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Abstract

We prove that the flux function of the totally asymmetric simple exclusion process
(TASEP) with site disorder exhibits a flat segment for sufficiently dilute disorder. For
high dilution, we obtain an accurate description of the flux. The result is established
under a decay assumption of the maximum current in finite boxes, which is implied in
particular by a sufficiently slow power tail assumption on the disorder distribution
near its minimum. To circumvent the absence of explicit invariant measures, we use
an original renormalization procedure and some ideas inspired by homogenization.
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1 Introduction

The flux function, also called current-density relation in traffic-flow physics [12], is
the most fundamental object to describe the macroscopic behavior of driven lattice gases.
The paradigmatic model in this class is the totally asymmetric simple exclusion process
(TASEP), where particles on the one-dimensional integer lattice hop to the right at unit
rate and obey an exclusion rule. Density ρ ∈ [0, 1] is the only conserved quantity and
is associated locally with a flux (or current) that is defined as the amount of particles
crossing a given site per unit time in a system with homogeneous density ρ. For TASEP,
the flux function is explicitly given by

f0(ρ) = ρ(1− ρ). (1.1)
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Flux of TASEP with site disorder

In the hyperbolic scaling limit [29], the empirical particle density field is governed by
entropy solutions of the scalar conservation law

∂tρ(t, x) + ∂x f0

(
ρ(t, x)

)
= 0, (1.2)

with f0 given by (1.1). This kind of result can be extended to a variety of asymmetric
models [35, 30, 5], but when the invariant measures are not explicit, little can be said
about the flux function. Nevertheless, convexity or concavity can be obtained as a
byproduct of the variational approach set up in [34], which applies to totally asymmetric
models with state-independent jump rates, like TASEP. However strict convexity or
strict concavity, which are related to the absence of a phase transition, require new
mathematical ideas to be derived for general driven dynamics.

In disordered systems, a phase transition has been first proved for nearest-neighbor
asymmetric site-disordered zero-range processes (ZRP) and its signature is a constant
flux on a density interval [ρc,+∞), where ρc is the density of the maximal invariant
measure. The invariant measures of the disordered ZRP are explicit so that the flux
can be exactly computed and the phase transition precisely located. The necessary and
sufficient condition for the occurrence of a phase transition is a slow enough tail of the
jump rate distribution near its minimum value r. Microscopically, phase transition takes
the form of Bose-Einstein condensation [15]. In an infinite system with mean drift to
the right, the excess mass is captured by the asymptotically slowest sites at −∞. This
was proven rigorously in [3] for the totally asymmetric ZRP with constant jump rate
with respect to the number of particles which is equivalent to TASEP with particlewise
disorder [27]. This holds also for nearest-neighbor ZRP with more general jump rates
[6] (see also [19] for partial results in higher dimension). The TASEP picture can be
interpreted as a traffic-flow model with slow and fast vehicles. The phase transition
then occurs on a density interval [0, ρc], where the flux is linear with a slope equal to the
constant mean velocity of the system. This velocity is imposed by the slowest vehicles
at +∞. As one moves ahead, slower an slower vehicles are encountered, followed by a
platoon of faster vehicles, and preceded by a gap before the next platoon [27].

In this paper, we consider TASEP with i.i.d. site disorder such that the jump rate at
each site has a random value whose distribution is supported in an interval [r, 1], with
r ∈ (0, 1). A flat piece in the flux was observed numerically by physicists [24, 42, 22]
and interpreted as the occurence of a phase transition by several heuristic arguments.
Contrary to the disordered ZRP, the invariant measures are no longer explicit in the
site-disordered TASEP, which makes the analysis of the flux more challenging. Before
commenting on the flat segment in the flux, let us mention that the existence of a
hydrodynamic limit of the form (1.2) for TASEP with i.i.d. site disorder was established
in [35], using last passage percolation (LPP) and variational coupling. Consequently, the
flux function was shown to be concave. More generally, the existence of a limit of the
type (1.2) was obtained in [5] for asymmetric attractive systems in ergodic environment,
based on the study of invariant measures. We refer also to [11, 31, 32, 39] for further
rigorous results in a different class of disordered SEP.

Recently, Sly gave in [38] a short and very elegant proof of the existence of a flat
segment in the flux for TASEP with general rate distribution. The proof in [38] relies on
a clever coupling implemented in the LPP formulation of the TASEP. In this paper, we
develop a different approach, announced in [7], based on a renormalization method to
obtain a precise information on the flux function and on the flat segment at the price
of additional assumptions on the disorder distribution. We focus on the case of dilute
disorder which plays a key role in the physical literature [24] as a sharp transition
occurs for any arbitrarily small amount of disorder. The jump rate at each site is chosen
randomly, according to some dilution parameter ε ∈ [0, 1], so that a site is “fast” with
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Flux of TASEP with site disorder

probability 1 − ε, in which case it has rate 1, or “slow” with probability ε, in which
case its rate has some distribution Q with support (r, 1] for some r ∈ (0, 1). Under some
assumption on the distribution Q, and for sufficiently diluted disorder, i.e. ε small enough,
we prove (Theorem 2.4) the existence of a flat segment and determine the limiting size
of this segment when ε vanishes. Moreover, we prove (Theorem 2.6) the convergence of
the whole flux function to an explicit function, which exhibits a sharp transition at ε = 0.
We stress the fact that Sly’s argument [38] does not require any assumption on Q nor
on the dilution of the disorder, however the control on the flux in [38] is less precise for
small ε than the one we provide in Theorems 2.4 and 2.6. The reason for this is that
our renormalization approach is a perturbation of ε = 0, while Sly’s approach involves a
comparison with the homogeneous TASEP corresponding to ε = 1. It follows that Sly’s
estimate on the size of the flat segment, is (unlike ours) not optimal for small ε.

The physical interpretation of the flat segment in the flux [24] is the emergence at
different scales of atypical disorder slowing down the particles and leading to traffic jams.
As one moves ahead along the disorder, slowest and slowest regions are encountered,
with larger and larger stretches of sites with the minimal rate r (or near this minimal
rate). Locally a slow stretch of environment inside a typical region is expected to
create a picture similar to the slow bond TASEP introduced in [23]. It is known that
a slow bond with an arbitrarily small blockage [8] restricts the local current. On the
hydrodynamic scale [36], this creates a traffic jam with a high density of queuing vehicles
to the left and a low density to the right, that is an antishock for Burgers’ equation.
Renormalization turns the problem into a hierarchy of slow-bond like pictures, where
at each scale, the difference between the “typically fast” and “atypically slow” region
becomes smaller and smaller. Slower jams will gradually absorb faster ones so that one
expects to see a succession of mesoscopically growing shocks and antishocks. Some
results in this direction were obtained in [20] in the case of particle disorder. Even
though a single slow bond induces a phase transition, it is not clear if the transition
will remain in presence of disorder or if the randomness rounds it off as in equilibrium
systems [2].

Renormalization is often key to analyze multi-scale phenomena in disordered systems;
we refer to [40, 43] for a general overview. Our renormalization scheme controls
rigorously the multi-scale slow bond picture described in the paragraph above. A major
difficulty compared to the single slow bond is that as one moves to larger scales, the
typical maximum current associated with a given scale and the maximum current
associated with the rare slow regions occurring at the same scale converge to the same
value r/4 (with r the minimal value of the jump rates). Thus a delicate issue is to show
that this small current difference exceeds the typical order of fluctuations at each scale,
so that the slow-bond picture remains valid at all scales. To quantify this difference, we
rely on an assumption on the decay of the maximum current in a finite box (2.18). This
assumption is satisfied under a condition on the tail of the rate distribution Q near its
minimum r (see Lemma 2.3). Heuristics suggest that this assumption should be always
valid although we have not been able so far to prove this conjecture.

We achieve our renormalization scheme by formulating the problem in wedge LPP
framework with columnar disorder and exponential random variables. In the LPP
framework, the phase transition takes the form of a pinning transition for the optimal
path [26]: the path gets a better reward from vertical portions along slow parts of the
disorder. The core of this approach is to obtain a recursion between mean passage times
at two successive scales. Like many shape theorems [28], our results partially extends
to LPP with more general distributions.

Another interpretation of our renormalization scheme (see [7, Section 3.3.2]) is that
it consists in a hierarchy of homogenization problems for scalar conservation laws which
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approximate the particle system in blocks of mesoscopic size. As explained in [7], the
homogenization of a one-dimensional scalar conservation law with a “fast” flux and a
“slow” flux is easily seen to produce a flat segment as long as the fluxes in each block are
bell-shaped (but not necessarily concave). With this bell-shape assumption on the flux
function, the emergence of antishocks, previously established in [36] for TASEP with a
slow bond, was shown (see [4]) to hold in more general asymmetric models with single
localized blockage, even in the absence of mapping on a percolation problem. Therefore,
our renormalization picture suggests that the emergence of the flat segment should be
true for such exclusion-like models with bell-shaped flux. However, we are currently
far from being able to implement these ideas microscopically in the absence of a LPP
representation. The main reason is that the latter yields fluctuation estimates on the
current, which makes the slow-bond (or homogenization) picture effective even when the
difference between slow and fast cells tends to zero. Even though the implementation
of the renormalization is model dependent, we stress the fact that our renormalization
strategy should be useful to study other dynamics in random media. In particular, it
was implemented in [10] to control the velocity of interfaces moving in a disordered
environnement.

The paper is organized as follows. In Section 2, we set up the notation and state
our main result. In Section 3, we formulate the problem in the last passage percolation
framework and introduce the reference flux and the passage time functions. In Section 4,
we introduce the renormalization procedure and describe the main steps of the proof. In
Section 5, we prove a recurrence which links the passage time bounds of two successive
scales. This is the heart of the renormalization argument. In Section 6, we study this
recurrence in detail and show that it propagates the bounds we need from one scale to
another. In Section 7, we establish an important fluctuation estimate needed in Section
5. Finally, the proofs of our main theorems are completed in Section 8.

2 Notation and results

2.1 TASEP with site disorder

Let N := {0, 1, . . .} (resp. N∗ := {1, 2, . . .}) be the set of nonnegative (resp. positive)
integers. The disorder is modeled by α = (α(x) : x ∈ Z) ∈ A := [0, 1]Z, an i.i.d. sequence
of positive bounded random variables. The precise distribution of α will be defined in
Section 2.2. For a given realization of α, we consider the TASEP on Z with site disorder
α. The dynamics is defined as follows. A site x is occupied by at most one particle which
may jump with rate α(x) to site x+ 1 if it is empty. A particle configuration on Z is of the
form η = (η(x) : x ∈ Z), where for x ∈ Z, η(x) ∈ {0, 1} is the number of particles at x.
The state space is X := {0, 1}Z. The generator of the process is given by

Lαϕ(η) =
∑
x∈Z

α(x)η(x)[1− η(x+ 1)]
[
ϕ
(
ηx,x+1

)
− ϕ(η)

]
, (2.1)

for any function ϕ on X depending on finitely many sites (the set of such functions,
called cylinder functions, is a core for the generator Lα), where ηx,x+1 = η − δx + δx+1

denotes the new configuration after a particle has jumped from x to x+ 1, and δx is the
configuration that is empty outside site x and has a particle at x.

Current and flux function. The macroscopic flux function f can be defined as follows.
For η ∈ X, we denote by Jαx (t, η) the rightward current across site x up to time t, that is
the number of jumps from x to x+ 1 up to time t, in the TASEP (ηαt )t≥0 with generator
(2.1) starting from initial state η. For ρ ∈ [0, 1], let ηρ be an initial particle configuration
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with asymptotic particle density ρ in the following sense:

lim
n→∞

1

n

n∑
x=0

ηρ(x) = ρ = lim
n→∞

1

n

0∑
x=−n

ηρ(x). (2.2)

We then set

f(ρ) := lim
t→∞

1

t
Jαx (t, ηρ), (2.3)

where the limit is understood in probability with respect to the law of the quenched
process. It is indeed shown in [35] that the function f in (2.3) exists for almost every
realization of the disorder α, and does not depend on the latter, nor on the choice of
initial configurations ηρ satisfying (2.2). Other definitions of the flux and the proof of
their equivalence with the above definition can be found in [7].

It is shown in [35] that f is a concave function, see (3.9) below. It was conjectured in
[42] that for i.i.d. disorder, the flux function f exhibits a flat segment, that is an interval
[ρc, 1− ρc] (with 0 ≤ ρc < 1/2) on which f is constant (see Figure 1). The proof of [38]
uses a comparison with a homogeneous rate r TASEP. We introduce a different approach,
based on renormalization and homogenization ideas, viewing the disordered model as
a perturbation of a homogenous rate 1 TASEP. This yields (see Theorems 2.4 and 2.6
below) not only an independent proof of the existence of a flat segment, but also optimal
estimates when the density of defects is small enough.

2.2 The flux and flat segment for rare defects

From now on, we consider i.i.d. disorder such that the support of the distribution of
α(x) is contained in [r, 1], where r ∈]0, 1[ is the infimum of this support. Then, as stated
in the following proposition, the flux is bounded from above by r/4.

Proposition 2.1. The maximum value of the flux function is given by

max
ρ∈[0,1]

f(ρ) = r/4.

This result comes from the fact that the current of the disordered system is limited
by atypical large stretches with jump rates close to r. On these atypical regions,
the system behaves as a homogeneous rate r TASEP which has maximum current
r/4. A detailed proof can be found in Appendix A. For our main results, we formulate
additional assumptions on the distribution of the environment. We assume that the
disorder is a perturbation of the homogeneous case with rate 1. Let Q be a probability
measure on [r, 1], such that r is the infimum of the support of Q. Given ε ∈ (0, 1) a “small”
parameter, we define the distribution of α(x) by

Qε = (1− ε)δ1 + εQ. (2.4)

The law of α = (α(x), x ∈ Z) is the product measure with marginal Qε at each site

Pε(dα) :=
⊗
x∈Z

Qε[dα(x)].

Expectation with respect to Pε is denoted by Eε. The decomposition (2.4) has a natural
interpretation if the support of Q is bounded away from 1, which, however, need not be
assumed. Namely, each site is chosen independently at random to be, with probability
1− ε, a “fast” site with normal rate 1, and with probability ε to be a “defect” with rate
distribution Q. Thus ε is the mean density of defects. For example if Q = δr, then the
defects are slow bonds with rate r < 1.
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Let us denote by fε the flux function (2.3) for the disorder distribution Qε. We then
define the edge of the flat segment as

ρc(ε) := inf

{
ρ ∈

[
0,

1

2

]
: fε ≡

r

4
on [ρ, 1− ρ]

}
. (2.5)

It follows from Proposition 2.1 that ρc(ε) ≤ 1/2. It is also known (see [35]) that fε is
symmetric with respect to ρ = 1/2, i.e.

∀ρ ∈ [0, 1], fε(1− ρ) = fε(ρ). (2.6)

Therefore, (2.5) is equivalent to saying that the flat segment of fε is the interval [ρc(ε), 1−
ρc(ε)]. The following monotonicity properties with respect to ε can be established (see
Appendix B) by standard coupling arguments.

Proposition 2.2. The macroscopic parameters are monotone with respect to the dilu-
tion:

(i) The function ε 7→ fε(ρ) is nonincreasing;

(ii) the function ε 7→ ρc(ε) is nondecreasing.

Our main results (Theorems 2.4 and 2.6 below) hold under a general assumption
(H) on the disorder distribution Q which will be stated and explained in the next sub-
section. Concretely, as will be shown there, assumption (H) is easily implied by the
following simple tail assumption:

Lemma 2.3. Assumption (H) holds if the following condition is satisfied:

for some κ > 1, Q
(
[r, r + u)

)
= O(uκ) as u→ 0+. (2.7)

Theorem 2.4. Under assumption (H), there exists ε0 > 0 such that ρc(ε) <
1
2 for every

ε < ε0. Furthermore, the size of the flat segment is explicit when ε vanishes:

lim
ε→0

ρc(ε) = ρc(0), (2.8)

with

ρc(0) :=
1

2

(
1−
√

1− r
)
. (2.9)

Remark 2.5. It follows from (2.8) that the limiting value of the length 1− 2ρc(ε) of the
flat segment is

√
1− r. The result of [38] is that ρc(ε) < 1/2 for any ε ∈ (0, 1), without

requiring assumption (H) or (2.7). The proof of [38] yields the upper bound

ρc(ε) ≤
1

2
− 1

4
µr, where µ :=

1

r
− IE

[
1

α(0)

]
(2.10)

When the expectation in (2.10) is computed from the disorder distribution (2.4), it yields
(we now denote it with an index ε to emphasize its dependence on ε)

IEε

[
1

α(0)

]
= 1− ε+ ε

∫
1

α
Q(dα)

which converges to 1 as ε→ 0 to 0. Thus, in the dilute limit, the quantity µ = µε in (2.10)
converges to (1/r) − 1, and the upper bound on ρc(ε) converges to (1 + r)/4, which is
strictly bigger than ρc(0) in (2.8). Correspondingly, in the dilute limit, (2.10) gives a
lower bound (1 − r)/2 on the length of the flat segment, which is strictly smaller that√

1− r.
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The next theorem characterizes the dilute limit [24] of the whole flux function. Let

∀ρ ∈ [0, 1], f0(ρ) := min
[
ρ(1− ρ),

r

4

]
. (2.11)

Theorem 2.6. Under assumption (H), uniformly over ρ ∈ [0, 1], one has

lim
ε→0

fε(ρ) = f0(ρ). (2.12)

Remark that f0 6= f0, the latter flux function corresponding to the case ε = 0, that
is a homogeneous rate 1 TASEP: recall that f0(ρ) := ρ(1 − ρ), as defined in (1.1). The
fact that the limit in (2.12) is f0 and not f0 is the sharp transition announced in the
introduction. It can be understood as follows: between highly dilute defects, the system
is a homogeneous rate 1 TASEP. However, the memory of the defects persists (only)
through the maximum flux value r/4 instead of 1/4 = maxρ f0(ρ).

It is important to note that, although ρc(0) is the lower bound of the flat segment
of f0, the convergence (2.8) is not a direct consequence from (2.12). Theorem 2.6 does
not imply the existence of the flat segment for given ε either. However, the proofs of (2.8)
and (2.12) are closely intertwined and both follow from our renormalization approach.

2.3 A general assumption

Let us now state assumption (H) which is used in Theorems 2.4 and 2.6. For this we
first define the maximal current in a finite domain.

Let B = [x1, x2] ∩ Z be a nonempty interval in Z, where x1, x2 ∈ Z ∪ {±∞} with
x1 ≤ x2. In the following, αB := (α(x) : x ∈ B) denotes the environment restricted to B.
Consider the TASEP in B with the following boundary dynamics: a particle enters at site
x1 (if x1 > −∞) with rate α(x1 − 1) if this site is empty; a particle leaves from site x2 (if
x2 < +∞) with rate α(x2) if this site is occupied. Note that this process depends on the
disorder in the larger box

B# := [x1 − 1, x2] ∩Z. (2.13)

From now, we index all related objects by B# (the domain of the relevant disorder
variables) rather than B (the domain where particles evolve). The generator of this
process is given by

LαB#ϕ(η) :=

x2−1∑
x=x1

α(x)η(x)[1− η(x+ 1)]
[
ϕ
(
ηx,x+1

)
− ϕ(η)

]
+ 1Z(x1)α(x1 − 1)[1− η(x1)] [ϕ (η + δx1)− ϕ(η)]

+ 1Z(x2)α(x2)η(x2) [ϕ (η − δx2
)− ϕ(η)] , (2.14)

where η ± δx denotes the creation/annihilation of a particle at x. If x1 = −∞ or x2 =∞,
the corresponding boundary term does not exists in (2.14). When B is finite, this process
has a unique invariant measure. This allows the following definition of the maximal
current for the disordered TASEP restricted to B.

Definition 2.7. Assume B is finite. The maximal current j∞,B#(αB#) is the stationary
current in the open system defined above, i.e. (independently of x = x1, . . . , x2 − 1)

j∞,B#(αB#) =

∫
α(x)η(x)[1− η(x+ 1)]dναB#(η) (2.15)

=

∫
α(x1 − 1)[1− η(x1)]dναB#(η) =

∫
α(x2)η(x2)dναB#(η),

where ναB# is the unique invariant measure for the process on B with generator LαB# .
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Remark 2.8. One can see that the right-hand side of (2.15) is independent of x by
writing that the expectation under ναB# of LαB#η(x) for x ∈ [x1, x2] ∩Z (which yields the
difference of two consecutive integrals in (2.15)) is zero.

To simplify notation, we shall at times omit the dependence on αB# and write j∞,B# .
It is well-known [14] that in the homogeneous case, i.e. when α(x) = r for all x in [0, N ]

(with r a positive constant), j∞,[0,N ] is no longer a random variable and

lim
N→∞

j∞,[0,N ] = inf
N
j∞,[0,N ] =

r

4
. (2.16)

In fact, explicit computations [14] show that, for some constant C > 0,

j∞,[0,N ] ≥
r

4
+
C

N
. (2.17)

The quantity j∞,[0,N ](α[0,N ]) is a function of the environment which measures the speed of
decay of the maximum current in a box to r/4 as the size of the box increases. Assumption
(H), stated below, requires that with high probability on the disorder the decay of the
maximal current towards r/4 is slightly slower than (2.17).

Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε small
enough, the following holds for any N :

Pε
(
j∞,[0,N ](α[0,N ]) ≤

r

4
+

a

N b/2

)
≤ c

Nβ
. (2.18)

Note that if assumption (H) is satisfied for some b ∈ (0, 1), it is satisfied a fortiori for
b = 1. Thus, from now on, without loss of generality, we will assume that b ∈ [1, 2). We
stress the fact that the condition b < 2 is borderline as a simple comparison with the
homogeneous case (2.17) leads to a control of the decay for b = 2.

We have not been able to prove that assumption (H) is satisfied for Bernoulli disorder
Q = δr, although we believe this is true. However, as stated in Lemma 2.3, the tail
assumption (2.7) implies (H).

Proof of Lemma 2.3. Let α? := minx∈[0,N ] α(x). It follows from a standard coupling
argument (see (ii) of Lemma B.1) that the flux is monotone with respect to the jump
rates:

j∞,[0,N ](α[0,N ]) ≥ j∞,[0,N ]

(
α?, . . . , α?

)
, (2.19)

where j∞,[0,N ]

(
α?, . . . , α?

)
stands for the current of a homogeneous TASEP in [1, N ] with

bulk, exit and entrance rates α?. By (2.17), it is larger than α?/4, so that j∞,[0,N ](α[0,N ]) ≥
α?/4. Thus assumption (H) will be implied by controlling α?. Using the tail of the
distribution Q (2.7), we get

Pε
(

min
x∈[0,N ]

α(x) ≤ r +
a′

N b/2

)
≤ NQ

(
[r, r +

a′

N b/2
)

)
≤ c′

Nβ
,

for some well chosen parameters a′ > 0 , c′ > 0, b ∈ (0, 2), β > 0. This follows from
elementary computations.

3 Last passage percolation approach

The derivation of Theorems 2.4 and 2.6 relies on a reformulation of the problem in
terms of last passage percolation.
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3.1 Wedge last passage percolation

Let Y = (Yi,j : (i, j) ∈ Z × N) be an i.i.d. family of exponential random variables
with parameter 1 independent of the environment (α(i) : i ∈ Z). In the following,
these variables will sometimes be called service times, in reference to the queuing
interpretation of TASEP. The distribution of Y is denoted by IP and the expectation with
respect to this distribution by IE. Let

W := {(i, j) ∈ Z2 : j ≥ 0, i+ j ≥ 0} .

Index i represents a site and index j a particle. Given two points (x, y) and (x′, y′)

in Z × N, we denote by Γ((x, y), (x′, y′)) the set of paths γ = (xk, yk)k=0,...,n such that
(x0, y0) = (x, y), (xn, yn) = (x′, y′), and (xk+1 − xk, yk+1 − yk) ∈ {(1, 0), (−1, 1)} for every
k = 0, . . . , n − 1. Note that Γ((x, y), (x′, y′)) = ∅ if (x′ − x, y′ − y) 6∈ W. Given a path
γ= (xk, yk)k=0,...,n ∈ Γ((x, y), (x′, y′)), its passage time is defined by

Tα(γ) :=

n∑
k=0

Yxk,yk
α(xk)

. (3.1)

The last passage time between (x, y) and (x′, y′) is defined by

Tα((x, y), (x′, y′)) := max{Tα(γ) : γ ∈ Γ((x, y), (x′, y′))}. (3.2)

We shall simply write Tα(x, y) for Tα((0, 0), (x, y)). This quantity has the following
particle interpretation. For (t, x) ∈ [0,+∞)×Z, let

Hα(t, x) = min{y ∈ N : Tα(x, y) > t} and ηαt (x) = Hα(t, x− 1)−Hα(t, x).

Then (ηαt )t≥0 is a TASEP with generator (2.1) and initial configuration η∗ = 1Z∩(−∞,0],
and Hα is its height process. Besides, if we label particles initially so that the particle at
x ≤ 0 has label −x, then for (x, y) ∈ W, Tα(x, y) is the time at which particle y reaches
site x+ 1. Let us recall the following result from [35].

Theorem 3.1. Let W ′ := {(x, y) ∈ R2 : y ≥ 0, x + y ≥ 0}. For P-a.s. realization of the
disorder α, the function

(x, y) ∈ W ′ 7→ τ(x, y) := lim
N→∞

1

N
Tα([Nx], [Ny]) (3.3)

is well-defined in the sense of a.s. convergence with respect to the distribution of Y . It
is finite, positively 1-homogeneous and superadditive (thus concave). The function

(t, x) ∈ [0,+∞)×R 7→ h(t, x) := lim
N→∞

1

N
Hα([Nt], [Nx]) (3.4)

is well-defined in the sense of a.s. convergence with respect to the distribution of Y . It
is finite, positively 1-homogeneous and subadditive (thus convex). These functions do
not depend on α and are related through

h(t, x) = inf{y ∈ [0,+∞) : τ(x, y) > t}, (3.5)

τ(x, y) = inf{t ∈ [0,+∞) : h(t, x) ≥ y}. (3.6)

Remark 3.2. It is shown in [35, Lemma 5.2] that rTα(x, y) is stochastically dominated
by the sum of x+ 2y i.i.d. E(1) random variables. Tail estimates for this sum imply that
the sequence of random variables N−1Tα([Nx], [Ny]) is uniformly integrable. Thus the
limit (3.3) also holds in L1.
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Flux of TASEP with site disorder

By homogeneity, the function h in (3.4) is of the form

h(t, x) = tk
(x
t

)
(3.7)

for some convex function k : R→ R+. It is known that for homogeneous TASEP (that is
α(x) = 1 for all x), we have

τ(x, y) = (
√
x+ y +

√
y)2, k(v) =

(1− v)2

4
1[−1,1](v)− v1(−∞,−1)(v). (3.8)

3.2 Reformulation of Theorems 2.4 and 2.6

In this section, we are going to rewrite the flux in the last passage framework and
show that Theorem 2.4 can be deduced from a statement on the passage time. It is
shown in [35] that the macroscopic flux function f is related to k (defined in (3.7)) by
the convex duality relation

f(ρ) := inf
v∈R

[k(v) + vρ], ρ ∈ [0, 1] (3.9)

which implies concavity of f . We now introduce a family of “reference” macroscopic flux
functions and associated macroscopic passage time and height functions. Let 0<ρc ≤ 1/2

and J ≥ 0. For ρ ∈ [0, 1], we define (see Figure 1)

fρc,J(ρ) := J min

(
ρ

ρc
,

1− ρ
ρc

, 1

)
. (3.10)

Figure 1: The homogeneous TASEP flux f0(ρ) = ρ(1 − ρ) is represented in dotted line and 3

graphs of modified fluxes fρn,Jn are depicted in plain line. The renormalization strategy amounts

to bound from below the flux at the scale n by fρn,Jn and to use this information to control the

lower bound on the flux at the scale n + 1. As depicted in the figure, the sequence of fluxes Jn
decays to r/4 when the scale n grows. The width of the flat segment [ρn, 1− ρn] shrinks also at

each step but remains controlled. When the dilution ε tends to 0, the limiting flux f0 defined in

(2.11) is the flux f0(ρ) truncated in [ρc(0), 1 − ρc(0)] at the level r/4 (dashed line). For ε small

enough, J1 can be chosen very close to r/4 and ρ1 close to ρc(0). Furthermore for small ε, the

flat segment [ρn, 1− ρn] is almost unchanged at each scale and this leads to the convergence in

Theorem 2.4.

Given Proposition 2.1, the occurence of a flat segment in Theorem 2.4 boils down to
proving the existence of ε0 > 0 and ρ ∈ [0, 1/2) such that the flux remains above r/4 for
densities in [ρ, 1− ρ]:

∀ε < ε0, fε ≥ fρ,r/4. (3.11)
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As fε ≤ r/4 by Proposition 2.1, lower bound (3.11) implies that fε equals r/4 on [ρ, 1− ρ].
Since fε is concave and symmetric (2.6), ρc(ε) in (2.5) is characterized by:

ρc(ε) = inf
{
ρ ∈ [0, 1/2] : f ≥ fρ,r/4

}
. (3.12)

The convex conjugate of fρc,J through Legendre duality (3.9) is defined for x ∈ R by

kρc,J(x) := (−x)1(−∞,−J/ρc)(x) (3.13)

+ [J − (1− ρc)x]1[−J/ρc,0)(x) + [J − ρcx]1[0,J/ρc)(x).

Finally, one can associate to kρc,J a passage time function and a height function, related
by (3.5)–(3.6), and defined for x ∈ R and y ≥ x− by

τρc,J(x, y) :=
ρcx

+ − (1− ρc)x− + y

J
and hρc,J(t, x) := tkρc,J(x/t), (3.14)

where x+ = max{x, 0} and x− = −min{x, 0}. It follows from (3.5), (3.7) and (3.9) that

f ≥ fρ,J ⇔ τ ≤ τρ,J . (3.15)

Hence, the quantity ρc(ε) in (2.5) can be defined equivalently as follows:

ρc(ε) = inf{ρ ∈ [0, 1/2] : τε ≤ τρ,r/4}. (3.16)

Thus the lower bound (3.11) on the flux can be rephrased in terms of an upper bound on
the last passage time. Theorems 2.4–2.6 are consequences of the following theorems,
which will be proved in the next sections.

Theorem 3.3. Let τε be the limiting passage time defined by (3.3) when the environment
has distribution Pε. Then, under assumption (H), there exist ε0 > 0 and ρ < 1/2 such
that

∀ε < ε0, τε ≤ τρ,r/4, (3.17)

with τρ,r/4 defined in (3.14). In particular, τε(., y) has a cusp at x = 0 and the optimal
value ρc(ε) introduced in (3.16) converges in the dilute limit:

lim
ε→0

ρc(ε) =
1

2
(1−

√
1− r). (3.18)

Theorem 3.4. The passage time function τε converges in the dilute limit:

lim
ε→0

τε(x, y) = τ0(x, y) :=


(
√
x+ y +

√
y)2 if y ≤ x+y1

1(0)− x−y−1
1 (0)

τρc(0),r/4(x, y) if y > x+y1
1(0)− x−y−1

1 (0)

(3.19)

where τ0 is the counterpart of the flux function f0 defined in (2.12) and

y1
1(0) :=

ρc(0)2

1− 2ρc(0)
∈ [0,+∞], y−1

1 (0) :=
[1− ρc(0)]2

1− 2ρc(0)
∈ [0,+∞] (3.20)

where ρc(0) was introduced in (2.9).

Theorem 3.3 can be partially extended to LPP with general service-time distribution
and heavier tails. In this case the particle interpretation is less standard, though the
process can be viewed as a non-markovian TASEP (see e.g. [25] and [35]). Our approach
(and the extension just explained) also applies to other LPP models with columnar
disorder (in the wedge picture) or diagonal disorder (in the square picture), like for
instance the K-exclusion process [35].
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3.3 Last passage reformulation of assumption (H)

We will reformulate condition (H) in the last passage setting. To this end, we define
restricted passage times. Let B = [x1, x2] ∩ Z (where x1, x2 ∈ Z) be a finite interval of
Z. If (x, y) and (x′, y′) are such that x and x′ lie in B, we define ΓB((x, y), (x′, y′)) as the
subset of Γ((x, y), (x′, y′)) consisting of paths γ that lie entirely inside B in the sense that
xk ∈ B for every k = 0, . . . , n. We then define

TαB((x, y), (x′, y′)) := max
{
Tα(γ) : γ ∈ ΓB((x, y), (x′, y′))

}
. (3.21)

The counterpart of Definition 2.7 is

Lemma 3.5. B = [x1, x2] ∩Z be a nonempty interval of Z, with x1, x2 ∈ Z ∪ {±∞} such
that x1 ≤ x2. The limit

T∞,B(αB) := lim
m→∞

1

m
TαB((x0, 0), (x0,m)) = sup

m∈N∗
IE

[
1

m
TαB((x0, 0), (x0,m))

]
(3.22)

exists IP-a.s. for x0 ∈ B, does not depend on the choice of x0, and defines a random
variable depending only on the disorder restricted to B. Besides, if B is finite, we have

T∞,B(αB) =
1

j∞,B(αB)
, (3.23)

where j∞,B(αB) is the stationary current (2.15) in the open system restricted to

B′ := [x1 + 1, x2] ∩Z. (3.24)

Remark 3.6. Since TαB((x0, 0), (x0,m)) ≤ Tα((x0, 0), (x0,m)), by Remark 3.2 above,
TαB((x0, 0), (x0,m)) is dominated stochastically by the sum of 2m i.i.d. E(1) random
variables. Thus, as in Theorem 3.1, the limit in (3.22) also holds in L1.

Note that in (2.15), j∞,B#(αB#) was defined as the maximum current for the TASEP in
B. By (2.13) and (3.24), (B′)# = B so that the above lemma is consistent with (2.15).
The proof of Lemma 3.5 is postponed to Appendix C.

To simplify notation, we shall at times omit αB and write T∞,B, j∞,B. We can now
restate condition (H) in terms of last passage time:

Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε small
enough, one has for any N ∈ N∗:

Pε
(
T∞,[0,N ](α[0,N ]) ≥

4

r
− a

N b/2

)
≤ c

Nβ
. (3.25)

The constants a, c in (2.18) are different from those in (3.25), but b and β are the same.

4 Renormalization scheme

From now, we are going to focus on the last passage percolation model in order to
prove Theorems 3.3 and 3.4. We first describe a renormalization procedure to show that
a bound of the form (3.17) holds with high probability at every scale (see Proposition 4.2
below).

4.1 Definition of blocks

Let n ∈ N∗ be the renormalization “level” and Kn = Kn(ε) the size of a renormalized
block of level n (by block we mean a finite subinterval of Z). For n = 1, we initialize
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K1 = K1(ε) and define a block B of order 1 to be good if it contains no defect, i.e.
α(x) = 1 for every x ∈ B. Otherwise, the block is said to be bad.

For n ≥ 1, we set

Kn+1 = lnKn, with ln = bKγ
nc= ln(ε) (4.1)

with γ ∈ (0, 1). For n ≥ 1, a block B of order n+ 1 has size Kn+1 and is partitioned into
ln disjoint blocks of level n whose size is Kn. This block is called “good” if it contains at
most one bad subblock of level n, and if condition (4.2) below on the maximum current
in the block holds:

j∞,Bn+1
≥ jn+1 with jn+1 :=

r

4
+

a

K
b/2
n+1

, (4.2)

where the constants a, b were defined in (2.18). Otherwise Bn+1 is said to be bad. We
stress the fact that the status (good or bad) of Bn+1 depends only on the disorder
variables αBn+1

in Bn+1 and not on the exponential times Yi,j .

The renormalization is built such that large blocks are good with high probability.
Let qn =qn(ε) denote the probability under Pε that the block [0,Kn − 1] ∩Z, at level n, is
bad. Since the distribution of α is invariant with respect to space shifts, qn(ε) is also, for
any x ∈ Z, the probability that [x, x+Kn − 1]∩Z is a bad block. In the rest of this paper,
quantities Kn, ln, qn will be written with or without explicit dependence on ε, depending
on necessity.

Lemma 4.1. Suppose that assumption (H) holds and set

K∗(ε) :=

(
2c

ε

) 1
β+1

, K∗ := 2 + (4c)
1

β−γ(β+2) ,

γ0 :=
β

β + 2
, ε0 := min

{
1, 2−βc, (2c)

[
3 + (4c)−

1
β−γ(β+2)

]β+1
}
, (4.3)

with the constants c, β appearing in (2.18) and (3.25). Then for all γ ∈ (0, γ0) and ε ≤ ε0,
there is an integer K1(ε) in the interval [K∗,K

∗(ε)] such that

∀ε < ε0, lim
n→∞

qn(ε) = 0 and furthermore lim
ε→0

K1(ε) = +∞. (4.4)

Proof. For n ≥ 1, let ζn = c

Kβ
n

be the upper bound in (3.25). Then, by definition of good

blocks and independence of the environment, one obtains the recursive inequality

q1 ≤ K1ε,

qn+1 ≤ (lnqn)2 + ζn+1, n ≥ 1.

Indeed, the first inequality is a union bound over the K1 sites of the block for the
probability ε of each site being a defect. The second inequality is a union bound over the
ln(ln − 1)/2 ≤ l2n pairs of subblocks for the probability q2

n of both subblocks being bad
at order n. The last term ζn+1 estimates from above the probability that the maximum
current in the whole block does not satisfies (4.2) (see (2.18) and (3.25)).

Note that if for some n, we have qn ≤ 2ζn and ζn+1 ≥ 4l2nζ
2
n, then qn+1 ≤ 2ζn+1. Thus

if we have q1 ≤ 2ζ1 and ζn+1 ≥ 4l2nζ
2
n for all n ≥ 1, then qn ≤ 2ζn for all n ≥ 1, implying

qn(ε)→ 0 as n→∞ provided K1 ≥ 2.
On the one hand, q1 ≤ 2ζ1 follows from K1 ≤ K∗(ε). On the other hand, ζn+1 ≥ 4l2nζ

2
n

is equivalent to

Kβ−(β+2)γ
n ≥ 4c, ∀n ≥ 1.
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Assuming 0 ≤ γ < β
β+2 , since Kn is increasing in n, the above inequality holds for all

n ≥ 1 if it holds for n = 1, which is equivalent to

K1 ≥ K ′ := (4c)
1

β−γ(β+2) . (4.5)

Finally, setting K∗ := 2 +K ′, we have 1 +K∗ ≤ K∗(ε) if ε ≤ ε0. Thus (4.4) is satisfied by
choosing the sequence K1(ε) := bK∗(ε)c.

4.2 Mean passage time in a block

The strategy to prove Theorem 2.4 is now as follows. To each block B = [x0, x1 :=

x0 +Kn − 1] ∩Z of level n, we associate finite-size macroscopic restricted passage time
functions (in the left and right directions) taking as origin either extremity of the block:τ

α
n,B(1, y) = IE

(
1
Kn
TαB((x0, 0), (x1, bKnyc))

)
, y ≥ 0,

ταn,B(−1, y) = IE
(

1
Kn
TαB((x1, 0), (x0, bKnyc))

)
, y ≥ 1,

(4.6)

which depend only on the disorder αB. To keep compact notation, we will write both
functions in the form ταB(σ, y) with σ = ±1 and y ≥ σ− = −min{σ, 0}.

The main step towards Theorem 3.3, stated in Proposition 4.2 below, is to prove
that the mean passage time at each level n remains bounded by the reference function
(3.14) with parameters ρn, Jn appropriately controlled to ensure that the flat segment is
preserved at each order.

Proposition 4.2. For small enough ε, there exist sequences (ρn = ρn(ε))n≥1 ∈ [0, 1]N
∗

and (Jn = Jn(ε))n≥1 ∈ [0,+∞)N
∗

such that:

(i) Uniformly over good blocks B at level n and for every σ ∈ {−1, 1}

∀y ≥ σ−, sup
good B

ταn,B(σ, y) ≤ τρn,Jn(σ, y), (4.7)

(ii) limn→∞ Jn = r/4 and Jn > r/4 for all n ∈ N∗,
(iii) lim supn→∞ ρn < 1/2 and with the definition (2.9) of ρc(0)

lim sup
ε→0

lim sup
n→+∞

ρn(ε) ≤ ρc(0) =
1

2
(1−

√
1− r).

Once Proposition 4.2 is established, completing the proof of Theorem 3.3 (and thus
Theorem 2.4) is a relatively simple task, which boils down to obtain a similar bound on
unrestricted passage times (see Section 8). The upper bound τρn,Jn is the counterpart,
in the last passage percolation setting, of the modified flux fρn,Jn depicted Figure 1.

The derivation of Theorem 2.6 relies on a refined version of (4.7) in the dilute limit.

Proposition 4.3. For every σ ∈ {−1, 1} and σ− ≤ y < σ+y1
1(0)− σ−y−1

1 (0)

lim sup
ε→0

lim sup
n→+∞

sup
good B

ταn,B(σ, y) ≤ (
√
σ + y +

√
y)2. (4.8)

where y±1
1 (0) was defined in (3.20).

4.3 Coarse-graining and recursion

The strategy of the proof of Propositions 4.2 and 4.3 is based on a coarse-graining
procedure. We will first show a general estimate for any good block B at level n ≥ 1 and
σ ∈ {−1, 1}:

∀y ≥ σ−, sup
good B

ταn,B(σ, y) ≤ gn(σ, y), (4.9)

where gn(σ, ·) is a sequence of concave functions defined recursively in Proposition 4.4.
Then Propositions 4.2 and 4.3 will be deduced from (4.9).
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Proposition 4.4. Fix C a large enough constant and set

jn+1 :=
r

4
+

a

K
b/2
n+1

, ln := bKγ
nc and δn := C

(logKn+1)3/2

√
Kn

. (4.10)

Then, the sequence (gn)n≥1 defined on [σ−,+∞) by

g1(σ, y) := (
√
σ + y +

√
y)2 (4.11)

and

gn+1(σ, y) := sup
σ−≤ȳ≤ ln

(ln−1)
y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1
+

1 + σ

2lnjn+1
(4.12)

+δnϕ(y),

where

ϕ(y) :=

√
σ

2
+ y [2 + log(1 + y)]

3/2
, (4.13)

satisfies the bound (4.9) for any good block B and n ≥ 1.

The proof of this proposition is postponed to Section 5. The recursion (4.12) between
gn and gn+1 is obtained by decomposing a path at level n+ 1 into subbpaths contained in
subblocks of size Kn. We then express the total passage time as a maximum of a sum
of the partial passage times in each subblock, where the maximum is over all possible
intermediate heights of the path at the interfaces. The term δnϕ on the last line of
(4.12) is a fluctuation estimate (see Proposition 5.1 below) on the difference between
the expectation of the maximum of partial times and the maximum of the expectations.
The first line of the r.h.s. of (4.12) comes from approximating each partial passage time
with its mean and using the induction hypothesis (4.9).

After proving Proposition 4.4, to pursue the proof of Proposition 4.2, we will bound
the functions gn in terms of the reference function τρn,Jn :

gn(σ, y) ≤ ρσn − σ− + y

Jn
= τρ

σ
n,Jn(σ, y) ≤ τρn,Jn(σ, y), (4.14)

where

Jn := jn+1, ρσn := sup
y≥σ−

{
jn+1 gn(σ, y)− y

}
+ σ−, ρn := max(ρ1

n, ρ
−1
n ). (4.15)

(note that (4.14) is a trivial consequence of (4.15)). We must then show that ρn and Jn
satisfy (ii) and (iii) of Proposition 4.2. To this end, in Section 6, we will prove Propositions
4.5 and 4.6 below (recall that ln, ∆n and ρn actually depend on ε):

Proposition 4.5. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence
(ρσn)n∈N∗ defined in (4.15) satisfies

ρσn+1 ≤
jn+2

jn+1

[(
1− 1

ln

)
ρσn +

1

ln
+ ∆n

]
, (4.16)

where ∆n = ∆n(ε) has the following property: there exist ε1 > 0 and C > 0 such that for
every 0 < ε ≤ ε1 and n ≥ 1

∆n ≤ C jn+1
δ2
n

2(j−1
n+2 − j

−1
n+1)

[
log

(
δn

j−1
n+2 − j

−1
n+1

)]3

, (4.17)

with δn as in (4.10).
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Assumption (H) ensures that the decay of jn to r/4 is slow enough so that the
additional fluctuations of order ∆n do not hinder property (ii) of Proposition 4.2. Im-
plicit in the statement of Proposition 4.5 is the parameter γ ∈ (0, 1) defined by (4.1),
which regulates the speed of growth of our renormalization blocks. Recall that (4.3)
requires γ small enough for good blocks to be typical. For Proposition 4.5 to be
useful, γ has to be chosen possibly even closer to 0, so that the upper bound (4.17)
vanishes in the limit n→∞. This is the content of the next proposition, which will imply
Proposition 4.2.

Proposition 4.6. Assume (H) with b ∈ [1, 2) and γ < inf{γ0,
2
b−1} where γ0 is introduced

in (4.3). Then for small enough ε, the sequences (ρn = ρn(ε))n≥1 and (Jn = Jn(ε))n≥1

defined in (4.15) satisfy the statements of Proposition 4.2.

The following result established in Section 6 will lead to Proposition 4.3.

Proposition 4.7. The dilute limit (4.8) holds as the sequence gn (defined in Proposition
4.4) satisfies

∀y ∈ [σ−, σ+y1
1(0)− σ−y−1

1 (0)[, lim sup
ε→0

lim sup
n→+∞

gn(σ, y) ≤ (
√
σ + y +

√
y)2. (4.18)

Recall that gn depends on ε through the coarse graining scale.

5 Proof of Proposition 4.4

In this section, we prove the recursion in Proposition 4.4. To this end, we decompose
a path of length Kn+1 according to its traces on the interfaces between the subblocks
of size Kn (see Figure 2). The set of such traces will hereafter be called the “skeleton”
of the path. The idea is to use (4.9) as an induction hypothesis for the subpaths in
each block of size Kn. If we neglect the fluctuations of these subpaths, the “‘mean”
computation reduces to optimizing the positions of the traces so as to maximize the total
passage times of subpaths of level n. This “mean” induction relation is altered by an
error term (see Proposition 5.1 below) arising from fluctuations of the subpaths as well
as the entropy induced by the many possible skeletons.

5.1 Skeleton decomposition

We consider B = [x, x′ = x + Kn+1 − 1] ∩ Z a block of order n + 1, where x ∈ Z.
Let γ = ((xk, yk))k=0,...,m−1 be a path restricted to B connecting (x, 0) = (x0, y0 = 0) to
(x′, y′ = [Kn+1y]) = (xm−1, ym−1). We define the skeleton s(γ) = γ̃ of γ as follows (see
figure 2). Let k0 = −1 and y−1 = 0. For i ∈ {0, . . . , ln − 1}, we set

k2i+1 := min{k > k2i : xk = x+ (i+ 1)Kn − 1},
k2i+2 := max{k ≥ k2i+1 : xk = x+ (i+ 1)Kn − 1}.

Note that k2i+1 and k2i+2 are finite because our path connects (x, 0) to (x′, y′) with
horizontal increments ±1. Because xk+1 − xk ≤ 1, we necessarily have x1+k2i+2

=

x+ (i+ 1)Kn and y1+k2i+2
= yk2i+2

. Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. Recall

that the block B is made of ln = bKγ
nc boxes of length Kn. The skeleton s(γ) of γ is then

the sequence γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2)ln given by

ỹi := yk2i−1 − yk2i−2 , (5.1)

z̃i := yk2i − yk2i−1 . (5.2)

By definition, we have
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Figure 2: A block of level n+1 is partitioned into blocks of length Kn (only 3 blocks are depicted).
The grey regions represent the boundaries between the blocks at level n which are separated by a
microscopic length 1. A coarse grained path is depicted and the black dots denote the renewal
points ki.

ln∑
i=1

(ỹi + z̃i) = y′ = bKn+1yc. (5.3)

In a similar way for the paths going from right to left, if B = [x′ = x−Kn+1 +1, x]∩Z, we
may define the skeleton of a path connecting (x, 0) = (x0, y0 = 0) to (x′, y′ = [Kn+1y]) =

(xm−1, ym−1). Let k0 = −1 and y−1 = −1. For i ∈ N, let

k2i+1 := min{k > k2i : xk = x− (i+ 1)Kn + 1},
k2i+2 := max{k ≥ k2i+1 : xk = x− (i+ 1)Kn + 1}.

Because xk+1 − xk ≥ −1, we necessarily have x1+k2i+2 = x − (i + 1)Kn and y1+k2i+2 =

1 + yk2i+2 . Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. The skeleton s(γ) of γ is then

the sequence γ̃ = (ỹi, z̃i)i=1,...,ln given by (5.1)–(5.2). Since allowed path increments are
(1, 0) and (−1, 1), this sequence must now satisfy the constraint ỹi ≥ Kn for i ≥ 1.

Let Γ̃n((x, 0), (x′, y′)) denote the set of skeletons of all paths γ restricted to B con-
necting (x, 0) and (x′, y′), that is the set of sequences γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2){1,...,ln}

satisfying (5.3), with the constraint ỹi ≥ Kn in the case x′ < x. We will simply write Γ̃n
when the endpoints are obvious from the context.

5.2 Passage time decomposition

Let σ = ±1 denote as in (4.6) the direction of the paths. To encompass both cases
σ = ±1, we will use the following simplifying convention: an interval can be written [a, b]

even if a > b, in which case it actually means [b, a]. From now on, for notational simplicity,
we consider the block B = [0, σ(Kn+1 − 1)], instead of a block with arbitrary position
x ∈ Z. For l ∈ {1, . . . , ln}, we denote by Bl := [σ(l−1)Kn, σ(lKn−1)]∩Z the l-th subblock
of level n in the decomposition of B. For a path skeleton γ̃ = (ỹl, z̃l)l=1,...,ln ∈ Γ̃n, define

h̃i :=

i−1∑
j=1

[ỹj + z̃j ]
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if i ≥ 2 and h̃1 = 0. The quantity h̃i represents the height at which a path with skeleton γ̃
enters block i without ever returning to block i− 1. For a path γ ∈ ΓB((0, 0), (σ(Kn+1 −

Figure 3: A coarse grained path is depicted in a block of order n+ 1. The horizontal crossings
through each block Bl are restricted to the dark grey regions. The passage time UαB(σ, γ̃) depends
only on the variables {Yi,j} inside the grey regions which are disjoint from the regions used by the
vertical paths contributing to V αB (σ, γ̃).

1), y′)) with skeleton γ̃, we have that

TαB(γ) ≤ UαB(σ, γ̃) + V αB (σ, γ̃) ≤ TαB((0, 0), (σ(Kn+1 − 1), y′)
)
, (5.4)

where

UαB(σ, γ̃) :=

ln∑
l=1

UαB,l(σ, γ̃), V αB (σ, γ̃) :=

ln∑
l=1

V αB,l(σ, γ̃),

with

UαB,l(σ, γ̃) := TαBl
(
σ(l − 1)Kn, h̃l), (σ(lKn − 2), h̃l + ỹl + σ − 1)

)
,

V αB,l(σ, γ̃) := TαB
(
(σ(lKn − 1), h̃l + ỹl +

σ − 1

2
), (σ(lKn − 1), h̃l + ỹl +

σ − 1

2
+ z̃l)

)
,

(5.5)

where UαB(γ̃) is the contribution of the horizontal crossings in the blocks Bl and V αB (γ̃)

the contribution of the vertical paths at the junction of the blocks Bl (see Figure 3).
Noticing that the second inequality in (5.4) is an equality if and only if γ̃ is the skeleton
of the optimal path, we get

TαB((0, 0), (σ(Kn+1 − 1), y′)) = max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{UαB(σ, γ̃) + V αB (σ, γ̃)} . (5.6)

To derive Proposition 4.4, we have to estimate

ταn+1,B(σ, y) :=
1

Kn+1
IE
(
TαB((0, 0), (σ(Kn+1 − 1), y′))

)
(5.7)

with y′ = bKn+1yc and we decompose this expectation into the sum of two components:

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE

(
UαB(σ, γ̃)

Kn+1

)
+ IE

(
V αB (σ, γ̃)

Kn+1

)}
, (5.8)
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that is the “mean optimization problem” and a “fluctuation part” defined for y′ = bKn+1yc
as

Fn(y) = IE

(
1

Kn+1
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
UαB(σ, γ̃) + V αB (σ, γ̃)

})

− max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE

(
UαB(σ, γ̃)

Kn+1

)
+ IE

(
V αB (σ, γ̃)

Kn+1

)}
. (5.9)

The term (5.8), which involves known information from subblocks, will give the main
recursion structure, while (5.9) will be an error term. The latter will be controlled by
fluctuations and entropy of paths. The precise result that will be established in Section 7
is the following:

Proposition 5.1. With the notation (5.9), one has uniformly in y

Fn(y) ≤ δn
√
σ

2
+ y

(
1 + log(1 + y)

)3/2
, (5.10)

with δn defined in (4.10).

We will in fact replace the upper bound in (5.10) by a slightly worse one for the sole
purpose of making it a concave function of y, which is important for us. We therefore
observe that

Fn(y) ≤ Gn(y) := δnϕ(y), (5.11)

where ϕ is the function defined by (4.13). The concavity of ϕ can be checked by a
straightforward, but tedious computation.

5.3 The main recursion (4.12)

Using the skeleton decomposition, we are now going to derive Proposition 4.4. Let
us explain the choice (4.11) of g1 in Proposition 4.4. To initiate the induction relation,
we need a bound at level 1 for ρ1 and J1. For n = 1, a good block at level 1 contains only
rates α(x) = 1. Since the restricted passage times are smaller than the unrestricted ones,
and the latter are superadditive, the asymptotic shape (3.7)–(3.8) of the homogeneous
last passage percolation yields the exact upper bound

τα1,B(σ, y) ≤
(√
σ + y +

√
y
)2

=: g1(σ, y).

By definition, g1 is concave. Note that, if gn(σ, .) is concave, then gn+1(σ, .) defined by
(4.12) inherits this property.

Suppose now that the inequality (4.9)

ταn,B(σ, y) ≤ gn(σ, y)

holds at step n and that gn is concave. We will show that the recursion is valid at step
n+ 1 with gn+1 defined as in (4.12).

We first focus on the mean optimization problem (5.8) and consider a good block
B = [0, σ(Kn+1 − 1)] at level n+ 1. For a fixed disorder α, by (3.22) and (3.23),

IE
[
V αB,l(σ, γ̃)

]
≤ 1

j∞,B
z̃l. (5.12)

Since B is a good block, j∞,B satisfies (4.2). Thus

j∞,B ≥
r

4
+

a

K
b/2
n+1

=: jn+1, (5.13)
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(recall that jn+1 was introduced in (4.2) as one of the conditions defining a good block).
As B is a good block, the subblocks Bl are good for all values of l = 1, . . . , ln except
for possibly one bad subblock with index i0. The recurrence hypothesis (4.9) at level n
implies that the mean passage time on a good subblock Bl is bounded by

IE
[
UαB,l(σ, γ̃)

]
= Knτ

α
n,Bl

(
σ,

ỹl
Kn

)
≤ Kngn

(
σ,

ỹl
Kn

)
. (5.14)

For the possibly remaining value i0 such that Bi0 is a bad block, we use a crude upper
bound by artificially extending the path in order to compare its cost to the one of a
vertical connection:

UαB,i0(σ, γ̃) ≤ TαBi0

((
σ(i0 − 1)Kn, h̃i0

)
,

(
σ(i0 − 1)Kn, h̃i0 + ỹi0 +

1 + σ

2
Kn

))
,

which yields, as in (5.12),

IE
[
UαB,i0(σ, γ̃)

]
≤ 1

j∞,Bi0

(
ỹi0 +

1 + σ

2
Kn

)
≤ 1

jn+1

(
ỹi0 +

1 + σ

2
Kn

)
. (5.15)

In (5.15) we used the inequality j∞,Bi0 ≥ j∞,B, which follows from Bi0 ⊂ B, Lemma
3.5 and definition (3.21). We combined this inequality with the bound (5.13) for j∞,B.
Note that if there is no bad subblock, we will still apply (5.15) to an arbitrarily chosen
subblock to avoid distinguishing this seemingly better case, which ultimately would not
improve our result. Combining the above expectation bounds, we obtain

IE [UαB(σ, γ̃) + V αB (σ, γ̃)] ≤ Kn+1 g
(1)
n+1(σ, y, γ̃), (5.16)

where

g
(1)
n+1(σ, y, γ̃) :=

1

ln


ln∑

l=1, l 6=i0

gn(σ, ȳl) +
1

jn+1

[
1 + σ

2
+ ȳi0 +

ln∑
l=1

z̄l

] , (5.17)

where (ȳl, z̄l)l=1,...,ln ∈ [0,+∞)2ln is the rescaled skeleton defined by ȳl = K−1
n ỹl and

z̄l = K−1
n z̃l, which satisfies the constraint (5.3), whence

ln∑
l=1

(ȳl + z̄l) ≤ lny with ȳl ≥ σ−. (5.18)

Define

σ− ≤ ȳ :=
1

ln − 1

∑
l=1,...,ln: l 6=i0

ȳl ≤
ln

ln − 1
y, (5.19)

so that from (5.18), we have

ȳi0 +

ln∑
l=1

z̄l ≤ lny − (ln − 1)ȳ. (5.20)

By concavity of gn, (5.16)–(5.17) and (5.20), we obtain an upper bound for (5.8):

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE

(
UαB(σ, γ̃)

Kn+1

)
+ IE

(
V αB (σ, γ̃)

Kn+1

)}
(5.21)

≤ sup
σ−≤ȳ≤ ln

ln−1y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1
+

1 + σ

2lnjn+1
,

where the value of ȳ in (5.19) has been replaced by a supremum. To bound from above
ταn+1,B(σ, y) (see (5.7)), it is enough to combine (5.21) and Proposition 5.1. This completes
the proof of Proposition 4.4.

EJP 23 (2018), paper 44.
Page 20/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP137
http://www.imstat.org/ejp/


Flux of TASEP with site disorder

6 Consequences of the main recursion

In this section, we prove Propositions 4.5, 4.6 and 4.7.

6.1 Proof of Proposition 4.5

As g1(σ, .) is concave, the recursion (4.12) implies that gn(σ, .) is a concave function
for all n. For notational simplicity, we shall write details of the proof for σ = 1. In
this case, we simply write gn(.) for gn(σ, .) and ρn for ρσn. We will only briefly indicate
what changes are involved for σ = −1. We consider the sequence (gn)n≥1 given by the
recursion (4.12) and set

yn := inf

{
y ≥ 0 : g′n(y) ≤ 1

jn+1

}
, (6.1)

where g′n stands for the right derivative of the concave function. Thus, if y ≥ (1− l−1
n )yn

gn+1(y) =

(
1− 1

ln

)[
gn (yn)− yn

jn+1

]
+

y

jn+1
+

1

lnjn+1
+ δnϕ(y), (6.2)

and if y ≤ (1− l−1
n )yn

gn+1(y) =

(
1− 1

ln

)[
gn

(
ln

ln − 1
y

)
− ln
ln − 1

y

jn+1

]
+

y

jn+1
+

1

lnjn+1
+ δnϕ(y). (6.3)

Lemma 6.1. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence (yn)n≥1

satisfies

∀n ≥ 2, yn−1 ≤ yn <∞ and ϕ′(yn) =
j−1
n+1 − j−1

n

δn−1
, (6.4)

with ϕ as in (4.13).

Proof. The proof of (6.4) is split in 3 steps.

Preliminary computations. For n ≥ 1, we set

tn+1 :=
j−1
n+2 − j

−1
n+1

δn
= ψ3(Kn), (6.5)

with

ψ3(K) := (1 + γ)−3/2 K1/2

(logK)3/2

{(
r

4
+

a

K
b
2 (1+γ)2

)−1

−
(
r

4
+

a

K
b
2 (1+γ)

)−1
}

K→+∞∼ (1 + γ)−3/2 16a

r2
K

1
2−

b
2 (1+γ) K→+∞−→ 0.

Since b ≥ 1 and K1(ε) diverges in the dilute limit (4.4), we conclude that

lim
ε→0

sup
n≥1

tn+1(ε) = 0. (6.6)

Case n = 2. Since y1 > (1− l−1
1 )y1, g′2(1, y1) is obtained by differentiating (6.2):

g′2(1, y1)− j−1
3 = j2

−1 − j−1
3 + δ1ϕ

′(y1) = ψ4(K1),

where ψ4(K1) > 0, for large K1, because as K1 → +∞, we have

j−1
2 − j−1

3 ∼ −K−b(1+γ)/2
1 with

b(1 + γ)

2
>

1

2
and δ1 = C

(logK1)3/2

K
1/2
1

,
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(recall b ≥ 1 and γ > 0). Thus y2 > y1 > (1− l−1
1 )y1 as g′2(1, y1) > j−1

3 for ε small enough.
Hence, for y in the neighborhood of y2, g′2(1, y) is also obtained by differentiating the
expression (6.2). It follows that

y2 = inf

{
y ≥ 0 : ϕ′(y) ≤ j−1

3 − j−1
2

δ1

}
.

Since ϕ is strictly concave and limy→+∞ ϕ′(y) = 0, (6.6) implies that for ε small enough,
y2 is the unique solution of ϕ′(y2) = t2. Thus identity (6.4) holds for n = 2.

Case n > 2. We are going to prove the claim by induction. Suppose that (6.4) is valid up
to rank n. To show yn+1 ≥ yn, it is enough to check that

g′n+1(yn) > j−1
n+2.

Since yn > (1− l−1
n )yn, the above derivative is computed from the expression (6.2). Thus,

using the induction hypothesis (6.4), we get for n ≥ 2

g′n+1(yn)− j−1
n+2 = j−1

n+1 − j
−1
n+2 + δnϕ

′(yn) = j−1
n+1 − j

−1
n+2 +

δn
δn−1

(
j−1
n+1 − j−1

n

)
= ψ(Kn−1), (6.7)

where, since Kn = K1+γ
n−1,

ψ(K) =

(
r

4
+

a

K
b
2 (1+γ)2

)−1

−
(
r

4
+

a

K
b
2 (1+γ)3

)−1

+ (1 + γ)3/2K−γ/2

[(
r

4
+

a

K
b
2 (1+γ)2

)−1

−
(
r

4
+

a

K
b
2 (1+γ)

)−1
]
. (6.8)

Let us respectively denote by ψ1(K) and ψ2(K) the first and second line on the r.h.s. of
(6.8). Then as K → +∞,

ψ1(K) ∼ −16ar−2K−b(1+γ)2/2, ψ2(K) ∼ 16a(1 + γ)3/2 r−2K−b(1+γ)/2−γ/2.

Since for b ≥ 1 and γ > 0 we have

b

2
(1 + γ) +

γ

2
<
b

2
(1 + γ)2.

It follows that ψ(K) > 0 for K large enough. As K1(ε) diverges when ε tends to 0 (see
(4.4)), we have that for small enough ε, yn+1 ≥ yn ≥ (1− l−1

n )yn holds for all n ≥ 2.

As g′n+1(yn+1) is given by the derivative of (6.2) and ϕ is strictly concave, we have
to solve

g′n+1(yn+1) = j−1
n+1 + δnϕ

′(yn+1) = j−1
n+2 ⇒ ϕ′(yn+1) =

j−1
n+2 − j

−1
n+1

δn
= tn+1. (6.9)

As above, (6.6) implies that, for ε small enough, a solution of (6.9) exists for all n ≥ 2.
This proves the second part of the claim (6.4). The proof is similar for σ = −1.

Using Lemma 6.1, we can now complete the proof of Proposition 4.5. We must show
that inequality (4.16) holds for the sequence (ρn)n∈N∗ with ∆n satisfying (4.17). By
definition (6.1) of yn, the supremum in (4.15) is reached at yn so that

ρn = jn+1gn(yn)− yn.
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We are going to obtain a recursion for ρn. To this end, consider

ρn+1 = jn+2gn+1(yn+1)− yn+1.

By Lemma 6.1, yn+1 ≥ yn > (1− l−1
n )yn, so gn+1(yn+1) is obtained from (6.2). Thus

ρn+1 = jn+2

(
1− 1

ln

) [
gn(yn)− yn

jn+1

]
+ jn+2

ln jn+1
+
(
jn+2

jn+1
− 1
)
yn+1 + jn+2δnϕ(yn+1)

≤ jn+2

jn+1

((
1− 1

ln

)
[jn+1gn(yn)− yn] + 1

ln
+ jn+1δnϕ(yn+1)

)
, (6.10)

where on the second line we have used jn+2 ≤ jn+1. Setting ∆n := jn+1δnϕ(yn+1), we
recovered the inequality (4.16), and it remains to verify (4.17). Starting from

ϕ′(y)
y→+∞∼ 1

2
√
y

(log y)3/2,

we see that

ϕ[ϕ
′−1(t)]

t→0∼ 1

2t

(
log

1

4t2

)3

. (6.11)

Recall that by (6.9), yn+1 = ϕ
′−1(tn+1), where tn is defined by (6.5) and satisfies (6.6).

Thus, there exist C ′, C ′′ > 0 and ε2 > 0 such that, for every 0 < ε ≤ ε2 and n ≥ 1

ϕ(yn+1) = ϕ[ϕ
′−1(tn+1)] ≤ C ′′ 1

tn+1

∣∣ log tn+1

∣∣3
≤ C ′ δn

2(j−1
n+2 − j

−1
n+1)

[
log

(
δn

j−1
n+2 − j

−1
n+1

)]3

.

This implies (4.17) with ∆n = jn+1δnϕ(yn+1).
For σ = −1, still writing ρn for ρσn, we have

ρn − 1 = sup
y≥1

{
jn+1gn(−1, y)− y

}
and we get a recursion similar to (6.10)

ρn+1 − 1 ≤ jn+2

jn+1

((
1− 1

ln

)
[ρn − 1] + jn+1δnϕ(yn+1)

)
,

which can be rewritten

ρn+1 ≤
jn+2

jn+1

((
1− 1

ln

)
ρn +

1

ln
+ jn+1δnϕ(yn+1) +

jn+1

jn+2
− 1

)
.

For b ≥ 1, the remainder jn+1

jn+2
− 1 can be bounded by ∆n so that the same type of

inequality is also valid for σ = −1.

6.2 Proof of Proposition 4.6

Let an = 1− 1
ln

. Then one can see by induction that (4.16) implies

ρσn ≤ ρσ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i

n−1∏
j=i+1

aj

≤ ρσ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i, (6.12)
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Flux of TASEP with site disorder

where we used that ji+1

ji
≤ 1 for any i ≥ 1. Remember that the quantities ρn, jn, an, ∆n

actually depend on ε. Since g1 is given by (4.11), a simple computation shows that

ρ1
1 := sup

y≥0

{
j2 g1(1, y)− y

}
(6.13)

is the smaller root ρ of the equation

ρ(1− ρ) = j2, (6.14)

and that the supremum in (6.13) is achieved at y1
1 :=

ρ21
1−2ρ1

. For σ = −1, we have

ρ−1
1 := sup

y≥1

{
j2 g1(−1, y)− y

}
+ 1 = ρ1

1 (6.15)

and the supremum achieved for y−1
1 := (1−ρ1)2

1−2ρ1
. In particular, since the divergence (4.4)

of K1 implies limε→0 j2(ε) = r/4, we also have

lim
ε→0

ρσ1 (ε) =
1

2

(
1−
√

1− r
)

= ρc(0) (6.16)

that is the lower solution of (6.14) with r/4 instead of j2. This says that the approximation
after one step of renormalization is close to the dilute limit. Lemma 6.2, stated below,
shows that ρn(ε) remains close to ρc(0) for ε small. By (6.16), (6.12) and Lemma 6.2
below, we have

lim sup
ε→0

lim sup
n→+∞

ρn(ε) ≤ ρc(0). (6.17)

This completes the proof of Proposition 4.6.

Lemma 6.2. Assume (H) with b ∈ [1, 2) and K1 satisfies (4.4). With the notation of
Lemma 4.1, we fix γ < min

{
γ0,

2
b − 1

}
. Then

(1) limε→0

∏+∞
n=1 an(ε) = 1,

(2) limε→0

∑+∞
n=1 ∆n(ε) = 0.

Proof.
Proof of (1). We have to show that

lim
ε→0

+∞∑
n=1

log

(
1− 1

ln(ε)

)
= 0. (6.18)

Since
ln(ε) = exp

[
log
(
K1(ε)

)
γ(1 + γ)n−1

]
≥ exp

[
γ(1 + γ)n−1

]
,

we have, for n ≥ 2, ln(ε)−1 ≤ C(γ) := e−γ(1+γ) < 1. Hence, for n ≥ 2,

0 ≤ − log

(
1− 1

ln(ε)

)
≤ 1

ln(ε)
+
C ′(γ)

ln(ε)2
≤ (1 + C ′(γ)) exp

[
−γ(1 + γ)n−1

]
.

The limit (6.18) then follows from dominated convergence, and limε→0K1(ε) = +∞,
which implies limε→0 ln(ε) = +∞ for any n ≥ 1.

Proof of (2). Here we can write ∆n
n→+∞∼ ψ0(Kn), where

ψ0(K) :=
(logK)3

K

[(
r

4
+

a

K
b
2 (1+γ)2

)−1

−
(
r

4
+

a

K
b
2 (1+γ)

)−1
]−1

×

log

 (logK)3/2

√
K

[(
r

4
+

a

K
b
2 (1+γ)2

)−1

−
(
r

4
+

a

K
b
2 (1+γ)

)−1
]−1


3

(6.19)

K→+∞∼ C ′′(logK)6K
b
2 (1+γ)−1.
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for some constant C ′′ > 0. The assumption on b and the choice of γ imply that c :=

1− b
2 (1 + γ) > 0 (Equation (6.19) is the main reason for restricting to the case b < 2). By

(4.4), there exists ε1 > 0 such that Kn(ε) ≥ 2 for every n ≥ 1 and ε ∈ [0, ε1]. Thus, by
(6.19), there exists a constant D > 0 such that, for such n and ε,

∆n(ε) ≤ D

Kn(ε)c
≤ D

K1(ε)c(1+γ)n
≤ D

2c(1+γ)n
.

Since limε→0K1(ε) = +∞, the result follows again from dominated convergence.

6.3 Proof of Proposition 4.7

Note that

lim
ε→0

+∞∏
n=1

ln(ε)

ln(ε)− 1
= 1. (6.20)

Thus for any υ > 0, there exists ε∗ > 0 such that, for ε ≤ ε∗, the following holds

+∞∏
n=1

ln(ε)

ln(ε)− 1
< 1 + υ, (6.21)

and (yn)n≥0 is an increasing sequence thanks to Lemma 6.1. We fix y < y1
1+υ and ε ≤ ε∗.

For any N ∈ N∗, we define the sequence

yN,N := y and ∀n ∈ {1, N − 1}, yn,N :=

N∏
k=n+1

lk
lk − 1

y ≤ y1 ≤ yn. (6.22)

As ln
ln−1yn,N = yn−1,N ≤ yn, then gn+1(1, yn,N ) is determined by (6.3) so that

gn+1(1, yn,N ) =

(
1− 1

ln

)
gn (1, yn−1,N ) +

1

ln
jn+1 + δnϕ (yn,N ) . (6.23)

Starting from yN,N := y and proceeding recursively, we deduce that

gN+1(1, y) ≤
N∏
n=1

(
1− 1

ln

)
g1

[
1,

N∏
n=1

ln
ln − 1

y

]
+

4

r

N∑
n=1

1

ln
+

N∑
n=1

δnϕ

(
N∏

r=n+1

lr
lr − 1

y

)
.

(6.24)

From (6.16), we know that y1 = y1(ε) converges to y1
1(0) = ρc(0)2

1−2ρc(0) . Furthermore

limε→0 ln(ε) = +∞ and limε→0 δn(ε) = 0. Thus it follows from (6.24) that

∀y < y1
1(0)

1 + υ
, lim sup

ε→0
lim sup
N→+∞

gN (1, y)≤g1(y). (6.25)

In the dilute limit, υ can be arbitrarily small so that the inequality above holds more
generally for y < y1

1(0). A similar result holds for σ = −1.

7 Fluctuation bounds : Proof of Proposition 5.1

Proposition 5.1 is proved in this section. Preliminary estimates are stated in Subsec-
tion 7.1 and then applied in Subsection 7.2, which is the body of the proof.
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7.1 Concentration estimates

We shall need a classical gaussian concentration inequality for last passage times.
In the following lemma, it is assumed that the service times Yi,j involved in the def-
inition (3.1)–(3.2) of last passage times are i.i.d. random variables bounded by M

instead of being exponentially distributed. To avoid confusion with the previous nota-
tion, the corresponding probability IPM and expectation IEM are denoted below by an
index M .

Lemma 7.1. [28, Lemma 3.1] Assume that Y = (Yi,j : (i, j) ∈ Z×N) is a vector of non
negative independent random variables bounded from above by rM . Let (x1, y1) and
(x2, y2) in Z×N be such that (x2 − x1, y2 − y1) ∈ W. Then

Tα
(
(x1, y1), (x2, y2)

)
= IEM

[
Tα
(
(x1, y1), (x2, y2)

)]
+ 8M

√
L((x1, y1), (x2, y2))Z,

where L((x1, y1), (x2, y2)) := (x2 − x1) + 2(y2 − y1) is the length of any path connecting
(x1, y1) to (x2, y2), and Z is a random variable with subgaussian tail

∀t ≥ 0, IPM (|Z| ≥ t) ≤ exp(−t2) .

We stress the fact that Gaussian bounds on last passage times are by no means
optimal in the case of exponential service times, for which more refined (but also more
specific) gaussian-exponential estimates are available (see e.g. [41]). However, for
our purpose, they have the advantage of being both simple and sufficient, while also
extending to service distributions with heavier tails, as a result of the cutoff procedure
introduced in Subsection 7.2.

The above concentration inequality will be combined with the following result, estab-
lished in Appendix D.

Lemma 7.2. Let A and I be finite sets. Assume that for each a ∈ A, we have a family
(Ya,i)i∈I of independent random variables such that, for every i ∈ I,

Ya,i = IE
(
Ya,i

)
+
√
Va,iZa,i, (7.1)

where Va,i > 0, and Za,i is a random variable such that

IP(Za,i ≥ t) ≤ e−t
2

, (7.2)

for every t ≥ 0. Then

IE

(
max
a∈A

∑
i∈I
Ya,i

)
≤ max

a∈A

∑
i∈I

IE
(
Ya,i

)
+

(
max
a∈A

∑
i∈I

Va,i

) 1
2 (√

π
√
|I|+

√
π
√
A+
√
A
√

log |A|
)
, (7.3)

where |.| denotes the cardinality, and A is a universal constant.

7.2 Path renormalization: fluctuation and entropy

We now proceed in three steps. In step one, we define a cutoff procedure for the
service times Yi,j , by conditioning on their maximum, in order to replace them with
bounded variables, to which the results of Subsection 7.1 apply. In step two, we apply
Lemma 7.2 to passage times in subblocks. This yields for the cutoff service times a result
similar to the statement of proposition 5.1, but without the whole logarithmic correction.
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Finally, in step three, we remove the cutoff and use a bound on the expectation of the
maximum of exponential variables, to obtain a quasi-gaussian estimate with a logarithmic
correction.

Step 1. Notation and conditional measure. Pick γ such that

0 < γ < min
{
γ0, (2/b)− 1

}
, (7.4)

with γ0 introduced in Lemma 4.1, and b in (2.18) and (3.25). Let B = Z∩ [0, σ(Kn+1− 1)]

be a block of order n + 1 and partition B into subblocks of level n denoted by Bl =

[σ(l − 1)Kn, σ(lKn − 1)] ∩Z, where l = 1, . . . , ln.

Set y′ = bKn+1yc, Γ̃n = Γ̃n((0, 0), (σ(Kn+1 − 1), y′)) and define

MB(y) := max
{
Yi,j : i ∈ B, j = 0, . . . , y′ = bKn+1yc

}
.

Given M > 0, denote by IPB,M,y′ the distribution of (Xi,j : i ∈ B, j = 0, . . . , y′), where
Xi,j are i.i.d. and have the same distribution as Yi,j conditioned on Yi,j ≤ rM . (Note that

after conditioning by rM , the percolation paths have weights Yi,j
α ≤M as α ≥ r). Denote

by IP′B,M,y′ the distribution of (Yi,j : i ∈ B, j = 0, . . . , y′) conditioned on MB(y) = rM .
The reason why we introduce the two different distributions IPB,M,y′ and IP′B,M,y′ is that
we can apply Lemma 7.1 to the former, while the latter is obtained by conditioning the
actual joint law of the r.v.’s Yi,j on their maximum. A useful relation between these two
distributions is the following.

Lemma 7.3. The distribution of TαB((0, 0), (σ(Kn+1 − 1), y′)) under IP′B,M,y′ is stochasti-
cally dominated by the distribution of TαB((0, 0), (σ(Kn+1 − 1), y′)) +M under IPB,M,y′ .

Proof. Let X = (Xi,j : i ∈ B, j = 0, . . . , y′) be a family of i.i.d. random variables
whose distribution is the distribution of Yi,j conditioned on Yi,j ≤ rM . Pick a uniformly
distributed (i0, j0) in B × {0, . . . , y′}; then give value rM to Y ′i0,j0 , and let the other Y ′i,j
for (i, j) 6= (i0, j0) be independent with the same distribution as the above Xi,j . Then the
family Y = (Y ′i,j : (i, j) ∈ B × {0, . . . , y′}) has distribution IP′B,M,y′ . It suffices to now to
show that

TαB((0, 0), (σ(Kn+1 − 1), y′))[Y ′] ≤ TαB((0, 0), (σ(Kn+1 − 1), y′))[X] +M, (7.5)

where the notation TαB((0, 0), (σ(Kn+1−1), y′))[X] denotes the passage time as a function
of X, that is (3.1)–(3.2) with the r.v.’s Yi,j replaced by Xi,j . Let γ∗ = (xk, yk)k=0,...,n

denote the optimal path that achieves TαB((0, 0), (σ(Kn+1 − 1), y′))[Y ′], i.e. such that

TαB((0, 0), (σ(Kn+1 − 1), y′))[Y ′] = TαB(γ∗)[Y ′] :=

n∑
k=0

Y ′xk,yk
α(xk)

. (7.6)

Then

TαB(γ∗)[Y ′] ≤ TαB(γ∗)[X] +M ≤ TαB((0, 0), (σ(Kn+1 − 1), y′))[X] +M. (7.7)

Indeed, if (i0, j0) does not lie on γ∗, the first inequality in (7.7) is an equality; otherwise,
the inequality holds because

Y ′i0,j0
α(i0)

≤M ≤M +
Xi0,j0

α(i0)
.

This establishes (7.5).
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Step 2. Fluctuation and entropy bounds. Given α, the random variables {UαB,l′(σ, γ̃),

V αB,l(σ, γ̃)}l,l′ (defined in (5.5)) are independent under IPB,M,y′ , because they depend on
disjoint subvectors of Y (see Figure 3). On the other hand, by Lemma 7.1, we getU

α
B,l(σ, γ̃) = IEM

[
UαB,l(σ, γ̃)

]
+ 8M

√
σKn + 2ỹl Z

(1)
l ,

V αB,l(σ, γ̃) = IEM

[
V αB,l(σ, γ̃)

]
+ 8M

√
2z̃l Z

(2)
l ,

(7.8)

where (Z
(i)
l )l=1,...,ln;i=1,2 is a family of r.v.’s independent under IPB,M,y′ and such that

IPB,M,y′

(
Z

(i)
l ≥ t

)
≤ exp(−t2), (7.9)

for all t ≥ 0. To apply Lemma 7.2 to the random variables in (7.8), we take A =

Γ̃n
(
(0, 0), (σ(Kn+1 − 1), y′)

)
with I = {1, . . . , 2ln}, and for a = γ̃ ∈ A, we set

l ∈ {1, . . . , ln}, Ya,2l−1 = UαB,l(σ, γ̃) and Ya,2l = V αB,l(σ, γ̃).

Thus in (7.3) we have |I| = 2ln = 2Kn+1/Kn, and (cf. (7.8) and (5.3))∑
i∈I

Va,i = 64M2(σKn+1 + 2y′) ≤ 64M2Kn+1(σ + 2y).

To estimate the cardinality |A| of the skeletons, we need the following

Lemma 7.4. For every y′ ∈ N, one has

log |A| = log
∣∣Γ̃n((0, 0), (±(Kn+1 − 1), y′)

)∣∣ ≤ 2
Kn+1

Kn
[1 + log (1 +Kny)] .

Proof. The number of such skeletons satisfies the inequality

σ ∈ {−1, 1},
∣∣∣Γ̃n((0, 0), (σ(Kn+1 − 1), y′)

)∣∣∣ ≤ (2ln + y′ − 1

2ln − 1

)
. (7.10)

The previous upper bound follows by noticing that choosing a skeleton amounts to
choosing 2ln − 1 heights corresponding to the different renewal times to reach the total
height y′. In fact, when σ = 1, some of these heights can be equal if ỹi = 0 or z̃i = 0

for some i ≤ 2ln − 1. Thus, the number of ways for choosing the heights is bounded by
the number of ways for choosing 2ln − 1 items from a set of 2ln + y′ − 1 items. Estimate
(7.10) is actually an equality if σ = 1. Recall the inequality

log

(
N

k

)
≤ Nh

(
k

N

)
, (7.11)

where h is defined on [0, 1] by

− h(x) := x log x+ (1− x) log(1− x) with h(0) = h(1) = 0. (7.12)

Bound (7.11) follows from Cramer’s exact large deviation uppper bound. For complete-
ness, we give a derivation of (7.11) at the end of this proof.

Furthermore,
uh(1/u) ≤ 1 + log u

for u ≥ 1, and
2ln + y′ − 1

2ln − 1
≤ 1 +

y′

ln
= 1 +

Kn+1

ln
y,
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(the inequality follows from ln ≥ 1). This completes the proof of Lemma 7.4.

Proof of (7.11). The bound follows from the inequality(
N

k

)
≤ 2N IP

(
N∑
i=1

ζi ≥ k

)
, (7.13)

where (ζi)i=1,...,n is a sum of i.i.d. Bernoulli variables with parameter 1/2, and Cramer’s
exact large deviation upper bound applied to the r.h.s. of (7.13). For completeness we
recall the derivation of Cramer’s bound: for k ≥ N/2 and θ ∈ R, by Markov’s inequality,

IP

(
N∑
i=1

ζi ≥ k

)
≤ e−Nθ kN IE

(
eθ
∑N
i=1 ζi

)
= e−N(θ kN−L(θ)), (7.14)

where

L(θ) := log IEeθζ1 = log
1 + eθ

2
.

The Legendre transform of L is h + log 2, where h is given by (7.12). Optimizing the
upper bound in (7.14) over θ yields

2N IP

(
N∑
i=1

ζi ≥ k

)
≤ 2N exp

{
−N sup

θ∈R

[
θ
k

N
− L(θ)

]}
= e−Nh(

k
N ).

Combining (7.3) with the entropy estimate of Lemma 7.4, we obtain

IEM

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
UαB(σ, γ̃) + V αB (σ, γ̃)

})
(7.15)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IEM (UαB(σ, γ̃) + V αB (σ, γ̃))

}
+ 8M

√
Kn+1

√
σ + 2y

√
2
Kn+1

Kn

(√
π +
√
A+
√
A
√

[1 + ln (1 +Kny)]
)
,

where we used that 2Kn+1

Kn
≥ π.

Step 3. Removing the cut-off on Y . The random variables {UαB,l(σ, γ̃), V αB,l(σ, γ̃)}l,l′
are nondecreasing functions of Y = (Yi,j : (i, j) ∈ Z ×N) with respect to the product
order. Therefore, their distributions under IPB,M,y′ are stochastically dominated by their
distributions under IP and one has

IE
[
UαB,l(σ, γ̃)

]
≥ IEM

[
UαB,l(σ, γ̃)

]
, IE

[
V αB,l(σ, γ̃)

]
≥ IEM

[
V αB,l(σ, γ̃)

]
. (7.16)

On the other hand, Lemma 7.3 combined with (7.16) and (7.15) yields

IE′M

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
UαB(σ, γ̃) + V αB (σ, γ̃)

})
(7.17)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE [UαB(σ, γ̃) + V αB (σ, γ̃)]

}
+M

+ 8MKn+1

√
σ + 2y

√
2

Kn

(√
π +
√
A+
√
A
√

[1 + log (1 +Kny)]
)
.
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Recall that IE′M on the left-hand site of (7.17) stands for the expectation with respect to
IP conditioned on the maximum MB(y) = M . We can now remove this conditioning by
integrating both sides of (7.17) with respect to the law of MB(y). We first write

IE
[
MB(y)

]
= m ([yKn+1]Kn+1) , (7.18)

where the function t ∈ [0,+∞) 7→ m(t) is defined as the expectation of the maximum of
1 + [t] i.i.d. exponential variables of rate 1. In particular, we have

m(t) ≤ C[1 + log(1 + t)], (7.19)

for some constant C > 0. Thus, after conditioning on MB(y), we obtain

1

Kn+1
IE

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
UαB(σ, γ̃) + V αB (σ, γ̃)

})
(7.20)

≤ 1

Kn+1
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE (UαB(σ, γ̃) + V αB (σ, γ̃))

}
+m ([yKn+1]Kn+1) ∆n(y),

where

∆̃n(y) :=
1

Kn+1
+ 8

√
σ + 2y√
Kn

(√
A
√
π +
√

2π +
√
A
√

1 + log (1 +Kny)
)
.

A simple computation shows that

m
(
[yKn+1]Kn+1

)
∆̃n(y) ≤ δn

√
σ/2 + y

[
1 + log(1 + y)

]3/2
,

with δn given by (4.10). Using the notation of (5.9), we get

Fn(y) ≤ δn
√
σ

2
+ y [1 + log(1 + y)]3/2.

This completes the proof of Proposition 5.1.

8 Completion of proofs of Theorems 2.4 and 2.6

In this section, we complete the remaining parts in the proof of Theorem 2.4. In
Subsection 8.1, we deduce from Proposition 4.2 a similar statement for unrestricted
passage times (that is, when the paths are not restricted to the box defined by the
endpoints). Finally, Theorem 2.4 is completed, in Subsection 8.2, using the fact that
most boxes are good. The dilute limit (Theorem 2.6) is studied in Section 8.3.

8.1 Bounds on unrestricted passage times

To obtain Theorem 2.4 from Proposition 4.2, we first deduce from Proposition 4.2
the following result for unrestricted passage times, i.e. passage times obtained by
maximizing over paths not bound to stay in the interval between the two endpoints (see
Figure 4).

Given the sequence (ρn)n≥1 of Proposition 4.6, we set

ρc = ρc(ε) := lim sup
n→∞

ρn ∈ [0, 1/2). (8.1)

In the rest of this section, the asymptotics limn→+∞ means that we restrict to a subse-
quence (fixed once and for all) of (ρn)n≥1 that achieves the lim sup in (8.1).

EJP 23 (2018), paper 44.
Page 30/44

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP137
http://www.imstat.org/ejp/


Flux of TASEP with site disorder

Figure 4: The optimal path is not restricted to the box [0,Kn]× [0,Kny] but can wander around
the whole parallelogram marked by the dotted line. The optimal path is split into 3 parts (0, yk1),
(yk1 , yk2) and (yk2 , (Kn, bKnyc)).

Corollary 8.1. For σ = ±1 and y ≥ σ−, we consider the unrestricted passage time

ταn (σ, y) := IE

[
1

Kn
Tα(σKn, [Kny])

]
. (8.2)

Then there are functions en(σ, y) such that, for all n ∈ N∗ and environments α for which
[0, σ(Kn − 1)] is a good block, the following bound holds:

ταn (σ, y) ≤ τρc,r/4(σ, y) + en(σ, y). (8.3)

Furthermore en(σ, .) does not depend on α and converges locally uniformly to 0 on
[σ−,+∞) as n→ +∞.

Proof of Corollary 8.1. The unrestricted passage time Tα(σKn, bKnyc) may use paths
that do not stay in B := [0, σKn]. To control the contribution outside B, we use a
decomposition of the path in the same spirit as Section 5. The problem here is simpler
because there is no more renormalization, and there are only three regions to consider
for the path according to its x-coordinate (recall the simplifying notational convention
[a, b] = [b, a]), namely the interval [0, σ(Kn − 1)] and the two intervals on either side of
it, which are also bounded by the fact that the only possible increments are (1, 0) and
(−1, 1). If σ = 1, these intervals are [−bKnyc,−1] and [Kn,Kn + bKnyc]. If σ = −1 then
y ≥ 1 and these intervals are [−bKnyc,−Kn] and [1,−Kn + bKnyc]. We thus define a
simpler path skeleton (z̃1, ỹ, z̃2) = γ̃ as described below.

Let γ = (xk, yk)k=0,...,m−1 be a path connecting (0, 0) = (x0, y0) to (xm−1, ym−1) =

(σKn, [Kny] = y′). We set

k1 := 1 + max{k = 0, . . . ,m− 1 : σxk < 0},
k2 := min{k = k1, . . . ,m− 1 : xk = σKn},

with the convention that the max is −1 if the corresponding set is empty. Since allowed
path increments are (1, 0) and (−1, 1), we have xk1 = 0. We then define (see Figure 4)

z̃1 := yk1 , ỹ := yk2 − yk1 , z̃2 := y′ − yk2 .

Let Γ̃n denote the set of these new “skeletons”, that is the set of triples γ̃ = (z̃1, ỹ, z̃2)

such that

z̃1 + ỹ + z̃2 = bKnyc =: y′, (z̃1, ỹ, z̃2) ∈ N× (N ∩ [σ−Kn,+∞))×N. (8.4)
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The path between k1 and k2 corresponds to the restricted part which has already been
studied in the previous sections. As in (5.6), we write

Tα
(
(0, 0), (Kn, bKnyc)

)
= max

(z̃1,ỹ,z̃2)∈Γ̃n

[V α1 (σ, γ̃) + UαB(σ, γ̃) + V α2 (σ, γ̃)] , (8.5)

where B := [0, σKn − 1], and

V α1 (σ, γ̃) := Tα((0, 0), (0, z̃1)),

UαB(σ, γ̃) := TαB

((
σ, z̃1 +

1− σ
2

)
,

(
σ(Kn − 1), z̃1 + ỹ − 1− σ

2

))
,

V α2 (σ, γ̃) := Tα((σKn, z̃1 + ỹ), (σKn, z̃1 + ỹ + z̃2)).

Note that the second passage time in (8.5) is restricted to B by definition of the skeleton.
We then proceed as in Section 5 by studying the mean optimization problem (that is the
maximum of the expectations of the three terms in (8.5)) and estimating the error due to
this approximation.

Using (3.22) with B = Z, and (3.8) with (x, y) = (0, 1),

IE
(
V α1 (σ, γ̃)

)
≤ 4

r
z̃1, IE

(
V α2 (σ, γ̃)

)
≤ 4

r
z̃2

On the other hand, by definition of restricted passage times ταB,

IE
(
UαB(σ, γ̃)

)
≤ Knτ

α
B(σ,K−1

n ỹ) ≤ Knτ
ρn,Jn(σ,K−1

n ỹ),

where the last inequality follows from Propositions 4.4 and 4.5. From the definition
(3.14) of τρ,J , we get for i = 1, 2

4

r
z̃i = τρc,r/4(0, z̃i) and

1

Jn
z̃i = τρn,Jn(0, z̃i).

Thus we deduce that

1

Kn

(
4

r
z̃1 +

4

r
z̃2 +Knτ

ρn,Jn(σ,K−1
n ỹ)

)
≤ τρc,r/4(σ, y)

+ τρn,Jn(σ, y)− τρc,r/4(σ, y) +

∣∣∣∣4r − 1

Jn

∣∣∣∣ y, (8.6)

where we used that z̃1 + z̃2 ≤ Kny. Define e(1)
n (σ, y) as the second line of the r.h.s. of

(8.6). We have thus shown that

1

Kn
max

(z̃1,ỹ,z̃2)∈Γ̃n

{
IE
(
V α1 (σ, γ̃)

)
+ IE

(
UαB(σ, γ̃)

)
+ IE

(
V α2 (σ, γ̃)

)}
≤ τρc,r/4(σ, y) + e(1)

n (σ, y),

where by the definition of τρ,J (3.14), of ρc (8.1) and the convergence of Jn to r/4, we
deduce the (locally uniform) convergence

lim
n→∞

e(1)
n (σ, .) = 0.

We conclude by controlling the error thanks to Proposition 8.2, in the same spirit as
Proposition 5.1.

Proposition 8.2. For σ ∈ {−1, 1}, there exist functions e(2)
n (σ, y) such that

IE

(
1

Kn
max

(z̃1,ỹ,z̃2)∈Γ̃n

{
V α1 (σ, γ̃) + UαB(σ, γ̃) + V α2 (σ, γ̃)

})

− max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α1 (σ, γ̃)

)
+ IE

(
UαB(σ, γ̃)

)
+ IE

(
V α2 (σ, γ̃)

)]}
≤ e(2)

n (σ, y), (8.7)

and e(2)
n (σ, .) converges locally uniformly to 0 on [σ−,+∞) as n→ +∞.
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Proof. We proceed in three steps as in the proof of Proposition 5.1.

Step 1. Cutoff. We again use a truncation procedure for the service times Yi,j as in
step one of Subsection 7.2. Here, we define IP′n,M,y′ as the distribution of the family
(Yi,j : i ∈ [−y′, σKn + y′], j ∈ [0, y′]) conditioned on their maximum MB(y) being rM ,
and IPn,M,y′ as the distribution of the family (Xi,j : i ∈ [−σy′, σKn + y′], j ∈ [0, y′]),
where Xi,j are i.i.d. random variables, and the law of Xi,j is the law of Yi,j conditioned
on Yi,j ≤ rM . For simplicity, we will only write IPM and IP′M for these distributions.

Step 2. Fluctuations under cutoff. Applying Lemma 7.1 under IPn,M,y′ , we have

V α1 (σ, γ̃) ≤ IEM
(
V αl (σ, γ̃)

)
+ 8M

√
2z̃1Z1,

V α2 (σ, γ̃) ≤ IEM
(
V α2 (σ, γ̃)

)
+ 8M

√
2z̃2Z2,

UαB(σ, γ̃) ≤ IEM
(
UαB(σ, γ̃)

)
+ 8M

√
σKn + 2ỹZ0, (8.8)

where Z1, Z2 and Z0 are independent random variables such that

IPn,M,y(Zk ≥ t) ≤ e−t
2

,

for k ∈ {0, 1, 2}. We now apply Lemma 7.2 with A = Γ̃n, I = {1, 2, B}, and for a = γ̃ ∈ Γ̃n,
Ya,1 = V α1 (σ, γ̃), Ya,2 = V α2 (σ, γ̃), Ya,B = UαB(σ, γ̃), Va,1 = 2z̃1, Va,2 = 2z̃2, Va,B = σKn+2ỹ.
Since (see (8.4))

|Γ̃n| =
(

2 + bKnyc − σ−Kn

2

)
≤ K2

n(1 + y)2, (8.9)

we obtain

IEM

(
1

Kn
max

(z̃1,ỹ,z̃2)∈Γ̃n

{
V α1 (σ, γ̃) + UαB(σ, γ̃) + V α2 (σ, γ̃)

})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IEM

(
V α1 (σ, γ̃)

)
+ IEM

(
UαB(σ, γ̃)

)
+ IEM

(
V α2 (σ, γ̃)

)] }
(8.10)

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
≤ max

(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α1 (σ, γ̃)

)
+ IE

(
UαB(σ, γ̃)

)
+ IE

(
V α2 (σ, γ̃)

)] }
+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

In the last inequality, we have used the fact that the passage times under IPM are
stochastically dominated by the passage times under IP.

Step 3. Removing the cutoff. As in Lemma 7.3, a coupling argument shows that the
distribution under IP′M of any passage time T depending only on the previous set of Yi,j
is dominated by the distribution under IPM of T +M . Therefore

IE′M

(
1

Kn
max

(z̃1,ỹ,z̃2)∈Γ̃n

{
V α1 (σ, γ̃) + UαB(σ, γ̃) + V α2 (σ, γ̃)

})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

(
IE
(
V α1 (σ, γ̃)

)
+ IE

(
UαB(σ, γ̃)

)
+ IE

(
V α2 (σ, γ̃)

))}
+
M

Kn
+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

Integrating the above inequality with respect to the distribution of MB(y) yields (8.7),
with

e(2)
n (σ, y) := m

(
bKnyc(σKn + 2bKnyc)

)
En(σ, y),
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where m(.) satisfies the bound (7.19), and

En(σ, y) :=
1

Kn
+ 8

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
,

from which one can see that e(2)
n (σ, .) converges locally uniformly to 0.

8.2 Proof of Theorems 3.3 and 2.4

Theorem 2.4 is a consequence of Theorem 3.3 which we prove now. Given σ ∈ {−1, 1},
by Theorem 3.1, we have

τε(σ, y) = lim
n→∞

Eε × IE

(
1

Kn
T (σKn, bKnyc)

)
= lim
n→∞

Eε (ταn (σ, y)) ,

where Eε stands for the expectation with respect to the disorder α. Note that the above
limit does not follow directly from Theorem 3.1, which yields an a.s. limit. However, the
convergence in Theorem 3.1 holds also in L1 (see Remark 3.2). Let Gn(σ) be the set of
environments α for which [0, σ(Kn − 1)] is a good block. The mean passage time can be
decomposed as

Eε[ταn (σ, y)] = Eε
[
ταn (σ, y)1Gn(σ)

]
+ Eε

[
ταn (σ, y)1A\Gn(σ)

]
,

where A := [0, 1]Z is the set of environments. By Corollary 8.1 (recall that the function
en in (8.3) does not depend on α), the lim sup of the first term is bounded above by
τρc,r/4(σ, y). On the other hand, the second term is bounded above by

Eε
[
(ταn (σ, y))

2
]1/2

Pε [A\Gn(σ)]
1/2

.

The Pε-probability vanishes as n → ∞ by Lemma 4.1, while the expectation of the
squared passage time can be bounded by

Eε
[
(ταn (σ, y))

2
]
≤ τn(σ, y)2,

where τn(σ, y) is defined as (8.2) for a homogeneous environment α(x) ≡ r (that is for
rate r homogeneous TASEP). The limit τn(σ, y)→ r−1(

√
σ + y +

√
y)2 as n→∞, follows

from the above remark on L1-convergence of rescaled passage times in Theorem 3.1.
This implies τn(σ, y)2 → r−2(

√
σ + y +

√
y)4 as n→∞. We finally get

τε(σ, y) ≤ τρc,r/4(σ, y), (8.11)

for every σ ∈ {−1, 1} and y ≥ σ−. Since τε and τρc,r/4 are homogeneous functions, (3.17)
follows for ρ = ρc.

We now show that
lim
ε→0

ρc(ε) = ρc(0).

Indeed, by (3.16) and (8.11), we have ρc ≤ ρc. Then, by Proposition 4.6,

lim sup
ε→0

ρc(ε) ≤ lim sup
ε→0

ρc(ε) ≤ ρc(0).

The reversed inequality will be proved by contradiction. Suppose that we have

lim inf
ε→0

ρc(ε) < ρc(0),

then for some ε > 0 we would have ρc(ε) < ρc(0), hence

r

4
= max fε = fε[ρc(ε)] ≤ fTASEP[ρc(ε)] < fTASEP[ρc(0)] =

r

4
,

where fTASEP denotes the flux of the homogeneous rate 1 TASEP, and the last inequality
follows from ρc(ε) < ρc(0) ≤ 1/2.
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8.3 Proof of Theorems 3.4 and 2.6

Using Proposition 4.7, we are going to derive the limiting passage time of Theorem
3.4 and then conclude Theorem 2.6.

By coupling with a rate 1 homogenous TASEP, we get

τε(1, y) ≥ g1(1, y). (8.12)

Combining this with Proposition 4.7, we deduce that

∀y < y1
1(0), lim

ε→0
τε(1, y) = g1(1, y) = (

√
1 + y +

√
y)2,

where τε denotes the limiting rescaled passage time. Similarly, one can show that

∀y ∈ [1, y−1
1 (0)], lim

ε→0
τε(−1, y) = g1(−1, y) = (

√
−1 + y +

√
y)2.

As the height profile hε(t, x) = tkε(
x
t ) (3.6) is the inverse of τε(x, y) wrt y, we obtain

lim
ε→0

kε(v) =
(1− v)2

4
, ∀v ∈ [1− 2ρc(0), 1] ∪ [−1, 2ρc(0)− 1]. (8.13)

Next we use
fε(ρ) = inf

v
[ρv + kε(v)]. (8.14)

For ρ 6∈ [ρc(0), 1− ρc(0)], it follows from (8.13) that the minimum in (8.14) is achieved for
v = vε → 1− 2ρ as ε→ 0, thus

lim
ε→0

fε(ρ) = ρ(1− ρ).

Since the above expression takes value r/4 for ρ ∈ {ρc(0), 1− ρc(0)}, and fε is a concave
function with maximum value r/4, we then necessarily have

lim
ε→0

fε(ρ) =
r

4
, ∀ρ ∈ [ρc(0), 1− ρc(0)].

A Proof of Proposition 2.1.

To show that the maximum value of the flux is at least r/4, we use Definition (2.3)
and couple the process (ηαt )t≥0 with generator (2.1) with a homogeneous rate r TASEP
denoted by (ηrt )t≥0. Lemma B.1 shows that Jαx (t, ηρ) ≥ Jrx(t, ηρ), where Jrx denotes the
current in the homogeneous rate r TASEP. It is known (see e.g. [34]) that

lim
t→+∞

1

t
Jrx(t, ηρ) = rρ(1− ρ)

and it is maximum for ρ = 1/2.
We now prove that f(ρ) ≤ r/4 for all ρ ∈ [0, 1]. In [5, 7] it is shown that there exists a

closed subset R of [0, 1] containing 0 and 1, and a family (ναρ )ρ∈R of invariant measures
for the disordered TASEP, such that, for every ρ ∈ R,

f(ρ) =

∫
jαx (η)dναρ (η), x ∈ Z, (A.1)

where jαx (η) := α(x)η(x)[1− η(x+ 1)], and that f is interpolated linearly outside R. Note
(this follows from stationarity) that the integral in (A.1) does not depend on x. It is
thus enough to consider ρ ∈ R. Since the random variables α(x) are i.i.d. and the
infimum of their support is r, for P-a.e. environment α ∈ A, there exist sequences
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(xN )N≥1, (yN )N≥1 and (εN )N≥1 such that limN→∞ xN = +∞, limN→∞[yN − xN ] = +∞,
limN→∞ εN = 0, and

r ≤ min
x=xN ,...,yN

α(x) ≤ max
x=xN ,...,yN

α(x) ≤ r + εN . (A.2)

The intervals [xN , yN ] with low rates act as bottlenecks for the particle flux. Set

aN =
2xN + yN

3
, bN =

xN + 2yN
3

,

which satisfy xN ≤ aN ≤ bN ≤ yN and bN − aN → +∞. By (A.1),

f(ρ) =
1

bN − aN + 1

bN∑
x=aN

∫
X

jαx (η)dναρ (η) ≤ [r + εN ]

∫
X

j̃(η)dµN (η), (A.3)

where j̃(η) = η(0)[1− η(1)], and

µN :=
1

bN − aN + 1

bN∑
x=aN

θxν
α
ρ . (A.4)

where (θx)x∈Z is the group of spatial shifts, whose action on particle configurations is
defined by (θxη)(y) = η(x+ y) for every η ∈ X and y ∈ Z. Similarly, (θxα)(y) = α(x+ y)

for every α ∈ A and y ∈ Z. If ϕ is a cylinder function of X, we set θxϕ := ϕ ◦ θx. If µ
is a probability measure on X, θxµ := µ ◦ (θx). Finally, the action of θx on the gener-
ator Lα given by (2.1) is defined by (θxL

α)ϕ = θx(Lαϕ) for every cylinder function ϕ on X.

The sequence (µN )N∈N∗ of probability measures on the compact space X is tight. Let µ?

be one of its limit points. It follows from (A.4) that µ? is shift invariant, i.e. θxµ? = µ?

for all x ∈ Z. We claim and prove below that µ? is an invariant measure for the homo-
geneous TASEP, that is the process with generator (2.1) with α(x) ≡ 1. By Liggett’s
characterization result [18] for shift-invariant stationary measures, µ? is then of the form

µ? =

∫
[0,1]

νργ(dρ).

where γ is a probability measure on [0, 1], and νρ is the product Bernoulli measure on X

with parameter ρ. Thus ∫
X

j̃(η)dµ?(η) =

∫
[0,1]

ρ(1− ρ)dγ(ρ) ≤ 1

4
.

Letting N →∞ in (A.3) implies f(ρ) ≤ r/4.

We now prove that µ? is an invariant measure for the homogeneous TASEP. Let g : X→ R

be a local function that depends on η only through sites x ∈ Z such that |x| ≤ ∆, where
∆ ∈ N. Take N large enough so that ∆ < (yN − xN )/3. Notice that the generator Lα

defined in (2.1) satisfies the commutation relation

θxL
θxαf = Lα(θxf). (A.5)

It follows that ∫
X

Lθxαg d(θxν
α
ρ ) =

∫
X

Lα(θxg) dναρ = 0.
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The last equality follows from invariance of ναρ . On the other hand, for x ∈ [aN , bN ] and
|y| ≤ (yN − xN )/3, τxα(y) ∈ [r, r + εN ]. Let L denote the generator of the homogeneous
TASEP on Z, that is the one obtained from (2.1) when α(x) ≡ 1. Since

∣∣∣Lθxαg(η)− rLg(η)
∣∣∣ ≤ 2||g||∞

∆∑
y=−∆−1

|θxα(y)− r|,

it follows that
lim
N→∞

max
x=aN ,...,bN

sup
η∈X

∣∣Lθxαg(η)− rLg(η)
∣∣ = 0.

Hence ∫
X

Lg(η) dµ?(η) = lim
N→∞

∫
X

Lg(η)dµN (η)

= lim
N→+∞

1

bN − aN

bN∑
x=aN

∫
X

1

r
Lα(θxg) dναρ = 0

holds for every local function g.

B Proof of Proposition 2.2

The proof uses the following lemma.

Lemma B.1. Let B be a nonempty interval of Z, and B# as in (2.13) Assume α and α′

are two environments such that α(x) ≤ α′(x) for every x ∈ B#. Then

(i) For every t ≥ 0, x ∈ B and η ∈ {0, 1}B,

Jα,B
#

x (t, η) ≤ Jα
′,B#

x (t, η), (B.1)

where Jα,B
#

x (t, η) denotes the rightward current across site x up to time t for the
process with generator (2.14).

(ii) If B is finite, then j∞,B#(αB#) ≤ j∞,B#(α′B#).

Proof of Proposition 2.2. Statement (ii) follows from (i) and (2.5). We now prove (i). Let
U = (Ux)x∈Z be a family of i.i.d. U(0, 1) random variables, and V = (Vx)x∈Z be a family
of i.i.d. random variables with distribution Q, independent of U . We set

αε(x) = Vx1{Ux≤ε} + 1{Ux>ε}, (B.2)

Thus αε has distribution Qε defined in (2.4), and since Vx ≤ 1,

αε ≤ αε′ if ε ≤ ε′, (B.3)

where the inequality is in the sense of product order. Let ρ ∈ [0, 1] and ηρ ∈ X satis-
fying (2.2). By (2.3), for almost every realization of (U, V ), the following limit holds in
probability

fε(ρ) = lim
t→+∞

1

t
Jαε0 (ηρ, t) = fε(ρ).

The conclusion then follows from (B.3) and Lemma B.1.

Proof of Lemma B.1. Statement (ii) follows from (i), Definition 2.7 and the fact that
j∞ = limt

1
t J

α,B#

(t, η). We now prove (i). Let B = [x1, x2] ∩Z, with x1, x2 ∈ Z such that

x1 ≤ x2. We are going to couple the TASEP’s (ηαt )t≥0 and (ηα
′

t )t≥0 in environments α, α′
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starting from the same configuration η ∈ {0, 1}B. If x1 6= −∞, the initial configuration η
is extended so that site x1 − 1 has an infinite stack of particle, and there is no particle to
the left of x1 − 1. Particles of the extended initial configuration are labelled increasingly
towards the left. We choose the initial labeling so that the lowest label of a particle in
the stack is 1. Thus the set of labels is

I = Z ∩ [n,+∞[, where n := 1−
∑
x∈B

η(x).

The coupled evolution is defined using a Harris type construction, as in [21], of both
TASEP’s from a common Poisson point measure on (0,+∞) × Z × (0, 1) with intensity
dtdx1(0,1)(u)du, where dx is the counting measure on Z. If (t, x, u) is a Poisson point, and
β ∈ {α, α′}, a particle jumps from x to x+ 1 in the configuration ηβ. if

(i) x ∈ Z ∩ [x1 − 1, x2],

(ii) u ≤ β(x),

(iii) one of the following holds: either x = x1 − 1 and ηβt−(x1) = 0, or x = x2 and

ηβt−(x2) = 1, or x1 < x < x2, ηβt−(x) = 1 and ηβt−(x+ 1) = 0.

If a jump occurs from the stack, the particle that jumps is the stack particle with the
lowest label. Let σi(t), resp. σ′t(i), denote the position at time t of particle i in ηαt ,
resp. ηα

′

t . The initial conditions are identical, i.e. σ0(i) = σ′0(i) for every i ∈ I. As a
consequence of the assumption α ≤ α′ and of the rules (i)–(iii), the order between the
particle configurations is preserved by the coupling at any time

∀i ∈ N, σt(i) ≤ σ′t(i). (B.4)

By construction, for β ∈ {α, α′}, Jβx (t, η) is equal to the highest label of a particle in ηβ.
having left site x by time t. Thus (B.4) implies (i).

C Proof of Lemma 3.5

Before deriving Lemma 3.5, we first explain a mapping between the restricted
passage times in a box B and the TASEP restricted to B with reservoirs.

C.1 Last passage times in a finite domain

Let B := [x1, x2] ∩ Z. The purpose of this subsection is to give an interpretation
of the passage times (3.21) restricted to B in terms of an open disordered TASEP on
B′ := [x1 + 1, x2] ∩ Z with generator LαB, see (2.14) (recall from (2.13) and (3.24) that
(B′)# = B). It is convenient to view the dynamics generated by (2.14) as follows. We add
an infinite stack of particles (reservoir) at site x1, and a site x2 + 1 where the number of
particles is not restricted. Particles enter B′ from the stack at x1, and when they leave,
they stay at x2 + 1 forever. We are going to check that TαB

(
(x1, 0), (i, j)

)
has the same

distribution as the time when particle j reaches site i+ 1 in the process generated by
LαB, if the initial state is given by

σ0(j) = x11{j≥0} + (x2 + 1)1{j≤−1}. (C.1)

where σ0(j) denotes the initial position of the particle with label j, and particles are
numbered increasingly from right to left. In fact, we may define passage times associated
with more general labeled initial configurations in B′. By this we mean that σ0, instead
of being defined by (C.1), can be any nonincreasing function σ0 from Z to [x1, x2 + 1]∩Z.
Let

B̃ := {(i, j) ∈ B ×Z : i ≥ σ0(j)} and B̄ := {(i, j) ∈ B ×Z : i < σ0(j)}. (C.2)
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For (i, j) ∈ B × Z, let TαB,σ0
(i, j) denote the time at which particle j reaches site i + 1.

These passage times are determined by the boundary condition

TαB,σ0
(i, j) = 0 for (i, j) ∈ B̄ (C.3)

together with the following recursions:

TαB,σ0
(i, j) =

Yi,j
α(i)

+ max[TαB,σ0
(i− 1, j), TαB,σ0

(i+ 1, j − 1)] (C.4)

for (i, j) ∈ B̃ such that x1 < i < x2,

TαB,σ0
(i, j) =

Yi,j
α(i)

+ TαB,σ0
(i− 1, j), (C.5)

for (i, j) ∈ B̃ such that i = x2,

TαB,σ0
(i, j) =

Yi,j
α(i)

+ TαB,σ0
(i+ 1, j − 1), (C.6)

for (i, j) ∈ B̃ such that i = x1. In the special case (C.1), we have

B̃ = [x1, x2]×N and B̄ = [x1, x2]× (Z \N). (C.7)

By plugging (C.7) into (C.4), one recovers

TαB,σ0
(i, j) = TαB((x1, 0), (i, j)).

where the r.h.s. was defined in (3.21). For notational simplicity, in the sequel of this
subsection, we omit dependence on α, B and σ0, and write T (i, j) instead of TαB,σ0

(i, j).
The position of particle j at time t, denoted by σt(j) ∈ [x1, x2 + 1], is given by

σt(j) =


x1 if T (x1, j) > t

x2 + 1 if T (x2, j) ≤ t
i ∈ [x1 + 1, x2] ∩Z if T (i− 1, j) ≤ t < T (i, j)

(C.8)

T (i, j) = sup{t ≥ 0 : σt(j) ≤ i}. (C.9)

The particle process (σt)t≥0 is equivalent to the following growing cluster process:

Ct := {(i, j) ∈ [x1, x2]×Z : T (i, j) ≤ t} = {(i, j) ∈ B ×Z : i < σt(j)}

with initial state C0 = B̄. One can proceed as in [37] to show that both processes are
Markovian and that the undistinguishable particle process (ηt)t≥0 defined by

ηt(x) :=
∑
j∈Z

1{σt(j)=x} (C.10)

is Markov with generator LαB.

C.2 Proof of Lemma 3.5

Step 0: proof of (3.22). Let Ω denote the set of sequences (Yi,j)i,j∈Z×N equipped
with the product σ-algebra and the product E(1) probability measure. This measure is
invariant for the family of shift operators (Θn, n ∈ N) defined on Ω by

(ΘnY )i,j := Yi,j+n. (C.11)
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We may view TαB((x, y), (x′, y′)) defined by (3.21) as a function on Ω. For x0 ∈ B, let

T̃αB,x0
(n) := TαB(x0, n).

By (3.21), the above function on Ω satisfies the superadditivity property

T̃αB,x0
(n+m) ≥ TαB((x0, 0), (x0, n)) + TαB((x0, n), (x0, n+m))

= T̃αB,x0
(n) + T̃αB,x0

(m) ◦Θn. (C.12)

Note that the last term on the third line of (C.12) coincides with the last term on the
second line because the disorder is uniform along a column. Therefore a quenched
subadditivity property holds for vertical passage-times, whereas it would not be true (nor
would the stationarity be true) along other directions. This superadditivity combined
with Kingman’s subadditive ergodic theorem (see [17]) implies (3.22).

Step 1. We prove that definition (3.22) does not depend on x0. Let x0, x
′
0 ∈ B with

x0 < x′0. Then (3.21) implies

TαB
(
(x0, 0), (x0,m+ x′0 − x0)

)
≥ TαB

(
(x′0, 0), (x′0,m)

)
≥ TαB

(
(x0, x

′
0 − x0), (x0,m)

)
. (C.13)

Since the sequence (Yi,j : i ∈ Z, j ≥ 0) is stationary with respect to shifts of j, the
expectation of the last quantity is equal to that of TB

(
(x0, 0), (x0,m − x′0 + x0)

)
. Thus

taking expectations, dividing by m and letting m→∞ yields the result.

Step 2. Proof of (3.23). Given this statement, let us denote by Jα,Bx (t, η0) the current up
to time t across site x ∈ B′, in the open system on B′, when starting from η0. Assume η0

is the occupation configuration associated with σ0 via (C.1)–(C.10). Then it is clear that

Jα,Bx (t, η0) = min{j ∈ Z : TαB(x, j) > t},

which implies the IP a.s. limit

lim
t→∞

1

t
Jα,Bx (t, η0) =

1

T∞,B
= lim
t→∞

IE

(
1

t
Jα,Bx (t, η0)

)
= lim
t→∞

IE

(
1

t

∫ t

0

jα,Bx (ηs)ds

)
= lim
t→∞

∫
jα,Bx (η)dνt(η) =

∫
jα,Bx (η)dναB(η),

where

jα,Bx (η) =


α(x)η(x)[1− η(x+ 1)] if x1 + 1 < x ≤ x2 − 1,

α(x2)η(x2) if x = x2,

1− η(x1 + 1) if x = x1 + 1,

and

νt :=
1

t

∫ t

0

δη0e
sLαBds.

The second equality follows from the fact that the family of random variables
( 1
t J

α,B
x (t, η0))t≥0 is uniformly integrable, because

(
Jα,Bx (t, η0)

)
t≥0

is dominated in dis-
tribution by a Poisson random variable with parameter t. The last equality follows from
the fact that νt converges to the invariant measure ναB as t tends to infinity.

D Proof of Lemma 7.2

The proof of Lemma 7.2 relies on the following elementary estimates.
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Lemma D.1.
(i) Let Y be a random variable such that IP(Y ≥ t) ≤ Ce−t2/V for all t ≥ 0, where C ≥ 1

and V > 0. Then, we have

Y =
√
V logC +

√
V X,

where IP(X ≥ t) ≤ e−t2 .

(ii) There exists a positive constant A such that the following holds. Let (Xk)k=1,...,n be

independent random variables such that IP(Xk ≥ t) ≤ e−t
2

for all t ≥ 0, and (Vk)k=1,...,n

be nonnegative numbers. Then

n∑
k=1

√
VkXk =

√
π

n∑
k=1

√
Vk +

(
A

n∑
k=1

Vk

)1/2

Z,

where Z is a r.v. such that IP(Z ≥ t) ≤ e−t2 for all t ≥ 0.

Remark D.2. The random variables Y and Yk in Lemma D.1 need not have a definite
sign.

Proof of Lemma D.1. Assertion (i) follows from an immediate computation. To obtain (ii)
we note that, for θ ≥ 0,

IE
(
eθXk

)
≤ 1 +

∫ +∞

0

θeθtIP(Xk ≥ t)dt ≤ 1 + θeθ
2/4

∫ +∞

−θ/2
e−t

2

dt ≤ 1 +
√
πθeθ

2/4 .

Setting Yk = Xk −
√
π, we have, for θ ≥ 0,

Λ(θ) := log IE
(
eθYk

)
≤ log

[
1 +
√
πθeθ

2/4
]
−
√
πθ.

Thus there exists A > 0 such that Λ(θ) ≤ Aθ2/4 for θ ≥ 0. Hence, by independence of
the random variables Xk, we get

log IE

[
exp

(
θ

(
n∑
k=1

√
VkXk −

√
π

n∑
k=1

√
Vk

))]
≤ A

4
θ2

n∑
k=1

Vk.

The estimate on the tail of Z follows by an exponential Markov inequality.

Proof of Lemma 7.2. By (ii) of Lemma D.1, for every a ∈ A, we have

∑
i∈I
Ya,i =

∑
i∈I

IE
(
Ya,i

)
+
√
π
∑
i∈I

√
Va,i +

(
A
∑
i∈I

Va,i

)1/2

Za, (D.1)

where Za is a random variable satisfying IP(Za ≥ t) ≤ e−t
2

for all t ≥ 0. On the other
hand, by Cauchy-Schwarz inequality,

∑
i∈I

√
Va,i ≤

√
|I|

(∑
i∈I

Va,i

)1/2

. (D.2)

Thus, for every a ∈ A, ∑
i∈I
Ya,i ≤ m+ (AV )1/2Z+

a , (D.3)
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where

V := max
a∈A

∑
i∈I

Va,i and m :=
√
π
√
|I|
√
V + max

a∈A

∑
i∈I

IE
(
Ya,i

)
.

(note that (D.3) may be false with Za instead of Z+
a if Za < 0, because the last term on

the r.h.s. of (D.1) is then greater than (AV )1/2Za). Next, for any t ≥ 0, we have

IP

(
max
a∈A

∑
i∈I
Ya,i ≥ m+ t

)
≤ IP

(⋃
a∈A

{∑
i∈I
Ya,i ≥ m+ t

})
≤

∑
a∈A

IP
(

(AV )1/2Z+
a ≥ t

)
≤ |A| e− t2

AV .

It follows from (i) of Lemma D.1 that

max
a∈A

∑
i∈I
Ya,i = m+

√
log |A|(AV )1/2 + (AV )1/2Z,

where Z is a random variable satisfying IP(Z ≥ t) ≤ e−t
2

for all t ≥ 0. The result then
follows from

IE(Z) ≤ IE(Z+) ≤
∫ +∞

0

IP(Z+ ≥ t)dt ≤
∫ +∞

0

e−t
2

dt =
√
π.
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