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Evolution systems of measures and semigroup
properties on evolving manifolds

Li-Juan Cheng*† Anton Thalmaier‡

Abstract

An evolving Riemannian manifold (M, gt)t∈I consists of a smooth d-dimensional
manifold M , equipped with a geometric flow gt of complete Riemannian metrics,
parametrized by I = (−∞, T ). Given an additional C1,1 family of vector fields (Zt)t∈I

on M . We study the family of operators Lt = ∆t + Zt where ∆t denotes the Laplacian
with respect to the metric gt. We first give sufficient conditions, in terms of space-time
Lyapunov functions, for non-explosion of the diffusion generated by Lt, and for exis-
tence of evolution systems of probability measures associated to it. Coupling methods
are used to establish uniqueness of the evolution systems under suitable curvature
conditions. Adopting such a unique system of probability measures as reference mea-
sures, we characterize supercontractivity, hypercontractivity and ultraboundedness of
the corresponding time-inhomogeneous semigroup. To this end, gradient estimates
and a family of (super-)logarithmic Sobolev inequalities are established.
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1 Introduction

Let M be a d-dimensional differentiable manifold equipped with a family of complete
Riemannian metrics (gt)t∈I which is C1 in t and evolves according to

∂

∂t
gt = 2ht, t ∈ I,

where I = (−∞, T ) for some T ∈ (−∞,+∞], and ht a time-dependent 2-tensor on TM .
Denote by ∇t, ∆t the Levi-Civita connection, resp. Laplacian on M , both with respect
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Evolution systems of measures and semigroup properties

to the metric gt. For a given C1,1 family (Zt)t∈I of vector fields on M , we study the
time-dependent second order differential elliptic operator Lt = ∆t + Zt.

In this paper, we develop the basis for a general theory of the following backward
Cauchy problem: {

∂su(·, x)(s) = −Lsu(s, ·)(x)

u(t, x) = φ(x)

}
, (s, t) ∈ Λ, x ∈M, (1.1)

where φ ∈ C2(M) ∩ Cb(M) and Λ := {(s, t) : s ≤ t and s, t ∈ I}.
We investigate this problem from a probabilistic point of view. Let Xt be the diffusion

process generated by Lt (called Lt-diffusion) which is assumed to be non-explosive
before time T (see [2, 8, 14] for details). As in the time-homogeneous case, we construct
Lt-diffusions Xt via horizontal diffusions ut above Xt.

Let F(M) be the frame bundle over M and Ot(M) the orthonormal frame bundle with
respect to the metric gt. We denote by π : F(M)→M the projection from F(M) onto M .
For a frame u ∈ Ot(M), denote by Ht

Y (u) the ∇t-horizontal lift of Y ∈ TπuM . This allows
one to determine standard-horizontal vector fields Ht

i on Ot(M), via the formula

Ht
i (u) = Ht

uei(u), i = 1, 2, . . . , d,

where (ei)
d
i=1 denotes the canonical orthonormal basis of Rd. Furthermore, we denote

by (Vα, β)dα, β=1 the standard-vertical fields on F(M). Then given s ≥ 0, the diffusion ut is
constructed for t ≥ s as the solution to the following Stratonovich SDE:

dut =
√

2

d∑
i=1

Ht
i (ut) ◦ dBit +Ht

Zt
(ut) dt− 1

2

d∑
α,β=1

(∂tgt)(uteα, uteβ)Vα, β(ut) dt,

us ∈ Os(M), πus = x,

(1.2)

where Bt is a standard Brownian motion on Rd. The projection Xt := πut of ut onto M
then gives the wanted Lt-diffusion process on M , see [2]. In the next section we
complement existing results on non-explosion of Xt which is a subject already studied
in [14].

The backward Cauchy problem (1.1) is the Kolmogorov equation to the following
non-autonomous SDE on M :

dXt = ut ◦ dBt + Zt(Xt) dt, Xs = x. (1.3)

Denote by X(s,x)
t the solution to Eq. (1.3) which is assumed to be non-explosive before

time T . Then function
u(s, x) := E[φ(X

(s,x)
t )]

satisfies Eq. (1.1) and gives rise to a family of inhomogeneous Markov evolution operators
(Ps,t)(s,t)∈Λ on M :

Ps,tφ(x) := E[φ(X
(s,x)
t )] = E(s,x)[φ(Xt)].

This is completely standard in the case of a fixed metric and a time-independent
operator Lt = L where Ps,t = Pt−s = e(t−s)L and Lp-spaces are taken with respect to an
invariant measure µ, i.e., a Borel probability measure µ on M such that∫

M

Ptφ dµ =

∫
M

φ dµ, t > 0, φ ∈ Bb(M).

Under suitable conditions, see [5, 6], existence and uniqueness of the invariant measure
can be shown. In this case, Pt extends to a contraction semigroup on Lp(M,µ) for every
p ∈ [1,∞), see e.g. [3, 11, 18, 21, 22].
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Evolution systems of measures and semigroup properties

When it comes to the time-inhomogeneous case, the situation turns out to be more
involved. For instance, Saloff-Coste and Zúñiga [19, 20] studied the ergodic behavior
of time-inhomogeneous Markov chains; more sophisticated and strict conditions are
required due to the fact that the generator and the semigroup do not commute and
due to the lack of uniqueness of the invariant measure. A first goal will be therefore
to construct an evolution system of measures as a family of reference measures which
plays a role similar to the invariant measure in the time-homogeneous case.

Let us start by reviewing the notion of an evolution system of measures. A family
of Borel probability measures (µt)t∈I on M is called an evolution system of measures
(see [9]) if ∫

M

Ps,tφ dµs =

∫
M

φdµt, φ ∈ Bb(M), (s, t) ∈ Λ. (1.4)

Recently, Angiuli, Lorenzi, Lunardi et al. investigated evolution system of measures and
related topics for non-autonomous parabolic Kolmogorov equations with unbounded
coefficients on Rd (see [1, 12, 15, 16]). For instance, in [12] sufficient conditions for
existence and uniqueness of evolution systems of measures are given; in [1], using a
unique tight evolution system of measures as reference measures, hypercontractivity
and the asymptotic behavior are studied; the asymptotics in time-periodic parabolic
problems with unbounded coefficients is addressed in [16]. All this work motivates
us to study evolution systems of measures on evolving manifolds and to investigate
contractivity properties of the semigroup. Our probabilistic approach simplifies and
extends in particular earlier results obtained by analytic methods.

We start by formulating some hypotheses which will be needed later on. Let ρt(x, y)

be the Riemannian distance from x to y with respect to the metric gt. Fixing o ∈M , we
write ρt(x) := ρt(o, x) for simplicity. Let Cutt be the set of the cut-locus of (M, gt). Let

Cut := {(x, t) : x ∈ Cutt}.

At different places in the paper, some of the hypotheses listed below will be put in force.

(H1) There exists an increasing function ϕ ∈ C2(R+) such that

lim
r→+∞

ϕ(r) = +∞ and

(Lt + ∂t)(ϕ ◦ ρt)(x) ≤ m(t), (x, t) ∈M × I \ Cut,

for some continuous function m on I.

(H2) There exists an increasing function ϕ ∈ C2(R+) such that ϕ(0) = 0,

lim
r→+∞

ϕ(r) = +∞ and

(Lt + ∂t)(ϕ ◦ ρt)(x) ≤ a(t)− c(t)(ϕ ◦ ρt)(x), (x, t) ∈M × I \ Cut,

for some non-negative function a and a function c on I such that

H(t) :=

∫ t

−∞
exp

(
−
∫ t

r

c(u) du

)
a(r) dr <∞.

(H3) There exists a function k on I such that

RZt := Rict − ht −∇tZt ≥ k(t), t ∈ I.
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For any ε > 0, positive function ` on I and t ∈ I, set

A1 = 2k − `, B1(t) = 2d+
1

4

(
3(d− 1)ε−1 + 3kε(t)ε+ 2|Zt|t(o)

)2
`−1(t),

where

kε(t) = sup
{
|Rict| (x) : ρt(x) ≤ ε

}
. (1.5)

There exists a positive constant ε and a positive function ` on I such that

H1(t) :=

∫ t

−∞
exp

(
−
∫ t

r

A1(s) ds

)
B1(r) dr < +∞. (1.6)

Remark 1.1. In (H1) and (H2) the Lyapunov function ϕ ◦ ρt is by definition time-
dependent.

(a) From condition (1.6) it can be seen that the function k in (H3) must satisfy∫ t

−∞
exp

(
−2

∫ t

r

k(s) ds

)
dr <∞ and

∫ t

−∞
k(s) ds = +∞, t ∈ I. (1.7)

(b) Hypothesis (H1) gives a sufficient condition for non-explosion of Lt-diffusions. Hypo-
thesis (H2) ensures existence of an evolution system of measures (µt)t∈I , whereas
(H3) guarantees uniqueness of the evolution system of measures (µt)t∈I .

(c) As indicated, the Lyapunov function ϕ ◦ ρt is time-dependent. Comparatively, in [12]
the Euclidean distance is used as reference distance and then a space only Lyapunov
condition is sufficient for existence and uniqueness of an evolution system of mea-
sures. In [1, 12] the coefficients in the Lyapunov condition are uniformly bounded,
and as consequence a time-homogeneous process can be used for comparison with
the original process. In our setting, the coefficients in the Lyapunov conditions need
to be time-dependent to preserve the information about the varying space.

In general, evolution systems of measures are far from being unique. If there is a
unique system it plays an important role. Indeed, it is related to the asymptotic behavior
of Ps,t as s → −∞. We shall prove that if Hypothesis (H3) holds, then for x ∈ M and
(s, t) ∈ Λ,

lim
s→−∞

‖Ps,tf(x)− µt(f)‖L2(M,µs) = 0,

where µt(f) denotes the average of f with respect to the measure µt.
In Sections 3-5 we use Hypothesis (H3) as standing assumption. Taking the unique

evolution system of measures (µs)s∈I as reference measures, we study contractivity
properties of the time-inhomogeneous semigroup Ps,t. For the sake of brevity, we
introduce the following notations:

‖Ps,t‖(p,t)→(q,s) := ‖Ps,t‖Lp(M,µt)→Lq(M,µs),

‖Ps,t‖(p,t)→∞ := ‖Ps,tf‖Lp(M,µt)→L∞(M).

Definition 1.2. The evolution operator Ps,t is called

(i) hypercontractive if it maps Lp(M,µt) into Lq(M,µs) for some 1 < p < q < +∞
and (s, t) ∈ Λ such that

‖Ps,t‖(p,t)→(q,s) ≤ 1;

EJP 23 (2018), paper 20.
Page 4/27

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP147
http://www.imstat.org/ejp/


Evolution systems of measures and semigroup properties

(ii) supercontractive if it maps Lp(M,µt) into Lq(M,µs) for any 1 < p < q < +∞
and (s, t) ∈ Λ, and if there exists a positive function Cp,q : Λ → (0,+∞) such
that

‖Ps,t‖(p,t)→(q,s) ≤ Cp,q(s, t);

(iii) ultrabounded if it maps Lp(M,µt) into L∞(M) for every p > 1 and (s, t) ∈ Λ,
and if there exists a function Cp,∞ : Λ→ (0,+∞) such that

‖Ps,tf‖(p,t)→∞ ≤ Cp,∞(s, t). (1.8)

Remark 1.3. It is easy to see that due to contractivity of the semigroup, the function
Cp,q can be chosen such that the following properties are satisfied:

(i) For fixed s ∈ I, the function Cp,q(s, s + ·) : (0,∞) → (0,∞) is a non-increasing
function;

(ii) for fixed t ∈ I, the function Cp,q(t − ·, t) : (0,∞) → (0,∞) is a non-increasing
function.

Note that the function Cp,q takes into account both the position and the length of the
interval [s, t].

In what follows, we use the abbreviation

‖·‖p, s := ‖·‖Lp(M,µs).

In Section 4, we extend the arguments of [18] to consider hypercontractivity and su-
percontractivity via logarithmic Sobolev inequalities (in short log-Sobolev inequalities).
In fact, under the assumption that RZt ≥ k(t) for t ∈ I, there is a family of log-Sobolev
inequalities with respect to Ps,t:

Ps,t(f
2 log f2) ≤ 4

(∫ t

s

exp

(
−2

∫ t

r

k(u) du

)
dr

)
Ps,t|∇tf |2t + Ps,tf

2 logPs,tf
2,

f ∈ C1
b (M), (s, t) ∈ Λ.

Hypercontractivity of Ps,t in Lp space, related to the unique evolution system of measures,
is then obtained as a consequence of the log-Sobolev inequalities.

In Section 5 we then prove that supercontractivity of the evolution operators Ps,t is
equivalent to the validity of the following family of super-log-Sobolev inequalities∫

M

f2 log
|f |
‖f‖2,s

dµs ≤ r
∥∥|∇sf |s∥∥2

2,s
+ βs(r) ‖f‖22,s, r > 0,

for every s ∈ I, f ∈ H1(M,µs) and some positive decreasing function βs. Note that the
function βs may depend on the current time s which generalizes the notion of super-log-
Sobolev inequalities for non-autonomous systems on Rd in [1]. Moreover, combining the
super-log-Sobolev inequalities and dimension-free Harnack inequalities, we prove that
the exponential integrability of radial function with respect to (µt)t∈I or (Ps,t)(s,t)∈Λ is
equivalent to supercontractivity or ultraboundedness of the corresponding semigroup.

The paper is organized as follows. In Section 2 we first give sufficient conditions
for existence and uniqueness of evolution systems of measures. Then in Section 3,
by means of Bismut type formulas, gradient estimates in Lp(M,µs) are established for
p ∈ (1,+∞], which are used in Sections 4-5 to study hypercontractivity, supercontractivity
and ultraboundedness for the corresponding semigroup.
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2 Diffusion processes and evolution system of measures

2.1 Non-explosion

Recall that ρt(x) denotes the distance function ρt(o, x) with respect to a fixed refer-
ence point o ∈M . A sufficient condition for non-explosion of Lt-diffusions can be given
as follows.

Theorem 2.1. Suppose that Hypothesis (H1) holds. Then Lt-diffusion process Xt is
non-explosive before time T .

Proof. Without loss of generality, we suppose that the Lt-process Xt starts from x at
time s. For fixed t∗ ∈ (s, T ], there exists c := supt∈[s,t∗]m(t) > 0 such that

(Lt + ∂t)ϕ ◦ ρt(x) ≤ c, (t, x) ∈ [s, t∗]×M.

Then, by the Itô formula for the radial part of Xt (see [14, Theorem 2]), we obtain

dϕ ◦ ρt(Xt) ≤
√

2
〈
u−1
t ∇tϕ ◦ ρt(Xt),dBt

〉
+ (Lt + ∂t)ϕ ◦ ρt(Xt) dt

≤
√

2
〈
u−1
t ∇tϕ ◦ ρt(Xt),dBt

〉
+ cdt

up to the lifetime ζ ∧ t∗ where ζ := limn→∞ ζn with

ζn := inf{t ∈ (s, T ) : ρt(x,Xt) ≥ n}.

In particular, if Xs = x ∈M , then

ϕ(n)Px{ζn ≤ t} ≤ Ex[ϕ ◦ ρt∧ζn(Xt∧ζn)] ≤ ϕ(ρs(x)) + c(t− s), t ∈ (s, t∗].

According to Hypothesis (H1), ϕ is an increasing function such that ϕ(r) → +∞ as
r →∞. Thus, there exists m ∈ N+ such that ϕ(n) > 0 for all n ≥ m and

Px{ζ ≤ t} ≤ lim
n→∞

Px{ζn ≤ t} ≤ lim
n→∞

ϕ(ρs(x)) + c(t− s)
ϕ(n)

= 0, t ∈ (s, t∗].

Therefore we have P{ζ ≥ t∗} = 1. Since t∗ is arbitrary, we obtain

P{ζ ≥ T} = 1

which completes the proof.

From Theorem 2.1 we get the following corollary which has been proved in [14] in
the case of a Lyapunov condition with constant coefficients.

Corollary 2.2. Let ψ ∈ C(R+) and h ∈ C(I) be non-negative such that for any t ∈ I,

(Lt + ∂t)ρt(x) ≤ h(t)ψ(ρt(x)) (2.1)

holds outside Cutt(o), the cut-locus of o associated with the metric gt. If∫ ∞
1

dt

∫ t

1

exp

(
−
∫ t

r

ψ(s) ds

)
dr =∞, (2.2)

then the Lt-diffusion process is non-explosive.

Proof. Suppose that the process Xt generated by Lt starts from x at time s ∈ I. For
fixed t∗ ∈ (s, T ], let c = supt∈[s,t∗] h(t) and

ϕ(s) =

∫ s

1

dt

∫ t

1

exp

(
−c
∫ t

r

ψ(u) du

)
dr.

It is easy to see from condition (2.2) that ϕ is an increasing function onR+ with ϕ(r)→∞
as r →∞, satisfying

(Lt + ∂t)ϕ(ρt(x)) ≤ 1, t ∈ [s, t∗].

This completes the proof.
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2.2 Evolution systems of measures

For t ∈ I consider the linear second order differential operator Lt given on a smooth
function f by

Ltf = (∆t + Zt)f.

As indicated, Hypothesis (H1) guarantees the existence of a unique Markov semigroup
Ps,t generated by Lt. Indeed, for fixed t ∈ I and f ∈ Cb(M), the function (s, x) 7→ Ps,tf(x)

is the unique bounded classical solution in Cb((−∞, t]×M) ∩ C1,2((−∞, t]×M) to the
backward Cauchy problem:{

∂su(·, x)(s) = −Lsu(s, ·)(x), (s, x) ∈ (−∞, t)×M,

u(t, x) = f(x), x ∈M.
(2.3)

According to the uniqueness of solutions to Eq. (2.3), we obtain

Ps,r Pr,t = Ps,t, s ≤ r ≤ t < T.

Moreover, for any (s, t) ∈ Λ, x ∈ M and f ∈ C2(M) with ‖Ltf‖∞ < ∞, the forward
Kolmogorov equation reads as

∂

∂t
Ps,tf(x) = Ps,tLtf(x),

and for any f ∈ Bb(M), (s, t) ∈ Λ and x ∈M , the backward Kolmogorov equation is given
by

∂

∂s
Ps,tf(x) = −LsPs,tf(x).

Based on Hypothesis (H2) or (H3), one can prove existence and uniqueness of an
evolution system.

Theorem 2.3. Suppose that Hypothesis (H2) holds, then there exists an evolution
system of measures (µt)t∈I for (Ps,t)(s,t)∈Λ such that

sup
s∈(−∞,t]

∫
M

(ϕ ◦ ρs)(y)µs(dy) ≤ H(t). (2.4)

Suppose that Hypothesis (H3) holds, then there exists a unique evolution system and

sup
s∈(−∞,t]

∫
M

ρs(y)2 µs(dy) < H1(t). (2.5)

Proof. (a) We first show existence. Given t ∈ I, a family of measures can be constructed
as follows (see e.g. [6] for details). For A ∈ B(M) and (s, t) ∈ Λ, let

µs,t(A) :=
1

t− s

∫ t

s

Pr,t(o,A) dr.

We claim that under Hypothesis (H2), the family of measures (µs,t)s∈(−∞,t] is compact.
Suppose that Xt starts from o at time s. Under Hypothesis (H2), applying the Itô formula
to the radial process ρt(Xt), we get

dϕ(ρt(Xt)) ≤ ϕ′(ρt(Xt))
〈
∇tρt(Xt), utdBt

〉
t

+ (Lt + ∂t)ϕ ◦ ρt(Xt) dt

≤ ϕ′(ρt(Xt))
〈
∇tρt(Xt), utdBt

〉
t

+
(
a(t)− c(t)ϕ ◦ ρt(Xt)

)
dt.

It follows that

E[ϕ(ρt(Xt∧ζn))]− ϕ(0) ≤ E
∫ t∧ζn

s

(
a(r)− c(r)

(
ϕ ◦ ρr(Xr)

))
dr,
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i.e.,

E

[
exp

(∫ t∧ζn

s

c(r) dr

)
ϕ ◦ ρt∧ζn(Xt∧ζn)

]
≤ ϕ(0) + E

[∫ t∧ζn

s

exp

(∫ r

s

c(u) du

)
a(r) dr

]
.

Using the condition ϕ(0) = 0 and letting n→∞, we arrive at

E [ϕ ◦ ρt(Xt)] ≤
[∫ t

s

exp

(∫ r

s

c(u) du

)
a(r) dr

]
exp

(
−
∫ t

s

c(r) dr

)
≤
∫ t

s

exp

(
−
∫ t

r

c(u) du

)
a(r) dr

≤ H(t).

Therefore, according to the monotonicity of H, we have

sup
s∈(−∞,t]

(Ps,tϕ ◦ ρt)(o) ≤ H(t), (2.6)

from which it follows that

µs,t(ϕ ◦ ρt) =
1

t− s

∫ t

s

(Pr,tϕ ◦ ρt)(o) dr ≤ H(t).

In addition, since ϕ is a compact and increasing function such that ϕ(r) → +∞ as
r → +∞, we know that (µs,t)s∈(−∞,t] is a family of compact measures, i.e., for each
n ∈ Z, there exists a sequence (tnk

), tnk
→ +∞ as k → +∞ such that

µtnk
,n ⇀

∗ µn.

Let µs := P ∗n,sµn. It is easy to check that the family µs satisfies Eq. (1.4), i.e., for
φ ∈ Bb(M),

µs(Ps,tφ) = P ∗n,sµn(Ps,tφ) = µn(Pn,tφ) = µt(φ).

By this and the bound (2.6), we get the existence of an evolution system (µs)s∈I . More-
over, we have the estimate

µs(ϕ ◦ ρs) = µn(Pn,sϕ ◦ ρs) ≤ lim
tnk
→∞

1

n− tnk

∫ n

tnk

sup
r∈(−∞,s]

(Pr,sϕ ◦ ρs)(o) dr ≤ H(s)

which completes the proof of Eq. (2.4).
(b) If Hypothesis (H3) holds, we claim that there exists a unique evolution system of

probability measures (µt)t∈I such that

sup
s∈(−∞,t]

µs(ρ
2
s) < H1(t).

First recall the formula (see [17, Lemma 5 and Remark 6])

∂tρt(x) =
1

2

∫
∂tgt(ṙ(s), ṙ(s)) ds (2.7)

where r : [0, ρt(x)] → M is a gt-geodesic connecting o and x. By this formula and the
index lemma, we have

(Lt + ∂t)ρt = (∆t + Zt + ∂t)ρt

≤ (d− 1)G′(ρt)

G(ρt)
+

∫ ρt

0

1

2
∂tgt(ṙ(s), ṙ(s)) ds

+

∫ ρt

0

(∇tZt)(ṙ(s), ṙ(s)) ds+ 〈Zt, ṙ(0)〉t (o) (2.8)
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Evolution systems of measures and semigroup properties

where G is the solution to the equationG′′(s) =
−Rict(ṙ(s), ṙ(s))

d− 1
G(s),

G(0) = 0, G′(0) = 1.

Under Hypothesis (H3), by [14, Lemma 9], we have

(Lt + ∂t)ρt ≤
(d− 1)G′(ρt)

G(ρt)
− k(t)ρt +

∫ ρt

0

Rict(ṙ(s), ṙ(s)) ds+ 〈Zt, ṙ(0)〉t (o)

≤ (d− 1)G′(ρt)

G(ρt)
− k(t)ρt −

∫ ρt

0

(d− 1)G′′(s)

G(s)
ds+ |Zt|t(o)

≤ Ft(ρt)− k(t)ρt + |Zt|t(o)

where Ft(s) =
√
kε(t)(d− 1) coth

(√
kε(t)/(d− 1) (s ∧ ε)

)
+ kε(t) (s ∧ ε) and

kε(t) := sup{|Rict| : ρt(x) ≤ ε}.

It is easy to see that Ft(s) is non-increasing in s and limr→0 rFt(r) <∞. Hence, by means
of the positive function ` in Hypothesis (H3), we obtain

(Lt + ∂t)ρ
2
t = 2ρt(Lt + ∂t)ρt + 2

≤ 2ρt(Ft(ρt)− k(t)ρt + |Zt|t(o)) + 2

≤ 2d+ 2
{
kε(t)ε+ (d− 1)ε−1 +

√
(d− 1)kε(t) + |Zt|t(o)

}
ρt − 2k(t)ρ2

t

≤ 2d+
{

3
(
kε(t)ε+ (d− 1)ε−1

)
+ 2|Zt|t(o)

}
ρt − 2k(t)ρ2

t

≤ 2d+

{
3kε(t)ε+ 3(d− 1)ε−1 + 2|Zt|t(o)

}2

4`(t)
− (2k(t)− `(t))ρ2

t .

By a similar argument as in part (a), we obtain an evolution system of measures such
that

sup
t∈(−∞,s]

µt(ρ
2
t ) ≤ H1(s).

We now use a coupling method to prove uniqueness of the evolution system. Let
(Xt, Yt) be a parallel coupling starting from (x, y) at time s. Then, by [7] or [13], we know
that if RZt ≥ k(t), t ∈ I, then

E(s,(x,y))[ρt(Xt, Yt)] ≤ exp

(
−
∫ t

s

k(r) dr

)
ρs(x, y).

Let (µt)t∈I be an evolution system of measures. Then, we have the estimate:

|Ps,tf(o)− µt(f)| =
∣∣∣∣∫ (Ps,tf(o)− Ps,tf(y))µs(dy)

∣∣∣∣
=

∣∣∣∣∫ E(s,(o,y))

[
f(Xt)− f(Yt)

ρt(Xt, Yt)
ρt(Xt, Yt)

]
µs(dy)

∣∣∣∣
≤
∥∥|∇tf |t∥∥∞ ∫ E(s,(o,y)) [ρt(Xt, Yt)] µs(dy)

≤ exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥∞ µs(ρs)

≤ exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥∞(µs(ρ2
s)
)1/2

. (2.9)
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In addition, from Eq. (1.7), we know that

exp

(
−
∫ t

−∞
k(r) dr

)
= 0 and sup

s∈(−∞,t]
µs(ρ

2
s) <∞.

Now letting s→ −∞, we conclude that

lim
s→−∞

|Ps,tf(o)− µt(f)| = 0.

If there exists another evolution system of probability measures (νt)t∈I , then νt(f) is also
the limit of Ps,tf(o) as s→ −∞, and hence νt = µt.

Directly from Eq. (2.9) we have the following asymptotic results.

Corollary 2.4. Suppose that Hypothesis (H3) holds. Then we have the following con-
vergence result: for any f ∈ C1(M) being constant outside a compact set, there exists a
function c in C(I) such that

‖Ps,tf − µt(f)‖2,s ≤ c(t) exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥∞, (s, t) ∈ Λ.

Proof. Let (Xt, Yt) be parallel coupling process associated to Lt. For any f ∈ C1(M)

being constant outside a compact set, we have

|Ps,tf(x)− µt(f)| = |Ps,tf(x)− Ps,tf(o) + Ps,tf(o)− µt(f)|

≤
∣∣∣E(s,(x,o)) [f(Xt)− f(Yt)]

∣∣∣+ e−
∫ t
s
k(r) dr

∥∥|∇tf |t∥∥∞ (µs(ρ2
s)
)1/2

≤
∣∣∣∣E(s,(x,o))

[
f(Xt)− f(Yt)

ρt(Xt, Yt)
ρt(Xt, Yt)

]∣∣∣∣+ e−
∫ t
s
k(r) dr

∥∥|∇tf |t∥∥∞ (µs(ρ2
s)
)1/2

≤
∥∥|∇tf |t∥∥∞E(s,(x,o)) [ρt(Xt, Yt)] + e−

∫ t
s
k(r) dr

∥∥|∇tf |t∥∥∞ (µs(ρ2
s)
)1/2

≤ e−
∫ t
s
k(r) dr

∥∥|∇tf |t∥∥∞ (ρs(x) +
(
µs(ρ

2
s)
)1/2)

(2.10)

which implies that

‖Ps,tf − µt(f)‖2,s ≤ 2 exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥∞ (µs(ρ2
s)
)1/2

.

Now using Theorem 2.3 and
sup

s∈(−∞,t]
µs(ρ

2
s) <∞,

we obtain the result directly.

Corollary 2.5. Suppose that Hypothesis (H3) holds and sups∈(−∞,t] ρs(x) <∞ for any
x ∈ M and t ∈ I. Then we have the following convergence result: for any f ∈ C1

b (M),
there exists a function C in C(I) such that

|Ps,tf − µt(f)| ≤ C(t) exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥∞, (s, t) ∈ Λ.

Proof. If sups∈(−∞,t] ρs(x) <∞ for any x ∈M and t ∈ I, then the result can be directly
derived from the inequality (2.10).

Remark 2.6. Actually, our results can be applied to the following forward Cauchy
problem via a time reversal: for s ∈ [T,+∞),{

∂tu(·, x)(t) = Ltu(t, ·)(x), (t, x) ∈ (s,+∞)×M ;

u(s, x) = f(x), x ∈M.
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2.3 Some examples

We now investigate some non-autonomous systems on evolving manifolds to illustrate
the results of Subsection 2.2 above.

Example 2.7. The manifold M is the Euclidean space Rd and the geometric flow gt is
given by

(gt)ij = g(t)δij

for some positive function g ∈ C1(I). Consider the operator Lt = ∆t+Zt = g(t)−1(∆+Z).
It is easy to see that kε = 0 and |Zt|t(o) = g(t)−1/2|Z|(o) where kε is defined as in (1.5).
Moreover, assume that there exists constant C such that ∇Z ≤ C. Then the curvature
satisfies

RZt = −1

2
g′(t)〈·, ·〉 − g−2(t)〈∇·Z, ·〉 ≥ −

1

2
g′(t)− g−2(t)C =: A(t).

Hence, by Theorem 2.3, if we can choose ` > 0 such that∫ ∞
t

exp

(
−
∫ t

r

(2A− `)(s) ds

)(
1 + (g(r)`(r))−1

)
dr <∞,

then the non-autonomous system has an unique evolution system of measures.

Example 2.8. The evolving manifold M carries a backward Ricci flow (gt):

∂tgt = 2Rict, t ∈ (−∞, T ].

Consider the operator Lt = ∆t +∇tV for some V ∈ C2
b (M). Assume that HesstV ≤ −k(t),

t ∈ (−∞, T ] and that there exists o ∈M such that for small ε > 0,

kε(t) ≤ K and |Zt|t(o) ≤ C

for some constants K and C where kε is defined as in (1.5). Hence, by Theorem 2.3, if∫ t

−∞
exp

(
−
∫ t

r

(2k(s)− `(s)) ds

)
(1 + `(r)−1) dr <∞ (2.11)

for some positive function ` on I, the non-autonomous diffusion system has an unique
evolution system of measures. Here, for instance, if k(t) = |t|−α with 0 < α < 1, choosing
`(t) = |t|−α, it is easy to check that (2.11) holds.

Example 2.9. Suppose that M is a hypersurface parameterized locally by X = {xi} in
Rd and evolving by its backward mean curvature flow, t ∈ (−∞, T ]. Let {Hij} be the
second fundamental form of M and H = gijHij its mean curvature. It is well known that

∂

∂t
gij = 2HHij ;

Ricij = HijH − gmrHirHmj .

Consider the process (Xt) generated by Lt = ∆t. Then

(RZt )ij := (Rict − ht)ij = −gmrHirHmj .

Assume thatRZt ≥ k(t) and that there exists o ∈M such that kε ≤ K for some constant K.
Hence, by Theorem 2.3, if∫ t

−∞
exp

(
−
∫ t

r

(2k(s)− `(s)) ds

)
(1 + `(r)−1) dr <∞

for some positive function ` on I, the non-autonomous diffusion system has an unique
evolution system of measures.
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Example 2.10. Consider an evolving manifold (M, gt) satisfying the following curvature
condition:

Rict ≥ −C1(t)(1 + ρ2
t );

∂tρt + Ztρt ≤ C2(t)(1 + ρt),

for some non-negative function C1 and some function C2. Then

(Lt + ∂t)ρt ≤ 2ρt∆tρt + 2C2(t)(ρt + ρ2
t ) + 2

≤ 2ρt

√
(d− 1)C1(t) (1 + ρ2

t ) coth

(√
C1(t) (1 + ρ2

t )/(d− 1) ρt

)
+ 2C2(t) (ρt + ρ2

t ) + 2.

Combining this with the inequality coth(s) ≤ 1 + s−1, we obtain that for any positive
function ` on I,

(Lt + ∂t)ρ
2
t ≤ 2

(√
(d− 1)C1(t) + C2(t)

)
(ρt + ρ2

t ) + 2d

≤
(

2
√

(d− 1)C1(t) + 2C2(t) + `(t)
)
ρ2
t

+
(√

(d− 1)C1(t) + C2(t)
)2

`−1(t) + 2d

Then by Theorem 2.3, if C1 and C2 satisfy∫ t

−∞
exp

(∫ t

r

(
2
√

(d− 1)C1(s) + 2C2(s) + `(s)
)

ds

)
×
((√

(d− 1)C1(r) + C2(r)
)2

`−1(r) + 2d

)
dr <∞

for some positive function `, there exists an evolution system of measures for this system.

3 Gradient estimates

We now turn to gradient estimates for the semigroup. It is well known that the
so-called Bismut formula is a powerful tool to derive gradient estimates of semigroups in
the fixed metric case (see [4, 10]). Let us first recall a Bismut type formula for ∇sPs,tf
(see [7, Corollary 3.2]). To this end, define an Rd ⊗Rd-valued process (Qs,t)(s,t)∈Λ as the
solution to the following ordinary differential equation

dQs,t
dt

= −RZt (ut)Qs,t, Qs,s = id, (s, t) ∈ Λ, (3.1)

where ut is the horizontal Lt-diffusion process X(s,x)
t with π(us) = x, and RZt (ut) ∈

Rd ⊗Rd satisfies 〈
RZt (ut)a, b

〉
Rd = RZt (uta, utb), a, b ∈ Rd.

If RZt ≥ k(t), t ∈ I then we have

‖Qr,t‖ ≤ exp

(
−
∫ t

r

k(s) ds

)
, (r, t) ∈ Λ, (3.2)

where ‖·‖ is the operator norm on Rd. The following derivative formula is taken from [7].
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Proposition 3.1. Assume that RZt ≥ k(t) for some continuous function k on I. Let
(s, t) ∈ Λ. Then for f ∈ C1(M) such that f is constant outside a compact set, and for any
h ∈ C1

b ([s, t]) satisfying h(s) = 0 and h(t) = 1, we have

u−1
s ∇sPs,tf(x) = E(s,x)

[
Q∗s,tu

−1
t ∇tf(Xt)

]
=

1√
2
E(s,x)

[
f(Xt)

∫ t

s

h′(r)Q∗s,r dBr

]
(3.3)

where Q∗s,t is the transpose of Qs,t.

The following gradient estimate can be derived from Proposition 3.1.

Theorem 3.2. Suppose that Hypothesis (H3) holds. Let (µt)t∈I be the evolution system
of measures for Ps,t. Then,

(a) for every f ∈ C1(M) such that f is constant outside a compact set and 1 ≤ p <∞,

∥∥|∇sPs,tf |s∥∥p,s ≤ exp

(
−
∫ t

s

k(r) dr

)∥∥|∇tf |t∥∥p,t, (s, t) ∈ Λ; (3.4)

(b) for any 1 < p < ∞, there exists a positive constant C1 = C1(p) such that for every
f ∈ Bb(M),

∥∥|∇sPs,tf |s∥∥p,s ≤ C1

(
max

r∈[s,(t−1)∨s]

∫ (r+1)∧t

r

exp

(∫ r

s

k(u) du

)
dr

)−1

‖f‖p,t

for all (s, t) ∈ Λ;

(c) for f ∈ Bb(M), there exists a positive constant C1 = C1(p) such that for all (s, t) ∈ Λ,

∥∥|∇sPs,tf |s∥∥∞ ≤ C1

(
max

r∈[s,(t−1)∨s]

∫ (r+1)∧t

r

exp

(∫ r

s

k(u) du

)
dr

)−1

‖f‖∞.

Proof. By the first equality in (3.3) and inequality (3.2), the first assertion in (a) can be
derived directly. It is also easy to see that (c) follows from (b). Hence, it suffices to
prove (b).

For p ∈ (1,∞) and t− s ≤ 1, by using the integration by parts formula, we have

|∇sPs,tf |ps(x) =
1√
2

∣∣∣E(s,x)
[
f(Xt)

∫ t

s

h′(r)Q∗s,r dBr

]∣∣∣p
≤ 1√

2
Ps,t|f |p(x)

(
E(s,x)

∣∣∣ ∫ t

s

h′(r)Q∗s,r dBr

∣∣∣q)p/q
≤

cpp√
2
Ps,t|f |p(x)

(
E(s,x)

∣∣∣ ∫ t

s

h′
2
(r)‖Qs,r‖2 dr

∣∣∣q/2)p/q
≤

cpp√
2
Ps,t|f |p(x)

(
E(s,x)

∣∣∣ ∫ t

s

h′
2
(r) exp

(
−2

∫ r

s

k(u) du

)
dr
∣∣∣q/2)p/q (3.5)

where

h(r) =

∫ r
s

exp
(∫ ρ
s
k(u) du

)
dρ∫ t

s
exp

(∫ ρ
s
k(u) du

)
dρ
.

It then follows that

|∇sPs,tf |ps(x) ≤
cpp√

2
Ps,t|f |p(x)

(∫ t

s

exp

(∫ r

s

k(u) du

)
dr

)−p
.
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Integrating both sides of the inequality above with respect to µs, we arrive at

µs(|∇sPs,tf |ps) ≤
cpp√

2
µt(|f |p)

(∫ t

s

exp

(∫ r

s

k(u) du

)
dr

)−p
. (3.6)

It leaves us to check the case for t− s > 1. For any r ∈ [s, t− 1], combining Eq. (3.4)
and Eq. (3.6), we have

|∇sPs,rPr,tf(x)|ps ≤ exp

(
−p
∫ r

s

k(r) dr

)
Ps,r|∇rPr,tf |pr(x)

≤
cpp√

2
exp

(
−p
∫ r

s

k(r) dr

)(∫ r+1

r

exp

(∫ ρ

r

k(u) du

)
dρ

)−p
Ps,r(Pr,r+1|Pr+1,tf |p)(x)

≤
cpp√

2

(∫ r+1

r

exp

(∫ ρ

s

k(u) du

)
dρ

)−p
Ps,t|f |p(x).

Integrating both sides by µs and minimizing the coefficient in r, we obtain the desired
conclusion.

Remark 3.3. In Theorem 3.2 (c), the inequality does not need an evolution system of
measures as the reference measures. So the condition for this result can be weaken by
only using

RZt ≥ k(t)

for some function k ∈ C(I).

4 Log-Sobolev inequality and hypercontractivity

In this section, we prove hypercontractivity for Ps,t. Let us first introduce the
following log-Sobolev inequality, which is essential to the proof of our hypercontractivity
theorem.

Proposition 4.1. If RZt ≥ k(t) for some function k ∈ C(I) then for any p ∈ (1,∞),

Ps,t(f
2 log f2) ≤ 4

(∫ t

s

exp

(
−2

∫ t

r

k(u) du

)
dr

)
Ps,t|∇tf |2t

+ Ps,tf
2 logPs,tf

2, (s, t) ∈ Λ, (4.1)

holds for f ∈ C1
c (M).

Proof. Without loss of generality, we suppose f > δ > 0. Otherwise, let fδ = (f2 + δ)1/2.
Then by letting δ → 0, we obtain the conclusion.

Consider the process (Pr,tf
2) log(Pr,tf

2)(Xr∧τn) where as above

τn = inf{t ∈ (s, T ] : ρt(Xt) ≥ n}, n ≥ 1. (4.2)

Applying Itô’s formula, we have

d(Pr,tf
2) log(Pr,tf

2)(Xr) = dMr + (Lr + ∂r)(Pr,tf
2 logPr,tf

2)(Xr) dr

= dMr +

(
1

Pr,tf2
|∇rPr,tf2|2r

)
(Xr) dr, s < r < τn ∧ t,

where Mr is a local martingale. By this and the estimate,

|∇rPr,tf2|2r ≤ exp

(
−2

∫ t

r

k(u) du

)(
Pr,t|∇tf2|t

)2
≤ 4 exp

(
−2

∫ t

r

k(u) du

)
(Pr,tf

2)Pr,t|∇tf |2t ,
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we obtain

d(Pr,tf
2) log(Pr,tf

2)(Xr)

≤ dMr + 4 exp

(
−2

∫ t

r

k(u) du

)
Pr,t|∇tf |2t (Xr) dr, s < r < τn ∧ t.

Integrating both sides from s to t ∧ τn, we have

E(s,x)
[
f2 log f2(Xt∧τn)

]
≤
(
Ps,tf

2 logPs,tf
2
)

(x) + E(s,x)

[∫ t∧τn

s

4 exp

(
−2

∫ t

r

k(u) du

)
Pr,t|∇tf |2t (Xr) dr

]
.

Then again by dominated convergence theorem, letting n ↑ +∞, we obtain

Ps,t(f
2 log f2) ≤ 4

(∫ t

s

exp

(
−2

∫ t

r

k(u) du

)
dr

)
Ps,t|∇tf |2t + Ps,tf

2 logPs,tf
2.

The log-Sobolev inequality leads to hypercontractivity of (Ps,t).

Theorem 4.2. Suppose that Hypothesis (H3) holds and that (µt) is the evolution system
of measures for Ps,t. Let r ≤ s ≤ t < T and p, q ∈ (1,∞) such that

q ≤ exp

(
−
∫ t

.

(∫ s1

r

exp

(
−2

∫ s1

u

k(z) dz

)
du

)−1

ds1

)
(p− 1) + 1.

Then Ps,t : Lp(M,µt)→ Lq(M,µs) satisfies

‖Ps,t‖(p,t)→(q,s) ≤ 1.

Proof. For the sake of conciseness, we assume f > δ > 0, otherwise a similar argument
as in the proof of Proposition 4.1 can be used. Consider the process

(Ps,tf)q(s)(Xs∧τn), s ∈ [r, t],

where

q(·) = exp

(
−
∫ t

.

(∫ s1

r

e−2
∫ s1
u

k(z) dz du

)−1

ds1

)
(p− 1) + 1.

Using the Itô formula, we have that for s < τn ∧ t,

d(Ps,tf)q(s)(Xs) = dMs + (Ls + ∂s)(Ps,tf)q(s)(Xs) ds

= dMs + (Ps,tf)q(s)
(
q(s)(q(s)− 1)|∇s logPs,tf |2s + q′(s) logPs,tf

)
(Xs) ds.

Therefore, for r ≤ s ≤ t < T ,

E(r,x)
[
(Ps,tf)q(s)(Xs∧τn)

]
− (Pr,tf)q(r)(x)

=

∫ s

r

(
q(u)(q(u)− 1)E(r,x)

[
(Pu,tf)q(u)−2|∇uPu,tf |2u(Xu∧τn)

]
+ q′(u)E(r,x)

[
(Pu,tf)q(u) logPu,tf(Xu∧τn)

])
du.

By using the dominated convergence theorem and letting n→ +∞, we have

Pr,s(Ps,tf)q(s)(x)− (Pr,tf)q(r)(x)

=

∫ s

r

[
q(u)(1− q(u))Pr,u

(
(Pu,tf)q(u)−2|∇uPu,tf |2u

)
(x)

+ q′(u)Pr,u((Pu,tf)q(u) logPu,tf)(x)

]
du,
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which implies

d

ds
Pr,s(Ps,tf)q(s) = q′(s)Pr,s((Ps,tf)q(s) logPs,tf)

+ q(s)(q(s)− 1)Pr,s((Ps,tf)q(s)−2|∇sPs,tf |2s).

Therefore, for (Pr,s(Ps,tf)q(s))1/q(s), we have

d

ds
(Pr,s(Ps,tf)q(s))1/q(s)

= (Pr,s(Ps,tf)q(s))1/q(s)

(
− q
′(s)

q(s)2
logPr,s(Ps,tf)q(s) +

1

q(s)

∂s(Pr,s(Ps,tf)q(s))

Pr,s(Ps,tf)q(s)

)
= (Pr,s(Ps,tf)q(s))1/q(s)

(
− q′(s)

q(s)2
logPr,s(Ps,tf)q(s)

+
q′(s)

q(s)2

Pr,s(Ps,tf)q(s) log(Ps,tf)q(s)

Pr,s(Ps,tf)q(s)

+
(q(s)− 1)Pr,s

(
(Ps,tf)q(s)−2|∇sPs,tf |2s

)
Pr,s(Ps,tf)q(s)

)
≤ (Pr,s(Ps,tf)q(s))

1−q(s)
q(s)

[(∫ s

r

exp

(
−2

∫ s

u

k(t) dt

)
du

)
q′(s)− q(s) + 1

]
× Pr,s

(
(Ps,tf)q(s)−2|∇sPs,tf |2s

)
where the last inequality comes from the fact that q′ > 0 along with the log-Sobolev
inequality (4.1) with f replaced by (Ps,tf)q(s)/2. According to the definition of q(s), we
have

d

ds

(
Pr,s(Ps,tf)q(s)

)1/q(s)

≤ 0.

Integrating both sides from r to s, we obtain(
Pr,s(Ps,tf)q(s)

)1/q(s)

≤ (Pr,tf
p)1/p.

From this and the fact that q(s)/p ≤ 1, it follows that

µr(Pr,s(Ps,tf)q(s)) ≤ µr(Pr,tfp)q(s)/p ≤ (µr(Pr,tf
p))q(s)/p,

which implies

‖Ps,tf‖q(s),s ≤ ‖f‖p,t.

This completes the proof.

5 Supercontractivity and ultraboundedness

This section is devoted to supercontractivity and ultraboundedness for the semigroup
Ps,t under Hypothesis (H3).

5.1 Super log-Sobolev inequality and boundedness of semigroup

We present a supercontractivity result first.

Theorem 5.1. Suppose that Hypothesis (H3) holds. Let (µt) be the evolution system of
measures associated with Ps,t. Then the following properties are equivalent:
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(a) The semigroup Ps,t is supercontractive.

(b) The family of super-log-Sobolev inequalities∫
f2 log

f2

‖f‖22,s
dµs ≤ r

∥∥|∇sf |s∥∥2

2,s
+ βs(r)‖f‖22,s, r > 0, (5.1)

hold for every f ∈ H1(M,µs), s ∈ I, and some positive non-increasing function
βs : (0,+∞)→ (0,+∞).

First, we give a lemma which makes the proof of this theorem more concise.

Lemma 5.2. Suppose Hypothesis (H2) holds. Let (µt) be an evolution system of mea-
sures for Ps,t. If f ∈ C1,2(I × M) ∩ C(I, L1(M,µr)) and there exists some function
g ∈ Bb(M) such that |(∂r + Lr)f | ≤ g for all r ∈ I, then

d

dr

∫
f(r, x)µr(dx) =

∫
(∂r + Lr)f(r, x)µr(dx) (5.2)

for every r ∈ I.

Proof. For f ∈ C1,2(I ×M) ∩ C(I, L1(M,µr)), we have∫
f(r, x)µr(dx) =

∫
Ps,rf(r, x)µs(dx), s < r ≤ T.

On the other hand, using Kolmogorov’s formula, we have

d

dr
Ps,rf(r, x) = Ps,r(Lr + ∂r)f(r, x).

We complete the proof by applying the dominated convergence theorem.

Proof of Theorem 5.1. First we prove “(b) ⇒ (a)”. Let (s, t) ∈ Λ and f ∈ C∞c (M) such
that f > δ > 0. By Lemma 5.2, we need to check the following to handle the derivative
of µs(Ps,tf)q(s) with respect to s:

(Ls+∂s)(Ps,tf)q(s)

= Ls(Ps,tf)q(s) − q(s)(Ps,tf)q(s)−1(LsPs,tf) + q′(s)(Ps,tf)q(s) logPs,tf

= q(s)(q(s)− 1)|∇sPs,tf |2s(Ps,tf)q(s)−2 + q′(s)(Ps,tf)q(s) logPs,tf.

Under Hypothesis (H3), by Theorem 3.2 (c), there exists a positive constant c(s, t) such
that ∥∥|∇sPs,tf |2s∥∥∞ ≤ c(s, t) ‖f‖2∞.
Moreover, ‖Ps,tf‖∞ ≤ ‖f‖∞ and

(Ps,tf)q(s) log+(Ps,tf) ≤ (Ps,tf)q(s)+1 ≤ ‖f‖q(s)+1
∞ .

Combining all estimates above, we obtain

‖(Ls + ∂s)(Ps,tf)q(s)‖∞ <∞.

Now using Lemma 5.2, we have

d

ds
µs((Ps,tf)q(s))

= µs

(
Ls(Ps,tf)q(s) − q(s)(Ps,tf)q(s)−1(LsPs,tf) + q′(s)(Ps,tf)q(s) logPs,tf

)
= q(s)(q(s)− 1)µs(|∇sPs,tf |2s(Ps,tf)q(s)−2) + q′(s)µs

(
(Ps,tf)q(s) logPs,tf

)
.
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Furthermore, for ‖Ps,tf‖q(s),s, we have

d

ds
‖Ps,tf‖q(s),s

= ‖Ps,tf‖−q(s)+1
q(s),s (q(s)− 1)µs(|∇sPs,tf |2s(Ps,tf)q(s)−2)

+
q′(s)

q(s)
‖Ps,tf‖−q(s)+1

q(s),s µs((Ps,tf)q(s) logPs,tf)

− q′(s)

q(s)
‖Ps,tf‖q(s),s log ‖Ps,tf‖q(s),s. (5.3)

Replacing f in the log-Sobolev inequality (5.1) by fp/2, we get∫
fp log

(
fp

‖fp/2‖22,s

)
dµs ≤ r

p2

4

∫
fp−2|∇sf |2s dµs + βs(r)‖fp/2‖22,s.

Now again replacing f and p by Ps,tf and q(s) in the inequality above, respectively, we
obtain ∫

(Ps,tf)q(s) log(Ps,tf) dµs − ‖Ps,tf‖q(s)q(s),s log ‖Ps,tf‖q(s),s

≤ r q(s)
4

∫
(Ps,tf)q(s)−2|∇sPs,tf |2s dµs +

βs(r)

q(s)
‖Ps,tf‖q(s)q(s),s.

Combining this with Eq. (5.3) yields

d

ds
‖Ps,tf‖q(s),s ≤

βs(r)q
′(s)

q(s)2
‖Ps,tf‖q(s),s, (s, t) ∈ Λ,

where

q(s) = e4r−1(t−s)(p− 1) + 1, q(t) = p.

It follows that

‖Ps,tf‖q(s),s ≤ exp

(∫ t

s

βu(r)q′(u)

q(u)2
du

)
‖f‖p,t. (5.4)

If q(s) = q, then r = 4(t− s) (log(q − 1)/(p− 1))
−1. Taking this r into Eq. (5.4) yields

‖Ps,tf‖q,s ≤ exp

(∫ t

s

βu(4(t− s) (log(q − 1)/(p− 1))
−1

)q′(u)

q(u)2
du

)
‖f‖p,t.

Next, we prove “(a) ⇒ (b)”. Suppose that there exists Cp,q(s, t) and 1 < p < q such
that

‖Ps,t‖(p,t)→(q,s) ≤ Cp,q(s, t).

Recall the log-Sobolev inequality with respect to Ps,t,

Ps,t(f
2 log f2) ≤ 4

(∫ t

s

e−2
∫ t
r
k(u) du dr

)
Ps,t|∇tf |2t + Ps,tf

2 log(Ps,tf
2), f ∈ C∞0 (M).

(5.5)
From this and the fact that

log+(Ps,tf
2) ≤ Ps,tf2 ≤ ‖f‖2∞,
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we are able to integrate both sides of Eq. (5.5) with respect to µs,

µt(f
2 log f2) ≤ 4

(∫ t

s

e−2
∫ t
r
k(u) du dr

)
µt(|∇tf |2t ) + µs(Ps,tf

2 logPs,tf
2). (5.6)

Now, we need to deal with the term µs(Ps,tf
2 logPs,tf

2). For any h ∈ (0, 1 − 1
p ), by the

Riesz-Thorin interpolation theorem, we get

‖Ps,tf‖qh,s ≤ Cp,q(s, t)rh‖f‖ph,t, f ∈ Lp(M,µs), (5.7)

where rh = ph
p−1 ∈ (0, 1), 1

ph
= 1− rh + rh

p and 1
qh

= 1− rh + rh
q , i. e.,

rh =
ph

p− 1
, ph =

1

1− h
, qh =

(
1− p(q − 1)

q(p− 1)
h

)−1

.

Set ‖f‖2,t = 1. Then from Eq. (5.7), we have∫ (
Ps,t|f |2(1−h)

)qhdµs ≤ Cp,q(s, t)rhqh ,

which further implies

1

h

[∫ (
Ps,t|f |2(1−h)

)qhdµs −
(∫

Ps,t|f |2 dµs

)qh/ph]

=
1

h

(∫ (
Ps,t|f |2(1−h)

)qhdµs − 1

)
≤ 1

h

(
Cp,q(s, t)

rhqh − 1
)
.

As

lim
h→0

1

h

(
Cp,q(s, t)

rhqh − 1
)

=
p

p− 1
logCp,q(s, t),

by dominated convergence, we obtain

p(q − 1)

q(p− 1)

∫
Ps,tf

2 logPs,tf
2 dµs −

∫
Ps,t(f

2 log f2) dµs ≤
p

p− 1
logCp,q(s, t),

or equivalently,

µs(Ps,tf
2 logPs,tf

2) ≤ q(p− 1)

p(q − 1)
µt(f

2 log f2) +
q

q − 1
logCp,q(s, t).

Combining this with Eq. (5.6), we arrive at

µt(f
2 log f2) ≤ γt(t− s)µt(|∇tf |2t ) + β̃t(t− s) (5.8)

where f ∈ C∞0 (M), ‖f‖2,t = 1 and

γt(t− s) =
4p(q − 1)

q − p

∫ t

t−(t−s)
exp

(
−2

∫ t

r

k(u) du

)
dr,

β̃t(t− s) =
pq

q − p
logCp,q(s, t), (5.9)

i.e. β̃t is a positive function on (0,∞) and 2 ≤ p ≤ q. We complete the proof by letting
γt = r and then

βt(r) = β̃t(γ
−1
t (r)).

Next, we study the ultraboundedness by using the super-log-Sobolev inequality (5.1).
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Theorem 5.3. Suppose that Hypothesis (H3) holds. Let (µt) be an evolution system of
measures associated with Ps,t.

(i) If the function k in Hypothesis (H3) is almost surely non-negative and Ps,t
satisfies

‖Ps,t‖(2,t)→∞ ≤ C2,∞(s, t),

then Eq. (5.1) holds for βs(r) = 2 logC2,∞(s, s+ r
8 ).

(ii) Conversely, assume Eq. (5.1) holds for some positive non-increasing function
β : (0,+∞) → (0,+∞), which is independent of s. If there exists a function
r ∈ C([2,∞)) such that

t0 :=

∫ ∞
2

r(p)

p− 1
dp <∞,

then for t− s ≥ t0, we have

‖Ps,t‖(2,t)→∞ ≤ exp

(∫ ∞
2

β(r(p))

p2
dp

)
.

Proof. Letting p = 2 and q → +∞ in Eq. (5.8), we know from Eq. (5.9) that for f ∈ C∞0 (M)

with ‖f‖2,t = 1,

µt(f
2 log f2) ≤ 8

(∫ t

s

e−2
∫ t
r
k(u) du dr

)
µt(|∇tf |2t ) + 2 logC2,∞(s, t)

≤ 8(t− s)µt(|∇tf |2t ) + 2 logC2,∞(s, s+ (t− s)).

Letting r = 8(t− s), we obtain (i) directly.
Given (s, t) ∈ Λ. Let q and N be two functions in C1((−∞, t]) such that q′ < 0, which

will be given later. It follows from Eq. (5.3) that for f ∈ C∞c (M) such that f > 0,

d

ds
e−N(s) ‖Ps,tf‖q(s),s

=
q′(s)

q(s)
e−N(s)‖Ps,tf‖−q(s)+1

q(s),s

[
µs

(
(Ps,tf)q(s) logPs,tf

)
− ‖Ps,tf‖q(s)q(s),s log ‖Ps,tf‖q(s),s

+
q(s)(q(s)− 1)

q′(s)
µs

(
|∇sPs,tf |2s(Ps,tf)q(s)−2

)
−N ′(s) q(s)

q′(s)
‖Ps,tf‖q(s)q(s),s

]
. (5.10)

From this, and applying the super-log-Sobolev inequality (5.1) to (Ps,tf)q(s)/2, we obtain

d

ds
e−N(s)‖Ps,tf‖q(s),s

≥ e−N(s)‖Ps,tf‖−q(s)+1
q(s),s

q′(s)

q(s)

[(
q(s)(q(s)− 1)

q′(s)
+ r

q(s)

4

)
µs

(
|∇sPs,tf |2s(Ps,tf)q(s)−2

)
+

(
1

q(s)
β(r)−N ′(s) q(s)

q′(s)

)
‖Ps,tf‖q(s)q(s),s

]
. (5.11)

Let q(s) and N(s) be the solutions to the following equations respectively:

q′(s) =
−4(q(s)− 1)

r ◦ q(s)
, q(t) = 2;

N ′(s) =
q′(s)β(r ◦ q(s))

q(s)2
, N(t) = 0.
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It is easy to see that q′ < 0. Then from this and (5.11), we conclude that:

e−N(s)‖Ps,tf‖q(s),s ≤ ‖f‖2,t. (5.12)

Defining

t0 :=

∫ ∞
2

r(p)

4(p− 1)
dp <∞,

we claim that q(s) → +∞ as s → t − t0, and then N(s) →
∫∞

2
β(r(p))
p2 dp. Indeed,

q(t− t0) =∞ follows from the fact that∫ q(t−t0)

2

r(s)

4(s− 1)
ds =

∫ t−t0

t

r ◦ q(s) q′(s)
4(q(s)− 1)

ds = t0 =

∫ ∞
2

r(s)

4(s− 1)
ds,

i.e. q(t− t0) =∞. By this and Eq. (5.12), we have

‖Pt−t0,t‖(2,t)→∞ ≤ exp

(∫ ∞
2

β(r(p))

p2
dp

)
.

5.2 Dimension-free Harnack inequality and boundedness of semigroup

Next, we will use integrability of the Gaussian function eλρ
2
t (for λ > 0 and t ∈ I)

with respect to the families of measures (µs)s∈I or (Ps,t)(s,t)∈Λ to give another criterion
which is equivalent to supercontractivity or ultraboundedness. To this end, we need the
following preliminary result which is a dimension-free Harnack-type estimate for Ps,t
(see [7]).

Lemma 5.4. Assume that RZt ≥ k(t) holds for t ∈ I. For every f ∈ Cb(M), p > 1,
(s, t) ∈ Λ and x, y ∈M , we have the inequality:

|Ps,tf |p(x) ≤ (Ps,t|f |p) (y) exp

(
p

4(p− 1)

(∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1

ρ2
s(x, y)

)
.

(5.13)

The main result of this section is the following:

Theorem 5.5. Suppose that Hypothesis (H3) holds. Let (µs) be the evolution system of
measures. Then

(i) Ps,t is supercontractive with respect to (µs) if and only if µt
(
exp(λρ2

t )
)
<∞ for

any λ > 0 and t ∈ I;

(ii) Ps,t is ultrabounded with respect to (µs) if and only if
∥∥Ps,t exp(λρ2

t )
∥∥
∞ <∞ for

any λ > 0 and (s, t) ∈ Λ.

Proof. (a) From Hypothesis (H3) we know that RZt ≥ k(t) for t ∈ I. It follows by the
Harnack inequality (5.13) that for (s, t) ∈ Λ, p > 1 and f ∈ Cb(M),

|Ps,tf |p(x) ≤ Ps,t|f |p(y) exp

(
p

4(p− 1)

(∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1

ρs(x, y)2

)
.

If µt(|f |p) = 1, then

1 ≥ |Ps,tf(x)|p
∫

exp

(
− p

4(p− 1)

(∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1

ρs(x, y)2

)
µs(dy)

≥ |Ps,tf(x)|pµs(Bs(o,R)) exp

(
−p(ρs(x) +R)2

4(p− 1)

(∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1
)
,

(5.14)
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where Bs(o,R) := {y ∈M : ρs(y) ≤ R}. Since (µs) is compact, there exists R > 0, which
may depend on s, such that

µs(Bs(o,R)) = µs({x : ρs(x) ≤ R}) ≥ 1− µs(ρ
2
s)

R2
≥ 1− H2(s)

R2
≥ 2−p.

By this and Eq. (5.14), we arrive at

1 ≥ |Ps,tf(x)|p2−p exp

(
−
(∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1
p(ρ2

s(x) +R2)

4(p− 1)

)

which further implies

|Ps,tf(x)| ≤ 2 exp

((∫ t

s

exp

(
2

∫ r

s

k(u) du

)
dr

)−1
ρ2
s(x) +R2

4(p− 1)

)
, s < t. (5.15)

Therefore, we have

‖Ps,tf‖q,s ≤
{
µs
(
exp

(
q(c1 + c2ρ

2
s)
))}1/q

for some positive constants c1, c2 depending on s, t. Hence, if µs(exp(λρ2
s)) <∞ for any

λ > 0 and s ∈ I, then Ps,t is supercontractive, i.e.

‖Ps,t‖(p,t)→(q,s) <∞

for any 1 < p < q <∞.
Conversely, if the semigroup Ps,t is supercontractive, then by Theorem 5.1, we know

that the family of super-log-Sobolev inequalities (5.1) holds. Now our first step is to
prove µs(eλρs) <∞ for any s ∈ I and λ > 0. Let ρns = ρs ∧ n and hs,n(λ) = µs(exp (λρns )).
Taking exp(λ2 ρ

n
s ) into the super-log-Sobolev inequality (5.1) above, we have

λh′s,n(λ)− hs,n(λ) log hs,n(λ) ≤ hs,n(λ)λ2

(
r

4
+
βs(r)

λ2

)
.

This implies (
1

λ
log hs,n(λ)

)′
=
λh′s,n(λ)− hs,n(λ) log hs,n(λ)

λ2hs,n(λ)
≤ r

4
+
βs(r)

λ2
. (5.16)

Integrating both sides of Eq. (5.16) from λ to 2λ, we obtain

hs,n(2λ) ≤ h2
s,n(λ) exp

(r
2
λ2 + βs(r)

)
. (5.17)

By this and the fact that there exists a constant Ms such that

µs({λρs ≥Ms}) ≤
1

4
exp

(
−
(r

2
λ2 + βs(r)

))
,

it follows that:

hs,n(λ) =

∫
{λρs≥Ms}

eλρ
n
s dµs +

∫
{λρs<Ms}

eλρ
n
s dµs

≤ µs({λρs ≥Ms})1/2 µs(e
2λρns )1/2 + eMs

≤
(

1

4
exp

(
−
(r

2
λ2 + βs(r)

)))1/2

exp

(
r

4
λ2 +

1

2
βs(r)

)
hs,n(λ) + eMs

≤ 1

2
hs,n(λ) + eMs ,
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which implies hs,n(λ) ≤ 2eMs for s ∈ I. As Ms is independent of n, letting n go to infinity,
we obtain

µs(e
λρs) <∞, for s ∈ I.

Our second step is to prove µs(e
λρ2s) < ∞ for all s ∈ I and λ > 0. Let hs(λ) :=

limn→∞ hs,n(λ). Integrating both sides of Eq. (5.16) from 1 to λ and letting n→∞, we
obtain

hs(λ) ≤ exp
(
λc0(s) +

r

4
(λ2 − λ) + βs(r)(1− λ)

)
(5.18)

where c0(s) := log µs(exp(ρs)). Now, we observe that for any positive constant ε,∫ ∞
1

hs(λ) e−( r
4 +ε)λ2

dλ =

∫
M

dµs

∫ ∞
1

eλρs e−( r
4 +ε)λ2

dλ <∞.

On the other hand, it is easy to see that for ε > 0,∫
M

dµs

∫ ∞
1

eλρs e−( r
4 +ε)λ2

dλ

=

∫
M

exp
(
ρ2
s/(r + 4ε)

)
dµs

∫ ∞
1

exp

(
−
(

1

2

√
r + 4ελ− ρs/

√
r + 4ε

)2
)

dλ

≥ 2√
r + 4ε

∫
M

exp
(
ρ2
s/(r + 4ε)

)
dµs

∫ ∞
√
r+4ε/2

exp(−t2) dt.

By the arbitrariness of r, we obtain that there exists a number Ns such that for any
λ > 0, ∫

eλρ
2
s dµs < Ns, s ∈ I,

which completes the proof of (i).

(b) If ‖Ps,t exp (λρ2
t )‖∞ <∞ for any λ > 0 and (s, t) ∈ Λ, then we know from Eq. (5.15)

that for any p > 1 and f ∈ Cb(M) satisfying f > 0 and ‖f‖p,t = 1,

∣∣P(s+t)/2,tf(x)
∣∣ ≤ 2 exp

(∫ t

(s+t)/2

exp

(
2

∫ r

(s+t)/2

k(u) du

)
dr

)−1
ρ2

(s+t)/2(x) +R2

4(p− 1)


which implies that there exist constants c1 and c2 such that

‖Ps,tf‖∞

≤ 2

∥∥∥∥∥∥Ps,(t+s)/2 exp

2
(
c1 + c2ρ

2
(s+t)/2(x)

)(∫ t

s+t
2

exp

(
2

∫ r

s+t
2

k(u) du

)
dr

)−1
∥∥∥∥∥∥
∞

<∞.

On the other hand, if ‖Ps,t‖(p,t)→∞ <∞ for all p > 1, then∥∥Ps,t exp(λρ2
t )
∥∥
∞ ≤ ‖Ps,t‖(p,t)→∞

∥∥exp(λρ2
t )
∥∥
p,t
<∞

provided µt(exp(λρ2
t )) is bounded for all t ∈ I. Hence, it suffices to prove that

µt(exp(λρ2
t )) <∞.

Since Ps,t is ultrabounded, Ps,t is supercontractive. Using Theorem 5.5 (i), we get
µt(exp(λρ2

t )) <∞. This completes the proof.
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5.3 Other criteria on supercontractivity and ultraboundedness

It is straightforward to check that Hypothesis (H3) implies Hypothesis (H2) for
ϕ(r) = r2, r > 0. As far as supercontractivity and ultraboundedness of Ps,t is concerned,
we have the following results in terms of other types of space-time Lyapunov conditions.

Theorem 5.6. Let γ ∈ C((0,∞)) be a positive increasing function such that

lim
r→+∞

γ(r)

r
= +∞.

(i) If

(Lt + ∂t)ρ
2
t (x) ≤ c− γ(ρ2

t (x)) (5.19)

holds for t ∈ I, c > 0 and x /∈ Cutt(o), then Ps,t has an evolution system of
measures (µs) and Ps,t is supercontractive with respect to (µs).

(ii) If (5.19) holds for γ such that gλ(r) = rγ(λ log r) is convex on (0,∞) and such
that for any λ > 0, ∫ ∞

0

dr

rγ(λ log r)
<∞,

then Ps,t has an evolution system of measures (µs) and Ps,t is ultrabounded
with respect to (µs).

(iii) If (5.19) holds for γ(r) = αrδ, where α > 0 and δ > 1, then Ps,t is ultrabounded
with respect to (µs) and

‖Ps,t‖(2,t)→∞ ≤ exp
(
c(t− s)−δ/(δ−1)

)
holds for some constant c > 0 and all (s, t) ∈ Λ.

Proof. It is an immediate consequence of Theorem 2.1 that under condition (5.19) the
process X. is non-explosive up to time T . The idea of following proof is similar to [22,
Corollary 5.7.6]. We include a proof for convenience.

(a) Let Xt be a diffusion processes generated by Lt. Then by Itô’s formula,

d exp(λρ2
t (Xt))

= 2λρt(Xt) exp(λρ2
t (Xt)) dbt + 1{Xt /∈Cutt(o)}(Lt + ∂t) exp(λρ2

t (Xt)) dt− d`t, (5.20)

where bt is a one-dimensional Brownian motion and `t an increasing process supported
on {t ≥ s : Xt ∈ Cutt(o)}. By Eq. (5.19), it follows that

(Lt + ∂t) exp(λρ2
t ) = λ exp(λρ2

t )(Lt + ∂t)ρ
2
t + 4λ2ρ2

t exp(λρ2
t )

≤ exp(λρ2
t )(c− γ(ρ2

t )) + 4λ2ρ2
t exp(λρ2

t ) (5.21)

holds outside Cutt(o). If lim sup
r→∞

γ(r)
r = +∞, then there exist c1, c2 > 0 such that for each

t ∈ I,
(Lt + ∂t)

(
exp(λρ2

t )− 1
)
≤ c1 − c2

(
exp(λρ2

t )− 1
)

holds outside Cutt(o). According to Theorem 2.3, there exists an evolution system of
measures (µs) such that sups∈I µs(e

λρ2s) < ∞. We then obtain the first conclusion by
Theorem 5.5 (i).
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(b) We use Theorem 5.5 (ii) to give the proof. So it suffices for us to check
‖Ps,t exp(λρ2

t )‖∞ <∞. By Eq. (5.21), we have

(Lt + ∂t) exp(λρ2
t ) ≤ λ exp(λρ2

t )(c− γ(ρ2
t )) + 4λ2ρ2

t exp (λρ2
t )

≤ λ exp(λρ2
t )(c1 − γ(ρ2

t )/2), (5.22)

where c1 = 0∨ sup
(
c− 1

2γ(r) + 4λr
)
<∞. According to Eq. (5.22), there exists a positive

constant C(λ) such that

(Lt + ∂t) exp(λρ2
t ) ≤ C(λ), (5.23)

where λ > 0. For fixed x ∈M , let

θs(t) := E(s,x)
[
exp(λρ2

t (Xt))
]
, t ≥ s.

We need to show that θs(t) is uniformly bounded. Since the set {t ∈ [s, T ) : Xt ∈ Cutt(o)}
is of measure zero, it follows from Eq. (5.20) and Eq. (5.23) that

E(s,x)
[
λρ2

t (Xt∧τn)
]
≤ exp

(
λρ2

s(x)
)

+ C(λ)E(s,x)[t ∧ τn − s],

where τn := inf{t ∈ [s, T ) : ρt(Xt) ≥ n}. Since τn ↑ T as n→∞, we further conclude that

θs(t) ≤ exp(λρs(x)2) + C(λ)(t− s)

for any λ > 0 and (s, t) ∈ Λ. In particular, here θs is continuous and

Mt := 2
√

2λ

∫ t

s

ρr(Xr) exp
(
λρ2

r(Xr)
)

dbr

is a square integrable martingale. By Fubini’s theorem, along with Eq. (5.20) and
Eq. (5.22), we have

θs(t+ r)− θs(t)
r

≤ λc1
r

∫ t+r

t

θs(u) du− λ

2r

∫ t+r

t

E(s,x)
[
exp

(
λρ2

u(Xu)
)
γ(ρ2

u(Xu))
]

du

≤ λc1
r

∫ t+r

t

θs(u) du− λ

2r

∫ t+r

t

θs(u)γ(λ−1 log θs(u)) du

where the second inequality comes from the fact that for λ > 0, the function r 7→
rγ(λ log r) is convex for r ≥ 1. Therefore,

θ′s(t) ≤ λc1θs(t)−
λ

2
θs(t)γ(λ−1 log θs(t)), t ∈ [s, T ).

Then, by a similar discussion as in the fixed metric case (see the proof of [22, Corol-
lary 5.7.6]), we obtain

θs(t) ≤ G−1(λ(t− s)/4) ∨ c2 <∞, (5.24)

for some positive constant c2 where

G(r) :=

∫ ∞
r

ds

sγ(λ−1 log s)
, r > 1.

In particular, for γ(r) = αrδ for δ > 1 and α > 0, we have

G(r) =
λδ

α(δ − 1)
(log r)1−δ.

Combining this with Eq. (5.24), we complete the proof of (ii) and (iii).
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