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Abstract

Starting with the large deviation principle (LDP) for the Erdős–Rényi binomial random
graph G(n, p) (edge indicators are i.i.d.), due to Chatterjee and Varadhan (2011), we
derive the LDP for the uniform random graph G(n,m) (the uniform distribution over
graphs with n vertices and m edges), at suitable m = mn. Applying the latter LDP
we find that tail decays for subgraph counts in G(n,mn) are controlled by variational
problems, which up to a constant shift, coincide with those studied by Kenyon et al. and
Radin et al. in the context of constrained random graphs, e.g., the edge/triangle model.
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1 Introduction

The Erdős–Rényi binomial random graph model G(n, p) is the graph on n vertices
where each edge is present independently with probability p; the uniform random graph
G(n,m) is the uniform distribution over graphs with n vertices and exactly m edges.
Chatterjee and Varadhan [6] established a large deviation principle (LDP) for G(n, p) for
p fixed, with the notable application of estimating the probabilities that the number of
copies tH of a fixed subgraph H is abnormally far from its mean. Even for variables in
G(n,m) whose typical behavior mirrors that of their analogs in G(n, p) for p = m/

(
n
2

)
,

rare events in the two models may be triggered by different phenomena: for instance,
while tH has asymptotically the same mean in G(n,m) and G(n, p = m/

(
n
2

)
), its variance

can in fact feature a different exponent of n (cf. [12, Example 6.55, p. 174]).

Our goal is to build on the work of [6] and show that the variational problem to which
it reduced the LDP in G(n, p)—an optimization problem over graphons (defined next)—
captures the analogous problem in G(n,m) for p = m/

(
n
2

)
once we further restrict the

graphons to have edge density p (see (1.5)). As we later show, the resulting variational
problem has already been studied in the context of constrained random graphs.

Let W be the space of all bounded measurable functions f : [0, 1]2 → R that are
symmetric (f(x, y) = f(y, x) for all x, y ∈ [0, 1]). Let W0 ⊂ W denote all graphons, that is,
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Large deviations in uniform random graphs

symmetric measurable functions [0, 1]2 → [0, 1] (these generalize finite graphs; see (1.2)).
The cut-norm of W ∈ W is given by

‖W‖� := sup
S,T⊂[0,1]

∣∣∣∣ ∫
S×T

W (x, y) dxdy

∣∣∣∣ = sup
u,v : [0,1]→[0,1]

∣∣∣∣ ∫
[0,1]2

W (x, y)u(x)v(y) dxdy

∣∣∣∣ ,
(by linearity of the integral it suffices to consider {0, 1}-valued u, v, hence the equality).
For any measure-preserving map σ : [0, 1] → [0, 1] and W ∈ W, let Wσ ∈ W denote the
graphon Wσ(x, y) =W (σ(x), σ(y)). The cut-distance on W is then defined as

δ�(W1,W2) := inf
σ

‖W1 −Wσ
2 ‖� ,

with the infimum taken over all measure-preserving bijections σ on [0, 1]. It yields the
pseudo-metric space (W0, δ�), which is elevated into a genuine metric space (W̃0, δ�)

upon taking the quotient w.r.t. the equivalence relation W1 ∼W2 iff δ�(W1,W2) = 0. In
what may be viewed as a topological version of Szemerédi’s regularity lemma, Lovász
and Szegedy [17] showed that the metric space (W̃0, δ�) is compact. For a finite simple
graph H = (V (H), E(H)) with V (H) = {1, . . . , k}, its subgraph density in W ∈ W0 is

tH(W ) :=

∫
[0,1]k

∏
(i,j)∈E(H)

W (xi, xj) dx1 · · · dxk ,

with the map W 7→ tH(W ) being Lipschitz-continuous in (W̃0, δ�) (see [4, Thm 3.7]).
Define Ip : [0, 1] → R by

Ip(x) :=
x

2
log

x

p
+

1− x

2
log

1− x

1− p
for p ∈ (0, 1) and x ∈ [0, 1] , (1.1)

and extend Ip to W0 via Ip(W ) :=
∫
[0,1]2

Ip(W (x, y)) dxdy for W ∈ W0. As Ip is convex on

[0, 1], it is lower-semicontinuous (LSC) on W̃0 w.r.t. the cut-metric topology ([6, Lem. 2.1]).
In the context of the space of graphons W̃0, a simple graph G with vertices {1, . . . , n}

can be represented by

WG(x, y) =

{
1 if (dnxe, dnye) is an edge of G,

0 otherwise.
(1.2)

For two graphs G and H let hom(H,G) count the number of homomorphisms from H to
G (i.e., maps V (H) → V (G) that carry edges to edges). Let

tH(G) := |V (G)|−|V (H)||hom(H,G)| = tH(WG) .

A sequence of graphs {Gn}n≥1 is said to converge if the sequence of subgraph densities
tH(Gn) converges for every fixed finite simple graph H. It was shown in [17] that
for any such convergent graph sequence there is a limit object W ∈ W̃0 such that
tH(Gn) → tH(W ) for every fixed H. Conversely, any W ∈ W̃0 arises as a limit of a
convergent graph sequence. It was shown in [4] that a sequence of graphs {Gn}n≥1

converges if and only if the sequence of graphons WGn
∈ W0 converges in W0 w.r.t. δ�

A random graph Gn ∼ G(n, p) corresponds to a random point WGn
∈ W̃0—inducing

a probability distribution P(Gn ∈ ·) on W̃0 supported on a finite set of points (n-vertex
graphs)—and Gn → W for the constant graphon W ≡ p a.s. for every fixed 0 < p < 1.
Chatterjee and Varadhan [6] showed that, for 0 < p < 1 fixed, the random graph G(n, p)
obeys an LDP in (W̃0, δ�) with the rate function Ip(·). Denoting ‖W‖1 =

∫
|W (x, y)| dxdy,

and considering the restricted spaces

W(p)
0 :=

{
W ∈ W0 : ‖W‖1 = p

}
and W̃(p)

0 =
{
W ∈ W̃0 : ‖W‖1 = p

}
,
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Large deviations in uniform random graphs

here we deduce the analogous statement for the random graph G(n,m), the uniform
distribution over all graphs with n vertices and exactlym edges, with a rate function Jp(·)
restricted to W̃(p)

0 . As we later conclude, the variational formulas of this LDP for G(n,m),
addressing such random graph structure conditioned on a large deviation, coincide with
those studied earlier by Kenyon et al. and Radin et al. (cf. [13–15]).

Theorem 1.1. Fix 0 < p < 1 and let mn ∈ N be such that mn/
(
n
2

)
→ p as n → ∞. Let

Gn ∼ G(n,mn). Then the sequence P(Gn ∈ ·) obeys the LDP in the space (W̃0, δ�) with
the good rate function Jp (namely, with {W : Jp(W ) ≤ α} compact for α finite), where

Jp(W ) = Ip(W ) if W ∈ W̃(p)
0 and is ∞ otherwise; that is, for any closed set F ⊆ W̃0,

lim sup
n→∞

n−2 logP(Gn ∈ F ) ≤ − inf
W∈F

Jp(W ) ,

and for any open U ⊆ W̃0,

lim inf
n→∞

n−2 logP(Gn ∈ U) ≥ − inf
W∈U

Jp(W ) .

Define

φH(p, r) := inf
{
Ip(W ) : W ∈ W̃0 , tH(W ) ≥ r

}
(1.3)

and further let

ψH(p, r) := inf
{
Ip(W ) : W ∈ W̃(p)

0 , tH(W ) ≥ r
}

(1.4)

(with Ip having compact level sets in (W̃0, δ�) and tH(·) continuous on (W̃0, δ�), the
infimums in (1.3), (1.4) are attained whenever the relevant set of graphons is nonempty).
For any r ≥ tH(p) we relate the equivalent form of (1.4) (see Corollary 1.2), given by

ψH(p, r) = inf
{
Ip(W ) : W ∈ W̃(p)

0 , tH(W ) = r
}
, (1.5)

to the following variational problem that has been extensively studied (e.g., [13–15, 20])
in constrained random graphs such as the edge/triangle model (where H is a triangle):

FH(p, r) := sup
{
he(W ) : W ∈ W̃(p)

0 , tH(W ) = r
}
, (1.6)

where he(x) = − 1
2 (x log x+ (1− x) log(1− x)) is the (natural base) entropy function. As

Ip(x) = −he(x)− x
2 log p− 1−x

2 log(1−p) and ‖W‖1 = p throughout W̃(p)
0 , we see that both

variational problems for FH and −ψH have the same set of optimizers, and

FH(p, r) = −ψH(p, r) + he(p) .

As a main application of their LDP, Chatterjee and Varadhan [6] showed that the large
deviation rate function for subgraph counts in G(n, p) for any fixed 0 < p < 1 and graph
H reduces to the variational problem (1.3). Namely, if Gn ∼ G(n, p) then

lim
n→∞

n−2 logP (tH(Gn) ≥ r) = −φH(p, r) for every fixed p, r ∈ (0, 1) and H ,

and, on the event {tH(Gn) ≥ r}, the graph Gn is typically close to a minimizer of (1.3).
Theorem 1.1 implies the analogous statement for the random graph G(n,mn) w.r.t. the
variational problem (1.4) (similar statements hold for lower tails of subgraph counts
both in case of G(n, p) and that of G(n,mn)).

Corollary 1.2. Fixing a subgraph H and 0 < p < 1, let rH ∈ (tH(p), 1] denote the largest
r for which the collection of graphons in (1.4) is nonempty.
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Large deviations in uniform random graphs

(a) The LSC function r 7→ ψH(p, r) is zero on [0, tH(p)] and finite, strictly increasing on
[tH(p), rH ]. The nonempty set F? of minimizers of (1.4) is a single point W? ≡ p for
r ≤ tH(p) and F? coincides for any r ∈ [tH(p), rH ] with the minimizers of (1.5).

(b) For any mn ∈ N such that mn/
(
n
2

)
→ p as n → ∞ and any right-continuity point

r ∈ [0, rH) of t 7→ ψH(p, t), the random graph Gn ∼ G(n,mn) satisfies

lim
n→∞

n−2 logP (tH(Gn) ≥ r) = −ψH(p, r) . (1.7)

(c) For any (p, r) as in part (b), and every ε > 0 there is C = C(H, ε, p, r) > 0 so that for
all n large enough

P
(
δ�(Gn, F?) ≥ ε

∣∣ tH(Gn) ≥ r
)
≤ e−Cn2

. (1.8)

Remark 1.3. Since the function r 7→ ψH(p, r) is monotone, it is continuous a.e.; however,
the identity (1.7) may fail when ψH(p, ·) is discontinuous at r. For example, at r = rH the
LHS of (1.7) equals −∞ whenever mn/

(
n
2

)
↑ p slowly enough.

Remark 1.4. The analog of (1.7) in the sparse regime (with edge density pn = o(1))
has been established in [5] in terms of a discrete variational problem in lieu of (1.3),
valid when n−cH � pn � 1 for some cH > 0 (see also [2, 7, 10], improving the range
of pn, and [3, 18, 19, 21] for analyses of these variational problems in the sparse/dense
regimes); In contrast with the delicate regime pn = n−c, such results in the range
pn � (log n)−c of G(n, p) are a straightforward consequence of the weak regularity
lemma (cf. [19, §5]), and further extend to G(n,mn), where the discrete variational
problem features an extra constraint on the number of edges (see Proposition 3.3).

Consider (p, r) in the setting of Corollary 1.2. The studies of the variational problem
for FH given in (1.6) were motivated by the question of estimating the number of graphs
with prescribed edge and H-densities, via the following relation:

FH(p, r) = lim
δ↓0

lim
n→∞

1

n2
log |H δ

n,p,r| where H δ
n,p,r =

{
Gn :

∣∣|E(Gn)|/
(
n
2

)
− p

∣∣ ≤ δ ,

|tH(Gn)− r| ≤ δ

}
.

(This follows by general principles from the LDP of [6] for G(n, p); see Proposition 2.1(a),
or [20, Thm 3.1] for the derivation in the special case of the edge/triangle model).
Corollary 1.2 allows us, roughly speaking, to interchange the order of these two limits;
for instance, for any right-continuity point r ≥ tH(p) of t 7→ ψH(p, t) (which holds a.e.),
the same variational problem in (1.6) also satisfies

FH(p, r) = lim
n→∞

1

n2
log |Hn,mn,r| where Hn,m,r =

{
Gn :

|E(Gn)| = m,

tH(Gn) ≥ r

}
. (1.9)

(Indeed, −ψH(p, r) = limn→∞ n−2 logP (tH(G(n,mn)) ≥ r), and this log-probability is

then translated to log |Hn,mn,r| by adding n−2 log
((n2 )
mn

)
→ he(p) = FH(p, r) + ψH(p, r).)

For the various results (as well as numerical simulations for the many problems related
to (1.6) that remain open), the reader is referred to [13–15] and the references therein.
We also note a potential connection with certain exponential random graph models
Pθn(·), considered by [9, Definition 2.1] as equivalent to the uniformly chosen graph in
Hn,mn,r whenever n

−2 logPθn(Hn,mn,r) → −FH(p, r).
Recall that the law of G(n,mn) can be represented as that of a random graph Gn from

the model G(n, p), conditional on |E(Gn)| = mn. While our choice ofmn in Theorem 1.1 is
rather typical for G(n, p) when n� 1, any LDP and in particular the LDP of [6], deals only
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Large deviations in uniform random graphs

with open and closed sets. The challenge in deriving Theorem 1.1 is thus in handling the
point conditioning. To this end, we provide in Section 2 a general result (Proposition 2.1)
for deriving a conditional LDP, which we then combine in §3.1 with a combinatorial
coupling, and thereby prove Theorem 1.1. Building on the latter, §3.2 provides the proof
of Corollary 1.2, whereas §3.3 is devoted to the analog of (1.7) for G(n,mn) in the range
mn � n2(log n)−cH (see Proposition 3.3).

We note that, equipped with the coupling of §3.1, one can prove Corollary 1.2 directly,
bypassing much of the general terminology of §2. However, such a direct proof seems
neither different, nor shorter than the general approach we take here, with the payoff for
mastering the relevant terminology of Proposition 2.1, being its applicability to general
point conditioning in large deviations, way beyond random graphs.

2 Conditional LDP

The LDP for G(n,m) is obtained by the next general relation between a given LDP for
measures {µn} and the LDP for laws νn induced by point-conditioning µn.

Proposition 2.1. Suppose Borel probability measures {µn} on a metric space (X , d)
satisfy the LDP with rate an → 0 and good rate function I(·). Fix a metric space (S, ρ),
a continuous map f : (X , d) → (S, ρ) and s ∈ S. For every η > 0, let Zη

n denote random
variables of the law

νηn := µn

(
· | Bo

f,s,η

)
, (2.1)

where

Bf,s,η := {x ∈ X : ρ(s, f(x)) ≤ η} , Bo
f,s,η := {x ∈ X : ρ(s, f(x)) < η} .

(a) If
lim

n→∞
an logµn(Bo

f,s,η) = 0 for every η > 0 fixed , (2.2)

then for the good rate function

J0(x) :=

{
I(x), f(x) = s

∞, otherwise

and any open U ⊂ X and closed F ⊂ X ,

lim inf
η→0

lim inf
n→∞

an log ν
η
n(U) ≥ − inf

x∈U
J0(x) , (2.3)

lim sup
η→0

lim sup
n→∞

an log ν
η
n(F ) ≤ − inf

x∈F
J0(x) . (2.4)

(b) Suppose (2.2) holds and that {Zη
n} form an exponentially good approximation of

variables Zn ∼ νn, as in [8, Definition 4.2.14]; i.e., for any δ > 0, there exist couplings
Pn,η of (Zn, Z

η
n) so that

lim
η↓0

lim sup
n→∞

an logPn,η(d(Zn, Z
η
n) > δ) = −∞ . (2.5)

Then {νn} satisfy the LDP with rate an → 0 and the good rate function J0(·).

Proof. We first deduce from (2.2) that for every η > 0, open U ⊂ X and closed F ⊂ X ,

lim inf
n→∞

an log ν
η
n(U) ≥ − inf

x∈U
Jo
η (x) , (2.6)

lim sup
n→∞

an log ν
η
n(F ) ≤ − inf

x∈F
Jη(x) , (2.7)
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Large deviations in uniform random graphs

where

Jη(x) :=

{
I(x), x ∈ Bf,s,η

∞, otherwise
, Jo

η (x) :=

{
I(x), x ∈ Bo

f,s,η

∞, otherwise.

Indeed, for any Borel set A and η > 0,

µn(A ∩ Bo
f,s,η) ≤ νηn(A) ≤

µn(A ∩ Bf,s,η)

µn(Bo
f,s,η)

.

Hence, for any open set U , we deduce from the LDP for {µn} that

lim inf
n→∞

an log ν
η
n(U) ≥ lim inf

n→∞
an logµn(U ∩ Bo

f,s,η) ≥ − inf
x∈U∩Bo

f,s,η

I(x) = − inf
x∈U

Jo
η (x) .

Similarly, for any closed set F it follows from (2.2) that

lim sup
n→∞

an log ν
η
n(F ) ≤ lim sup

n→∞
an logµn(F ∩ Bf,s,η) ≤ − inf

x∈F∩Bf,s,η

I(x) = − inf
x∈F

Jη(x) .

(a) In the lower bound (2.6) one obviously can use J0(·) ≥ Jo
η (·), yielding (2.3). Moreover,

we get the bound (2.4) out of (2.7), upon showing that for any closed F ⊆ X ,

inf
y∈F

{J0(y)} ≤ lim inf
η↓0

inf
y∈F

{Jη(y)} := α . (2.8)

To this end, it suffices to consider only α <∞, in which case Jη`
(y`) ≤ α+ `−1 for some

η` ↓ 0 and y` ∈ F . As {y`} is contained in the compact level set {x : I(x) ≤ α+ 1}, it has
a limit point y? ∈ F . Since Jη`

(y`) = I(y`) → α it follows from the LSC of x 7→ I(x) that
I(y?) ≤ α. Passing to the convergent sub-sequence ρ(f(y`), f(y?)) → 0. Further, recall
that ρ(s, f(y`)) ≤ η` ↓ 0, hence by the triangle inequality ρ(s, f(y?)) = 0. Consequently,
J0(y?) = I(y?) ≤ α yielding (2.8) and completing the proof of part (a).

(b) Clearly, Jη is a good rate function (namely, of compact level sets {x : Jη(x) ≤ α} =

{x : I(x) ≤ α} ∩ Bf,s,η), and Jη ≤ Jo
η ↑ J0. If Jo

η ≡ Jη then (2.7)–(2.6) form the LDP for
{νηn} with the good rate function Jη. While in general this may not be the case, assuming
hereafter that (2.5) holds and proceeding as in [8, (4.2.20)], we get from (2.6) that {νn}
satisfies the LDP lower bound with the rate function

J(y) := sup
δ>0

lim inf
η↓0

inf
z∈By,δ

{Jo
η (z)} ,

where By,δ = {z ∈ X : d(y, z) < δ} (see [8, (4.2.17)], noting that no LDP upper bound for
νηn is needed here). Since y ∈ By,δ for any δ > 0, we have that

J0(y) = lim
η↓0

Jo
η (y) ≥ J(y)

and consequently {νn} trivially satisfies the LDP lower bound also with respect to the
good rate function J0. Now, precisely as in the proof of [8, Theorem 4.2.16(b)], we get
from (2.5) and (2.7) that the corresponding LDP upper bound holds for {νn}, thanks to
(2.8) (see [8, (4.2.18)]), thereby completing the proof of part (b) of Prop. 2.1.

3 LDP for the uniform random graph

3.1 Proof of Theorem 1.1

Let µn be the law of G(n, p), which obeys the LDP with good rate function Ip(·) on
(W̃0, δ�) and speed n2, and let νn denote the law of G(n,mn). We shall apply Propo-
sition 2.1(b) for S = R and s = p, with f denoting the L1-norm on graphons (edge
density):

f(W ) := ‖W‖1 =

∫∫
W (x, y) dxdy .
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Large deviations in uniform random graphs

With these choices, the role of Zn will be assumed byGn ∼ G(n,mn), whereas those of the
random variables Zη

n will be assumed by the binomial random graph G(n, p) conditioned
on having between 1

2 (p− η)n2 and 1
2 (p+ η)n2 edges:

Gη
n ∼

(
G(n, p)

∣∣ Bo
p,η

)
, where Bo

p,η =
{
G : 2|E(G)|

n2 ∈ (p− η, p+ η)
}

(3.1)

Note that pn := 2mn/n
2 ∈ (p− η, p+ η) for all n ≥ n0(η). We couple (Gn, G

η
n) so that for

such n, deterministically,
|E(Gn)4E(Gη

n)| < ηn2 (3.2)

(here S4T denotes symmetric difference). This is achieved by the following procedure:

(i) Draw Gn ∼ G(n,mn).

(ii) Independently of Gn draw En ∼ Bin(
(
n
2

)
, p) andMn ∼

(
En | |2En/n

2 − p| < η
)
. Let

Dn =Mn −mn and obtain Gη
n from Gn as follows:

• [shortage] if Dn ≥ 0: add a uniformly chosen subset of Dn edges out of those
missing from Gn.

• [surplus] if Dn ≤ 0: delete a uniformly chosen subset of Dn edges from Gn.

Since |Dn| < ηn2 this guarantees (3.2) and has Gn ∼ νn; the additional fact that Gη
n ∼ νηn

is seen by noting that, if G ∼ G(n, p) then |E(G)| ∼ Bin(
(
n
2

)
, p), and on the event that

G has M edges, these are uniformly distributed (i.e., the conditional distribution is
G(n,M)).

We proceed to show that such {Gη
n} form an exponentially good approximation of

Gn. Indeed, note that if graphs G,G′ on n vertices satisfy |E(G)4E(G′)| < ηn2 then
δ�(G,G

′) < η (recall (1.2)). In particular, from (3.2) we deduce that for any η ≤ δ and all
n ≥ n0(η),

P (δ�(Gn, G
η
n) > δ) = 0

holds under the above coupling of (Gn, G
η
n), thereby implying (2.5).

Finally, Noting that Bo
p,η of (3.1) is the event |2En/n

2 − p| < η (with En ∼ Bin(
(
n
2

)
, p)

under µn), we deduce from the LLN that µn(B
o
p,η) → 1. In particular, for any η > 0 one

has that n−2 logµn(B
o
p,η) → 0, thereby verifying (2.2) for the case at hand.

3.2 Proof of Corollary 1.2

(a) Recalling that Jp(W ) = Ip(W ) on W̃(p)
0 and otherwise Jp(W ) = ∞, we express

(1.4) as
ψH(p, r) = inf

W∈Γ≥r

{Jp(W )} ,

for the closed set of graphons

Γ≥r :=
{
W ∈ W̃0 : tH(W ) ≥ r

}
, (3.3)

denoting by Γ=r the closed subset of graphons with tH(W ) = r. The unique global
minimizer of Jp(·) over W̃0 is W? ≡ p. With W? ∈ Γ=tH(p), it follows that ψH(p, r) = 0

on [0, tH(p)]. Next, for any r ∈ (tH(p), rH ], the good rate function Jp(·) is finite on the

nonempty set Γ≥r ∩ W̃(p)
0 , hence ψH(p, r) = α is finite and positive, with the infimum in

(1.4) attained at the nonempty compact set

F? = Γ≥r ∩ {W ∈ W̃0 : Jp(W ) ≤ α} . (3.4)

Fixing such r and Wr ∈ F?, consider the map Wr(λ) := λWr + (1 − λ)W? from [0, 1]

to W̃(p)
0 . Thanks to the continuity of λ 7→ tH(Wr(λ)) on [0, 1], there exists for any
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r′ ∈ [tH(p), tH(Wr)) some λ′ = λ′(r′) ∈ [0, 1) such that tH(Wr(λ
′)) = r′. Hence, due to

the convexity of Jp(·),

ψH(p, r′) ≤ Jp(Wr(λ
′)) ≤ λ′Jp(Wr)) = λ′α < α := ψH(p, r) .

We have shown that ψH(p, r′) < ψH(p, r) for all r′ ∈ [tH(p), tH(Wr)). Recalling that
tH(Wr) ≥ r, it follows that ψH(p, ·) is strictly increasing on [tH(p), rH ] and further, that
necessarily tH(Wr) = r for any Wr ∈ F?. That is, the collection F? of minimizers of (1.4)
then consists of only the minimizers of (1.5).

Next, if ψH(p, r′) ≤ α < ∞ for all r′ < r then there exist a pre-compact collection
{Wr′ , r

′ < r} in (δ�, W̃0), with Jp(Wr′) ≤ α and tH(Wr′) ≥ r′. By the continuity of tH(·)
and the LSC of Jp(·), it follows that tH(Wr) ≥ r and Jp(Wr) ≤ α for any limit point Wr of
Wr′ as r′ ↑ r. Consequently ψH(p, r) ≤ α as well, establishing the stated left-continuity of
ψH(p, ·) on [0, rH ]. Finally, recall that an increasing function, finite on [0, rH ] and infinite
otherwise, is LSC iff it is left continuous on [0, rH ].

(b) Considering the LDP bounds of Theorem 1.1 for the closed set Γ≥r and its open
subset Γ>r := Γ≥r \ Γ=r we deduce that

− lim
r′↓r

{ψH(p, r′)} = − inf
W∈Γ>r

{Jp(W )} ≤ lim inf
n→∞

n−2 logP (tH(Gn) > r)

≤ lim sup
n→∞

n−2 logP (tH(Gn) ≥ r) ≤ −ψH(p, r) .

By the assumed right-continuity of t 7→ ψH(p, t) at r ∈ [0, rH), the preceding inequalities
must all hold with equality, resulting with (1.7).

(c) Proceeding to prove (1.8), we fix (p, r) as in part (b). Further fixing ε > 0, let

BW ′,ε :=
{
W ∈ W̃0 : δ�(W,W

′) < ε
}

denote open cut-metric balls and consider the closed subset of Γ≥r,

Γ≥r,ε := Γ≥r

⋂
W ′∈F?

(BW ′,ε)
c . (3.5)

In view of (1.7) and the fact that

{δ�(Gn, F?) ≥ ε, tH(Gn) ≥ r} = {WGn
∈ Γ≥r,ε} ,

it suffices for (1.8) to show that

lim sup
n→∞

n−2 logP (WGn
∈ Γ≥r,ε) < −α .

By the LDP upper-bound of Theorem 1.1, this in turn follows upon showing that

inf
W∈Γ≥r,ε

{Jp(W )} ≤ α (3.6)

contradicts the definition of F?. Indeed, Jp(·) has compact level sets, so if (3.6) holds
then Jp(Wr) ≤ α for some Wr ∈ Γ≥r,ε. Recall (3.4) that in particular Wr ∈ F?, hence
(3.5) implies that δ�(Wr,Wr) ≥ ε > 0, yielding the desired contradiction.

3.3 Sparse uniform random graphs

In this section we show that, as was the case in G(n, p), the analog of (1.7), giving the
asymptotic rate function for G(n,m) in the sparse regime mn = n2/ logc n for a suitably
small c > 0, can be derived in a straightforward manner from the weak regularity lemma.
Indeed, the proof below follows essentially the same short argument used for G(n, p)
in [19, Prop. 5.1].
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Definition 3.1 (Discrete variational problem for upper tails). Let H be a graph with κ
edges, and let b > 1. Denote the set of weighted undirected graphs on n vertices by

Ĝn = {(aij)1≤i≤j≤n : 0 ≤ aij ≤ 1 , aij = aji , aii = 0 for all i, j} ,

and extend the definition of the graphon WĜ in (1.2) to a weighted graph Ĝ ∈ Ĝn by
replacing the weight 1 corresponding to an edge (dnxe, dnye) by the weight adnxe,dnye.
Further, for p ∈ [0, 1] we consider the subset of p-average weighted graphs

Ĝn(p) =
{
Ĝ ∈ Ĝn :

∑
i<j

aij = p
(
n
2

)}
.

Taking mn ≤
(
n
2

)
and pn = mn/

(
n
2

)
, the variational problem for Gn ∼ G(n,mn) is

ψ̂H(n, pn, b), where

ψ̂H(s, p, b) := inf
{
Ip(WĜ) : Ĝ ∈ Ĝs(p) , tH(WĜ) ≥ b pκ

}
.

Recall that for any n ≥ s, there exists k ∈ N be such that s′ = ks ∈ (n − s, n],
and any Ĝ′ ∈ Ĝs(p) yields Ĝ ∈ Ĝn(p) by duplicating each non-diagonal entry of Ĝ′ to
fill the corresponding k-dimensional minor of the left-top s′-dimensional sub-matrix,
setting to p all other off-diagonal entries of Ĝ. It further yields Ip(WĜ) ≤ Ip(WĜ′) and
tH(WĜ) ≥ (1− s/n)V (H)tH(WĜ′). Consequently,

1− ε′ ≤ (1− s/n)V (H) =⇒ ψ̂H(n, p, (1− ε′)b) ≤ ψ̂H(s, p, b) . (3.7)

Further, denoting by ∆ ≥ 2 the maximal degree in H, we get upon replacing Ĝn(p) by Ĝn

that for some c(b) > 0

ψ̂H(n, p, b) ≥ c(b)p∆ log(1/p) (3.8)

provided n large is enough and p� n−1/∆ (see [3, Theorem 1.5]).

Remark 3.2. When pn → p for a fixed 0 < p < 1, and r = bpκ ∈ [pκ, rH ] is a right-
continuity point of t 7→ ψH(p, t) (whence (1.7) holds), one has ψH(p, r) = limn→∞ ψ̂H(n, pn, b)

(e.g., rescale a sequence Ĝn of minimizers for ψ̂H(n, pn, b+ ε) by p/pn; conversely, for a
minimizer W for ψH(p, r), take a sequence Gn with WGn →W ).

Proposition 3.3. Let H be a fixed graph with κ edges, b > 1 and for mn ∈ N let
Gn ∼ G(n,mn) and pn = mn/

(
n
2

)
. For every ε > 0 there exists some K <∞ such that, if

pn(log n)
1/(2κ) ≥ K and n is sufficiently large then

−(1 + ε)ψ̂H(n, pn, (1 + ε)b) ≤ 1

n2
logP(tH(Gn) ≥ b pκn) ≤ −(1− ε)ψ̂H(n, pn, (1− ε)b) .

In particular, if pn(log n)1/(2κ) → ∞ and ψ̂H(n, pn, b
′)/ψ̂H(n, pn, b) → 1 for n→ ∞ followed

by b′ → b, then

lim
n→∞

logP (tH(Gn) ≥ b pκn)

n2ψ̂H(n, pn, b)
= −1 .

The following simple lemma, whose analog for upper tails in G(n, p) (addressing only
the event E1(G) below) was phrased in [19, Lemma 5.2] for triangle counts in G(n, p), is
an immediate consequence of the independence of distinct edges and Cramér’s Theorem.

Lemma 3.4. For m ≥ n ≥ s ∈ N, set p = m/
(
n
2

)
and Ĝ = (aij) ∈ Ĝs(p). For an equitable

partition V1, . . . , Vs of {1, . . . , n} (i.e., |Vi| − |Vj | ≤ 1 for all i, j), define

E1(G) =
⋂
i,j

aij>p

{dG(Vi, Vj) ≥ aij} , E2(G) =
⋂
i,j

aij≤p

{dG(Vi, Vj) ≤ aij} ,
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where dG(X,Y ) =
#
{
(x,y)∈X×Y :xy∈E(G)

}
|X||Y | . Then, Gn ∼ G(n,m) has

1

n2
logP (E1(G) ∩ E2(G)) ≤ −Ip(WĜ)

(
1− 3s

n

)
+ ζn , (3.9)

where ζn = 1
2n

−2 log(cm) for some c <∞.

Proof. LetG′
n ∼ G(n, p) and vij = |Vi||Vj |when i < j, vii =

(|Vi|
2

)
. Recall that dG′

n
(Vi, Vj) ∼

v−1
ij Bin(vij , p) for i ≤ j are mutually independent. Thus, considering for each ij the
optimal Cramér’s bound, we find that

1

n2
logP (E1(G′

n) ∩ E2(G′
n)) ≤ − 1

n2

∑
i≤j

2vijIp(aij)

(e.g. see [8, (2.12), (2.1.13)]). Since mini6=j(vij , 2vii) ≥ (n/s)2(1− 3s/n) for any equitable
partition, also

− 1

n2

∑
i≤j

2vijIp(aij) ≤ −Ip(WĜ)
(
1− 3s

n

)
.

Next, since P(Gn ∈ ·) = P(G′
n ∈ · | |E(G′

n)| = m), it follows that

logP (E1(Gn) ∩ E2(Gn))− logP (E1(G′
n) ∩ E2(G′

n)) ≤ − logP(Bin(
(
n
2

)
, p) = m) .

Since p = m/N for N =
(
n
2

)
, we complete the proof of (3.9) upon recalling that√

cmP(Bin(N,m/N) = m) ≥ 1 for some c <∞ and all N ≥ m ≥ 0.

Combining the weak regularity lemma (see, e.g., [16, Lemma 9.3]) with the counting
lemma for graphons (cf., e.g., [16, Lemma 10.23]) implies the following.

Lemma 3.5. Let η > 0 and set M = 44/η
2

. For every graph G there is an equitable
partition V1, . . . , Vs of its vertices, for some s ∈ [M/2,M ], such that the weighted graph
Ĝ ∈ Ĝs with aij = dG(Vi, Vj) has

∣∣tH(G)− tH(Ĝ)
∣∣ ≤ κη for every graph H with κ edges.

Proof of Proposition 3.3. Fixing ξ = 1/r for r ∈ N, consider Lemma 3.5 for ηn = ξ
κbp

κ
n.

Since pn ≥ K(log n)−1/(2κ) we have for some δ = δ(K, r, κ, b) → 0 as K → ∞ and M =

Mn ≤ nδ, that if Gn has tH(Gn) ≥ bpκn and |E(Gn)| = mn then there exists an equitable
partition V1, . . . , Vs of its vertices, for some s ∈ [M/2,M ], such that the corresponding
weighted graph Ĝ ∈ Ĝs(p

′
n) for some p′n = pn(1 +O(n−δ)), satisfies tH(WĜ) ≥ bpκn(1− ξ).

We may round each of the weights aij of Ĝ up to the nearest multiple of ξpn/2 (only
increasing tH), with the effect of yielding an off-diagonal average which is an integer
multiple of ξpn/(s(s− 1)) in the range [pn, pn(1 + ξ)]. Setting e(ξ) = (1− ξ)/(1 + ξ)κ we
arrive by rescaling at Ĝ′ ∈ Ĝs(pn) such that

tH(WĜ′) ≥ e(ξ)bpκn .

In this process we apply at most 2s2 scaling factors on at most (2(r+1)s2)s
2

arrays {aij},
thereby considering at most exp(CM2 logM) possible weighted graphs Ĝ′. Proceeding
to establish the stated upper bound, WLOG we have that 1 − ε := (1 − ε′)2 > 1/b. Then,
choose r ∈ N large so e(ξ) ≥ 1− ε′, hence for n ≥ n0(ε

′), s ≤M , both 3s/n ≤ ε′ and

ψ̂H(n, pn, (1− ε)b) ≤ ψ̂H(s, pn, e(ξ)b)

due to (3.7). We then apply the uniform bound of Lemma 3.4 for all such Ĝ′ ∈ Ĝs(pn) and
the corresponding equitable partitions for them. The union bound over all those Ĝ′ and
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theMn possible partitions for each, entails at most exp(O(n log n)) terms (once δ < 1/2).
For our choice of pn the latter factor is negligible since

lim
n→∞

n

log n
ψ̂H(n, pn, (1− ε)b) = ∞ (3.10)

(see (3.8)). For the same reason, the uniform additive error ζn in (3.9) is also at most
ε′ψ̂H(n, pn, (1− ε)b), so both can be embedded within the allowed tolerance.

Turning to prove the stated lower bound, fix ε < 1 and Ĝ = (aij) ∈ Ĝn(pn) such that

2
∑
i<j

Ipn
(aij) ≤ (1 + ε′)n2ψ̂H(n, pn, b

′) , tH(WĜ) ≥ b′ pκn , (3.11)

where b′ = (1 + ε)b = (1 + ε′)2 b. Then, construct the law P of Gn ∼ G(n,mn) out of
the law Q where edge xij = 1 is present with probability aij , independently of all other
edges. Specifically, the log-likelihood between the law P′ of G′

n ∼ G(n, pn) and Q is

log
dP′

dQ
(x) := −h(x) = −

∑
i<j

[
xij log

aij
pn

+ (1− xij) log
1− aij
1− pn

]
, (3.12)

hence
P(tH(Gn) ≥ b pκn) ≥ EQ

[
e−h(x) ; tH(x) ≥ b pκn,

∑
i<j

xij = mn

]
.

Further, since EQ[xij ] = aij whose sum is mn and tH(·) is multi-linear in (aij), we know
from (3.11) that

EQ[h] ≤ (1 + ε′)n2ψ̂H(n, pn, b
′) , EQ[tH ] ≥ b′pκn . (3.13)

Recall (3.10) that n2ψ̂H(n, pn, b
′) � log n, hence it suffices to show that

nQ
(
E1 ∩ E2 ∩ E3

)
≥ n

[
Q(E1)−Q(Ec

2)−Q(Ec
3)
]

(3.14)

is bounded away from zero when n→ ∞, where

E1 :=
{
x :

∑
i<j(xij − aij) = 0

}
,

E2 :=
{
x :

∣∣h(x)− EQ[h]∣∣ ≤ ε′n2ψ̂H(n, pn, b
′)
}
,

E3 :=
{
x :

∣∣tH(x)− EQ[tH ]
∣∣ ≤ ε

2
EQ[tH ]

}
.

To this end, recall [11, Theorem 5] that for all n ≥ n0

nQ(E1) ≥ nP′(E1) ≥
1√
π
. (3.15)

Turning to deal with Ec
2 , note that h(x)− EQ[h] =

∑
i<j(xij − aij)cpn

(aij) with

VarQ(h) =
∑
i<j

vpn
(aij) , vp(a) := a(1− a)cp(a)

2 , cp(a) := log
(a
p

)
− log

(1− a

1− p

)
.

Let fp(a) := vp(a) − gpIp(a) for gp := 2 + log[1/(p(1 − p))]. Since a(1 − a)c′p(a) = 1 and
I ′p(a) = cp(a), it follows that

f ′p(a)

cp(a)
= 2 + (1− 2a)cp(a)− gp ≤ 0 .
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Further, fp(p) = 0 whereas cp(a) ≥ 0 iff a ≥ p, hence vp(a) ≤ gpIp(a) for all p, a ∈ [0, 1].
Consequently, by Markov’s inequality and the LHS of (3.11)

Q(Ec
2) = Q

(∣∣h(x)− EQ[h]∣∣ > ε′n2ψ̂H(n, pn, b
′)
)
≤ (1 + ε′)gpn

2(ε′n)2ψ̂H(n, pn, b′)
.

In view of (3.8) and the assumed lower bound on pn, we have from the latter bound that
for some c = c(κ, ε′, b′) <∞, as n→ ∞,

nQ(Ec
2) ≤ c(log n)cn−1 → 0 . (3.16)

Finally, up to scaling, Y (n) := tH(x) of mean µ(n) := EQ[tH ], is the polynomial∑
e′∈E′

∏
ij∈e′

xij ,

in {xij , i < j}, with hyper-edges of G′ = (Kn,E
′) enumerating copies of H within the

complete graph Kn. Forcing even one fixed (ij) ∈ H determines two labels i < j of
vertices from e′ ∈ E′, thereby reducing the cardinality of the collection of such e′ to at
most O(n−2) of |E′|. Recall that n2µ(n)(log n)−2κ → ∞ thanks to the RHS of (3.13) and
the assumed lower bound on pn. Thus, from the polynomial concentration of Kim–Vu
(see, e.g., [1, Theorem 7.8.1, p. 122] with λ = 2κ log n), we have for all n ≥ n0(κ, ε, b

′)

and any choice of (aij), that

Q(Ec
3) = Q

(
|Y (n)− µ(n)| > ε

2
µ(n)

)
≤ n−2 . (3.17)

Combining (3.15)–(3.17) establishes the claimed uniform bound away from zero in (3.14),
thereby completing the proof of the stated lower bound.
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