situation for the process (Zk). Lemma C.3, given below in
Section C.1, is the analog of Lemma 3.1, and Lemma C.4 in Section C.1 is the analog of
Lemmas 3.2, 3.3, and 3.5. Also, Condition (D), which we assume to hold for the process
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(Zk), is the analog of Lemma 5.1 in [8], where the corresponding property of the process
(Ṽk) is proven. Finally, Lemmas C.7, C.8, and C.9 in Section C.2 are, respectively, the
analogs of Lemma 5.2, Lemma 5.3, and Corollary 5.5 in [8].

With the analogous results to the lemmas in Section 3 and Section 5 of [8] established,
the proof or our Proposition C.1 for the process (Zk) proceeds almost the same way, line
by line, as the proof of Theorems 2.1 and 2.2 for the process (Ṽk). So, we will not repeat
it. However, for the sake of completeness, let us point out the few small differences in
our analog lemmas from the originals.

1. The bound of exp(−an/10) in our Lemma C.7-(i) is instead exp(−an/4) in Lemma
5.2 -(i). This is irrelevant for how the lemma is applied; a bound of exp(−acn), for
any c > 0, would be sufficient.

2. The concentration bounds (C.4) and (C.5) in our condition (D) are instead the
following in Lemma 5.1 :

sup
0≤z<x

P Ṽz (Ṽ
τ Ṽ
x+

> x+ y|τ Ṽx+ < τ Ṽ0 ) ≤ C(e−cy
2/x + e−cy) , y ≥ 0. (C.8)

sup
x<z<4x

P Ṽz (Ṽ
τ Ṽ
x−
∧τ Ṽ

(4x)+
< x− y) ≤ Ce−cy

2/x , 0 ≤ y ≤ x. (C.9)

The latter bounds are slightly stronger than ours. However, when x is large, with either
(C.8) and (C.9) or with (C.4) and (C.5), the right hand sides become small only when
y � x1/2. In [8] the inequalities (C.8) and (C.9) are applied either when y is of order x or
larger, or in other instances when y is of order x2/3, giving respectively bounds on the
right hand side which are O(e−cy) or O(e−cx

1/3

). If instead (C.4) and (C.5) are used these

bounds reduce to, respectively, O(e−y
1/4

) and O(e−x
1/10

). But, again, this is irrelevant
for how the estimates are applied; any sort of stretched exponential decay would be
sufficient. With our weaker estimates slightly larger error terms arise in the proofs, but
they always remain negligible in comparison with all other terms.

C.1 Diffusion approximation lemmas

In the statement of the following lemma (Zk)k≥0 is an irreducible, time-homogeneous
Markov chain on state space N0 satisfying (A)-(D), as in Proposition C.1.

Lemma C.3 (Diffusion Approximation, Analog of Lemma 3.1 from [8]). Fix any 0 < ε <

y <∞, and let (Y (t))t≥0 be the solution of

dY (t) = αβdt+
√

2αY (t)+dB(t) , Y (0) = y (C.10)

where (B(t))t≥0 is a standard 1-dimensional Brownian motion9. Also, let Yε(t) =

Y (t ∧ τYε ). For each n ∈ N, let (Zn,k)k≥0 be a process with the distribution of (Zk)k≥0

when Z0 = bync, and define Yε,n(t) =
Zn,bntc∧κε,n

n
, where κε,n = inf{k ≥ 0 : Zn,k ≤ εn}.

In addition, let τε,n = κε,n/n. Then:

(i) (Yε,n(t))t≥0
J1−→ (Yε(t))t≥0, as n→∞, where

J1−→ denotes convergence in distribu-
tion with respect to the Skorokhod J1 topology.

(ii) τε,n
d.−→ τYε , as n→∞.

(iii)
∫ τε,n

0
Yε,n(t)dt

d.−→
∫ τYε

0
Yε(t)dt, as n→∞.

9Note that the process (Ŷ (t))t≥0 defined by Ŷ (t) = 2Y (t)/α is a squared Bessel process of generalized

dimension 2β, since it satisfies dŶ (t) = 2βdt+ 2

√
Ŷ (t)+dB(t).
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The following properties of the diffusion Y (t) are established in [8] for the case α = 1,
with β ≡ 1 − δ, but generalize to any α > 0. Indeed note that if Y α is the solution to
(C.10) with a given value α and Y 1 is the solution to (C.10) with α = 1 (both with the

same value of β and initial value y) then (Y α(t))t≥0
d.
= (Y 1(αt))t≥0. All properties of Y α

follow from the corresponding properties for Y 1 and this relation.

Lemma C.4 (Properties of Limiting Diffusion, Analog of Lemmas 3.2, 3.3, and 3.5 from
[8]). Let PYy (·) be the probability measure for the process (Y (t))t≥0 in (C.10) with given
initial value Y (0) = y > 0.

(i) ∃ K1,K2 > 0 such that PY1 (τY0 > x) ∼ K1x
β−1 and PY1 (

∫ τY0
0

Y (t)dt > x2) ∼ K2x
β−1,

as x→∞.

(ii) For 0 ≤ a < y < b, PYy (τYa < τYb ) = (b1−β − y1−β)/(b1−β − a1−β).

(iii) The process (Y (t))t≥0 when Y (0) = 1 has the same law as the process (Y (ty)
y )t≥0

when Y (0) = y.

In the remainder of Section C.1 we will use the generic probability measure P and
corresponding expectation operator E for all random variables, including the Markov
chains (Zn,k)k≥0 of Lemma C.3. The proof of Lemma C.3 is based on the following result
from [9].

Lemma C.5. ([9, Lemma 7.1]) Let b ∈ R and D > 0, and let (Y(t))t≥0 be the solution of

dY(t) = b dt+
√
DY(t)+dB(t) , Y(0) = y > 0 (C.11)

where (B(t))t≥0 is a standard 1-dimensional Brownian motion. Let (Zn,k)k≥0, n ∈ N, be
integer-valued (time-homogenous) Markov chains such that Zn,0 = bnync, where yn → y

as n→∞, and such that conditions (i) and (ii) below are satisfied.

(i) There is a sequence of positive integers (Nn)n≥1 such that Nn →∞ with Nn = o(n),
a function f : N → [0,∞) with f(x) → 0 as x → ∞, and a function g : N → [0,∞)

with g(x)↘ 0 as x→∞, such that:

(E) |E(Zn,k+1 −Zn,k|Zn,k = m)− b| ≤ f(m ∨Nn).

(V )

∣∣∣∣Var(Zn,k+1|Zn,k = m)

m ∨Nn
−D

∣∣∣∣ ≤ g(m ∨Nn).

(ii) For each T, a > 0

E

[
max

1≤k≤(Tn)∧tn
(Zn,k −Zn,k−1)2

]
= o(n2) , as n→∞

where tn ≡ inf{k ≥ 0 : Zn,k ≥ an}.

Then (Yn(t))t≥0
J1−→ (Y(t))t≥0, as n→∞, where Yn(t) ≡ Zn,bntc/n.

We will also need the following lemma, which is a minor extension of Lemma 3.3 in
[12] where the same result is stated in the case D = 2.

Lemma C.6. For a function f in the Skorokhod space D[0,∞), define τfε = inf{t ≥ 0 :

f(t) ≤ ε}, and define ϕε(f) ∈ D[0,∞) by (ϕε(f))(t) = f(t ∧ τfε ). Let ψ be any of the
following three mappings defined on D[0,∞) :

f 7→ τfε ∈ [0,∞], f 7→ ϕε(f) ∈ D[0,∞), f 7→
∫ τfε

0

f+(t)dt ∈ [0,∞].

Denote by Cont(ψ) = {f ∈ D[0,∞) : ψ is continuous at f} the set of continuity points of
ψ. Then the solution Y = (Y(t))t≥0 of (C.11) satisfies P(Y ∈ Cont(ψ)) = 1, for any b ∈ R,
D > 0, and 0 < ε < y <∞.
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Proof of Lemma C.3. For concreteness take Nn =
⌊
n1/2

⌋
and define, for n ∈ N, integer-

valued (time homogeneous) Markov chains Zn ≡ (Zn,k)k≥0 by

Zn,0 = bync and

P(Zn,k+1 = x+ z|Zn,k = x) =

{
P(Zn,k+1 = x+ z|Zn,k = x), z ∈ Z and x ≥ Nn
P(Zn,k+1 = Nn + z|Zn,k = Nn), z ∈ Z and x < Nn.

(C.12)

Thus, Zn,0 = Zn,0 ≡ bync, and if the Markov chain (Zn,k)k≥0 is currently at level x ≥ Nn,
then it has the same transition probabilities as the Markov chain (Zn,k)k≥0. On the
other hand, if the Markov chain (Zn,k)k≥0 is currently at some level x < Nn, then the
difference (Zn,k+1 −Zn,k) between the current value and next value has the same law as
the difference (Zn,k+1 − Zn,k) when Zn,k = Nn.

With this construction the chains (Zn,k)k≥0 and (Zn,k)k≥0 can be naturally cou-
pled until the first time k that they fall below level εn (for all n large enough that
Nn =

⌊
n1/2

⌋
< εn). Thus, by Lemma C.6 and the continuous mapping theorem it will

suffice to show the following claim to establish the proposition.

Claim: Define (Yn(t))t≥0 by Yn(t) = Zn,bntc/n. Then (Yn(t))t≥0
J1−→ (Y (t))t≥0, where

(Y (t))t≥0 is the solution of (C.10).

Proof of Claim: We apply Lemma C.5 with b = αβ and D = 2α. By definition (Zn,k)k≥0 has
the distribution of (Zk)k≥0 when Z0 = bync, where the Markov chain (Zk)k≥0 is originally
defined in Proposition C.1. It follows immediately from condition (B) in the statement
of this proposition and the definition (C.12) that the Markov chains (Zn,k)k≥0 satisfy
conditions (E) and (V) in (i) of Lemma C.5. Indeed, f(x) and g(x) are both O(x−1/3). To
show (ii) of Lemma C.5 we define Mn = max1≤k≤(Tn)∧tn |Zn,k − Zn,k−1| and write the
expectation as

E

[
max

1≤k≤(Tn)∧tn
(Zn,k −Zn,k−1)2

]
= E(M2

n) =

∫ ∞
0

P(M2
n > x)dx =

∫ ∞
0

P(Mn > x1/2)dx.

The last integral may be decomposed as∫ ∞
0

P(Mn > x1/2)dx =

∫ n3/2

0

P(Mn > x1/2)dx+

∫ ∞
n3/2

P(Mn > x1/2)dx. (C.13)

The first integral on the right hand side of (C.13) is at most n3/2. Using the definition
(C.12) along with condition (C) in the statement of Proposition C.1 and the union bound
estimate

P(Mn > x1/2) ≤ Tn
[

max
m≤an

P
(
|Zn,k −Zn,k−1| > x1/2

∣∣∣Zn,k−1 = m
)]

one finds the second integral on the right hand side of (C.13) is o(1), as n → ∞. This
establishes (ii) of Lemma C.5, and, hence, the claim.

C.2 Exit probability lemmas

In the statement of the following lemmas (Zk)k≥0 is an irreducible, time-homogeneous
Markov chain on state space N0 satisfying (A)-(D), as in Proposition C.1.

Lemma C.7 (Analog of Lemma 5.2 from [8]). Fix any a ∈ (1, 2], and define In = [an −
a

2
3n, an + a

2
3n] and γn = inf{k ≥ 0 : Zk 6∈ (an−1, an+1)}. Then, for all sufficiently large n

the following hold:
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(i) PZx

(
dist

(
Zγn , (a

n−1, an+1)
)
≥ a 2

3 (n−1)
)
≤ exp(−an/10), for each x ∈ In.

(ii)
∣∣∣PZx (Zγn ≤ an−1)− a1−β/(1 + a1−β)

∣∣∣ ≤ a−n/4, for each x ∈ In.

Lemma C.8 (Analog of Lemma 5.3 from [8]). For each a ∈ (1, 2] there is some `a ∈ N
such that if `,m, u, x ∈ N satisfy `a ≤ ` < m < u and x ∈ Im (where Im is as in Lemma
C.7) then

h−a,`(m)− 1

h−a,`(u)− 1
≤ PZx

(
τZ(a`)− > τZ(au)+

)
≤
h+
a,`(m)− 1

h+
a,`(u)− 1

where h±a,`(i) =
∏i
j=`+1(a1−β ∓ a−λj), i > `, and λ is some small positive number not

depending on `.

Lemma C.9 (Analog of Corollary 5.5 from [8]). For each x ∈ N0 there exists C = C(x) > 0

such that

PZx (τZn+ < τZ0 ) ≤ C/n1−β , for all n ∈ N.

Moreover, for each ε > 0 there exists c = c(ε) > 0 such that

PZn (τZ0 > τZ(cn)+) < ε , for all n ∈ N.

We will prove Lemma C.7 below. The proof is similar to the proof of Lemma 5.2
in [8], but the remainder term rnk in (C.17) must be bounded differently, because we
do not have the same explicit form for the transition probabilities of the Markov chain
(Zk). The proofs of Lemmas C.8 and C.9 are essentially the same as the proofs of their
counterparts in [8], and are therefore omitted.

Proof of Lemma C.7. Part (i) follows directly from condition (D) in the statement of
Proposition C.1 where the Markov chain (Zk) is defined. To prove (ii), fix a ∈ (1, 2] and
let g ∈ C∞c ([0,∞)) be any non-negative function such that g(t) = t1−β for t ∈ ( 2

3a ,
3a
2 ).

Then, for each n ∈ N, define a process Wn ≡ (Wn
k )k≥0 by

Wn
k = g

(Zk∧γn
an

)
.

Let Fk = σ(Z0, . . . , Zk) ⊇ σ(Wn
0 , . . . ,W

n
k ). At the end of the main proof we will establish

the following two claims.

Claim 1: There exists some B1 = B1(a) > 0 such that

EZx (γn) ≤ B1a
n, for each n ∈ N and x ∈ In.

Claim 2: The process (Wn
k )k≥0 is “close” to being a martingale, when n is large, in the

following sense: There exists some B2 = B2(a) > 0 such that

|EZx (Wn
k+1|Fk)−Wn

k | ≤ B2a
− 4

3n a.s., for each k ∈ N0, n ∈ N, and x ∈ In.

We now show how these two claims can be used to prove the lemma. Assume
Z0 = x ∈ In and define a process (Rnk )k≥0 by

Rn0 = 0 and Rnk =

k∧γn∑
j=1

[
EZx (Wn

j |Fj−1)−Wn
j−1)

]
, k ≥ 1.
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Observe that (Wn
k −Rnk )k≥0 is a martingale with initial value Wn

0 . Moreover, by Claims 1
and 2,

∣∣EZx (Rnγn)
∣∣ ≤ EZx

 γn∑
j=1

∣∣EZx (Wn
j |Fj−1)−Wn

j−1)
∣∣ ≤ EZx (γn) ·B2a

− 4
3n ≤ B3a

− 1
3n. (C.14)

Since |Rnk | ≤
∑γn
j=1

∣∣EZx (Wn
j |Fj−1)−Wn

j−1)
∣∣, for all k, this shows that (Rnk )k≥0 is uni-

formly integrable, and (Wn
k )k≥0 is also uniformly integrable, since |Wn

k | ≤ ‖g‖∞ with
probability 1. Thus, the martingale (Wn

k −Rnk )k≥0 is itself uniformly integrable, so we
may apply the optional stopping theorem to conclude

Wn
0 = EZx (Wn

γn)− EZx (Rnγn). (C.15)

Combining (C.14) and (C.15) and using the fact that g(t) is equal to t1−β on ( 2
3a ,

3a
2 )

shows that

Wn
0 −B3a

− 1
3n ≤ EZx (Wn

γn) ≤


PZx (Zγn ∈ [an+1, an+1 + a

2
3 (n−1))) · (a+ a−

1
3 (n+2))1−β

+PZx (Zγn ∈ (an−1 − a 2
3 (n−1), an−1]) · a−(1−β)

+EZx [Wn
γn · 1{Zγn 6∈ (an−1 − a 2

3 (n−1), an+1 + a
2
3 (n−1))}]

and

Wn
0 +B3a

− 1
3n ≥ EZx (Wn

γn) ≥


PZx (Zγn ∈ [an+1, an+1 + a

2
3 (n−1))) · a1−β

+PZx (Zγn ∈ (an−1 − a 2
3 (n−1), an−1]) · (a−1 − a− 1

3 (n+2))1−β

+EZx [Wn
γn · 1{Zγn 6∈ (an−1 − a 2

3 (n−1), an+1 + a
2
3 (n−1))}].

Using part (i) and the fact that Wn
γn is bounded by ‖g‖∞ gives

Wn
0 = (1− p) · a1−β + p · a−(1−β) + O(a−

1
3n)

uniformly in the initial value Z0 = x ∈ In, where p ≡ PZx (Zγn ≤ an−1). Now, using the
definition Wn

0 = g(Z0/a
n) = g(x/an) shows also that Wn

0 = 1 + O(a−
1
3n), uniformly in

x ∈ In. So, we have

1 = (1− p) · a1−β + p · a−(1−β) + O(a−
1
3n)

uniformly in x ∈ In. Solving for p gives p = a1−β/(1 + a1−β) + O(a−
1
3n), which implies

(ii).

Proof of Claim 1: It will suffice to prove the claim for all sufficiently large n. Assume
n is large enough that In ⊂ (an−1, an+1), and define γ−n = inf{k ≥ 0 : Zk ≤ an−1}. By
monotonicity of the process (Zk)k≥0 with respect to its initial condition

PZz (γn < an) ≥ PZz (γ−n < an) ≥ PZban+1c(γ
−
n < an) , for all z ∈ (an−1, an+1).

Further, by Lemma C.3-(ii), lim infn→∞ PZban+1c(γ
−
n < an) > 0. So, there exist some c > 0

and n0 ∈ N such that

PZz (γn < an) ≥ c , ∀n ≥ n0 and z ∈ (an−1, an+1). (C.16)

Let t0 = 0 and ti+1 = ti + dane, i ≥ 0. By (C.16) PZx (γn > ti+1|γn > ti) ≤ 1 − c, for all
n ≥ n0, x ∈ In, and i ≥ 0. Thus, for each n ≥ n0, x ∈ In, and m ≥ 0

PZx (γn > m · dane) = PZx (γn > tm) ≤ (1− c)m.
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This implies the claim.

Proof of Claim 2: Since |Wn
k | is bounded by ‖g‖∞, for all n, k, it will suffice to show

the claim for sufficiently large n. Throughout we assume n is sufficiently large that

(a
n−1−a

2
3
n

an , a
n+1+a

2
3
n

an ) ⊂ ( 2
3a ,

3a
2 ) and that Z0 = x ∈ In. All O(·) estimates stated will be

uniform in x ∈ In and k ∈ N0. By Taylor’s Theorem,

g
(Zk+1

an

)
= g
(Zk
an

)
+ g′

(Zk
an

)Zk+1 − Zk
an

+
1

2
g′′
(Zk
an

) (Zk+1 − Zk)2

a2n
+

1

6
g′′′(t)

(Zk+1 − Zk)3

a3n

where t is some random point between Zk/an and Zk+1/a
n. Thus, on the event {γn > k},

we have

EZx (Wn
k+1|Fk)−Wn

k = EZx

[
g
(Zk+1

an

)∣∣∣Fk]− g(Zk
an

)
=

1

an
g′
(Zk
an

)
EZx [Zk+1 − Zk|Fk] +

1

2a2n
g′′
(Zk
an

)
EZx [(Zk+1 − Zk)2|Fk] + rnk

=
1

an
g′
(Zk
an

)[
αβ +O

(
a−

1
3n
) ]

+
1

2a2n
g′′
(Zk
an

)[
2αZk +O

(
a

2
3n
) ]

+ rnk (C.17)

by (C.2), where the remainder rnk satisfies

|rnk | ≤
1

6
‖g′′′‖∞EZx

[ |Zk+1 − Zk|3

a3n

∣∣∣Fk].
Now, for t ∈ ( 2

3a ,
3a
2 ), tg′′(t) = −βg′(t). So, for k < γn, Zk

an g
′′(Zkan ) = −βg′(Zkan ). Plugging

this relation back into (C.17) and simplifying we find that, on the event {γn > k},

EZx (Wn
k+1|Fk)−Wn

k =
1

an
g′
(Zk
an

)
·O
(
a−

1
3n
)

+
1

2a2n
g′′
(Zk
an

)
·O
(
a

2
3n
)

+ rnk

= O
(
a−

4
3n
)

+ rnk . (C.18)

The remainder term rnk can be bounded as

|rnk | ≤
‖g′′′‖∞

6a3n
max

z∈(an−1,an+1)
EZx

(
|Zk+1 − Zk|3

∣∣∣Zk = z
)

=
‖g′′′‖∞

6a3n
max

z∈(an−1,an+1)
EZz (|Z1 − z|3). (C.19)

We split this last expectation into three pieces:

EZz (|Z1 − z|3) = EZz

(
1{Z1 ≤ z/2} · |Z1 − z|3

)
+ EZz

(
1{z/2 < Z1 ≤ 2z} · |Z1 − z|3

)
+ EZz

(
1{Z1 > 2z} · |Z1 − z|3

)
.

By (C.3) the first term on the right hand side is O(e−z
1/4

), and using (C.3) and calculations
exactly as in the derivation of (B.5) and (B.10) shows that the second and third terms
are, respectively, O(z5/3) and O(e−z

1/4

). Plugging these estimates back into (C.19) gives
|rnk | = O(a−

4
3n), and combining that with (C.18) shows also that

EZx (Wn
k+1|Fk)−Wn

k = O(a−
4
3n) , on the event {γn > k}.

Of course, on the event {γn ≤ k}, Wn
k+1 = Wn

k (deterministically), so this proves the
claim.
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D Proof of Propositions 4.3 and 4.4

In this section we use Propositions 4.1 and 4.2 to prove Propositions 4.3 and 4.4.
It is assumed throughout, if not otherwise specified, that R0 = s and V0 = 0. Thus,
τ0 = 0, V̂0 = 0, and σV0 = τ

τ V̂0
(where (τk)k≥0 is as in (2.10)). The details of the proofs are

somewhat technical, but the general ideas are fairly simple, so we will present these
first before proceeding to the formal proofs. First, for Proposition 4.3, observe that if
τ V̂0 = m, for some large m, then

σV0 = τm =

m∑
k=1

(τk − τk−1) ≈ m · µs.

So, by Proposition 4.1, for large x,

PV0,s(σ
V
0 > x) ≈ PV0,s(τ V̂0 > x/µs) ≈ c10 · (x/µs)−δ = c12 · x−δ.

Next, for Proposition 4.4, note that if
∑σV0
k=0 Vk is large, generally it will be the case

that σV0 is large as well, and also that Vk will be relatively large for most times k between
0 and σV0 (because the Vk process is unlikely to remain close to 0 very long without hitting
0). Thus, by Lemma 2.11, the V̂j process, and also the Vk process, will not fluctuate too
much too rapidly, relative to their current values. So, very roughly speaking, we should
expect that

σV0∑
k=0

Vk =

τ V̂0 −1∑
j=0

τj+1−1∑
k=τj

Vk ≈
τ V̂0 −1∑
j=0

τj+1−1∑
k=τj

V̂j ≈
τ V̂0 −1∑
j=0

V̂j · µs =

τ V̂0∑
j=0

V̂j · µs,

when either the sum on the right hand side or left hand side (equivalently both sums)
are large. Therefore, by Proposition 4.2, we should expect that, for large x,

PV0,s

 σV0∑
k=0

Vk > x

 ≈ PV0,s
 τ V̂0∑
j=0

V̂j > x/µs

 ≈ c11 · (x/µs)−δ/2 = c13 · x−δ/2.

Proof of Proposition 4.3. Fix any ε > 0. It will suffice to show that

lim sup
n→∞

nδ · PV0,s(σV0 > n) ≤ c12 + ε (D.1)

and

lim inf
n→∞

nδ · PV0,s(σV0 > n) ≥ c12 − ε. (D.2)

Proof of (D.1): Choose ρ > 0 sufficiently small that (1 + ρ)δµδs(c10 + ρ) + ρ ≤ c10µ
δ
s + ε =

c12 + ε. For n ∈ N, let m = m(n) = (1 + ρ)µsn (it is not assumed that m is an integer).

Then {σV0 > m} ⊆ {τ V̂0 > n} ∪ {τn > m}. So,

mδPV0,s(σ
V
0 > m) ≤ mδ

[
PV0,s(τ

V̂
0 > n) + PV0,s(τn > m)

]
. (D.3)

By Proposition 4.1, for all sufficiently large n,

mδPV0,s(τ
V̂
0 > n) =

mδ

nδ
·
[
nδPV0,s(τ

V̂
0 > n)

]
≤ (1 + ρ)δµδs · (c10 + ρ). (D.4)
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Also, by Lemma 2.5, PV0,s(τn > m) = PV0,s
(∑n

i=1(τi − τi−1) > (1 + ρ)µsn
)

decays exponen-
tially in n, since the random variables (τi − τi−1)i≥1 are i.i.d. with exponential tails and
mean µs. Thus, for all sufficiently large n,

mδPV0,s(τn > m) ≤ ρ. (D.5)

Combining the estimates (D.3), (D.4), and (D.5) shows that, for all sufficiently large n,

mδPV0,s(σ
V
0 > m) ≤ (1 + ρ)δµδs(c10 + ρ) + ρ ≤ c12 + ε,

which proves (D.1).

Proof of (D.2): Choose ρ ∈ (0, 1) sufficiently small that (1−ρ)δµδs(c10−ρ)−ρ ≥ c10µ
δ
s−ε =

c12 − ε. For n ∈ N, let m = m(n) = (1 − ρ)µsn (again, it is not assumed that m is an

integer). Then {σV0 > m} ⊇ {τ V̂0 > n} ∩ {τn ≥ m}. So,

PV0,s(σ
V
0 > m) ≥ PV0,s(τ V̂0 > n, τn ≥ m) ≥ PV0,s(τ V̂0 > n)− PV0,s(τn < m). (D.6)

Now, by Proposition 4.1, PV0,s(τ
V̂
0 > n) ≥ n−δ(c10 − ρ), for all sufficiently large n. Also, by

Lemma 2.5, PV0,s(τn < m) = PV0,s
(∑n

i=1(τi − τi−1) < (1− ρ)µsn
)

decays exponentially in
n. So, PV0,s(τn < m) ≤ ρ ·m−δ, for all sufficiently large n. Plugging these estimates back
into (D.6) shows that,

mδPV0,s(σ
V
0 > m) ≥

(m
n

)δ
(c10 − ρ)− ρ = (1− ρ)δµδs(c10 − ρ)− ρ ≥ c12 − ε

for all sufficiently large n, which proves (D.2).

Proof of Proposition 4.4. Fix any ε1 ∈ (0, 1
22 ) and ε2 ∈ (0, 1

4ε1). Then, for n ∈ N, define
the following random variables:

• T0 = 0 and Ti+1 = inf{k ≥ Ti + bnε1c : Rk = s}, i ≥ 0.

• imax = max{i ≥ 0 : Ti ≤ σV0 }, kmax = Timax
, and jmax is the unique j such that

τjmax
= kmax.

• Ki = {Ti−1, Ti−1 + 1, . . . , Ti} and Ji = {j ∈ N0 : τj ∈ Ki}, i ≥ 1.

• jmax
i = max{j : j ∈ Ji} and jmin

i = min{j : j ∈ Ji}.
• J0

i = Ji\{jmax
i } and J̃i = {jmin

i , jmin
i + 1, . . . , jmin

i + b2nε1c}.
• K0

i = Ki\{Ti} and
K̃i = {τjmin

i
, τjmin

i
+ 1, . . . , τjmin

i +b2nε1c} = {Ti−1, Ti−1 + 1, . . . , τjmin
i +b2nε1c}.

Also, denote Vmax = max{Vk : 0 ≤ k ≤ σV0 } and ∆τ,j = τj − τj−1, for j ≥ 1, and define the
following events:

• Ei =
{

maxk∈Ki |VTi−1
− Vk| > 2nε1n

1
3 (1+ε1)

}
, i ≥ 1.

• Fi =
{ ∣∣∣∑j∈J0

i
(µs −∆τ,j+1)

∣∣∣ > n
1
2 ε1+ε2

}
, i ≥ 1.

• A1 = {σV0 > n
1
2 (1+ε2)}.

• A2 = {Vmax > 2n
1
2 (1+ε2)}.

• A3 = {∃1 ≤ i ≤ imax such that Ei occurs}.
• A4 = {∃1 ≤ i ≤ imax such that Fi occurs}.
• A5 = {∃1 ≤ i ≤ imax + 1 such that Ti − Ti−1 > 2nε1}.
• G = Ac1 ∩Ac2 ∩Ac3 ∩Ac4 ∩Ac5 (the “good event”).
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At the end of the main proof we will establish the following claim.

Claim 1: For all sufficiently large n, PV0,s(G
c) ≤ 5n−( δ2 +

δε2
4 ).

By the triangle inequality,∣∣∣∣∣∣∣
σV0∑
k=0

Vk − µs
τ V̂0∑
j=0

V̂j

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
σV0∑
k=0

Vk −
imax∑
i=1

VTi−1
(Ti − Ti−1)

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
imax∑
i=1

VTi−1
(Ti − Ti−1)− µs

τ V̂0∑
j=0

V̂j

∣∣∣∣∣∣∣
≤


∣∣∣∑kmax−1

k=0 Vk −
∑imax

i=1 VTi−1
(Ti − Ti−1)

∣∣∣+
∑σV0
k=kmax

Vk

+
∣∣∣∑jmax−1

j=0 µsV̂j −
∑imax

i=1 VTi−1
(Ti − Ti−1)

∣∣∣+ µs
∑τ V̂0
j=jmax

V̂j

≡ (I) + (II) + (III) + (IV ).

We now show how each of the terms (I), (II), (III), and (IV) can be bounded on the event G.

Bound on (I): On the event G,

(I) ≡

∣∣∣∣∣
kmax−1∑
k=0

Vk −
imax∑
i=1

VTi−1(Ti − Ti−1)

∣∣∣∣∣ =

∣∣∣∣∣∣
imax∑
i=1

∑
k∈K0

i

Vk −
imax∑
i=1

∑
k∈K0

i

VTi−1

∣∣∣∣∣∣
(a)

≤
imax∑
i=1

∑
k∈K0

i

2nε1n
1
3 (1+ε1) = kmax · 2nε1n

1
3 (1+ε1) ≤ σV0 · 2nε1n

1
3 (1+ε1)

(b)

≤ n
1
2 (1+ε2)2nε1n

1
3 (1+ε1)

(c)

≤ 2n
5
6 + 11

6 ε1 .

Step (a) follows from the fact that G ⊂ Ac3, step (b) follows from the fact that G ⊂ Ac1,
and step (c) follows from the fact that ε2 < ε1.

Bound on (II) and (IV): First note that (IV ) ≡ µs ·
∑τ V̂0
j=jmax

V̂j ≤ µs ·
∑σV0
k=kmax

Vk ≡ µs ·(II),
so it will suffice to bound (II). Now, on the event G,

(II) ≤ Vmax|σV0 − kmax|
(a)

≤ 2n
1
2 (1+ε2) · 2nε1

(b)

≤ 4n
1
2 (1+3ε1).

Step (a) follows from the fact that G ⊂ Ac2 and G ⊂ Ac5, and step (b) follows from the fact
that ε2 < ε1.

Bound on (III): On the event G,

(III) ≡

∣∣∣∣∣∣
jmax−1∑
j=0

µsV̂j −
imax∑
i=1

VTi−1(Ti − Ti−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
imax∑
i=1

∑
j∈J0

i

µsV̂j −
imax∑
i=1

∑
j∈J0

i

VTi−1 ·∆τ,j+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
imax∑
i=1

∑
j∈J0

i

µs(V̂j − VTi−1
) +

imax∑
i=1

∑
j∈J0

i

VTi−1
(µs −∆τ,j+1)

∣∣∣∣∣∣
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≤
imax∑
i=1

∑
j∈J0

i

µs|V̂j − VTi−1
| +

imax∑
i=1

VTi−1

∣∣∣∣∣∣
∑
j∈J0

i

(µs −∆τ,j+1)

∣∣∣∣∣∣
(a)

≤
imax∑
i=1

∑
j∈J0

i

µs · 2nε1n
1
3 (1+ε1) +

imax∑
i=1

2n
1
2 (1+ε2) · nε1/2+ε2

(b)

≤ τ V̂0 · µs · 2nε1n
1
3 (1+ε1) +

σV0
bnε1c

2n
1
2 (1+ε2)nε1/2+ε2

(c)

≤ n
1
2 (1+ε2) · µs · 2nε1n

1
3 (1+ε1) +

(
n

1
2 (1+ε2)2n−ε1

)
· 2n 1

2 (1+ε2)nε1/2+ε2

(d)

≤ 2µsn
5
6 + 11

6 ε1 + 4n1+2ε2−ε1/2.

Step (a) follows from the fact that G ⊂ Ac2, G ⊂ Ac3, and G ⊂ Ac4. Step (b) follows from

the relations jmax ≤ τ V̂0 and imax ≤ kmax/ bnε1c ≤ σV0 / bnε1c. Step (c) follows from the

inequality τ V̂0 ≤ σV0 and the fact that G ⊂ Ac1. Finally, Step (d) follows from the fact that
ε2 < ε1.

Now, let α = max
{

( 5
6 + 11

6 ε1), (1 + 2ε2 − ε1
2 )
}
. By the choice of ε1 and ε2, we have

1
2 (1 + 3ε1) < α and α < 1. Combining the estimates on the terms (I)-(IV) we find that, on
the event G,

∣∣∣ σV0∑
k=0

Vk − µs
τ V̂0∑
j=0

V̂j

∣∣∣ ≤ (I) + (II) + (III) + (IV )

≤ 2nα + 4nα + [2µsn
α + 4nα] + 4µsn

α ≤ 16µsn
α.

Using this estimate along with Claim 1 and Proposition 4.2 we can now establish the
proposition.

Given any ε ∈ (0, 1):

• Choose N1 ∈ N such that PV0,s(G
c) ≤ 5n−( δ2 +

δε2
4 ), for n ≥ N1 (possible by Claim 1).

• Choose N2 ∈ N such that 16µsn
α ≤ εn, for n ≥ N2 (possible since α < 1).

• Finally, choose N3 ∈ N such that, for all n ≥ N3,

PV0,s

( τ V̂0∑
j=0

V̂j >
1− ε
µs
· n
)
≤ (c11 + ε)

(
1− ε
µs
· n
)−δ/2

and

PV0,s

( τ V̂0∑
j=0

V̂j >
1 + ε

µs
· n
)
≥ (c11 − ε)

(
1 + ε

µs
· n
)−δ/2

.

This is possible by Proposition 4.2.

Then for each n ≥ N0 ≡ max{N1, N2, N3} we have

PV0,s

( σV0∑
k=0

Vk > n
)
≤ PV0,s

(
µs

τ V̂0∑
j=0

V̂j > (1− ε)n
)

+ PV0,s

(∣∣∣ σV0∑
k=0

Vk − µs
τ V̂0∑
j=0

V̂j

∣∣∣ > εn
)

≤ (c11 + ε)

(
1− ε
µs
· n
)−δ/2

+ PV0,s(G
c) ≤ (c11 + ε)

(
1− ε
µs
· n
)−δ/2

+ 5n−( δ2 +
δε2
4 )
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and

PV0,s

( σV0∑
k=0

Vk > n
)
≥ PV0,s

(
µs

τ V̂0∑
j=0

V̂j > (1 + ε)n
)
− PV0,s

(∣∣∣ σV0∑
k=0

Vk − µs
τ V̂0∑
j=0

V̂j

∣∣∣ > εn
)

≥ (c11 − ε)
(

1 + ε

µs
· n
)−δ/2

− PV0,s(Gc) ≥ (c11 − ε)
(

1 + ε

µs
· n
)−δ/2

− 5n−( δ2 +
δε2
4 ).

Since ε ∈ (0, 1) was arbitrary it follows that

lim
n→∞

nδ/2 · PV0,s
( σV0∑
k=0

Vk > n
)

= µδ/2s · c11 = c13.

This concludes the main proof of the proposition, and it remains only now to show Claim
1. To do this, though, we will first need to establish some auxiliary claims that will be
used in its proof.

Claim 2: For all sufficiently large n,

PV0,s(Ei|VTi−1
= x) ≤ e−n

ε1/2

, for each 0 ≤ x ≤ n 1
2 (1+ε1) and i ≥ 1.

Proof. By Lemma 2.11, we have that for all sufficiently large n

PV0,s

(
max

τj≤k≤τj+1

|Vτj − Vk| > n
1
3 (1+ε1)

∣∣∣Vτj = x
)
≤ e−n

1
19

(1+ε1)

, 0 ≤ x ≤ 2n
1
2 (1+ε1). (D.7)

For i ≥ 1, define T (i)
0 = Ti−1 and T (i)

j = inf{k > T
(i)
j−1 : Rk = s}, j ≥ 1. Then, let

A
(i)
j =

{
max

T
(i)
j−1≤k≤T

(i)
j

|V
T

(i)
j−1
− Vk| ≤ n

1
3 (1+ε1)

}
.

Observe that, for all sufficiently large n and 1 ≤ j ≤ 2nε1 , if VTi−1
≤ n

1
2 (1+ε1) and

A
(i)
1 , . . . , A

(i)
j all occur then V

T
(i)
j
≤ n 1

2 (1+ε1) + j · n 1
3 (1+ε1) ≤ 2n

1
2 (1+ε1). Thus, by (D.7), for

all sufficiently large n and 0 ≤ x ≤ n 1
2 (1+ε1) we have

PV0,s

(
max
k∈K̃i

|VTi−1
− Vk| > 2nε1n

1
3 (1+ε1)

∣∣∣VTi−1
= x

)
≤ PV0,s

(
∃1 ≤ j ≤ 2nε1 :

(
A

(i)
j

)c
occurs

∣∣∣VTi−1
= x

)
≤
b2nε1c∑
j=1

PV0,s

((
A

(i)
j

)c∣∣∣A(i)
1 , . . . , A

(i)
j−1, VTi−1

= x
)
≤ 2nε1 · e−n

1
19

(1+ε1)

. (D.8)

Also, since |K̃i| ≥ b2nε1c (deterministically) and the event {Ki 6⊂ K̃i} is independent of
the value of VTi−1 it follows from (2.26) that, for any x,

PV0,s(Ki 6⊂ K̃i|VTi−1
= x) = PV0,s(Ki 6⊂ K̃i) ≤ PV0,s(|Ki| > b2nε1c) ≤ c3e−c4bn

ε1c. (D.9)

Combing the estimates (D.8) and (D.9) shows that, for all sufficiently large n and 0 ≤
x ≤ n 1

2 (1+ε1),

PV0,s(Ei|VTi−1
= x) ≤ 2nε1e−n

1
19

(1+ε1)

+ c3e
−c4bnε1c ≤ e−n

ε1/2

.
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Claim 3: For all sufficiently large n,

PV0,s(Fi) ≤ e−n
ε1ε2

, for each i ≥ 1.

Proof. Define j0 ≡ jmax
1 = inf{j : τj ≥ bnε1c} = inf{j :

∑j
`=1 ∆τ,` ≥ bnε1c}. Since the (Rk)

process is Markovian,

PV0,s(Fi) = PV0,s(F1) = PV0,s

(∣∣∣ j0∑
j=1

(µs −∆τ,j)
∣∣∣ > n

1
2 ε1+ε2

)
, for all i ≥ 1.

Let N+
n = b(nε1 + n

1
2 (ε1+ε2))/µsc and N−n = b(nε1 − n 1

2 (ε1+ε2))/µsc. Define events B1 and
B2 by

B1 =
{∣∣∣ N+

n∑
j=1

∆τ,j − µsN+
n

∣∣∣ ≤ (N+
n )

1
2 +ε2

}
and B2 =

{∣∣∣ N−n∑
j=1

∆τ,j − µsN−n
∣∣∣ ≤ (N−n )

1
2 +ε2

}
.

Since the random variables (∆τ,j)j≥1 are i.i.d. with mean µs and exponentials tails (due
to (2.26)), it follows from Lemma 2.5 that there exist some constants C1, C2 > 0 such
that

PV0,s

(∣∣∣ m∑
j=1

(∆τ,j − µs)
∣∣∣ > εm

)
≤ C1e

−C2ε
2m , for all 0 < ε < 1 and m ∈ N.

Using this with m = N+
n , N

−
n and ε = (N+

n )−1/2+ε2 , (N−n )−1/2+ε2 , respectively, shows that

PV0,s(B
c
1) ≤ C1e

−C2(N+
n )2ε2 and PV0,s(B

c
2) ≤ C1e

−C2(N−n )2ε2 .

Hence, for all sufficiently large n,

PV0,s
(
(B1 ∩B2)c

)
≤ C1e

−C2(N+
n )2ε2 + C1e

−C2(N−n )2ε2 ≤ e−n
ε1ε2

.

So, it will suffice to show that, for all sufficiently large n,

∣∣∣ j0∑
j=1

(∆τ,j − µs)
∣∣∣ ≤ n 1

2 ε1+ε2 on the event B1 ∩B2. (D.10)

Now, since ε1 < 1/2, nε1ε2 < n
1
2 ε2 . Using this fact and a little bit of algebra it follows

from the definitions of B1 and B2 that, for all sufficiently large n, on the event B1 ∩B2

nε1 <

N+
n∑

j=1

∆τ,j < nε1 + 2n
1
2 (ε1+ε2) and nε1 − 2n

1
2 (ε1+ε2) <

N−n∑
j=1

∆τ,j < nε1 .

Together these inequalities imply N−n ≤ j0 ≤ N+
n . So, by the definitions of N+

n and N−n ,

j0∑
j=1

(∆τ,j − µs) < [nε1 + 2n
1
2 (ε1+ε2)]−N−n µs ≤ 4n

1
2 (ε1+ε2) and

j0∑
j=1

(∆τ,j − µs) > [nε1 − 2n
1
2 (ε1+ε2)]−N+

n µs ≥ −4n
1
2 (ε1+ε2)

on the event B1 ∩ B2, for all sufficiently large n. Since 4n
1
2 (ε1+ε2) ≤ n

1
2 ε1+ε2 for all

sufficiently large n, this shows that (D.10) holds for all sufficiently large n.
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Claim 4: Denote V̂max = max{V̂j : 0 ≤ j ≤ τ V̂0 }. There exists some c15 > 0 such that

PV0,s(V̂max > t) ≤ c15t
−δ , for all t ∈ [0,∞). (D.11)

Proof. As noted above in the proof of Propositions 4.1 and 4.2 in Appendix C, the Markov
chain (V̂k)k≥0 satisfies all conditions (A)-(D) of Proposition C.1 with α = µs and β = 1− δ.
Thus, all the lemmas in Appendix C which hold for a Markov chain (Zk) satisfying these
properties apply to (V̂k). We will use Lemma C.9. By this lemma there exists some
constant C = C(0) such that

PV0,s(V̂max > n) = PV0,s(τ
V̂
(n+1)+ < τ V̂0 ) ≤ C(n+ 1)−δ , for all n ∈ N.

This implies (D.11).

Proof of Claim 1. We will show that PV0,s(Ai) ≤ n−( δ2 +
δε2
4 ), for each i = 1, . . . , 5. The

estimate for A1 follows directly from Proposition 4.3. The bounds for the other events
are given below.

Bound for A2:

We decompose PV0,s(Vmax > 2n
1
2 (1+ε2)) as

PV0,s

(
Vmax > 2n

1
2 (1+ε2)

)
=


PV0,s(V̂max > n

1
2 (1+ε2), Vmax > 2n

1
2 (1+ε2))

+PV0,s(V̂max ≤ n
1
2 (1+ε2), Vmax > 2n

1
2 (1+ε2), τ V̂0 > n)

+PV0,s(V̂max ≤ n
1
2 (1+ε2), Vmax > 2n

1
2 (1+ε2), τ V̂0 ≤ n)

≡ (I) + (II) + (III).

By Claim 4, (I) ≤ PV0,s(V̂max > n
1
2 (1+ε2)) ≤ c15(n

1
2 (1+ε2))−δ. Also, by Proposition 4.1,

(II) ≤ PV0,s(τ
V̂
0 > n) ≤ 2c10n

−δ, for all sufficiently large n. Term (III) is estimated as
follows:

(III) ≤ PV0,s
(
∃ 0 ≤ j ≤ n− 1 : V̂j ≡ Vτj ≤ n

1
2 (1+ε2) and max

τj≤k≤τj+1

|Vτj − Vk| > n
1
2 (1+ε2)

)
≤
n−1∑
j=0

PV0,s

(
Vτj ≤ n

1
2 (1+ε2) and max

τj≤k≤τj+1

|Vτj − Vk| > n
1
2 (1+ε2)

)

≤
n−1∑
j=0

PV0,s

(
max

τj≤k≤τj+1

|Vτj − Vk| > n
1
2 (1+ε2)

∣∣∣Vτj ≤ n 1
2 (1+ε2)

)

≤ n ·

[
max

0≤x≤n
1
2
(1+ε2)

PVx,s

(
max

0≤k≤τRs
|Vk − x| > n

1
2 (1+ε2)

)]
. (D.12)

By (2.49) the right hand side of (D.12) is at most ne−n
1/6

, for all sufficiently large n

(note that although (2.49) is not directly applicable when x = 0, PV0,s(max0≤k≤τRs Vk >

t) ≤ PV1,s(max0≤k≤τRs Vk > t), for any t > 0, so the bound still holds in this case as well).
Combining these estimates on terms (I), (II), and (III) we find that, for all sufficiently
large n,

PV0,s(A2) ≡ PV0,s
(
Vmax > 2n

1
2 (1+ε2)

)
≤ c15(n

1
2 (1+ε2))−δ + 2c10n

−δ + ne−n
1/6

≤ n−(δ/2+δε2/4).
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Bound for A3:

By construction, imax ≤ τ V̂0 . So, by Proposition 4.1, for all sufficiently large n

PV0,s(imax > n) ≤ PV0,s(τ V̂0 > n) ≤ 2c10n
−δ. (D.13)

Combining this with Claim 2 and Claim 4 shows that, for all sufficiently large n,

PV0,s(A3) =

{
PV0,s(A3, V̂max > n

1
2 (1+ε2)) + PV0,s(A3, V̂max ≤ n

1
2 (1+ε2), imax > n)

+PV0,s(A3, V̂max ≤ n
1
2 (1+ε2), imax ≤ n)

≤

{
PV0,s(V̂max > n

1
2 (1+ε2)) + PV0,s(imax > n)

+PV0,s(∃1 ≤ i ≤ n : VTi−1
≤ n 1

2 (1+ε2) and Ei occurs)

≤ c15(n
1
2 (1+ε2))−δ + 2c10n

−δ + ne−n
ε1/2

≤ n−(δ/2+δε2/4).

Bound for A4:
By (D.13) and Claim 3 we have, for all sufficiently large n,

PV0,s(A4) = PV0,s(A4, imax > n) + PV0,s(A4, imax ≤ n)

≤ PV0,s(imax > n) + PV0,s(∃1 ≤ i ≤ n : Fi occurs)

≤ 2c10n
−δ + ne−n

ε1ε2

≤ n−(δ/2+δε2/4).

Bound for A5:
By (D.9), PV0,s(|Ki| > 2nε1) ≤ c3e

−c4bnε1c, for each i. Using this along with (D.13) shows
that, for all sufficiently large n,

PV0,s(A5) = PV0,s(A5, imax > n) + PV0,s(A5, imax ≤ n)

≤ PV0,s(imax > n) + PV0,s(∃1 ≤ i ≤ n+ 1 : |Ki| > 2nε1)

≤ 2c10n
−δ + (n+ 1) · c3e−c4bn

ε1c

≤ n−(δ/2+δε2/4).
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