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Temporal asymptotics for fractional parabolic
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Abstract

In this paper, we consider fractional parabolic equation of the form ∂u
∂t

= −(−∆)
α
2 u+

uẆ (t, x), where −(−∆)
α
2 with α ∈ (0, 2] is a fractional Laplacian and Ẇ is a Gaussian

noise colored both in space and time. The precise moment Lyapunov exponents
for the Stratonovich solution and the Skorohod solution are obtained by using a
variational inequality and a Feynman-Kac type large deviation result for space-time
Hamiltonians driven by α-stable process. As a byproduct, we obtain the critical values

for θ and η such that E exp
(
θ
(∫ 1

0

∫ 1

0
|r − s|−β0γ(Xr −Xs)drds

)η)
is finite, where X

is d-dimensional symmetric α-stable process and γ(x) is |x|−β or
∏d
j=1 |xj |

−βj .
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1 Introduction

Let
{
Ẇ (t, x) , t ≥ 0 , x ∈ Rd

}
be a general mean zero Gaussian noise on some proba-

bility space (Ω,F ,P) whose covariance function is given by

E[Ẇ (r, x)Ẇ (s, y)] = |r − s|−β0γ(x− y),

where β0 ∈ [0, 1) and

γ(x) =

{
|x|−β where β ∈ [0, d) or∏d
j=1 |xj |−βj where βj ∈ [0, 1), j = 1, . . . , d.
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Temporal asymptotics for fractional PAM

If we abuse the notation β =
∑d
i=1 βi, the spatial covariance function has the following

scaling property
γ(cx) = |c|−βγ(x) (1.1)

for both cases. In this paper, we shall study the following fractional parabolic Anderson
model, 

∂u

∂t
= −(−∆)

α
2 u+ uẆ (t, x), t > 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd ,
(1.2)

where −(−∆)
α
2 with 0 < α ≤ 2 is the fractional Laplacian and the initial condition

satisfies 0 < δ ≤ |u0(x)| ≤ M < ∞. Without loss of of generality, we assume u0(x) ≡ 1

when we study the long-term asymptotics of u(t, x). The product uẆ (t, x) appearing
in the above equation will be understood in the sense of Skorohod and in the sense of
Stratonovich.

Let us recall some results from [30] for the SPDE (1.2).

(i) Theorem 5.3 in [30] implies that, under the following condition:

β < α , (1.3)

Eq. (1.2) in the Skorohod sense has a unique mild solution ũ(t, x), and its n-th
moment can be represented as (see [30, Theorem 5.6])

E[ũ(t, x)n] = EX

 n∏
j=1

u0(Xj
t + x) exp

 ∑
1≤j<k≤n

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

 ,
(1.4)

where X1, . . . , Xn are n independent copies of d-dimensional symmetric α-stable
process starting from 0 and are independent of W , and EX denotes the expectation
with respect to (X1, . . . , Xn).

(ii) Under a more restrictive condition:

αβ0 + β < α (1.5)

the following Feynman-Kac formula

u(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)

)]
, (1.6)

is a mild Stratonovich solution to (1.2) (see [30, Theorem 4.6]), where δ0(x) is the
Dirac delta function. Consequently, Theorem 4.8 in [30] provides a Feynman-Kac
type representation for n-th moment of u(t, x)

E[u(t, x)n] = E

 n∏
j=1

u0(Xj
t + x) exp

1

2

n∑
j,k=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

 .
(1.7)

The stronger condition (1.5), in comparison with (1.3), is to ensure that the “diag-
onal” terms, i.e., the sum

∑n
k=1

∫ t
0

∫ t
0
|r − s|−β0γ(Xk

r − Xk
s )drds appearing in (1.7) are

exponentially integrable (see Lemma 2.1 and Theorem 2.3, or [30, Theorem 3.3] in a
more general setting). To deal with the moments given by (1.4) and that given by (1.7)
simultaneously, we introduce, under the condition (1.5), for ρ ∈ [0, 1],

uρ(t, x) := EX

[
u0(Xx

t ) exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)

−ρ
2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]
. (1.8)
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Temporal asymptotics for fractional PAM

When ρ = 0, uρ(t, x) is the Stratonovich solution u(t, x) to (1.2), and when ρ = 1, uρ(t, x)

is the Skorohod solution ũ(t, x) to (1.2). The n-th moment of uρ(t, x) for a positive integer
n is given by

E[(uρ(t, x))n] = E

[
n∏
j=1

u0(Xj
t + x) exp

(
1

2

n∑
j,k=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

− ρ

2

n∑
j=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds

)]
. (1.9)

Let us point out that when ρ = 1, E[|uρ(t, x)|n] is finite under the weaker condition (1.3).
The goal of this article is to obtain the precise asymptotics, as t → ∞, of the p-th

moment E [|uρ(t, x)|p] for any (fixed) positive real number p. To describe our main result,
we recall the definition of Fourier transform and introduce some notations. Denote by
S(Rd) the Schwartz space of smooth functions that are rapidly decreasing on Rd, and let
S ′(Rd) be its dual space, i.e., the space of tempered distributions. Let f̂(ξ) or (Ff)(ξ)

denote the Fourier transform of f , for f in the space S ′(Rd) of tempered distributions.
In particular, we set

f̂(ξ) =

∫
Rd
e−2πix·ξf(x)dx, for f ∈ L1(Rd).

We will also need the following notations.

Eα(f, f) :=

∫
Rd
|ξ|α|f̂(ξ)|2dξ ;

Fα,d :=
{
f ∈ L2(Rd) : ‖f‖2 = 1 and Eα(f, f) <∞

}
; (1.10)

Aα,d :=

{
g(s, x) :

∫
Rd
g2(s, x)dx = 1,∀s ∈ [0, 1] and

∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds <∞

}
;

(1.11)

M(α, β0, d, γ) := sup
g∈Aα,d

{
1

2

∫ 1

0

∫ 1

0

∫
R2d

γ(x− y)

|r − s|β0
g2(s, x)g2(r, y)dxdydrds

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
. (1.12)

The finiteness of the variational representation M(α, β0, d, γ), when β < α, is estab-
lished in Section 7. Note that M(α, β0, d, γ) has the scaling property, for any θ > 0,

M(α, β0, d, θγ) = θ
α

α−βM(α, β0, d, γ), (1.13)

which can be derived in the same way as Lemma 4.1 in [11]. The following is the main
result in this paper.

Theorem 1.1. Let ρ ∈ [0, 1] and assume the condition (1.5) (and when ρ = 1, the
condition (1.5) is replaced by the condition (1.3)). Let p ≥ 2 be any real number or p = 1.
Then

lim
t→∞

t−
2α−β−αβ0

α−β log ‖uρ(t, x)‖p = (p− ρ)
α

α−βM(α, β0, d, γ),

where ‖uρ(t, x)‖p =
(
E[|uρ(t, x)|p]

)1/p

.

We conclude this introduction with some remarks on the motivation of our work and
a brief literature review for the related results. The following three points motivate us to
obtain the above asymptotics.
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Temporal asymptotics for fractional PAM

(i) The limit related to the long-term asymptotics is known as the moment Lyapunov
exponent in literature and the problem is closely related to the issue of intermit-
tency (see, e.g., [25]). To illustrate our idea, write the limit in Theorem 1.1 in the
following form:

lim
t→∞

t−
2α−β−αβ0

α−β logE exp
(
p log |uρ(t, x)|

)
= Λ(p).

The system satisfies the usual definition of intermittency, i.e., the function Λ(p)/p

is strictly increasing on [2,∞). By the large deviation theory (see, e.g., Theorem
1.1.4 in [8] and its proof for the lower bound), for any sufficiently large l > 0

lim
t→∞

t−
2α−β−αβ0

α−β logP(At,l) = − sup
p>0

{
lp− Λ(p)

}
< 0

and there is pl > 0 such that

lim
t→∞

E
[
|uρ(t, x)|pl1At,l

]
E[|uρ(t, x)|pl ]

= 1,

where
At,l =

{
log |uρ(t, x)| ≥ lt

2α−β−αβ0
α−β

}
.

This observation shows that as in other cases of intermittency, it is rare for the
solution u(t, x) to take large values but the impact of taking large values should
not be ignored.

(ii) When the noise Ẇ is the space-time white noise with dimension one in space, the
parabolic Anderson model (1.2) is the model for the continuum directed polymer
in random environment (see [1] for the case α = 2 and [5] for the case α < 2),
where (1.2) is understood in the Skorohod sense, the solution ũ(t, x) is the partition
function for the polymer measure, and log ũ(t, x) is the free energy for the polymer
(see, e.g., [14]). Similarly, if we consider an α-stable motion X in the random
environment modelled by Ẇ , one may consider the Hamiltonian

Hρ(t, x) :=

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)− ρ

2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds .

Then, uρ(t, x) = EX [eH
ρ(t,x)] is the partition function for the polymer measure, and

log uρ(t, x) is the free energy for the polymer.

(iii) The equation (1.2), as one of the basic SPDEs, describes a variety of models, such
as the parabolic Anderson model (see, e.g. [6]) and the model for continuum
directed polymer in random environment (see, e.g., [1]), in which the long-term
asymptotic property of the solution is desirable. In the recent publication [7], the
space-time fractional diffusion equation of the form(

∂ν +
ν

2
(−∆)α/2

)
u(t, x) = λu(t, x)Ẇ (t, x) ,

has been studied, where ∂ν is the Caputo derivative in time t. It is highly non-trivial
to obtain precise asymptotics in general case. Our model (1.2) corresponds to the
case ν = 1, and our result may provide some perspective for the general situation.

The moment Lyapunov exponent has been studied extensively with vast literature. To
our best knowledge, however, the investigation in the setting of white/colored space-time
Gaussian noise started only recently, especially at the level of precision given in this paper.
When the driving processes are Brownian motion instead of stable process, i.e., the
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Temporal asymptotics for fractional PAM

operator in (1.2) is 1
2∆ instead of the fractional Laplacian, the long-term asymptotic lower

and upper bounds for the moments of the solution were studied in [3] for the Skorohod
solution and in [29] for the Stratonovich solution; the precise moment Lyapunov
exponents were obtained in recent publications [9, 10] for the Skorohod solutions, and
[11] for the Stratonovich solution. In [2], the authors obtained the intermittency property
for the fractional heat equation in the Skorohod sense, by studying the lower and upper
asymptotic bounds of the solution.

We would like to point out that the Lyapunov exponents of the moments of the solution
may take different forms depending on whether the noise is white or colored in time.
For instance, when α = 2, the n-th moment Lyapunov exponent of the Skorohod solution
is a multiple of n(n− 1)

2
2−β when the noise is colored in time (see [10, Theorem 1.1] and

see also [11, Theorem 6.1] for Stratonovich solution). While it is a multiple of n(n2 − 1)

when the noise is a 1 + 1 space-time white noise (see [9, Theorem 1.1]). The approach
in the present article does not apply to the model with noise white in time technically
because the truncation procedure for the temporal covariance function | · |−β0 that we
use in Section 6 fails to approximate the Dirac delta function δ0(·).

In the present paper, we aim to obtain the precise p-th moment Lyapunov exponents
for both Stratonovich solution and Skorohod solution to the fractional heat equation in
a unified way, for any real positive number p ≥ 2. The mathematical challenges and/or
the originality of this work come from the following aspects. First, compared with the
case of heat equation, the fact that the fractional Laplacian is not a local operator makes
the computations and analysis more sophisticated. New ideas and methodologies are
required. In particular, Fourier analysis is involved in a more substantial way. Second,
the Feynman-Kac large deviation result for stable process (Proposition 3.1) is a key to
our approach. However, the method used to derive a similar result for Brownian motion
in [11] can no longer be applied, as the behavior of stable process is totally different
from that of Brownian motion. Third, we obtain the precise long-term asymptotics
for uρ(t, x) with ρ ∈ [0, 1], which in particular enables us to get the precise moment
Lyapunov exponents for the Stratonovich solution u0(t, x) and the Skorohod solution
u1(t, x). Finally, the existing results on precise Lyapunov exponents were mainly for
n-th moment with n a positive integer, due to the fact that the Feynman-Kac type
representation is only valid for integer-order moments. We are able to extend the result
from positive integers to real numbers p ≥ 2. The idea is to use the variational inequality
([10]) and the hypercontractivity of the Ornstein-Uhlenbeck semigroup operators ([28]).

The Feynman-Kac formula (1.9) for the moment of the solution is relevant to the
study of the polaron, an electron moving through a dielectric crystal, interacting with
the lattice ions via electrostatic forces. The evaluation of the partition function can be

represented by Feynman path integral Eexp
{
α
∫ t

0

∫ t
0

e−|r−s|

|Xr−Xs|drds
}

, where X is a three-

dimensional Brownian motion (see [20]). Donsker and Varadhan ([18]) made a seminal
contribution to understand the above integral. It is worthy to point out that in a recent
publication, Mukherjee and Varadhan ([27]) propose a new way of compactification,
which leads not only to the precise asymptotics for the partition function of the polaron
model (as in [18]), but also provides some new and interesting informations on the path
behavior of the empirical measures weighed by the polaron partition function.

The paper is organized as follows. In Section 2, we establish some rough bounds for
the long-term asymptotics of the Stratonovich solution by comparison method. The rough
bounds will be used in the derivation of the precise upper bound in Section 6. The critical
exponential integrability of

∫ 1

0

∫ 1

0
|r − s|−β0γ(Xr − Xs)drds is also studied. In Section

3, we obtain a Feynman-Kac type large deviation result for α-stable processes, which
plays a critical role in obtaining the variational representation for the precise moment
Lyapunov exponent. In Section 4, we establish a lower bound for the p-th moment of
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Temporal asymptotics for fractional PAM

uρ(t, x) which is also valid if the α-stable process is replaced by some general symmetric
Lévy process. In Sections 5 and 6, we validate the lower bound and the upper bound in
Theorem 1.1, respectively. Finally, in Section 7, the well-posedness of the variational
formula given in (1.12) which appears in Theorem 1.1 is justified, and the proof of a
technical lemma that is used in Section 6 is provided.

2 Asymptotic bounds by comparison method

In this section, we establish some long-term asymptotic bounds for E exp(Yt), where

Yt =

∫ t

0

∫ t

0

|r − u|−β0γ(Xr −Xu)drdu. (2.1)

To achieve this goal, we first prove in Theorem 2.3 that Yt is exponentially integrable

using the sub-additivity of Y
1
2
t , and then we obtain, in Proposition 2.8, the main result

on the asymptotic bounds (without identification of constants) by comparing Yt with∫ t
0

∫ t
0
γ(Xr −Xu)drdu.

The moment method is a common approach to obtain the exponential integrability
for Yt (see, eg, [22, 30]). However, in this section, we will use techniques from large
deviation theory, which turns out to yield a stronger result (see Remarks 2.4 and 2.5
for discussions). Eventually, as a corollary of Theorem 1.1, the critical exponential
integrability and the corresponding critical exponent for Y1 are provided in Theorem
2.6.

Recall that {Xat , t ≥ 0} and
{
a

1
α Xt, t ≥ 0

}
have the same law for any a > 0. The self-

similarity of X together with the homogeneity of the covariance function |r−s|−β0γ(x−y)

yields that, for any a > 0, the process Y has the following scaling property (self-
similarity),

{Yat , t ≥ 0} d
=
{
a2− βα−β0 Yt , t ≥ 0

}
. (2.2)

We point out that the scaling property (1.13) of the variational representation M(α, β0,

d, γ), along with the above-mentioned “scaling” properties of X, Y and the covariance
function, will play a crucial rule in the derivation of the results in this article.

In the following two lemmas, we introduce some basic properties of the process Y .

Lemma 2.1. E[Yt] <∞ if and only if αβ0 + β < α.

Proof. Using the self-similarity of X, and the scaling property of γ(x), we have E[γ(Xr −
Xs)] = |r − s|−

β
αE[γ(X1)], noting that 0 < E[γ(X1)] < ∞, under the condition of this

lemma. Hence, we have

E[Yt] = E[γ(X1)]

∫ t

0

∫ t

0

|r − s|−β0 |r − s|−
β
α drds,

which concludes the proof.

Lemma 2.2. Under the condition (1.5), the process {Yt, t ≥ 0} has a continuous version.

Proof. We shall use the notation ‖F‖p = (E[|F |p])1/p. For any 0 ≤ s < t ≤ ∞, we have
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for any p ≥ 1,

‖Yt − Ys‖p

≤
∫ t

s

∫ s

0

|r − u|−β0‖γ(Xr −Xu)‖pdrdu+

∫ s

0

∫ t

s

|r − u|−β0‖γ(Xr −Xu)‖pdrdu

+

∫ t

s

∫ t

s

|r − u|−β0‖γ(Xr −Xu)‖pdrdu

=: I1 + I2 + I3 .

By scaling property, when 1 < p < α
β ,

‖γ(Xr −Xu)‖p = (E [|γ(Xr −Xu)|p])1/p
= Cp|r − u|−

β
α ,

with Cp = ‖γ(X1)‖p <∞. Thus,

I1 ≤
∫ t

s

∫ s

0

|r − u|−β0− βα dudr ≤ 1

1− β0 − β
α

∫ t

s

r1−β0− βα dr

≤ C

∫ t

s

t1−β0− βα dr = Ct1−β0− βα |t− s| .

This means
Ip1 ≤ Ctp(1−β0− βα )|t− s|p .

Similar estimates for I2 and I3 can also be obtained. Thus for 0 ≤ s, t ≤ T, there is a
constant CT depending only on (α, β, β0, T ) such that

E |Yt − Ys|p = ‖Yt − Ys‖pp ≤ CT |t− s|p .

It follows from Kolmogorov continuity criterion that {Yt , t ≥ 0} has a continuous version.

Now we justify the exponential integrability of Yt.

Theorem 2.3. Under the condition (1.5) and further assuming max{β0, β} > 0, then
there exists a constant δ > 0 such that when θ ∈ (0, δ),

E exp
(
θY

α
αβ0+β

1

)
<∞, (2.3)

and consequently, for all λ > 0,

E exp (λYt) <∞. (2.4)

Proof. Denote

Zt = Y
1
2
t =

(∫ t

0

∫ t

0

|s− r|−β0γ(Xs −Xr)dsdr

) 1
2

, for t ≥ 0 . (2.5)

First we shall show that Zt is sub-additive and hence exponentially integrable by [8,
theorem 1.3.5].

The following identity holds

|s− r|−β0 = C0

∫
R

|s− u|−
β0+1

2 |r − u|−
β0+1

2 du, (2.6)

where C0 > 0 depends on β0 only. Similarly, for the function γ(x) we also have

γ(x) = C(γ)

∫
Rd
K(y − x)K(y)dy, x ∈ Rd , (2.7)
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Temporal asymptotics for fractional PAM

where C(γ) > 0 is a constant and

K(x) =


d∏
j=1

|xj |−
1+βj

2 if γ(x) =
∏d
j=1 |xj |−βj ,

|x|−
d+β
2 if γ(x) = |x|−β .

(2.8)

With these identities, we can rewrite Zt as

Zt =

(∫
R×Rd

ξ2
t (u, x)dudx

)1/2

,

where

ξt(u, x) = C0C(γ)

∫ t

0

|s− u|−
β0+1

2 K(Xs − x)ds .

For t1, t2 > 0, by the triangular inequality

Zt1+t2 ≤ Zt1 +

(∫
R×Rd

[
ξt1+t2(u, x)− ξt1(u, x)

]2
dudx

)1/2

.

Let X̃s = Xt1+s −Xt1 , which is independent of {Xr, 0 ≤ r ≤ t1}, and we have

ξt1+t2(u, x)− ξt1(u, x)

= C0C(γ)

∫ t1+t2

t1

|s− u|−
β0+1

2 K(Xs − x)ds

= C0C(γ)

∫ t2

0

|s+ t1 − u|−
β0+1

2 K(X̃s +Xt1 − x)ds .

The translation invariance of the integral on Rd+1 implies that∫
R×Rd

[
ξt1+t2(u, x)− ξt1(u, x)

]2
dudx =

∫
R×Rd

[
ξ̃t2(u, x)

]2
dudx ,

where

ξ̃t2(u, x) = C0C(γ)

∫ t2

0

|s− u|−
β0+1

2 K(X̃s − x)ds.

Therefore, the process Zt is sub-additive, which means that for any t1, t2 > 0, Zt1+t2 ≤
Zt1 + Z̃t2 , where Z̃t2 is independent of {Zs, 0 ≤ s ≤ t1} and has the same distribution as
Zt2 .

Notice that Zt is non-negative, non-decreasing, and pathwise continuous by Lemma
2.2. Thus it follows from [8, Theorem 1.3.5] that, for any t > 0 and θ > 0

E exp
[(
θZt
)]
<∞,

and

lim
t→∞

1

t
logE

[
exp

(
θZt
)]

= Ψ(θ), (2.9)

for some Ψ(θ) ∈ [0,∞). Moreover, by the scaling property (2.2) we have Zat
d
= aκZt with

κ = 1− β
2α −

β0

2 ∈ (1/2, 1), and hence for all θ > 0,

Ψ(θ) = lim
t→∞

1

t
logE exp

[(
θZt
)]

= lim
t→∞

1

t
logE

[
exp

(
Z
tθ

1
κ

)]
= θ

1
κΨ(1). (2.10)

Chebyshev inequality implies that

exp(θt)P(Zt ≥ t) ≤ E exp(θZt) and then θt+ logP(Zt ≥ t) ≤ logE exp(θZt) .
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Temporal asymptotics for fractional PAM

Taking the limit yields, for any θ > 0,

lim sup
t→∞

1

t
logP(Zt ≥ t) ≤ lim

t→∞

1

t
logE [exp(θZt)]− θ = θ

1
κΨ(1)− θ.

Therefore

lim sup
t→∞

1

t
logP(Zt ≥ t) ≤ inf

θ∈(0,1)
{θ 1

κΨ(1)− θ}, (2.11)

where the term on the right-hand side is strictly negative noting that 1/κ ∈ (1, 2) and
Ψ(1) ≥ 0, and is denoted by −a for some a > 0. Hence there exists a constant T > 0 such
that when t ≥ T ,

P(Z1 ≥ t1−κ) = P(Zt ≥ t) ≤ exp (−at/2) . (2.12)

Consequently,

E

[
exp(θZ

1
1−κ
1 )

]
=

∫ ∞
0

P(θZ
1

1−κ
1 ≥ y)eydy + 1

≤
∫ T

0

eydy +

∫ ∞
T

e−aθ
−1y/2eydy + 1,

where the last term is finite if θ ∈ (0, a/2). This implies (2.3).
Finally (2.4) is obtained by (2.3), the scaling property (2.2) and the fact that the

condition (1.5) implies α
αβ0+β > 1.

Remark 2.4. Note that by(2.10), Ψ(θ) = θ
1
κΨ(1) with Ψ(1) ∈ [0,∞). Actually, Ψ(1) > 0

when β0 = 0, by (2.20) in the proof of Lemma 2.7. However, when β0 ∈ (0, 1), Ψ(1)

must be 0, which means that the asymptotics given by (2.9) is not optimal. Indeed, if
Ψ(1) 6= 0, Gärtner-Ellis theorem for non-negative random variable ([8, Corollary 1.2.5])
and equation (2.10) imply that for λ > 0,

lim
t→∞

1

t
logP(Z2

t ≥ λt2−2κ) = − sup
θ>0

{
θλ

1
2 − θ 1

κΨ(1)
}

= C1λ
1

2−2κ ,

where C1 = Ψ(1)
κ
κ−1 (κ

κ
1−κ − κ

1
1−κ ). Note that the assumption Ψ(1) > 0 guarantees that

θ
1
κΨ(1) is an essentially smooth function ([8, Definition 1.2.3]), and hence the Gärtner-

Ellis theorem can be applied. Then, by the Varadhan’s integral lemma ([8, Theorem
1.1.6] or [16, Section 4.3]),

lim
t→∞

1

t
logE exp(θt2κ−1Z2

t ) = sup
λ>0

{
λθ − C1λ

1
2−2κ

}
= C2θ

1
2κ−1 ,

where C2 is a positive constant depending on C1 and κ. By the scaling property (2.2),
this limit is equal to

lim
t→∞

1

t
logE

[
exp(θZ2

tη )
]

= lim
t→∞

t−
1
η logE

[
exp(θZ2

t )
]

= C2θ
1

2κ−1 ,

where η = 2κ−1
2κ and 1

η = 2α−β−αβ0

α−β−αβ0
. This contradicts with Proposition 2.8 when β0 ∈ (0, 1).

Remark 2.5. We observe that the restriction θ ∈ (0, δ) for (2.3) in Theorem 2.3 can be
removed when β0 ∈ (0, 1). Indeed, the inequality (2.11) in the proof can be replaced by

lim sup
t→∞

1

t
logP(Zt ≥ t) ≤ inf

θ>0
{θ 1

κΨ(1)− θ}.

Noting that by Remark 2.4, Ψ(1) = 0 when β0 ∈ (0, 1), we have

lim sup
t→∞

1

t
logP(Zt ≥ t) = −∞.
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Temporal asymptotics for fractional PAM

This enables us to choose any positive number for a in (2.12), and hence (2.3) holds
for any θ > 0. Moreover, solely based on the scaling property of Yt and Theorem 1.1,
the critical exponential integrability and the corresponding critical exponent for Y1 are
obtained by using large deviation techniques in the following theorem.

Theorem 2.6. Let

C0 :=
β

α− β

(
α− β

2α

)α
β (

M(α, β0, d, γ)
) β−α

β

. (2.13)

Then under the condition (1.5), we have

E exp
(
θY

α
β

1

)
<∞, for any θ < C0, (2.14)

and
E exp

(
θY

α
β

1

)
=∞, for any θ > C0. (2.15)

Proof. Recall that Zt is defined in (2.5). Theorem 1.1 implies that, when p = 1 and ρ = 0,

lim
t→∞

t−
2α−β−αβ0

α−β logE exp

(
1

2
Z2
t

)
= M(α, β0, d, γ).

By the scaling property (2.2) of Z2
t and the change of variable s = t

2α−β−αβ0
α−β , the above

equation is equivalent to

lim
s→∞

1

s
logE exp

(
θs1−β/αZ2

1

)
= (2θ)

α
α−βM(α, β0, d, γ).

Then the Gärtner-Ellis theorem implies

lim
s→∞

1

s
logP(s−β/αZ2

1 ≥ λ) = − sup
θ>0

{
θλ− (2θ)

α
α−βM(α, β0, d, γ)

}
= −λ

α
β

β

α− β

(
α− β

2α

)α
β (

M(α, β0, d, γ)
) β−α

β

.

Thus we have

lim
s→∞

1

s
logP(Z

2α
β

1 ≥ s) = −C0, (2.16)

with C0 given by (2.13), which yields (2.14) and (2.15). The proof is concluded.

With the integrability of exp(Yt) obtained in Theorem 2.3, we are ready to study the
long-term asymptotic bounds for E exp (Yt). The following lemma provides the asymp-

totics for E exp
(∫ t

0

∫ t
0
γ(Xs −Xr)dsdr

)
, which will be used to obtain the the asymptotic

bounds for E exp(Yt) in Proposition 2.8.

Lemma 2.7. Under the condition (1.3), there exists a constant C ∈ (0,∞), such that

lim
t→∞

t−
2α−β
α−β logE exp

(
θ

∫ t

0

∫ t

0

γ(Xr −Xs)drds

)
= Cθ

α
α−β , ∀ θ > 0. (2.17)

Let X̃ be an independent copy of X. Then under the condition (1.3), there exist 0 <

D1 ≤ D2 <∞ such that for all θ > 0,

D1θ
α

α−β ≤ lim
t→∞

t−
2α−β
α−β logE exp

(
θ

∫ t

0

∫ t

0

γ(Xr − X̃s)drds

)
≤ D2θ

α
α−β , (2.18)

where to simplify notation we use A ≤ lim ≤ B to represent A ≤ lim ≤ lim ≤ B.
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Temporal asymptotics for fractional PAM

Proof. When γ(x) = |x|−β , (2.17) is a direct consequence of [13, Equation (1.18) ] using
the scaling property of the

∫ t
0

∫ t
0
γ(Xr −Xs)drds. When γ(x) =

∏d
j=1 |xj |−βj , it suffices

to show that there there exists a constant C1 <∞ such that

lim
t→∞

t−
2α−β
α−β logE exp

(
θ

∫ t

0

∫ t

0

γ(Xr −Xs)drds

)
= C1θ

α
α−β . (2.19)

This is because that
∏d
j=1 |xj |−βj ≥ |x|−β and hence C1 is greater than or equal to the

constant C > 0 in (2.17) when γ(x) = |x|−β .
By the scaling property (2.2) with β0 = 0, and by a Gärtner-Ellis type result for

non-negative random variables ([8, Corollary 1.2.5]), we have that (2.19) is equivalent to

lim
t→∞

1

t
logE exp

(
θ

(∫ t

0

∫ t

0

γ(Xr −Xs)drds

)1/2)
= Cθ

2α
2α−β , ∀ θ > 0 (2.20)

for some constant C ∈ (0,∞), which can be proved in the same way as we did to get
(2.10).

Now we prove (2.18). The upper bound can be obtained by (2.17) and the observation
that

E exp

(
θ

∫ t

0

∫ t

0

γ(Xr − X̃s)drds

)
= E exp

(
θC(γ)

∫
Rd

∫ t

0

K(Xr − x)dr

∫ t

0

K(X̃s − x)dsdx

)
≤ E exp

(
θ

2
C(γ)

∫
Rd

(∫ t

0

K(Xr − x)dr

)2

+

(∫ t

0

K(X̃r − x)dr

)2

dx

)

=

[
E exp

(
θ

2
C(γ)

∫
Rd

(∫ t

0

K(Xr − x)dr

)2

dx

)]2

≤ E exp

(
θC(γ)

∫
Rd

(∫ t

0

K(Xr − x)dr

)2

dx

)
= E exp

(
θ

∫ t

0

∫ t

0

γ(Xr −Xs)drds

)
,

where the second inequality follows from Jensen’s inequality and the last equality follows
from (2.7). For the lower bound, it suffices to consider the case γ(x) = |x|−β. By [4,
Theorem 1.2] and the scaling property (2.2) adapted to

∫ t
0

∫ t
0
γ(Xr − X̃s)drds,

lim
t→∞

t−
2α−β
α−β logP

(
t−

2α−β
α−β

∫ t

0

∫ t

0

γ(Xr − X̃s)drds ≥ λ
)

= −aλ
α
β , for all λ > 0.

Then by Varadhan’s integral lemma,

lim
t→∞

t−
2α−β
α−β logE exp

(
θ

∫ t

0

∫ t

0

γ(Xr − X̃s)drds

)
= sup

λ>0
{θλ− aλ

α
β } = bθ

α
α−β ,

for some b > 0. The proof is concluded.

The following Proposition is the main result of this section, and it will be used in
Section 6 where the upper bound in Theorem 1.1 is proven. More specifically, it will be
used to deduce inequalities (6.9) and (6.21).

Proposition 2.8. Under the condition (1.5), there are constants 0 < C1 < C2 <∞ such
that for any θ > 0,

C1θ
α

α−β ≤ lim
t→∞

t−
2α−β−αβ0

α−β logE exp (θYt) ≤ C2θ
α

α−β . (2.21)
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Temporal asymptotics for fractional PAM

Similarly, under the condition (1.3), there are constants 0 < D1 < D2 <∞ such that for
any θ > 0,

D1θ
α

α−β ≤ lim
t→∞

t−
2α−β−αβ0

α−β logE exp

(
θ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)
≤ D2θ

α
α−β .

(2.22)

Remark 2.9. By the scaling property (2.2), the above asymptotics (2.21) is equivalent to

C1θ
α

α−β ≤ lim
t→∞

1

t
logE exp

(
θtβ0−1Yt

)
≤ C2θ

α
α−β . (2.23)

We also have a similar result for (2.22).

Proof. The proof is similar to [11, Proposition 2.1], but we include details for the reader’s
convenience. First we prove the lower bound in (2.21). Note that

Yt =

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds ≥ t−β0

∫ t

0

∫ t

0

γ(Xr −Xs)drds,

where the term on the right-hand side has the same distribution as

∫ t
2α−β−αβ0

2α−β

0

∫ t
2α−β−αβ0

2α−β

0

γ(Xr −Xs)drds

by the scaling property (2.2). Then the lower bound is an immediate consequence of
Lemma 2.7.

Now we show the upper bound of (2.21). By the symmetry of the integrand function,
we have

Yt = 2

∫∫
[0≤s≤r≤t]

|r − s|−β0γ(Xr −Xs)drds .

Thus, the upper bound in inequality (2.21) is equivalent to

lim sup
t→∞

t−
2α−β−αβ0

α−β logE exp

(
θ

∫∫
[0≤s≤r≤t]

|r − s|−β0γ(Xr −Xs)drds

)
≤ Cθ

α
α−β . (2.24)

Compared with lower bound, the estimation (2.24) is more difficult to obtain because
|r − s|−β0 is unbounded when r and s are close. We shall decompose the integral∫

[0≤s≤r≤t] |r−s|
−β0γ(Xr−Xs)drds and then apply Hölder inequality to obtain the desired

result. More precisely, let [0 ≤ s ≤ r ≤ t] = I1 ∪ I2 ∪ I3, where I1 = [0 ≤ s ≤ r ≤ t/2], I2 =

[t/2 ≤ s ≤ r ≤ t] and I3 = [0, t/2] × [t/2, t]. Noting that
∫∫
I1
|r − s|−β0γ(Xr − Xs)drds

and
∫∫
I2
|r − s|−β0γ(Xr −Xs)drds are mutually independent and are equal in law, by the

Hölder inequality,

E exp

(
θ

∫∫
[0≤s≤r≤t]

|r − s|−β0γ(Xr −Xs)drds

)

≤

(
E exp

(
θp

∫∫
I1

|r − s|−β0γ(Xr −Xs)drds

))2/p

×

(
E exp

(
θq

∫∫
I3

|r − s|−β0γ(Xr −Xs)drds

))1/q

,

where p−1 + q−1 = 1. Furthermore, by the scaling property (2.2),∫∫
I1

|r − s|−β0γ(Xr −Xs)drds
d
=
(1

2

) 2α−β−αβ0
α

∫∫
[0≤s≤r≤t]

|r − s|−β0γ(Xr −Xs)drds .
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Temporal asymptotics for fractional PAM

Taking p = 2
2α−β−αβ0

α , we have

E exp

(
θ

∫∫
[0≤r≤s≤t]

|r − s|−β0γ(Xr −Xs)drds

)

≤

(
E exp

(
θq

∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds

)) 1
q

p
p−2

.

Now to obtain (2.21), it suffices to show

lim sup
t→∞

t−
2α−β−αβ0

α−β logE exp

(
θ

∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds

)
≤ Cθ

α
α−β . (2.25)

Actually, decomposing [0, t/2] × [t/2, t] as A ∪ B, where A = [t/4, t/2] × [t/2, 3t/4] and
B = [0, t/2]× [t/2, t] \A, we have

E exp

(
θ

∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds

)

≤

(
E exp

(
θp

∫∫
A

|r − s|−β0γ(Xr −Xs)drds

))1/p

×

(
E exp

(
θq

∫∫
B

|r − s|−β0γ(Xr −Xs)drds

))1/q

, (2.26)

where 1/p + 1/q = 1 and p, q > 0 are to be determined later. Since X has stationary
increments and by (2.2), we have∫∫

A

|r − s|−β0γ(Xr −Xs)drds
d
=

∫ t/4

0

∫ t/2

t/4

|r − s|−β0γ(Xr −Xs)drds

d
=
(1

2

) 2α−β−αβ0
α

∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds .

Now let us choose p = 2
2α−β−αβ0

α , and the above identity combined with (2.26) yields

E exp

(
θ

∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds

)
≤ E exp

(
θq

∫∫
B

|r − s|−β0γ(Xr −Xs)drds

)
≤ E exp

(
θq

(
t

4

)−β0
∫ t

0

∫ t

0

γ(Xr −Xs)drds

)
≤ E exp

(
θq4β0

∫ tη

0

∫ tη

0

γ(Xr −Xs)drds

)
,

where η = 2α−β−αβ0

2α−β . Thus (2.25) follows from Lemma 2.7 with t being replaced by tη

and (2.21) is obtained.
The lower bound in (2.22) can be obtained in a similar way as for the lower bound in

(2.21), by using the second half of Lemma 2.7. Now we show the upper bound. Noting
that the stable process has stationary increments which are independent over disjoint
time intervals, we have∫ t/2

0

∫ t

t/2

|r − s|−β0γ(Xr −Xs)drds
d
=

∫ t/2

0

∫ t/2

0

|r − s|−β0γ(Xr − X̃s)drds.
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Temporal asymptotics for fractional PAM

By Remark 5.7 in [30], under the condition (1.3),

E exp

(
λ

∫ t

0

∫ t

0

|r − s|−β0γ(Xr − X̃s)drds

)
<∞ for all λ > 0.

Hence (2.25) still holds under the condition (1.3), and therefore the upper bound in
(2.22) is obtained. The proof is concluded.

3 Feynman-Kac large deviation for stable process

In this section, we will obtain a Feynman-Kac large deviation result (Proposition 3.1
below) for symmetric α-stable process, which is a space-time extension of Lemma 6 in
[12] and will play a critical role in the derivation of our main result. In [11] a similar
result for Brownian motion was obtained (Proposition 3.1 in that paper) in order to get
the precise moment Lyapunov exponent for the Stratonovich solution of heat equation.
The approach in [11] heavily depends on the local property of the Laplacian operator and
the property of Brownian motion such as the continuity of paths and the Gaussian tail
probability, and hence cannot be adapted to our situation, as the fractional Laplacian is a
non-local operator, the stable process is a pure jump process, and the stable distribution
is fat-tailed. Inspired by the idea in [12], instead of considering the stable process itself,
we shall consider the stable process restricted in bounded domains by taking its image
of quotient map, which will be elaborated below.

Fix a positive number M . Let TdM = Rd/MZd be the d-dimensional torus and XM
t be

the image of Xt under the quotient map from Rd to TdM . Then, XM is a Markov process
with independent increments on TdM , and its associated Dirichlet form is given by

Eα,M (f, f) :=
1

Md+α

∑
k∈Zd

|k|α|f̂(k)|2, (3.1)

where f̂ denotes the usual Fourier transform for functions on TdM , i.e., for k ∈ Zd,

f̂(k) :=

∫
TdM

f(x)e−2πik·x/Mdx =

∫
[0,M ]d

f(x)e−2πik·x/Mdx.

Here the function f on TdM is considered as an M -periodic function (with the same
symbol f ) on Rd, which means that f(x+ kM) = f(x) for any k ∈ Zd. Let

Fα,M := {f ∈ L2(TdM ) : ‖f‖2,TdM = 1 and Eα,M (f, f) <∞}, (3.2)

where

‖f‖2,TdM =
(
〈f, f〉2,TdM

)1/2

:=

(∫
TdM

|f(x)|2dx

)1/2

=

(∫
[0,M ]d

|f(x)|2dx

)1/2

is the L2-norm on TdM endowed with the Lebesgue measure.

Proposition 3.1. Let f(t, x) : [0, 1]×TdM → R be a continuous function. Then, we have

lim
t→∞

1

t
logE

[
exp

(∫ t

0

f(
s

t
,XM

s )ds

)]
=

∫ 1

0

λM (f(s, ·))ds, (3.3)

where λM (f) := sup
g∈Fα,M

{
〈g, fg〉2,TdM − Eα,M (g, g)

}
.
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Proof. Let {0 = s0 < s1 < · · · < sn−1 < sn = 1} be a uniform partition of the interval
[0, 1]. First, we consider the functions of the form

f(s, x) =

n−1∑
i=0

fi(x)I[si,si+1)(s) + fn−1(x)I{1}(s) .

By the Markov property, we have

E

[
exp

(∫ t

0

f(
s

t
,XM

s )ds

)]
= E

[
exp

(∫ t
n

0

f(
s

t
,XM

s )ds

)
exp

(∫ t

t
n

f(
s

t
,XM

s )ds

)]

= E

[
exp

(∫ t
n

0

f0(XM
s )ds

)
EXMt

n

[
exp

(∫ (1− 1
n )t

0

f(
s

t
+

1

n
,XM

s )ds

)]]

≥ E

[
exp

(∫ t
n

0

f0(XM
s )ds

)
; |XM

t
n
| < δ

]
inf
|x|<δ

Ex

[
exp

(∫ (1− 1
n )t

0

f(
s

t
+

1

n
,XM

s )ds

)]
,

where Ex denotes the expectation with respect to the stable process starting from x.
Repeating the above procedure, we can get

n−1∏
i=0

inf
|x|<δ

Ex

[
exp

(∫ t
n

0

fi(X
M
s )ds

)
; |XM

t
n
| < δ

]
≤ E

[
exp

(∫ t

0

f(
s

t
,XM

s )ds

)]
. (3.4)

Similarly, we have

E

[
exp

(∫ t

0

f(
s

t
,XM

s )ds

)]
≤
n−1∏
i=0

sup
x∈TdM

Ex

[
exp

(∫ t
n

0

fi(X
M
s )ds

)]
. (3.5)

First, we show that

lim
t→∞

1

t
log inf
|x|<δ

Ex

[
exp

(∫ t

0

fi(X
M
s )ds

)
; |XM

t | < δ

]
≥ λM (fi). (3.6)

By boundedness of fi and the Markov property, we have

Ex

[
exp

(∫ t

0

fi(X
M
s )ds

)
; |XM

t | < δ

]
≥ CEx

[
exp

(∫ t−1

1

fi(X
M
s )ds

)
; |XM

t | < δ

]
= C

∫
TdM

p̄(y − x)Ey

[
exp

(∫ t−2

0

fi(X
M
s )ds

)
EXMt−2

[
I[|XM1 |<δ]

]]
dy, (3.7)

where p̄(y) is the density function ofXM
1 . Note that p̄(y) is strictly positive and continuous

on TdM , and then, there exists ε > 0 such that infy∈RM p̄(y) ≥ ε and consequently

infx∈RM Ex

[
I[|XM1 |<δ]

]
≥ εδd. Therefore,

Ex

[
exp

(∫ t

0

fi(X
M
s )ds

)
; |XM

t | < δ

]
≥ Cε2δd

∫
TdM

Ey

[
exp

(∫ t−2

0

fi(X
M
s )ds

)]
dy. (3.8)

On the other hand, for any g ∈ Fα,M ,∫
TdM

Ey

[
exp

(∫ t−2

0

fi(X
M
s )ds

)]
dy

≥ ‖g‖−2
∞

∫
TdM

g(y)Ey

[
exp

(∫ t−2

0

fi(X
M
s )ds

)
g(XM

t−2)

]
dy

= ‖g‖−2
∞ 〈g, e−(t−2)(Tα,M−Vfi )g〉2,TdM , (3.9)
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Temporal asymptotics for fractional PAM

where in the last step Tα,M is the self-adjoint operator associated with the Dirichlet
form Eα,M , Vf is the operator of the multiplication of the function f , and the equality
follows from [12, Lemma 5]. By spectral representation theory, there exists a probability
measure µg(dλ) such that

〈g, fig〉2,TdM − Eα,M (g, g) = 〈g,−(Tα,M − Vfi)g〉2,TdM =

∫ ∞
−∞

λµg(dλ), (3.10)

and

〈g, e−(t−2)(Tα,M−Vfi )g〉2,TdM =

∫ ∞
−∞

e−(t−2)λµg(dλ) ≥ exp

(
−(t− 2)

∫ ∞
−∞

λµg(dλ)

)
.

(3.11)

Combining (3.10) and (3.11), we have

lim inf
t→∞

1

t
log〈g, e−(t−2)(Tα,M−Vfi )g〉2,TdM ≥ 〈g, fig〉2,TdM − Eα,M (g, g), (3.12)

and then, by choosing g arbitrarily, (3.6) follows from (3.8), (3.9) and (3.12).
Now we show that

lim sup
t→∞

1

t
log sup

x∈TdM
Ex

[
exp

(∫ t

0

fi(X
M
s )ds

)]
≤ λM (fi). (3.13)

Actually, by the uniform boundedness of fi on TdM and the Markov property of XM ,

Ex

[
exp

(∫ t

0

fi(X
M
s )ds

)]
≤ CEx

[
exp

(∫ t

1

fi(X
M
s )ds

)]
= C

∫
TdM

p̄(y − x)Ey

[
exp

(∫ t−1

0

fi(X
M
s )ds

)]
dy

= C〈p̄, e−(t−1)〈Tα,M−Vfi )1〉2,TdM .

By spectral representation, for any g ∈ Fα,M ,

〈g, e−(t−1)(Tα,M−Vfi )g〉2,TdM =

∫ ∞
−σ0

e−(t−1)λµg(dλ) ≤ e(t−1)σ0 ,

where −σ0 = −λM (fi) is the infimum of the spectrum of the operator Tα,M − Vfi . Hence

lim sup
t→∞

1

t
logEx

[
exp

(∫ t

0

fi(X
M
s )ds

)]
≤ λM (fi).

Combining (3.4), (3.5), (3.6) and (3.13), we have

lim
t→∞

1

t
logE

[
exp

(∫ t

0

f(
s

t
,XM

s )ds

)]
=

n−1∑
i=0

λM (fi)(si+1 − si). (3.14)

Finally, for general continuous function f(s, x) on [0, 1]×TdM , let

fn(s, x) =

n−1∑
i=0

f(si, x)I[si,si+1)(s) + f(sn−1, x)I{1}(s).

Then, by the uniform continuity of f on [0, 1] × TdM , fn converges to f uniformly. By
letting n go to infinity in (3.14), we can obtain (3.3).
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In the meantime, the lower bound in (3.3) also holds for the original stable process
X.

Proposition 3.2. For the stable process X on the whole Rd, if we assume that f(s, x)

is continuous in (s, x) on [0, 1] ×Rd and that the family {f(·, x), x ∈ Rd} of functions is
equicontinuous, Then, we can obtain the lower bound

lim inf
t→∞

1

t
logE

[
exp

(∫ t

0

f(
s

t
,Xs)ds

)]
≥
∫ 1

0

λ(f(s, ·))ds, (3.15)

where λ(f) = supg∈Fα,d

{
〈g, fg〉2,Rd − Eα(g, g)

}
.

Proof. The proof is similar to the lower bound part of the proof for Proposition (3.3). We
shall only sketch the idea.

We still start with the functions of the form

f(s, x) =

n−1∑
i=0

fi(x)I[si,si+1)(s) + fn−1(x)I{1}(s).

Fix a compact set D ⊂ Rd, Then, there exists a positive ε such that the density function
p(y) of X1 is bigger than ε for all y ∈ D. For any g ∈ Fα with support inside D, using a
similar argument as (3.8) – (3.12), we can get

lim inf
t→∞

1

t
logEx

[
exp

(∫ t

0

fi(Xs)ds

)
; |Xt| < δ

]
≥ 〈g, fig〉α,Rd − Eα(g, g).

Therefore, for any g ∈ Fα with compact support, we have

lim inf
t→∞

1

t
logE

[
exp

(∫ t

0

fi(Xs)ds

)]
≥ 〈g, fig〉α,Rd − Eα(g, g),

and hence

lim inf
t→∞

1

t
logE

[
exp

(∫ t

0

fi(Xs)ds

)]
≥ λ(fi).

Finally, (3.15) follows from a limiting argument.

4 A variational inequality

In this section, we will establish a lower bound for ‖uρ(t, x)‖p for p ≥ 1, ρ ∈ [0, 1],
where uρ is given by (1.8) when ρ ∈ [0, 1) under the condition (1.5) and u1(t, x) is the
Skorohod solution ũ(t, x) under the condition (1.3). This will be used to obtain the lower
bound in Theorem 1.1.

First let us introduce some notations by recalling Dalang’s approach (see [15]) of
defining stochastic integral with respect to the Gaussian noise Ẇ . Let D(Rd+1) be the
set of smooth functions on Rd+1 with compact support, and H be the Hilbert space
spanned by D(Rd+1) under the inner product

〈ϕ,ψ〉H :=

∫
R2

∫
R2d

|r − s|−β0γ(x− y)ϕ(r, x)ψ(s, y)drdsdxdy, ∀ϕ,ψ ∈ D(Rd+1). (4.1)

In the probability space (Ω,F ,P), let W = {W (h), h ∈ H} be an isonormal Gaussian
process with covariance function being given by E[W (h)W (g)] = 〈h, g〉H. We also write,
for h ∈ H,

W (h) =

∫
R

∫
Rd
h(s, x)W (ds, dx).
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Denote the Fourier transforms of |s|−β0 and γ(x) by µ0(dτ) and µ(dξ), respectively, then

µ0(dτ) = Cβ0
|τ |β0−1dτ ; (4.2)

µ(dξ) =

{
Cβ,d|ξ|β−ddξ, for γ(x) = |x|−β ,∏d
j=1 Cβj |ξ|βj−1dξ, for γ(x) =

∏d
j=1 |xj |−βj .

(4.3)

The Parseval’s identity provides an alternative representation for the inner product,

E[W (ϕ)W (ψ)] = 〈ϕ,ψ〉H =

∫
R

∫
Rd
ϕ̂(τ, ξ)ψ̂(τ, ξ)µ0(dτ)µ(dξ), for ϕ,ψ ∈ S(Rd+1).

With the above notations (1.3) is equivalent to the following general form of the
Dalang’s condition ∫

Rd

1

1 + |ξ|α
µ(dξ) <∞, (4.4)

and (1.5) is equivalent to ∫
Rd

1

1 + |ξ|α(1−β0)
µ(dξ) <∞ . (4.5)

Now we recall the approximation procedure used in [21, 22, 30], which we shall
use in the proof of the main result in this section. Denote gδ(t) := 1

δ I[0,δ](t) for t ≥ 0

and pε(x) = 1
εd
p(xε ) for x ∈ Rd, where p(x) ∈ D(Rd) is a symmetric probability density

function and its Fourier transform p̂(ξ) ≥ 0 for all ξ ∈ Rd. For positive numbers ε and δ,
define

Ẇ ε,δ(t, x) :=

∫ t

0

∫
Rd
gδ(t− s)pε(x− y)W (ds, dy) = W (φε,δt,x), (4.6)

where

φε,δt,x(s, y) := gδ(t− s)pε(x− y) · I[0,t](s).

Consider the following approximation of (1.2){
uε,δ(t, x) = −(−∆)

α
2 uε,δ(t, x) + uε,δ(t, x)Ẇ ε,δ(t, x),

uε,δ(0, x) = u0(x).
(4.7)

Then, Feynman-Kac formula for the Stratonovich solution uε,δ is

uε,δ(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0

Ẇ ε,δ(r,Xx
t−r)dr

)]
,

and the Feynman-Kac formula for the Skorohod solution ũε,δ(t, x) is

ũε,δ(t, x) =EX

[
u0(Xx

t ) exp

(∫ t

0

Ẇ ε,δ(r,Xx
t−r)dr −

1

2

∫
Rd+1

|FΦε,δt,x(τ, ξ)|2µ0(dτ)µ(dξ)

)]
,

where

Φε,δt,x(u, y) :=

∫ t

0

gδ(t− u− s)pε(Xx
s − y)ds · I[0,t](u). (4.8)

Note that ∫ t

0

Ẇ ε,δ(r,Xx
t−r)dr =

∫
R

∫
Rd

Φε,δt,x(u, y)W (du, dy),

by stochastic Fubini’s theorem.
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For ρ ∈ [0, 1], define the following random Hamiltonian,

Hρ
ε,δ(t, x) :=

∫ t

0

Ẇ ε,δ(r,Xx
t−r)dr −

ρ

2

∫
Rd+1

|FΦε,δt (τ, ξ)|2µ0(dτ)µ(dξ),

and denote
uρε,δ(t, x) := EX

[
exp

(
Hρ
ε,δ(t, x)

)]
. (4.9)

Then, for all fixed (t, x) ∈ R+ ×Rd, under the condition (1.5), for all ρ ∈ [0, 1], Hρ
ε,δ(t, x)

converges to

Hρ(t, x) :=

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)− ρ

2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

(see Theorem 4.1 in [30]) and uρε,δ(t, x) converges to uρ(t, x) := EX [exp (Hρ(t, x))] in Lp

for all p ≥ 1 (see Theorem 4.6 in [30]). Under the less restrictive condition (1.3), the Lp

convergence only holds when ρ = 1 (this corresponds to the Skorohod solution ũ(t, x) of
(1.2). See Theorem 5.6 in [30]).

The following is the main result in this section.

Proposition 4.1. We assume one of the following conditions

(i) The condition (1.5) is satisfied and ρ ∈ [0, 1].
(ii) Dalang’s condition (1.3) is satisfied and ρ = 1.

Let p ≥ 1, and when p = 1 we assume ρ ∈ [0, 1). Then, for any (t, x) ∈ R+ ×Rd,

(E|uρ(t, x)|p)1/p

≥ sup
g∈SH(Rd+1)

EX

[
exp

(∫ t

0

(F̃g)(s,Xs)ds−
1

2(p− ρ)

∫
Rd+1

|g(τ, ξ)|2µ0(dτ)µ(dξ)

)]
,

where
SH(Rd+1) =

{
g ∈ SC(Rd+1); g(−τ,−ξ) = g(τ, ξ)

}
, (4.10)

with SC(Rd+1) denoting the space of complex-valued smooth functions that decrease
rapidly, and

(F̃g)(s, x) =

∫
Rd+1

e−2πi(τs+ξ·x)g(τ, ξ)µ0(dτ)µ(dξ). (4.11)

Proof. First, we consider the case p > 1 and ρ ∈ [0, 1]. Let q := p(p − 1)−1 be the
conjugate of p. Let ϕ(t, x) ∈ S(Rd+1) be a real function, and denote

Xϕ = exp

(∫
R

∫
Rd
ϕ(s, y)W (ds, dy)− q

2

∫
Rd+1

|ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)
.

Note that Xϕ ∈ Lq(Ω) and ‖Xϕ‖q = 1. Hence, by Hölder’s inequality, we see

‖uρε,δ(t, x)‖p ≥ E
[
uρε,δ(t, x)Xϕ

]
= EWEX

[
exp

(∫
R

∫
Rd

[
Φε,δt,x(s, y) + ϕ(s, y)

]
W (ds, dy)

− ρ

2

∫
Rd+1

|FΦε,δt,x(τ, ξ)|2µ0(dτ)µ(dξ)− q

2

∫
Rd+1

|ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)]

= EX

[
exp

(
1− ρ

2

∫
Rd+1

|FΦε,δt,x(τ, ξ)|2µ0(dτ)µ(dξ)

+

∫
Rd+1

FΦε,δt,x(τ, ξ)ϕ̂(τ, ξ)µ0(dτ)µ(dξ)− q − 1

2

∫
Rd+1

|ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)]
.
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Note that for any x ≥ 1,

(1− ρ)a2 + 2ab− (q − 1)b2 = (1− ρ)a2 + 2(1− x)ab+ 2xab− (q − 1)b2

≥ − (x− 1)2

1− ρ
b2 + 2xab− (q − 1)b2 = 2xab−

(
(q − 1) +

(x− 1)2

1− ρ

)
b2 .

If we choose the optimal value c0 = 1 + (1− ρ)(q − 1) for x, Then, we have

(1− ρ)a2 + 2ab− (q − 1)b2 ≥ 2a(c0b)−
1

p− ρ
(c0b)

2 .

In fact this argument also gives

(1− ρ)‖a‖2H + 2〈a, b〉H − (q − 1)‖a‖2H ≥ 2〈a, (c0b)〉H −
1

p− ρ
‖c0b‖2H , ∀ a, b ∈ H , (4.12)

where H is a (complex) Hilbert space with scalar product 〈·, ·〉H. Applying (4.12) to
a = FΦε,δt,x(τ, ξ), b = ϕ̂(τ, ξ) and the scalar product 〈a, b〉H =

∫
Rd+1 a(τ, ξ)b(τ, ξ)µ0(dτ)µ(dξ)

yields

‖uρε,δ(t, x)‖p ≥EX

[
exp

(∫
Rd+1

FΦε,δt,x(τ, ξ)
(
c0ϕ̂(τ, ξ)

)
µ0(dτ)µ(dξ)

− 1

2

1

p− ρ

∫
Rd+1

|c0ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)]
. (4.13)

Note that

FΦε,δt,x(τ, ξ) =

∫ t

0

exp(−2πi(τ(t− s) + ξ ·Xs))F
(

1

δ
I[0,(t−s)∧δ](·)

)
(τ)p̂ε(ξ)ds

which converges to
∫ t

0
exp(−2πi(τ(t− s) + ξ ·Xs))ds as ε and δ go to 0. Letting ε and δ go

to 0 in (4.13) yields

‖uρ(t, x)‖p ≥EX

[
exp

(∫ t

0

∫
Rd+1

exp(−2πi(τ(t− s) + ξ ·Xs))
(
c0ϕ̂(τ, ξ)

)
µ0(dτ)µ(dξ)ds

− 1

2

1

p− ρ

∫
Rd+1

|c0ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)]
.

The proof is concluded for the case p > 1, noting that F(SC(Rd+1)) = SC(Rd+1), and
ϕ̂(−τ,−ξ) = ϕ̂(τ, ξ) since ϕ is a real function.

When p = 1 and ρ ∈ [0, 1), we have

E[uρε,δ(t, x)] =EX

[
exp

(
1− ρ

2

∫
Rd+1

|FΦε,δt,x(τ, ξ)|2µ0(dτ)µ(dξ)

)]

≥EX

[
exp

(∫
Rd+1

FΦε,δt,x(τ, ξ)
(
c0ϕ̂(τ, ξ)

)
µ0(dτ)µ(dξ)

− 1

2

1

1− ρ

∫
Rd+1

|c0ϕ̂(τ, ξ)|2µ0(dτ)µ(dξ)

)]
.

where the last step follows from (1− ρ)a2 ≥ 2ab− 1
1−ρb

2. The result can be deduced in a
similar way.

Remark 4.2. The result still holds if the α-stable process X in uρ(t, x) is replaced by a
general symmetric Lévy process with characteristic function E[eiξ·Xt ] = e−tΨ(ξ). In this
case, the conditions (1.5) and (1.3) are

∫
Rd

1
1+[Ψ(ξ)]1−β0

µ(dξ) <∞ and
∫
Rd

1
1+Ψ(ξ)µ(dξ) <

∞, respectively.
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5 On the lower bound

In this section, we establish the lower bound in Theorem 1.1 for all p ≥ 1. Note
that µ0(d(cτ)) = cβ0µ0(dτ) and µ(d(cξ)) = cβµ(dξ) for any c > 0, by (4.2) and (4.3).
Consequently, for h ∈ SH(Rd+1), where SH(Rd+1) is given in (4.10), we have

(F̃h(a·, b∗))(s, x) = a−β0b−β(F̃h(·, ∗))(a−1s, b−1x), a > 0, b > 0, (5.1)

where F̃g is defined by (4.11).
Now let

tp = tχ(p− ρ)
α

α−β for p ≥ 1, with χ =
2α− β − αβ0

α− β
, (5.2)

and for any h ∈ SH(Rd+1) denote

ht(τ, ξ) = t(p− ρ)h
(
tτ, (p− ρ)−

1
α−β t−

χ−1
α ξ
)
.

Then, by (5.1), change of variables and the self-similarity of the α-stable process, we
have ∫ tp

0

(F̃h)(
s

tp
, Xs)ds

d
=

∫ t

0

(F̃ht)(s,Xs)ds,

and ∫
Rd+1

|ht(τ, ξ)|2µ0(dτ)µ(dξ) = (p− ρ)tp

∫
Rd+1

|h(τ, ξ)|2µ0(dτ)µ(dξ).

Clearly, ht ∈ SH(Rd+1). Proposition 4.1 and the above two identities imply

‖uρ(t, x)‖p ≥ EX
[
exp

(∫ t

0

(F̃ht)(s,Xs)ds−
1

2(p− ρ)

∫
Rd+1

|ht(τ, ξ)|2µ0(dτ)µ(dξ)

)]
= EX

[
exp

(∫ tp

0

(F̃h)(
s

tp
, Xs)ds−

tp
2

∫
Rd+1

|h(τ, ξ)|2µ0(dτ)µ(dξ)

)]
.

By Proposition 3.2,

lim inf
t→∞

1

tp
logEX

[
exp

(∫ tp

0

(F̃h)(
s

tp
, Xs)ds

)]
≥
∫ 1

0

λ((F̃h)(s, ·))ds

=

∫ 1

0

sup
g∈Fα

{∫
Rd

(F̃h)(s, x)g2(x)dx−
∫
Rd
|ξ|α|ĝ(ξ)|2dξ

}
ds

= sup
g∈Aα,d

{∫ 1

0

∫
Rd

(F̃h)(s, x)g2(s, x)dxds−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
,

where Aα,d is given by (1.11). Therefore,

lim inf
t→∞

t−χ log ‖uρ(t, x)‖p

≥ (p− ρ)
α

α−β sup
g∈Aα,d

{
Γ(h, g)−

∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
≥ (p− ρ)

α
α−β sup

g∈Aα,d

{
sup

h∈SH(Rd+1)

Γ(h, g)−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
, (5.3)

where

Γ(h, g) =

∫ 1

0

∫
Rd

(F̃h)(s, x)g2(s, x)dxds− 1

2

∫
Rd+1

|h(τ, ξ)|2µ0(dτ)µ(dξ)

=

∫
Rd+1

h(τ, ξ)(Fg2)(τ, ξ)µ0(dτ)µ(dξ)− 1

2

∫
Rd+1

|h(τ, ξ)|2µ0(dτ)µ(dξ).
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Since SH(Rd+1) is dense in L2(Rd+1, µ0 ⊗ µ) (see, e.g., [24]), and Γ(·, g) is continuous
with respect to the L2(Rd+1, µ0 ⊗ µ)-norm, we have

sup
h∈SH(Rd+1)

Γ(h, g) ≥ Γ
(
F(g2)(−τ,−ξ), g

)
=

1

2

∫
Rd+1

|(Fg2)(τ, ξ)|2µ0(dτ)µ(dξ)

=
1

2

∫ 1

0

∫ 1

0

∫
R2d

γ(x− y)

|s− r|β0
g2(s, x)g2(r, y)dxdydrds.

Summarizing the computations starting from (5.3), we have

lim inf
t→∞

t−χ log ‖uρ(t, x)‖p

≥ (p− ρ)
α

α−β sup
g∈Aα,d

{
1

2

∫ 1

0

∫ 1

0

∫
R2d

γ(x− y)

|s− r|β0
g2(s, x)g2(r, y)dxdydrds

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
= (p− ρ)

α
α−βM(α, β0, d, γ),

and the lower bound is established.

6 On the upper bound

In this section, we provide a proof for the upper bound in Theorem 1.1. In Subsections
6.1 and 6.2, we shall obtain the upper bound for any positive integer n ≥ 1, i.e.,

lim sup
t→∞

t−
2α−β−αβ0

α−β logE exp

(
1

2

n∑
j,k=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

− ρ

2

n∑
j=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds

)
≤ n(n− ρ)

α
α−βM(α, β0, d, γ). (6.1)

The proof for real number p ≥ 2 is inspired by the idea in [26]. We shall compare
‖uρ(t, x)‖p with ‖uρ(t, x)‖2 by using the Mehler’s formula and hypercontractivity of the
Ornstein-Uhlenbeck semigroup operators. First, we address the case when ρ ∈ [0, 1],
under the condition (1.5).

Let W ′ = {W ′(h), h ∈ H} be an independent copy of W = {W (h), h ∈ H}, and let
W : Ω → RH and W ′ : Ω → RH be the canonical mappings associated with W and W ′,
respectively. For any F ∈ L2(Ω), there is a measurable mapping ψF from RH to R such
that F = ψF ◦W . Denote by {Tτ , τ ≥ 0} the Ornstein-Uhlenbeck semigroup associated
with W . By Mehler’s formula (see, e.g., [28]),

Tτ (F ) = E′
[
ψF (e−τW +

√
1− e−2τW ′)

]
,

where E′ denotes the expectation with respect to W ′. For p ∈ (1,∞) and τ ≥ 0, define
q = 1 + e2τ (p − 1), Then, the Ornstein-Uhlenbeck semigroup operators possess the
following hypercontractivity property (see, e.g., [28]),

‖TτF‖q ≤ ‖F‖p. (6.2)

Now fix q ≥ 2. Let e2τ = q − 1, Then, ‖TτF‖q ≤ ‖F‖2. Let ρ̃ = ρ+q−2
q−1 ∈ [0, 1). By (1.8) and
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Mehler’s formula,

Tτu
ρ̃(t, x) = E′EX

[
exp

(
e−τ

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)

+
√

1− e−2τ

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W ′(dr, dy)− ρ̃

2

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]

= EX

[
exp

(
e−τ

∫ t

0

∫
Rd
δ0(Xx

t−r − y)W (dr, dy)

+
1

2
(1− ρ̃− e−2τ )

∫ t

0

∫ t

0

|r − s|−β0γ(Xr −Xs)drds

)]

= EX

[
exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)Wτ (dr, dy)− ρ

2

∫ t

0

∫ t

0

|r − s|−β0γτ (Xr −Xs)drds

)]
,

where in the last step Wτ = e−τW and γτ (x) = e−2τγ(x). By (6.2) with p = 2, (6.1) with
n = 2, and the scaling property (1.13) of M(α, β0, d, γ), we have

‖Tτuρ̃(t, x)‖q ≤ (2− ρ̃)
α

α−βM(α, β0, d, γ)

= (2− ρ̃)
α

α−β e
2τα
α−βM(α, β0, d, γτ ) = (q − ρ)

α
α−βM(α, β0, d, γτ ).

Observing that

Tτu
ρ̃(t, x)

= EX

[
exp

(∫ t

0

∫
Rd
δ0(Xx

t−r − y)Wτ (dr, dy)− ρ

2

∫ t

0

∫ t

0

|r − s|−β0γτ (Xr −Xs)drds

)]
,

the upper bound in Theorem 1.1 for any real number q ≥ 2 follows from the scaling
property (1.13).

Finally, for the case ρ = 1 under the condition (1.3), in which uρ(t, x) is the Skorohod
solution to (1.2), we can apply the approach in [26] and obtain the upper bound for all
real numbers p ≥ 2.

6.1 Upper bound under the condition (1.5)

In this subsection, we deal with the case ρ ∈ [0, 1] under the condition (1.5). The
proof will be split into four steps.
Step 1. In this step, we will reduce the study of n-th moment to the study of first moment.
Recall that (2.6) and (2.7) imply∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds

= C0C(γ)

∫
Rd+1

(∫ t

0

|s− u|−
β0+1

2 K(x−Xk
s )ds

∫ t

0

|r − u|−
β0+1

2 K(x−Xj
r )dr

)
dudx .

(6.3)

Therefore, by the inequality (
∑n
j=1 aj)

2 ≤ n
∑n
j=1 a

2
j , we have

n∑
j,k=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xk

s )drds− ρ
n∑
j=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds

≤ (n− ρ)

n∑
j=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds.
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Consequently, to obtain the upper bound in Theorem 1.1, it suffices to show

lim sup
t→∞

t−
2α−β−αβ0

α−β logE

exp

n− ρ
2

n∑
j=1

∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds


≤ n(n− ρ)

α
α−βM(α, β0, d, γ). (6.4)

By the scaling property (2.2), we see∫ t

0

∫ t

0

|r − s|−β0γ(Xj
r −Xj

s )drds
d
=

1

tn

1

n− ρ

∫ tn

0

∫ tn

0

γ(Xj
r −Xj

s )

|t−1
n (r − s)|β0

drds,

where tn = t
2α−β−αβ0

α−β (n− ρ)
α

α−β is given in (5.2). Therefore, noting the scaling property
(1.13) of M(α, β0, d, γ), (6.4) is equivalent to

lim sup
t→∞

1

t
logE

[
exp

(
1

2t

∫ t

0

∫ t

0

γ(Xr −Xs)

|t−1(r − s)|β0
drds

)]
≤M(α, β0, d, γ). (6.5)

Now, to obtain the upper bound, it suffices to prove (6.5). To this goal, we shall use
the representations (2.6) and (2.7) for the covariance functions. But in these two
representations, the integrals are over infinite domains. We shall approximate them by
bounded, continuous, and locally supported functions, and this will enable us to apply
Hahn-Banach theorem in Step 4.

Step 2. In this step, we will replace the temporal covariance function by a smooth
function with compact support. Let the function % : R+ → [0, 1] be a smooth function
such that %(u) = 1, u ∈ [0, 1], %(u) = 0 for u ≥ 3, and −1 ≤ %′(u) ≤ 0. Define the following
truncated functions

kA(u) = |u|−
1+β0

2 %(A−1|u|), kA,a(u) = |u|−
1+β0

2 %(A−1|u|)(1− %(a−1|u|)), (6.6)

with A > 0 being a large number and a > 0 being a number close to zero.
Then, by Hölder’s inequality, we have for any ε > 0

E

[
exp

(
1

2t

∫ t

0

∫ t

0

γ(Xr −Xs)

|t−1(r − s)|β0
drds

)]
=E

[
exp

(
C0C(γ)

1

2t

∫
Rd+1

(∫ t

0

|t−1(s− u)|−
β0+1

2 K(x−Xs)ds

)2

dudx

)]

≤

(
E

[
exp

(
(1 + ε)C0C(γ)

p

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))K(x−Xs)ds

)2

dudx

)])1/p

×

(
E

[
exp

(
(1 +

1

ε
)C0C(γ)

q

2t

∫
Rd+1

(∫ t

0

k̃A,a(t−1(s− u))K(x−Xs)ds

)2

dudx

)])1/q

,

(6.7)

where
k̃A,a(u) = |u|−

1+β0
2 − kA,a(u).

Note that

k̃A,a(u) = (|u|−
1+β0

2 − kA(u)) + (kA(u)− kA,a(u))

≤ |u|−
1+β0

2 I[|u|≥A] + |u|−
1+β0

2 I[|u|≤2a]

≤ A−
β0−β

′
0

2 |u|−
β′0+1

2 + (2a)
β̃0−β0

2 |u|−
β̃0+1

2 , (6.8)
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for 0 < β′0 < β0 < β̃0 < 1. We may choose β′0 and β̃0 such that (α, β′0, β) and (α, β̃0, β)

satisfy the condition (1.5) if ρ ∈ [0, 1) or the condition (1.3) if ρ = 1.

Combining (2.6) and (6.8), for the second term in (6.7), we have

lim sup
t→∞

1

t
logE

[
exp

(
(1 +

1

ε
)C0C(γ)

q

2t

∫
Rd+1

(∫ t

0

k̃A,a(t−1(s− u))K(x−Xs)ds

)2

dudx

)]

≤ lim sup
t→∞

1

t
logE

[
exp

(
C(ε, q)

[
A−(β0−β′0) 1

2t

∫ t

0

∫ t

0

|r − s|−β
′
0γ(Xr −Xs)drds

+(2a)β̃0−β0
1

2t

∫ t

0

∫ t

0

|r − s|−β̃0γ(Xr −Xs)drds

])]
≤ C

(
α, β, ε, q, γ(·)

)(
A−

α(β0−β
′
0)

α−β + (2a)
α(β̃0−β0)
α−β

)
(6.9)

where the last step follows from Hölder’s inequality and (2.23). Therefore, for fixed (ε, q),
this term can be as small as we wish if we choose A sufficiently large and a sufficiently
small. On the other hand, we can choose ε arbitrarily close to 0 and p arbitrarily close to
1. Consequently, to prove (6.5), it suffices to prove

lim sup
t→∞

1

t
logE

[
exp

(
C0C(γ)

1

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))K(x−Xs)ds

)2

dudx

)]
≤M(α, β0, d, γ). (6.10)

Step 3. In this step, we will replace the spatial covariance function by a smooth
function with compact support. Similarly to the truncation for the temporal covariance
function, for 0 < b < B <∞, we let

KB,b(x) = K(x)%(B−1|x|)(1− %(b−1|x|)),

where K(x) is given in (2.8). Then, 0 ≤ KB,b(x) ≤ K(x) and KB,b(x) → K(x) when
B →∞ and b→ 0. Now the left-hand side of (6.10) can be estimated in the similar way
as in (6.7), i.e.,

E

[
exp

(
C0C(γ)

1

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))K(x−Xs)ds

)2

dudx

)]

≤

(
E

[
exp

(
(1 + ε)C0C(γ)

p

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))KB,b(x−Xs)ds

)2

dudx

)]) 1
p

×

(
E

[
exp

(
(1 +

1

ε
)C0C(γ)

q

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))K̃B,b(x−Xs)ds

)2

dudx

)]) 1
q

,

where K̃B,b(x) = K(x) −KB,b(x). Noting that kA,a(u) is supported on [−2A, 2A] and is
uniformly bounded (say, by L), we have

E

[
exp

(
(1 +

1

ε
)C0C(γ)

q

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))K̃B,b(x−Xs)ds

)2

dudx

)]

≤E

[
exp

(
(1 +

1

ε
)C0C(γ)L2(4A+ 2)

q

2t

∫
Rd

(∫ t

0

K̃B,b(x−Xs)ds

)2

dx

)]
.
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Using that (a+b)2

t+s ≤
a2

t + b2

s , we have

1

t+ s

∫
Rd

(∫ t+s

0

K̃B,b(x−Xr)dr

)2

dx

≤1

t

∫
Rd

(∫ t

0

K̃B,b(x−Xr)dr

)2

dx+
1

s

∫
Rd

(∫ t+s

t

K̃B,b(x−Xr)dr

)2

dx

=
1

t

∫
Rd

(∫ t

0

K̃B,b(x−Xr)dr

)2

dx+
1

s

∫
Rd

(∫ s

0

K̃B,b(x− (Xt+r −Xt))dr

)2

dx,

where the last equality follows from a change of variable for s and the fact that the
Lebesgue measure on Rd is invariant under the translation x→ x+Xt. Hence, by the
independent and stationary properties of the increments of Lévy processes, we have

E

[
exp

(
C

t+ s

∫
Rd

(∫ t+s

0

K̃B,b(x−Xr)dr

)2

dx

)]

≤E

[
exp

(
C

t

∫
Rd

(∫ t

0

K̃B,b(x−Xr)dr

)2

dx

)]
E

[
exp

(
C

s

∫
Rd

(∫ s

0

K̃B,b(x−Xr)dr

)2

dx

)]
.

Therefore,

lim sup
t→∞

1

t
logE

[
exp

(
C

t+ s

∫
Rd

(∫ t+s

0

K̃B,b(x−Xr)dr

)2

dx

)]

≤ lim sup
t→∞

1

t
log

(
E

[
exp

(
C

∫
Rd

(∫ 1

0

K̃B,b(x−Xr)dr

)2

dx

)])t

= logE

[
exp

(
C

∫
Rd

(∫ 1

0

K̃B,b(x−Xr)dr

)2

dx

)]
. (6.11)

By Theorem 2.3 we have by Dalang’s condition (1.3)

E

[
exp

(
θC(γ)

∫
Rd

(∫ 1

0

K(x−Xs)ds

)2

dx

)]

= E

[
exp

(
θ

∫ 1

0

∫ 1

0

γ(Xr −Xs)drds

)]
<∞

for any θ > 0. Now letting B →∞ and b→ 0, by the dominated convergence theorem
we see that the term on the right-hand side of (6.11) goes to 0.

Now combining all the inequalities after (6.10), noting that we can choose ε arbitrarily
close to 0, and p arbitrarily close to 1, we have that (6.10) can be reduced to

lim sup
t→∞

1

t
logE

[
exp

(
C0C(γ)

1

2t

∫
Rd+1

(∫ t

0

kA,a(t−1(s− u))KB,b(x−Xs)ds

)2

dudx

)]
≤M(α, β0, d, γ).

Step 4. Summarizing the arguments in Step 2 and Step 3, we see that to obtain the
upper bound in Theorem 1.1, it suffices to show

lim sup
t→∞

1

t
logE

[
exp

(
θ

2t
C0C(γ)

∫
Rd+1

[∫ t

0

kA,a(t−1(s− u))KB,b(x−Xs)ds

]2

dudx

)]
≤ θ

α
α−βM(α, β0, d, γ). (6.12)
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In this final step, we will prove the above inequality. Fix positive constants A, a,B, b and
choose arbitrarily M > 2 max{A,B}.∫

Rd+1

[ ∫ t

0

kA,a(u− t−1s)KB,b(x−Xs)ds

]2

dudx

=
∑
k∈Z

∑
z∈Zd

∫
[0,M ]d+1

[ ∫ t

0

kA,a(Mk + u− t−1s)KB,b(Mz + x−Xs)ds

]2

dudx

≤
∫

[0,M ]d+1

[∑
j∈Z

∑
z∈Zd

∫ t

0

kA,a(Mj + u− t−1s)KB,b(Mz + x−Xs)ds

]2

dudx

=

∫
[0,M ]d+1

[ ∫ t

0

k̃M (u− t−1s)K̃M (x−Xs)ds

]2

dudx , (6.13)

where

k̃M (u) =
∑
j∈Z

kA,a(Mj + u) and K̃M (x) =
∑
z∈Zd

KB,b(Mz + x) (6.14)

are M -periodic functions. Note that the summations in (6.14) are well-defined, since the
supports of kA,a(·) and KB,b(·) are bounded domains. The process

φt(u, x) :=
1

t

∫ t

0

k̃M (u− t−1s)K̃M (x−Xs)ds , (u, x) ∈ [0,M ]d+1, (6.15)

can be considered as a process taking values in the Hilbert space L2([0,M ]d+1) with the
norm denoted by ‖ · ‖. Since k̃M and K̃M are bounded, smooth functions with bounded
derivatives, there is a constant C > 0, such that

‖φt(·, ·)‖ ≤ C and ‖φt(·+ u1, ·+ x1)− φt(·+ u2, ·+ x2)‖ ≤ C|(u1, x1)− (u2, x2)|

for all t and (u1, x1), (u2, x2) ∈ [0,M ]d+1. Let K be the closure of the following set in
L2([0,M ]d+1):{

f ∈ L2([0,M ]d+1) : ‖f‖ ≤ C and ‖f(·+ u1, ·+ x1)− f(·+ u2, ·+ x2)‖

≤ C|(u1, x1)− (u2, x2)| for (u1, x1), (u2, x2) ∈ [0,M ]d+1
}
.

Then, φt defined in (6.15) belongs to K, and it follows from [19, Theorem IV8.21] that K
is compact in L2([0,M ]d+1).

Let δ > 0 be fixed. For any g ∈ K, noting that the set of bounded and continuous
functions are dense in L2([0,M ]d+1), the Hahn-Banach theorem ([31]) implies that there
is a bounded and continuous function f ∈ L2([0,M ]d+1) such that ‖g‖2 < −‖f‖2 +2〈f, g〉+
δ. By the finite cover theorem for compact sets, one can find finitely many bounded and
continuous functions f1, · · · , fm such that ‖g‖2 < δ + max1≤i≤m{−‖fj‖2 + 2〈fi, g〉} for all
g ∈ K. In particular, we have, noting that φt ∈ K,

E
[
e

1
2 θt‖φt‖

2
]
≤ e 1

2 δθt
m∑
i=1

e−
1
2 θt‖fi‖

2

E
[
eθt〈fi,φt〉

]
.

Therefore,

lim sup
t→∞

1

t
logE

[
e

1
2 θt‖φt‖

2
]
≤ 1

2
δ + max

1≤i≤m

{
−1

2
θ‖fi‖2 + lim sup

t→∞

1

t
logE

[
eθt〈fi,φt〉

]}
.

(6.16)
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Notice that, for i = 1, . . . ,m,

t〈fi, φt〉 =

∫ t

0

[ ∫
[0,M ]d+1

fi(u, x)k̃M (u− t−1s)K̃M (x−Xs)dudx

]
ds =

∫ t

0

f̄i

(s
t
,Xs

)
ds ,

where

f̄i(s, x) =

∫
[0,M ]d+1

fi(u, y)k̃M (u− s)K̃M (y − x)dudy (s, x) ∈ [0, 1]×Rd.

Since K̃M is a periodic function and K̃M (x−Xs) = K̃M (x−XM
s ), we have that

t〈fi, φt〉 =

∫ t

0

f̄i

(s
t
,XM

s

)
ds .

It is easy to check that f̄i satisfies the condition in Proposition 3.1. Hence,

lim
t→∞

1

t
logE

[
eθt〈fi,φt〉

]
= sup
g∈AMα,d

{
θ

∫ 1

0

∫
TdM

f̄i(s, x)g2(s, x)dxds−
∫ 1

0

Eα,M (g(s, ·), g(s, ·))ds
}
,

where

AMα,d =

{
g(s, ·) ∈ L2(TdM ) : ‖g(s, ·)‖TdM = 1,∀s ∈ [0, 1] and

∫ 1

0

Eα,M (g(s, ·), g(s, ·))ds <∞
}
.

Notice that∫ 1

0

∫
Rd
f̄i(s, x)g2(s, x)dxds

=

∫
[0,M ]d+1

fi(u, y)

[ ∫ 1

0

∫
TdM

k̃M (u− s)K̃M (y − x)g2(s, x)dxds

]
dudy

≤1

2
‖fi‖2 +

1

2

∫
[0,M ]d

∫
R

[∫ 1

0

∫
TdM

|u− s|−
1+β0

2 K̃M (y − x)g2(s, x)dxds

]2

dudy. (6.17)

Since δ in (6.16) can be arbitrarily small and M in (6.17) can be arbitrarily large, the
desired inequality (6.12) follows from inequalities (6.13) – (6.17) and Lemma 7.3.

6.2 When ρ = 1 under the condition (1.3)

In this subsection, we consider the Skorohod case, i.e., ρ = 1, under the condition
(1.3), by applying the methodology used in Section 6.1. However, under condition (1.3),
there will be a technical issue in step 1, since the left-hand side of (6.5) is infinity
if condition (1.5) is violated. To deal with this issue, we will first, do step 2 for n-th
moments which reduces |s|−β0 to a smooth function with compact support, and then, we
do step 1 to reduce the n-th moment to first moment.

More precisely, as in Step 1 in Section 6.1, when ρ = 1, (6.1) is equivalent to

lim sup
t→∞

1

t
logE

exp

 1

(n− 1)t

∑
1≤j<k≤n

∫ t

0

∫ t

0

γ(Xj
r −Xk

s )

|t−1(r − s)|β0
drds


≤M(α, β0, d, γ) (6.18)

Recall that kA,a(u) is defined in (6.6). Let

ψA,a(u) = C0

∫
R

kA,a(u− v)kA,a(v)dv
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and
ψ̃A,a(u) = |u|−β0 − ψA,a(u) .

Then, by Hölder’s inequality, we have

E

exp

 1

(n− 1)t

∑
1≤j<k≤n

∫ t

0

∫ t

0

γ(Xj
r −Xk

s )

|t−1(r − s)|β0
drds


≤

E
exp

p C0C(γ)

(n− 1)t

∑
1≤j<k≤n

∫ t

0

∫ t

0

ψA,a(t−1(r − s))γ(Xj
r −Xk

s )drds

 1
p

×

E
exp

q C0C(γ)

(n− 1)t

∑
1≤j<k≤n

∫ t

0

∫ t

0

ψ̃A,a(t−1(r − s))γ(Xj
r −Xk

s )drds

 1
q

. (6.19)

Therefore, using a similar argument which reduces (6.5) to (6.10), one can show that to
prove (6.18), it is suffices to prove

lim sup
t→∞

1

t
logE

exp

 1

(n− 1)t

∑
1≤j<k≤n

∫ t

0

∫ t

0

ψA,a(t−1(r − s))γ(Xj
r −Xk

s )drds


≤M(α, β0, d, γ) , (6.20)

provided that, for any λ > 0

lim
A→∞
a→0

lim sup
t→∞

1

t
logE

[
exp

(
λ

∫ t

0

∫ t

0

ψ̃A,a(t−1(r − s))γ(Xj
r −Xk

s )drds

)]
= 0. (6.21)

Recalling that k̃A,a(u) = |u|−
1+β0

2 − kA,a(u),

|u|−β0 − ψA,a(u) = C0

∫
R

|u− v|−
1+β0

2 |v|−
1+β0

2 dv − C0

∫
R

kA,a(u− v)kA,a(v)dv

≤ C
(∫

R

k̃A,a(u− v)|v|−
1+β0

2 dv +

∫
R

kA,a(u− v)k̃A,a(v)dv

)
≤ 2C

∫
R

k̃A,a(u− v)|v|−
1+β0

2 dv

≤ 2C

(
A−

β0−β
′
0

2

∫
R

|u− v|−
β′0+1

2 |v|−
1+β0

2 dv + (2a)
β̃0−β0

2

∫
R

|u− v|−
β̃0+1

2 |v|−
1+β0

2 dv

)
where 0 < β′0 < β0 < β̃0 < 1 and the last inequality follows from (6.8). Hence we have

ψ̃A,a(u) = |u|−β0 − ψA,a(u) ≤ C(β0, β
′, β̃)

(
A−

β0−β
′
0

2 u−
β0+β′0

2 + (2a)
β̃0−β0

2 u−
β0+β̃0

2

)
.

(6.22)
Therefore, (6.21) holds because of (6.22) and the second half of Proposition 2.8, and
hence (6.18) now is reduced to (6.20).

By a similar argument used in Step 1, in order to show (6.18) that has been reduced
to (6.20), it suffices to prove

lim sup
t→∞

1

t
logE

[
exp

(
1

2t

∫ t

0

∫ t

0

ψA,a(t−1(r − s))γ(Xr −Xs)drds

)]
≤M(α, β0, d, γ). (6.23)

The left-hand side now is finite under condition (1.3) since ψA,a is a bounded function.
Noting that (6.23) is identical to (6.10), we may prove it in the exact same way as in
Step 3 and Step 4 in Subsection 6.1.
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7 On the variational formula

7.1 The finiteness of M(α, β0, d, γ)

In this subsection, we will prove the finiteness of M(α, β0, d, γ) defined in (1.12).
Consider a general non-negative definite (generalized) function γ(x) ∈ S ′(Rd). By the
Bochner-Schwartz Theorem, there exists a tempered measure µ on Rd such that γ is the
Fourier transform of µ in S ′(Rd), i.e.∫

Rd
ϕ(x)γ(x)dt =

∫
Rd
Fϕ(x)µ(dx) for all ϕ ∈ S(Rd).

It follows that for f, g ∈ S(Rd),∫
Rd

∫
Rd
γ(x− y)f(x)g(y)dxdy =

∫
Rd
f̂(ξ)ĝ(ξ)µ(dξ). (7.1)

Lemma 7.1. Under the Dalang’s condition (4.4),

sup
g∈Fα,d

{
θ

∫
Rd

∫
Rd
γ(x− y)g2(x)g2(y)dxdy −

∫
Rd
|ξ|α|ĝ(ξ)|2dξ

}
<∞,

for any θ > 0, where Fα,d is given in (1.10)

Proof. It suffices to consider g ∈ Fα,d ∩ S(Rd), since S(Rd) is dense in Fα,d endowed
with the norm

‖g‖2 =

(∫
Rd

∫
Rd
γ(x− y)g2(x)g2(y)dxdy

)1/2

+

∫
Rd
|ξ|α|ĝ(ξ)|2dξ .

By (7.1) and noting that ‖F(g2)(·)‖∞ ≤ 1, we have∫
Rd

∫
Rd
γ(x− y)g2(x)g2(y)dxdy =

∫
Rd
|F(g2)(ξ)|2µ(dξ)

≤ µ([|ξ| ≤ N ]) +

∫
[|ξ|>N ]

|(ĝ ∗ ĝ)(ξ)|2|ξ|αµ(dξ)

|ξ|α

≤ µ([|ξ| ≤ N ]) +
∥∥(ĝ ∗ ĝ)(·)|2| · |α

∥∥
∞

∫
[|ξ|>N ]

µ(dξ)

|ξ|α
.

Since α ∈ (0, 2] we see |ξ|α/2 ≤ |ξ − η|α/2 + |η|α/2 for all η ∈ Rd. Thus, we have∣∣∣∣(ĝ ∗ ĝ)(ξ)|ξ|α/2
∣∣∣∣ ≤ ∫

Rd
|ĝ|(ξ − η)|ĝ|(η)

(
|η|α/2 + |ξ − η|α/2

)
dη

≤ 2
(
|ĝ|(·) ∗

(
|ĝ|(·)| · |α/2

))
(ξ).

By Young’s inequality and Parseval’s identity,∥∥∥|ĝ|(·) ∗ (|ĝ|(·)| · |α/2)∥∥∥2

∞
≤ ‖ĝ‖22

∫
Rd
|ξ|α|ĝ(ξ)|2dξ =

∫
Rd
|ξ|α|ĝ(ξ)|2dξ.

Therefore, for any θ > 0,

θ

∫
Rd

∫
Rd
γ(x− y)g2(x)g2(y)dxdy −

∫
Rd
|ξ|α|ĝ(ξ)|2dξ

≤ θµ([|ξ| ≤ N ]) +

(
θ

∫
[|ξ|>N ]

µ(dξ)

|ξ|α
− 1

)∫
Rd
|ξ|α|ĝ(ξ)|2dξ.
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Since µ(dξ) is tempered and hence locally integrable, µ([|ξ| ≤ N ]) is finite for any 0 < N <

∞. On the other hand, the Dalang’s condition (4.4) implies that limN→∞
∫

[|ξ|>N ]
µ(dξ)
|ξ|α = 0.

Therefore, for any θ > 0, one can always find N sufficiently large such that

θ

∫
Rd

∫
Rd
γ(x− y)g2(x)g2(y)−

∫
Rd
|ξ|α|ĝ(ξ)|2dξ ≤ θµ([|ξ| ≤ N ]) <∞.

This concludes the proof.

Lemma 7.2. Let γ0(u), u ∈ R be a locally integrable function. Then, under the Dalang’s
condition (4.4),

sup
g∈Aα,d

{
θ

∫ 1

0

∫ 1

0

∫
R2d

γ0(r − s)γ(x− y)g2(s, x)g2(r, y)dxdydrds

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}
<∞,

for any θ > 0.

Proof. The result will be proven by using a similar argument as that in the proof [10,
Lemma 5.2]. Similar as in Lemma 7.1. Consider g ∈ Aα,d ∩ S(Rd+1), and extend g(s, x)

periodically in s from [0, 1]×Rd to [0,∞)×Rd, still denoted by the same notation g(s, x).
Then, we have ∫ 1

0

∫ 1

0

∫
R2d

γ0(r − s)γ0(x− y)g2(r, x)g2(s, y)dxdydrds

= 2

∫ 1

0

∫ r

0

∫
R2d

γ0(r − s)γ(x− y)g2(r, x)g2(s, y)dxdydrds

= 2

∫ 1

0

γ0(r)

∫ 1−r

0

∫
R2d

γ(x− y)g2(r + s, x)g2(s, y)dxdydsdr

≤ 2

∫ 1

0

|γ0(r)|
∫ 1

0

∫
R2d

γ(x− y)g2(r + s, x)g2(s, y)dxdydsdr.

By (7.1), we can write∫
R2d

γ(x− y)g2(r + s, x)g2(s, y)dxdy =

∫
Rd

(
Fg2(r + s, ·)

)
(ξ)(Fg2(s, ·)) (ξ)µ(dξ)

≤
(∫

Rd

∣∣(Fg2(r + s, ·)
)

(ξ)
∣∣2 µ(dξ)

)1/2(∫
Rd

∣∣(Fg2(s, ·)
)

(ξ)
∣∣2 µ(dξ)

)1/2

=

(∫
R2d

γ(x− y)g2(r + s, x)g2(r + s, y)dxdy

)1/2(∫
R2d

γ(x− y)g2(s, x)g2(s, y)dxdy

)1/2

.

Noting that g is periodic in time, we see by Hölder inequality,∫ 1

0

∫
R2d

γ(x− y)g2(r + s, x)g2(s, y)dxdyds ≤
∫ 1

0

∫
R2d

γ(x− y)g2(s, x)g2(s, y)dxdyds.

Summarizing the above computations, we obtain∫ 1

0

∫ 1

0

∫
R2d

γ0(r − s)γ(x− y)g2(r, x)g2(s, y)dxdydrds

≤ 2

∫ 1

0

|γ0(u)|du
∫ 1

0

∫
R2d

γ(x− y)g2(s, x)g2(s, y)dxdyds.
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Hence,

sup
g∈Aα,d

{
θ

∫ 1

0

∫ 1

0

∫
R2d

γ0(r − s)γ(x− y)g2(s, x)g2(r, y)dxdydrds

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}

≤ sup
g∈Aα,d

{
2θ

∫ 1

0

|γ0(u)|du
∫ 1

0

∫
R2d

γ(x− y)g2(s, x)g2(s, y)dxdyds

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξds

}

=

∫ 1

0

sup
g∈Aα,d

{
2θ

∫ 1

0

|γ0(u)|du
∫ 1

0

∫
R2d

γ(x− y)g2(s, x)g2(s, y)dxdy

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(s, ξ)|2dξ

}
ds

= sup
g∈Fα,d

{
2θ

∫ 1

0

|γ0(u)|du
∫ 1

0

∫
R2d

γ(x− y)g2(x)g2(y)dxdy

−
∫ 1

0

∫
Rd
|ξ|α|ĝ(ξ)|2dξ

}
ds,

where the variation on the right-hand side is finite by Lemma 7.1.

7.2 On the large-box approximation

Recall that in Section 6, a large-box approximation was employed to prove the upper
bound. A key ingredient in the approximation argument is the following lemma, whose
proof will be provided in this subsection.

Lemma 7.3. Let K̃M be defined by (6.14). Then

lim sup
M→∞

sup
g∈AMα,d

{
1

2
C0C(γ)

∫
[0,M ]d

∫
R

[∫ 1

0

∫
TdM

|u− s|−
1+β0

2 K̃M (y − x)g2(s, x)dxds

]2

dudy

−
∫ 1

0

Eα,M (g(s, ·), g(s, ·))ds
}
≤M(α, β0, d, γ) . (7.2)

Proof. By [23, Lemma A.1], there exists a positive constant Cα,d, depending on (α, d)

only, such that

|ξ|α = Cα,d

∫
Rd

1− cos(2πξ · y)

|y|d+α
dy,

where Cα,d =
∫
Rd

1−cos(η·y)
|y|d+α dy for any η ∈ Rd with |η| = 2π. By Lemma 7.4, we have

Eα(f, f) =
Cα,d

2

∫
Rd

∫
Rd

|f(y)− f(x)|2

|y − x|d+α
dydx, (7.3)

and for any M -periodic function h,

Eα,M (h, h) =
Cα,d

2

∫
[0,M ]d

∫
Rd

|h(y)− h(x)|2

|y − x|d+α
dydx. (7.4)
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To prove (7.2), for any fixed M -periodic (in space) function g ∈ AMα,d, we shall

construct a function f ∈ Aα,d such that f ≡ g on [0, 1] × [M1/2,M −M1/2]d and the
difference between g and f on [0, 1] × (Rd \ [M1/2,M −M1/2]d) is negligible in some
suitable sense as M goes to infinity.

Denote
EM := [0,M ]d \ [M1/2,M −M1/2]d . (7.5)

By Lemma 3.4 in [17], for fixed s ∈ [0, 1], there is an a(s) ∈ Rd such that∫
EM

g2(s, x+ a(s))dx ≤ 2dM−1/2.

We assume a ≡ 0, for otherwise we may replace g(s, ·) with g(s, a(s)+ ·) without changing
the value inside {} in (7.2). Therefore, without loss of generality, we assume for all
s ∈ [0, 1], ∫

EM

g2(s, x)dx ≤ 2dM−1/2. (7.6)

Define ϕ(x) = φ(x1) · · ·φ(xd), x = (x1, · · · , xd) ∈ Rd, where

φ(v) =


vM−1/2, 0 ≤ v ≤M1/2,

1, M1/2 ≤ v ≤M −M1/2,

M1/2 − vM− 1
2 , M −M1/2 ≤ v ≤M,

0, otherwise,

and let
f(s, x) = g(s, x)ϕ(x)/

√
G(s),

with

G(s) :=

∫
Rd
g2(s, y)ϕ2(y)dy.

Then,
|φ| ≤ 1, |φ′| ≤M−1/2 and hence |ϕ| ≤ 1, |∇ϕ| ≤ d1/2M−1/2.

Noting that

1 ≥ G(s) =

∫
[0,M ]d

g2(s, y)ϕ2(y)dy ≥ 1−
∫
EM

g2(s, y)dy ≥ 1− 2dM−1/2,

we have
0 < 1− 2dM−1/2 ≤ bM := inf

s∈[0,1]
G(s) ≤ 1. (7.7)

Firstly, we compare the second terms in the variations on both sides of (7.2), i.e.,
compare J1 :=

∫ 1

0
Eα(f(s, ·), f(s, ·))ds with J :=

∫ 1

0
Eα,M (g(s, ·), g(s, ·))ds. Note that

|g(s, y)ϕ(y)− g(s, x)ϕ(x)|2 = |(g(s, y)− g(s, x))ϕ(y) + g(s, x)(ϕ(y)− ϕ(x))|2

≤ (1 + ε)|g(s, y)− g(s, x)|2ϕ2(y) + (1 + 1/ε)g2(s, x)|ϕ(y)− ϕ(x)|2,

for any ε > 0. Therefore,∫
Rd

∫
Rd

|g(s, y)ϕ(y)− g(s, x)ϕ(x)|2

|y − x|d+α
dydx

≤ (1 + ε)

∫
Rd

∫
Rd

|g(s, y)− g(s, x)|2ϕ2(y)

|y − x|d+α
dydx

+ (1 + 1/ε)

∫
Rd

∫
Rd

g2(s, x)|ϕ(y)− ϕ(x)|2

|y − x|d+α
dydx. (7.8)

EJP 23 (2018), paper 14.
Page 33/39

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP139
http://www.imstat.org/ejp/


Temporal asymptotics for fractional PAM

Now we bound the above two integrals separately. For the first integral, it is easy to
verify by (7.3) that

Cα,d
2

∫
Rd

∫
Rd

|g(s, y)− g(s, x)|2ϕ2(y)

|y − x|d+α
dydx ≤ Eα,M (g(s, ·), g(s, ·)). (7.9)

For the second integral, we have first, for any σ ∈ (0, 2),

g2(s, x)|ϕ(y)− ϕ(x)|2

≤ g2(s, x)|ϕ(y)− ϕ(x)|2(I[0,M ]d(x) + I[0,M ]d(y))

= g2(s, x)|ϕ(y)− ϕ(x)|2−σ|ϕ(y)− ϕ(x)|σ(I[0,M ]d(x) + I[0,M ]d(y))

≤ 22−σdσ/2M−σ/2g2(s, x)(I[0,M ]d(x) + I[0,M ]d(y))(|y − x|σ ∧ |y − x|2),

Consequently, we have

Cα,d
2

∫
Rd

∫
Rd

g2(s, x)|ϕ(y)− ϕ(x)|2

|y − x|d+α
dydx

≤ Cα,d22−σdσ/2M−σ/2
∫

[0,M ]d

∫
Rd

g2(s, x)(|y − x|σ ∧ |y − x|2)

|y − x|d+α
dydx

+ Cα,d2
2−σdσ/2M−σ/2

∫
Rd

∫
[0,M ]d

g2(s, x)(|y − x|σ ∧ |y − x|2)

|y − x|d+α
dydx

= Cα,d2
2−σdσ/2M−σ/2

∫
[0,M ]d

g2(s, x)dx

∫
Rd

|y|σ ∧ |y|2

|y|d+α
dy

+ Cα,d2
2−σdσ/2M−σ/2

∫
[0,M ]d

∫
Rd

g2(s, x+ y)(|x|σ ∧ |x|2)

|x|d+α
dxdy

≤ CM−σ/2, (7.10)

for some constant C depending only on (α, d), where in the last second step, the two
integrals are finite for α ∈ (σ, 2).

Combining (7.3), (7.4), (7.8), (7.9) and (7.10), and recalling bM given in (7.7), we
have

bMJ1 = bM

∫ 1

0

Eα(f(s, ·), f(s, ·))ds

≤
∫ 1

0

G(s)Eα(f(s, ·), f(s, ·))ds

≤ (1 + ε)

∫ 1

0

Eα,M (g(s, ·), g(s, ·))ds+ C(1 + 1/ε)M−σ/2

= (1 + ε)J + C(1 + 1/ε)M−σ/2. (7.11)

Secondly, we estimate the first term inside {} in (7.2). Recall that KB,b(·) is supported
on [−2B, 2B]d, hence for any fixed y ∈ [0,M ]d,KB,b(y−·) is supported on [−2B,M+2B]d.
Therefore, for y ∈ [0,M ]d,∫

[0,M ]d
K̃M (y − x)g2(s, x)dx =

∫
[0,M ]d

∑
z∈Zd

KB,b(y − x+ zM)g2(s, x)dx

=

∫
Rd
KB,b(y − x)g2(s, x)dx =

∫
[−2B,M+2B]d

KB,b(y − x)g2(s, x)dx (7.12)

where the second equality follows from the M -periodicity of g(s, ·).
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Denote

ẼM := [−2B,M + 2B]d \ [M1/2,M −M1/2]d . (7.13)

Then there exists a constant C depending only on d such that

∫
ẼM

g2(s, x)dx ≤ CM−1/2, ∀s ∈ [0, 1]. (7.14)

This is because of (7.6), the periodicity of g(s, ·) and the fact that there is a partition of
[−2B,M +2B]d \ [0,M ]d such that the number of parts in the partition is finite depending
only on d and each part from this partition can be shifted by zM for some z ∈ Zd to
become a subset of [0,M ]d \ [2B,M − 2B]d ⊂ [0,M ]d \ [M1/2,M −M1/2]d when M > 4B2.

Notice that

g2(s, x) = G(s)f2(s, x), ∀ x ∈ [M1/2,M −M1/2]d = [−2B,M + 2B]d \ ẼM ,

where ẼM is defined by (7.13). We can bound the integral in (7.2) as follows, noting
(7.12),

I :=

∫
[0,M ]d

∫
R

[∫ 1

0

∫
[0,M ]d

|u− s|−
1+β0

2 K̃M (y − x)g2(s, x)dxds

]2

dudy

=

∫
[0,M ]d

∫
R

[∫ 1

0

∫
[−2B,M+2B]d

|u− s|−
1+β0

2 KB,b(y − x)g2(s, x)dxds

]2

dudy

≤(1 + ε)

∫
[0,M ]d

∫
R

[∫ 1

0

∫
[−2B,M+2B]d\ẼM

|u− s|−
1+β0

2 KB,b(y − x)g2(s, x)dxds

]2

dudy

+ (1 + 1/ε)

∫
[0,M ]d

∫
R

[∫ 1

0

∫
ẼM

|u− s|−
1+β0

2 KB,b(y − x)g2(s, x)dxds

]2

dudy

≤(1 + ε) max
s∈[0,1]

G(s)

∫
[0,M ]d

∫
R

[∫ 1

0

∫
Rd
|u− s|−

1+β0
2 KB,b(y − x)f2(s, x)dxds

]2

dudy

+ (1 + 1/ε)

∫
[0,M ]d

∫
R

[∫ 1

0

∫
ẼM

|u− s|−
1+β0

2 KB,b(y − x)g2(s, x)dxds

]2

dudy

≤(1 + ε) (C0C(γ))
−1/2

I1 + (1 + 1/ε)I2 , (7.15)

where

I1 :=

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ(x− y)

|r − s|β0
f2(s, x)f2(r, y)dxdydrds

I2 :=

∫
[0,M ]d

∫
R

[∫ 1

0

∫
ẼM

|u− s|−
1+β0

2 KB,b(y − x)g2(s, x)dxds

]2

dudy .

We consider I2. Note that the function KB,b(·) is uniformly bounded, say, by D. Then we
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have

I2 =C−1
0

∫
[0,M ]d

∫ 1

0

∫ 1

0

|r − s|−β0drdsdy

∫
ẼM

KB,b(y − x1)g2(s, x1)dx1∫
ẼM

KB,b(y − x2)g2(r, x2)dx2

≤C−1
0

∫
[0,M ]d

∫ 1

0

∫ 1

0

|r − s|−β0drdsdy

∫
ẼM

KB,b(y − x1)g2(s, x1)dx1

∫
ẼM

Dg2(r, x2)dx2

≤CC−1
0 M−1/2

∫
Rd
KB,b(y)dy

∫ 1

0

∫ 1

0

|r − s|−β0drds

∫
ẼM

g2(s, x1)dx1

≤CC−1
0 M−1/2

∫
Rd
KB,b(y)dy(1− β0)−1

∫ 1

0

[
s1−β0 + (1− s)1−β0

] ∫
ẼM

g2(s, x1)dx1ds

≤CC−1
0 M−1/2

∫
Rd
KB,b(y)dy(1− β0)−1(2− β0)−1

∫ 1

0

∫
ẼM

g2(s, x1)dx1ds

≤2CC−1
0 M−1/2

∫
Rd
KB,b(y)dy(1− β0)−1(2− β0)−1(2dM−1/2)

=C
(
KB,b(·), d, β0

)
M−1, (7.16)

where the third step and the last second step follow from (7.14).

Finally, combing (7.11), (7.15) and (7.16), we can bound the quantity inside { } in
(7.2) as follows (recall that J and J1 are defined by (7.11) and bM is given in (7.7))

1

2
C0C(γ)I − J ≤1 + ε

2
I1 + C(1 + 1/ε)M−1 − bM

1 + ε
J1 + C

1 + 1/ε

1 + ε
M−σ/2

≤ bM
1 + ε

{
(1 + ε)2

2bM

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ(x− y)

|r − s|β0
f2(s, x)f2(r, y)dxdydrds

−
∫ 1

0

Eα(f(s, ·), f(s, ·))ds

}
+ C(1 + 1/ε)M−1 + C

1 + 1/ε

1 + ε
M−σ/2.

Therefore,

sup
g∈AMα,d

{
1

2
C0C(γ)I − J

}

≤ bM
1 + ε

sup
f∈Aα,d

{
(1 + ε)2

2bM

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ(x− y)

|r − s|β0
f2(s, x)f2(r, y)dxdydrds

−
∫ 1

0

Eα(f(s, ·), f(s, ·))ds

}
+ C(1 + 1/ε)M−1 + C

1 + 1/ε

1 + ε
M−σ/2

=
bM

1 + ε

(
(1 + ε)2

bM

) α
α−β

sup
f∈Aα,d

{
1

2

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ(x− y)

|r − s|β0
f2(s, x)f2(r, y)dxdydrds

−
∫ 1

0

Eα(f(s, ·), f(s, ·))ds

}
+ C(1 + 1/ε)M−1 + C

1 + 1/ε

1 + ε
M−σ/2,

where the last step follows from (1.13). Noting that limM→∞ bM = 1, we have, by
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choosing ε arbitrarily small,

lim
M→∞

sup
g∈AMα,d

{
1

2
C0C(γ)I − J

}
≤ sup
f∈Aα,d

{
1

2

∫ 1

0

∫ 1

0

∫
Rd×Rd

γ(x− y)

|r − s|β0

f2(s, x)f2(r, y)dxdydrds−
∫ 1

0

Eα(f(s, ·), f(s, ·))ds

}
.

Hence (7.2) is proved, provided α ∈ (σ, 2). Note that σ ∈ (0, 2) is arbitrary, therefore
(7.2) holds for α ∈ (0, 2).

The proof is concluded, noting that for the case α = 2, (7.2) can be proved in a similar
way as in [11, Lemma A.3].

Lemma 7.4. Let f ∈ L2(Rd) and h ∈ L2(TdM ). Then,

2

∫
Rd

(
1− cos(2πξ · y)

)
|f̂(ξ)|2dξ =

∫
Rd
|f(x+ y)− f(x)|2dx, (7.17)

and

2

Md

∑
k∈Zd

(
1− cos(2πk · y)

)
|ĥ(k)|2 =

∫
[0,M ]d

|h(x+My)− h(x)|2dx. (7.18)

Proof. We will prove (7.18) only, and (7.17) can be proved in the same spirit. Noting
that 1− cos(2πk · y) = 2 sin2(πk · y), we have

2

Md

∑
k∈Zd

(
1− cos(2πk · y)

)
|ĥ(k)|2 =

1

Md

∑
k∈Zd

|2 sin(πk · y)ĥ(k)|2

=
1

Md

∑
k∈Zd

∣∣∣(eiπk·y − e−iπk·y) ĥ(k)
∣∣∣2 =

∫
[0,M ]d

∣∣∣∣h(x+
My

2
)− h(x− My

2
)

∣∣∣∣2 dx.
The last equality holds because of the Parseval’s identity

1

Md

∑
k∈Zd

|ĝ(k)|2 =

∫
[0,M ]d

|g(x)|2 dx,

and the fact that for any a ∈ Rd and any M -periodic function g,

̂g(·+ a)(k) =

∫
[0,M ]d

e−2πik·y/Mg(y + a)dy =

∫
[0,M ]d

e−2πik·(y+a)/Mg(y + a)dy e2πik·a/M

=

∫
[0,M ]d

e−2πik·y/Mg(y)dy e2πik·a/M = ĝ(k)e2πik·a/M ,

where the third equality holds because e−2πik·y/Mg(y) is an M -periodic function in y.
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