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Abstract

The objective of this note is to study the probability that the total mass of a subcritical
Gaussian multiplicative chaos (GMC) with arbitrary base measure σ is small. When σ

has some continuous density w.r.t Lebesgue measure, a scaling argument shows that
the logarithm of the total GMC mass is sub-Gaussian near −∞. However, when σ has
no scaling properties, the situation is much less clear. In this paper, we prove that for
any base measure σ, the total GMC mass has negative moments of all orders.
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1 Introduction

1.1 Context

Gaussian multiplicative chaos (GMC) measures are a way to give meaning to the
exponential of random “generalised functions” that cannot be defined pointwise. They
were introduced by Kahane in [Kah85], and in recent times they have seen a revived
interest with two dimensional Liouville quantum gravity [DS11].

GMC measures can be informally expressed as “µσγh := eγh(x)σ(dx)”, where h is a log-
correlated Gaussian field and σ is a finite measure. One of the first questions addressed
in the study of GMC theory concerns the triviality of µσγh. In [Kah85], it was shown that

if there exists d such that Ed(σ) :=
∫∫

1
‖x−y‖dσ(dx)σ(dy) <∞, then almost surely µσγh 6= 0

if γ <
√

2d.
There have already been notable instances where the non-triviality of the GMC

measure has been quantified. To do this, one needs to study the tail behaviour of the
total mass of the GMC near 0. In most of these cases, the base measure σ has been taken
as the Lebesgue measure, λ, restricted to some open set D. Below is a non-exhaustive
list of important results on the tails of GMC.

• First, the existence of all negative moments for Gaussian multiplicative chaos
µλγh(D) has been proved in [RoV10].
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Negative moments for GMC on fractal sets

Figure 1: To illustrate our main result: suppose you are given a Borel measure σ

supported on the above Julia set J whose Hausdorff dimension is close to two. Suppose
this measure is well-spread on J in the sense that Ed(σ) <∞ for some dimension d < 2.
If h is a 2d GFF, this allows us to consider a Gaussian multiplicative chaos measure
µγh = µσγh supported on J if γ <

√
2d. As this Julia set does not have any exact scaling

invariance, standard scaling tools fail to study the tails of P(
∫
C
eγh(x)σ(dx) ≤ ε) when

ε→ 0. In this work, we obtain quantitative (sub-optimal) bounds on these tails for any
base measure σ satisfying only σ(D) < ∞ and Ed(σ) < ∞. The application we have
in mind is not to consider GMC measures on Julia sets but rather GMC measures on
spectral samples of critical percolation which were introduced in [GPS10] (see [GH+18]).
As these spectral samples are typically fractal sets whose scaling properties are poorly
understood, the investigation in this work cannot be avoided. ©Prokofiev CC BY-SA 3.0.

• In [DS11], an important step in the proof of the KPZ relation is the following result
(Lemma 4.5 in [DS11]): for any open ball B ⊂ D, there exists c = cγ,B > 0 such

that for any ε ∈ (0, 1), P(µλγh(B) < ε) ≤ e−c(log 1
ε )2 . Here, h is a zero-boundary GFF

in D. See also Lemma 4.3 of [Aru17] for a review.

• In [Rem17], the exact density of the total mass of the GMC (for a GFF with Neumann
boundary conditions) on the unit circle ∂D is obtained, thus answering a conjecture
by Fyodorov and Bouchaud [FB08]. In particular, it shows that if Yγ is the total

mass of the GMC on ∂D with parameter γ/2, then P(Yγ < ε) ≈ exp(−cγε−4/γ2

).
Remarkably, this stretched-exponential behaviour has been proved to hold in a
more general setting very recently in [LRV18] when the base measure is Lebesgue
(Section 6).

• Finally, in the opposite direction, the upper tails (i.e. P(µλγh(D) ≥ x) for large x)
have been studied in detail in the recent [RV17].

1.2 Results

All the presented results concerning the tails of GMC measures rely on techniques
which require some forms of exact scaling invariance of GMC measures. The goal of this
paper is to obtain bounds on GMC measures which are supported on fractal sets without
any a priori invariance under scaling. This problem arose in [GH+18], where we need
tail estimates for GMC measures which are defined on the spectral samples of critical
percolation [GPS10]. These spectral samples are random fractal sets of dimension 3/4
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Negative moments for GMC on fractal sets

which do not have any quenched scaling properties. An entirely different analysis,
which is not built out of re-scaling arguments, is thus required (see also Figure 1 for an
illustration of our main result/motivations).

For simplicity, we work in most of this paper with the (zero-boundary) Gaussian free
field (GFF) h in the unit disk D, i.e., the centred Gaussian random distribution h in
H−δ(D) which has covariance kernel

Cov(h(x), h(y)) = GD(x, y) = log

∣∣∣∣1− xȳx− y

∣∣∣∣ .
Here δ > 0 and H−δ(D) is the Sobolev space with index −δ. See [She07] for an intro-
duction to the GFF. If needed, the results can be easily extended to any log-correlated
field (see Remark 1.3). Our setup is as follows: we consider a fixed Borel measure σ
with compact support in D and such that it is d-dimensional in the sense that Ed(σ) <∞
(see Definition 2.1). It follows from the works of [Kah85, DS11] that if γ <

√
2d one can

define the GMC measure µσγh := “eγh(x)σ(dx)”. One way to make proper sense of the
exponential of this distribution is through a limiting procedure. Let h be a zero-boundary
GFF in D and define hε(z) = h ∗ ρε, where ρε is a smooth mollifier. Then, for any test
function f ∈ Cc(D),∫

D

f(x)eγhε(x)− γ
2

2 E

[
h2
ε(x)
]
σ(dx)

ε→0−−−→
∫
D

f(x)µσγh(dx),

where the limit holds a.s. and in L1 as ε → 0. See the references [DS11, RV14, Ber17,
Aru17] for general background on Gaussian multiplicative chaos (GMC) as well as other
possible regularization procedures.

As stated before, the main result of this paper gives an estimate on the tails of the
GMC measure near 0.

Theorem 1.1. Let σ be a d-dimensional measure (i.e. such that Ed(σ) <∞) with compact
support in D, let γ <

√
2d, let h be a (zero-boundary) GFF in D, and let µσγh be the GMC

measure with parameter γ associated to h and base measure σ. Then, for all n ∈ N there
exists t0 = t0(σ, γ, n) > 0 such that for all t ≥ t0

E
[
e−tµ

σ
γh(D)

]
≤ t−n.

In particular, 1/µσγh(D) has moments of all orders.

In some cases, the dependence of t0 as a function of the parameters σ, γ, n can be
made quantitative: see for example Lemma 3.1 or Corollary 3.2.

Remark 1.2. Using Markov’s inequality, the theorem implies readily that for any n ≥ 1,
there exists ε0 ∈ (0, 1) such that for any ε < ε0, P(µσγh(D) < ε) ≤ εn.

Finally, let us note that our setup can be generalized to any log-correlated field.

Remark 1.3. Using Kahane’s convexity inequality (Proposition 2.6), it is straightforward
to extend it to Neumann GFF in D or to any GFF in other simply connected domains
D ⊂ C. Note also that for zero-boundary GFF, the assumption that σ has compact support
in D can be removed by an easy dichotomy argument (separating the possible mass on
∂D from the mass in its interior).
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2 Preliminaries

2.1 Energy and d-dimensional measures

Definition 2.1. For any Borel measure σ in D and any d > 0, we define its d-energy to
be

Ed(σ) :=

∫∫
1

‖x− y‖d2
σ(dx)σ(dy).

We will say that a measure σ on D is d-dimensional if Ed(σ) <∞.

We will rely extensively in this work on the following notion of local energy.

Definition 2.2 (Local d-energy). For any base point x̄ ∈ D, any Borel measure µ on D
and any real β > 0, we define

φβ(x̄, µ) :=

∫
D

1

‖x̄− x‖β2
µ(dx).

2.2 Gaussian free field

We say that h is a GFF in a domain D ⊆ R2, if it is a centred Gaussian “generalised
function” such that for any smooth function f

E[(h, f)2] =

∫∫
f(x)GD(x, y)f(y)dxdy.

Here GD(x, y) is the Green’s function with zero-boundary in D with normalisation such
that GD(x, y) ∼ | log(|x− y|)| as y → x. Furthermore, if either x or y do not belong to D
then GD(x, y) = 0. Let us note that if D ⊆ D′ then GD(x, y) ≤ GD′(x, y).

The main property of the GFF we use in this paper is its Markov property.

Lemma 2.3 (Markov property). Let h be a GFF in D and let A ⊆ D be a closed (deter-
ministic) set. Then, the restriction of h to D\A can be written as the independent sum of
hA and hA where hA has the law of a GFF in D\A and hA is a harmonic function (thus
continuous) in D\A.

2.3 Three useful inequalities

The first inequality we shall rely on is the following famous inequality for general
centred Gaussian processes:

Theorem 2.4 (Borell-TIS inequality, see [Adl90]). Let (Xn)n∈N be a centred Gaussian
field. If a.s. supXn <∞, then E [supXn] <∞ and for any t > 0

E
[
et supXn

]
≤ etE[supXn]+ t2σ̃2

2 ,

where σ̃2 := supn Var
[
X2
n

]
<∞.

The second inequality is the so-called FKG inequality proved by Pitt in 1982 [Pit82].

Theorem 2.5 (FKG inequality, [Pit82]). Let (Xλ)λ∈Λ be a centred Gaussian field with
E [XλXλ′ ] ≥ 0 for all λ, λ′ ∈ Λ. Then, if f, g are two bounded, increasing measurable
functions,

E [f((Xλ)λ∈Λ)g((Xλ)λ∈Λ)] ≥ E [f((Xλ)λ∈Λ)]E [g((Xλ)λ∈Λ)] .

Finally, our last inequality will be the following result proved by Kahane in 1985 [Kah85].
See also [RV14] or Proposition 6.1 of [Aru17].

Proposition 2.6 (Kahane’s convexity inequality). Let (h1
λ)λ∈Λ and (h2

λ)λ∈Λ be two log-
correlated centred Gaussian fields such that their covariance kernels satisfy C1(x, y) ≤
C2(x, y). Then, for any convex function f , we have that

E
[
f
(
µh1

λ
(D)
)]
≤ E

[
f
(
µh2

λ
(D)
)]
.
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2.4 A useful change of measure

A key ingredient in our proof will be a change of measure associated to the total GMC
mass.

Let P be a measure where h is a GFF in D. Let us describe how the law of h
changes when one weights P by the total GMC mass µσγ′h(D) of parameter γ′ <

√
2d (not

necessarily equal to γ for our later applications of the change of measure below). The
following result is Theorem 17 of [Sha16] or Proposition 3.1 of [Aru17]. It goes back to
the work by Kahane and Peyrière [KP76].

Proposition 2.7. Let σ be any d-dimensional measure. For any γ′ <
√

2d, we introduce
the following probability measure on H−1(D),

dQγ′

dP
(h) :=

µσγ′h(D)

σ(D)
,

where P is the law of an unbiased GFF in D with Dirichlet boundary conditions. (N.B.
For any γ′ <

√
2d, the probability measure Qγ′ is well defined and absolutely continous

w.r.t P). Then, under the new measure Qγ′ , if h ∼ Qγ′ , we have the identity in law,

h(·) (law)
= ĥ(·) + γ′GD(x̄, ·),

where, under the law Qγ′ , ĥ is an (unbiased) GFF in D and x̄ is a random point indepen-
dent of ĥ and sampled according to x̄ ∼ σ(dx)/σ(D).

Let us state an important consequence of this change of measure.

Lemma 2.8. Let σ be a d-dimensional measure (Ed(σ) < ∞) in D. For any γ, γ′ <
√

2d,
if ĥ is a (zero boundary) GFF in D, x̄ ∼ σ(dx)/σ(D) is a random point independent of ĥ,
and h(·) := ĥ(·) + γ′GD(x̄, ·), then the following identity holds a.s.∫

D

eγγ
′GD(x̄,x)µσ

γĥ
(dx) = µσγh(D). (2.1)

Additionally, if we define β̄ := max{
√

2dγ, d} we have for any β < β̄,∫
D

eβGD(x̄,x)µσ
γĥ

(dx) <∞ a.s. (2.2)

Remark 2.9. Note perhaps surprisingly that for some values of γ, the presence of the
multiplicative chaos allows us to integrate more singular kernels 1/‖x̄− x‖β than what
is expected readily from the energy bound.

We also point out that our value for β̄ is not optimal. For example in the case where

the base-measure σ is Lebesgue, the optimal value for β̄ is known to be 2 + γ2

2 , see
Lemma 2.7 in [RV16].

On the formal level, the identity (2.1) looks obvious, but its (short) proof is normally
omitted. We thus include a short justification below.

Proof. From Proposition 2.7, we have that the random field h is absolutely continuous
w.r.t an (unbiased) zero-boundary GFF on D. In particular, we have that the measure

µσγh,ε(dx) := eγhε(x)− γ
2

2 E

[
ĥε(x)2

]
σ(dx) converges in probability to µσγh, where hε = h ∗ ρε

for ρε a smooth mollifier. For any δ > 0, this implies that a.s.

µσγh,ε(D \B(x̄, δ))
ε→0−−−→ µσγh(D \B(x̄, δ)).

Now, we may rewrite µσγh,ε(D \B(x̄, δ)) as follows

µσγh,ε(D \B(x̄, δ)) =

∫
B(x̄,δ)c

eγγ
′GεD(x̄,x)µσ

γĥ,ε
(dx),
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where GεD(x̄, ·) := ρε ∗GD(x̄, ·). By the convergence in probability of µσ
γĥ,ε
→ µσ

γĥ
and the

absence of singularity of the exponential term in B(x̄, δ)c, we obtain by taking ε→ 0 the
identity

µσγh(D \B(x̄, δ)) =

∫
B(x̄,δ)c

eγγ
′GD(x̄,x)µσ

γĥ
(dx).

Now, we conclude the proof of the identity (2.1) by letting δ → 0 using the monotone
convergence theorem together with the a.s. absence of Dirac point masses for both µσγh
and µσ

γĥ
(γ <

√
2d).

When β <
√

2dγ, the second identity (2.2) follows from (2.1) plus the fact that
µγh(D) <∞ a.s. When β < d (in fact β may even be equal to d here), we note that

E

[∫
D

eβGD(x̄,x)µγĥ(dx)

]
=

1

σ(D)

∫∫
eβGD(x,y)σ(dx)σ(dy)

≤ 22

σ(D)

∫∫
1

‖x− y‖β
σ(dx)σ(dy) <∞,

where we used the fact that GD(x, y) ≤ log(2) + |(log |x− y|)| together with the fact that
β ≤ d ≤ 2.

3 GMC measures have negative moments of some order

The goal of this section is to prove that there exists an (explicit) exponent η > 0

such that the Laplace transform of µσγh(D) is O(t−η). Even though it is not necessary
for the proof of Theorem 1.1, we are going to be quantitative. This will be important in
particular to obtain quantitative ergodic bounds in our coming work Liouville dynamical
percolation [GH+18]. Moreover, it is a key new input in the upcoming revised version of
[BSS14] proving that the GMC measure is determined by the GFF under mild conditions.
As such, the lemma below is of independent interest. Furthermore, let us remark that
the proof of this lemma uses the classical change of measure of Proposition 2.7 in a way
which to our knowledge is new.

In order to state the result, let us recall that for any 0 < γ <
√

2d, we defined in
Lemma 2.8, β̄ := max{d,

√
2dγ}.

Lemma 3.1. Let σ be a Borel measure with compact support in D such that σ(D) <∞
and Ed(σ) <∞ for some d ≤ 2. First, fix any choice of δ > 0 and β ∈ (γ2, β̄) and define
the following exponent

η = ηδ,β :=
β − γ2

β + γ2δ
.

Let h be a zero-boundary GFF in D ⊆ D (recall that h is 0 outside of D) and let µ = µσγh
be the GMC measure of parameter γ and base measure σ. Then, there exists t0 > 0 such
that for any t ≥ t0,

E [exp (−tµ(D))] ≤ 25

σ(D)tη
.

Furthermore, one can take t0 = 24s
1/η
0 where s0 is a positive real number so that

P

(
φβ(x̄, µ) ≤ 1

24
sδ0

)
≥ 1/2. (3.1)

(N.B. Recall the definition of φβ in Definition 2.2. The existence of a positive s0 satisfying
the above condition is ensured by Lemma 2.8.)
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The advantage of this lemma as compared to our main result (Theorem 1.1) is that it
quantifies the condition on t0 = t0(σ, γ, η). However, the exponent obtained is not very
good (it is < 1) and the condition (3.1) behind the definition of t0 is hard to digest. Let
us then state the following corollary of the proof of Lemma 3.1 in the L2-regime γ <

√
d,

where the t0-dependence becomes much more readable.

Corollary 3.2 (Simplified quantitative estimate in the L2 regime γ <
√
d). Let σ be a

Borel measure with compact support in D such that σ(D) <∞ and Ed(σ) <∞ for some
d ≤ 2. Then, for any γ <

√
d, if

η :=
d− γ2

d+ γ2
,

we have

E
[
e−tµ

σ
γh(D)

]
≤ 25

σ(D)tη
,

for any

t ≥ t0 := 24

[
25 Ed(σ)

σ(D)

]1/η

.

Proof of Lemma 3.1. As GD(x, y) ≤ GD(x, y) we can use Kahane’s convexity inequality
(Proposition 2.6) to reduce ourselves to the case where h is a GFF in D. Define Q := Qγ
as in Proposition 2.7. Using the fact that xe−xs ≤ e−1/s for any x ≥ 0, s > 0, we have
(with µ = µσγh),

Q [exp(−sµ(D))] =
E [µ(D) exp(−sµ(D))]

σ(D)
≤ e−1

σ(D)s
.

Thus, thanks to the identity (2.1) we obtain for any s > 0 the bound

E

[
exp

(
−s
∫
D

eγ
2GD(x̄,x)µ(dx)

)]
≤ e−1

σ(D)s
. (3.2)

This is almost what we wish to prove except the log-singularity at x̄ plays against us.

Indeed, it may have the effect that E
[
exp

(
−s
∫
D
eγ

2GD(x̄,x)µ(dx)
)]

is much smaller than

E [exp (−sµ(D))]. To analyse the impact of this log-singularity at x̄, take r > 0 to be
chosen later and let us introduce the following event:

C(s, r) :=

{∫
B(x̄,r)

exp(γ2GD(x̄, x))µ(dx) ≤ sδrβ−γ
2

}
,

i.e., the event that µ = µσγh does not put a lot of mass in B(x̄, r). (Here h ∼ P is a
non-biased GFF with zero boundary condition). Thanks to the fact that GD(x̄, x) ≤
| log(‖x̄− x‖)|+ log(2), we get the following upper bound on the event C(s, r),∫

D

eγ
2GD(x̄,x)µ(dx) ≤ 2γ

2

∫
D\B(x̄,r)

|x̄− x|−γ
2

µ(dx) + sδrβ−γ
2

≤ 24r−γ
2

µ(D) + sδrβ−γ
2

.

Now, it makes sense at this stage to tune r in a way such that s · sδrβ−γ2

= 1. In other
words, let r := s−L, with L := (1 + δ)/(β − γ2). By doing this and inserting it into (3.2)
we obtain for any s > 0,

E
[
exp(−24s1+γ2Lµ(D))1C(s,s−L)

]
≤ 1

σ(D)s
.
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As h is the zero-boundary GFF in D, it has pointwise positive correlations and thus
satisfies the FKG inequality (Theorem 2.5). Since both 1C(s,s−L) and −µσγh(D) are
decreasing functions of the field h, we have

E
[
exp(−24s1+γ2Lµ(D))

]
≤
E
[
exp(−24s1+γ2Lµ(D))1C(s,s−L)

]
P(C(s, s−L))

≤ 1

σ(D)P(C(s, s−L))s
. (3.3)

We face a potential difficulty here: the function s 7→ P(C(s, s−L)) does not have any
obvious monotonicity. Yet, we shall argue below that it is bounded from below by the
following monotone function of s > 0:

P(C(s, s−L)) ≥ P
(
φβ(x̄, µ) ≤ 1

24
sδ
)
.

To prove this inequality, suppose the event φβ(x̄, µγh) ≤ 2−4sδ occurs. This implies that
for any radius r ∈ (0, 1),∫

B(x̄,r)

eγ
2GD(x̄,x)µ(dx) ≤ 2γ

2

∫
B(x̄,r)

1

‖x̄− x‖γ2 µ(dx)

≤ 24rβ−γ
2

∫
D

1

‖x̄− x‖β
µ(dx)

= 24rβ−γ
2

φβ(x̄, µ) ≤ rβ−γ
2

sδ.

In particular for all r > 0, C(s, r) is satisfied once φβ(x̄, µ) ≤ 2−4sδ holds. We see that
for all s ≥ s0, we have from the above domination and the definition of s0 (3.1), that
P(C(s, s−L)) ≥ 1/2. By noticing that 1 + γ2L = 1/η and using the change of variables,

t = 24s1/η and t0 = 24s
1/η
0

in (3.3). We obtain that for any t ≥ t0,

E [exp(−tµ(D))] ≤ 2

σ(D)(t/24)η
≤ 25

σ(D)tη
,

which concludes our proof.

Proof of Corollary 3.2. We will rely on the above proof and set the parameters as follows.
Let δ := 1 and β := d (note that when γ ≤

√
d/2, β = β̄ = d was in fact not allowed in

the previous proof, but in the present L2-regime γ <
√
d, it will turn out to be harmless).

Following the exact same proof, it only remains to check that if γ <
√
d, then for any

s ≥ s0 := 25 Ed(σ)
σ(D) , one has

P
(
φd(x̄, µ) ≤ s

24

)
≥ 1/2.

Indeed, it follows directly from Markov’s inequality that P
(
φd(x̄, µ) > 2−4s0

)
is smaller

than or equal to

24

s0
E
[
φd(x̄, µ)

]
=

24

s0σ(D)

∫
D

σ(dx̄)E

[∫
D

1

‖x̄− x‖d2
µ(dx)

]
=

24Ed(σ)

s0σ(D)
= 1/2.

This concludes the proof of the corollary.
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4 Proof of the main result

In this section, we prove Theorem 1.1. We will use a bootstrap argument building
on Lemma 3.1. This part of the proof is close to the classical setting where σ has some
continuous density w.r.t Lebesgue measure.

Proof of Theorem 1.1. Fix δ > 0 and β ∈ (γ2, β̄). Let η := (β − γ2)/(β + γ2δ) as in Lemma
3.1. Let us show by induction that for all d-dimensional measures σ and all n ∈ N, there
exists K = K(σ, n) > 0 such that for all t ≥ 0 and all h GFF in D ⊆ D,

E
[
e−tµ

σ
γh(D)

]
≤ K

t2nη
, (4.1)

When n = 0, (4.1) follows from Lemma 3.1 and Kahane’s convexity inequality (Proposition
2.6).

Let us assume (4.1) is true for n ∈ N, WLoG we can assume that h is a GFF in D.
Now, for any ζ > 0 and any half-plane H ⊂ C, define H+

ζ (resp. H−ζ ) as the set of points
in H (resp. in C \H) that are at distance at least ζ from ∂H. We also write H and D \H
as H+ and H− respectively. For simplicity, let us first assume the following claim:

Claim 4.1. If σ is a Borel measure in D with no atoms, there exists ζ > 0 and some
half-plane H ⊆ C such that σ(H+

ζ ∩D) ∧ σ(H−ζ ∩D) > 0.

Take ζ > 0 and H as in the claim. Thanks to Lemma 2.3, we can write h = h+ + h− +

h∂H , where all terms are independent, h+ (resp. h−) is a zero-boundary GFF in H ∩D
(resp. D \H), and h∂H is a harmonic function in D\∂H. Assuming the mollifier for h is
the circle average and using the fact that h∂H is harmonic, we have

E
[
(hε(x))2

]
= E

[
(h±ε (x))2

]
+ E

[
(h∂H(x))2

]
≤ E

[
(h±ε (x))2

]
+ | log ζ|,

for all x ∈ H±ζ and ε ∈ (0, ζ). Note that | log ζ| appears from the fact that

E
[
h2
∂H(x)

]
≤ E

[
h2
ζ(x)

]
= | log ζ|+ log(1− |x|2) ≤ | log ζ|.

Since E
[
(hε(x))2 − (h±ε (x))2

]
≤ | log ζ| for all ε ∈ (0, ζ) and all x ∈ H±ζ , we have that

µγh(D, σ) is equal to

lim
ε→0

{∫
H∩D

eγ(h+
ε (x)+h∂H(x))− γ

2

2 E[(hε(x))2]σ(dx)

+

∫
D\H

eγ(h−ε (x)+h∂H(x))− γ
2

2 E[(hε(x))2]σ(dx)
}

≥ ζγ
2/2(µγh+(D, σ1H+

ζ
) + µγh−(D, σ1H−ζ

)) inf
d(z,∂H)≥ζ

eγh∂H(z).

Here for clarity, we write µσ̃γh(D) as µγh(D, σ̃) for σ̃ = σ, σ1H+
ζ

and σ1H−ζ
.

Let K+ and K− be the constants in (4.1) associated to σ1H+
ζ

and σ1H−ζ
and let K̃ be

equal to ζ−ηγ
22nK+K−. Then, by the independence between h+, h− and h∂H , we have

that the expected value of exp(−tµγh(D, σ)), conditioned on h∂H , is upper bounded by

E

[
exp

(
−(tζγ

2/2 inf
d(z,∂H)≥ζ

eγh∂H(z))(µγh+(D, σ1H+
ζ

) + µγh−(D, σ1H−ζ
))

)
| h∂H

]
≤ K̃t−η2n+1

sup
d(z,∂H)≥ζ

exp
(
−ηγ2n+1h∂H(z)

)
.

By Theorem 2.4 and the continuity of h∂H in H±ζ , we have that the expected value of

supd(z,∂H)≥ζ exp
(
−ηγ2n+1h∂H(z)

)
is finite, which concludes the proof of (4.1). Now, we

are left with the proof of Claim 4.1.
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Proof of Claim 4.1. The fact that σ is non-atomic and σ(D) <∞ implies that there are at
most countably many straight lines ` such that σ(`) > 0. Thus, there exists a slope a ∈ R,
such that all straight lines with slope a do not have σ-mass. WLoG we may assume that
a = 0 satisfies this property. Now, define Ec as follows

Ec := D ∩ {z : =(z) ≥ c},

where =(z) denotes the imaginary part of z. Note that c 7→ σ(Ec) is a uniformly
continuous function. Thus, there exists a ζ̄ > 0 such that for all c the measure of
{z : |=(z) − c| ≤ ζ̄} is smaller than or equal to σ(D)/4. Furthermore, thanks to the
intermediate value theorem, there exists c̄ such that σ(Ec̄) = σ(D)/2. We conclude by
taking H = Ec̄ and ζ = ζ̄.
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