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Abstract

Rough volatility models are becoming increasingly popular in quantitative finance.
In this framework, one considers that the behavior of the log-volatility process of a
financial asset is close to that of a fractional Brownian motion with Hurst parameter
around 0.1. Motivated by this, we wish to define a natural and relevant limit for the
fractional Brownian motion when H goes to zero. We show that once properly nor-
malized, the fractional Brownian motion converges to a Gaussian random distribution
which is very close to a log-correlated random field.
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1 Introduction

The fractional Brownian motion (fBm for short) is a very popular modeling object in
many fields such as hydrology, see for example [29], telecommunications and network
traffic, see [23, 28] among others and finance, see the seminal paper [11]. A fBm (BH

t )t∈R
with Hurst parameter H ∈ (0, 1) is a zero-mean Gaussian process with covariance kernel
given by

E[BH
t BH

s ] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

It has stationary increments and is self-similar with parameter H, that is (BH
at)t∈R

has the same law as (aHBH
t )t∈R for any a > 0. Furthermore, sample paths of fBm have

almost surely Hölder regularity H − ε for any ε > 0.

One of the main probabilistic features which motivates the use of fBm in the applica-
tions mentioned above, is the long memory property of the increments when H > 1/2.
This means that for H > 1/2, we have

+∞∑
i=1

Cov[(BH
i+1 −BH

i ), BH
1 ] = +∞.

Thus the auto-covariance function of the fBm increments decays slowly, which is inter-
esting when modeling persistent phenomena.

*Imperial College London, Department of Mathematics. E-mail: e.neumann@imperial.ac.uk
†École Polytechnique, CMAP. E-mail: mathieu.rosenbaum@polytechnique.edu

https://doi.org/10.1214/18-ECP158
http://www.imstat.org/ecp/
mailto:e.neumann@imperial.ac.uk
mailto:mathieu.rosenbaum@polytechnique.edu


Fractional Brownian motion with zero Hurst parameter

However, recently, a new paradigm has been introduced in [20] for the use of fBm in
finance. Indeed, a careful analysis of financial time series suggests that the log-volatility
process, that is the intensity of the price variations of an asset, actually behaves like
a fBm with Hurst parameter of order 0.1. Hence various approaches using a fBm with
small Hurst parameter have been introduced for volatility modeling. These models are
referred to as rough volatility models, see [4, 5, 6, 8, 13, 14, 16, 21] for more details and
practical applications.

Such small estimated values for H (between 0.05 and 0.2) have been found when
studying the volatility process of thousands of assets, see [7]. Consequently, a natural
question is the behavior of the fBm in the limiting case when H is sent to zero. Of
course, putting directly H = 0 in the covariance function does not lead to a relevant
process. Thus, in this work, we wish to build a suitable sequence of normalized fBms
and describe its limit as H goes to zero. This will lead us to a possible definition of
the fractional Brownian motion for H = 0. Note that several authors already defined
some fractional Brownian motion for H = 0, see in particular [19]. This is usually done
through a regularization procedure. Our approach here is quite simple and probably
more natural from the financial viewpoint we have in mind. Instead of regularizing the
process, we choose to normalize it in order to get a non-degenerate limit. Our normalized
sequence of processes (XH

. )H∈(0,1) is defined through

XH
t =

BH
t − 1

t

∫ t

0
BH

u du
√
H

, t ∈ R,

where XH
0 = 0. Substracting the integral in the numerator and dividing by

√
H enables

us to get a non-trivial limit for our sequence as H goes to 0.

Our main result is the convergence of XH , seen as a random element in the space of
tempered distributions, towards an approximately log-correlated Gaussian field. Denote
by S the real Schwartz space, that is the set of real-valued functions on R whose
derivatives of all orders exist and decay faster than any polynomial at infinity. We
write S ′ for the dual of S, that is the space of tempered distributions. We also define
the subspace S0 of the real Schwartz space, consisting of functions φ from S with∫
R
φ(s) ds = 0, and its topological dual S ′/R. A log-correlated Gaussian field (LGF for

short) X ∈ S ′/R, is a centered Gaussian field whose covariance kernel satisfies

E[〈X,φ1〉〈X,φ2〉] =
∫
R

∫
R

log
1

|t− s|
φ1(t)φ2(s) dt ds,

for any φ1, φ2 ∈ S0, see [12] for an overview on LGF. We show in this paper that the limit
of XH as H goes to zero is “almost" a log-correlated Gaussian field, see Section 2 for an
accurate result.

LGFs are closely related to some multifractal processes pioneered by Mandelbrot
(see for example [26]), and further developed in [1, 2, 3, 9], among others. A process
(Yt)t≥0 is said to be multifractal if for a range of values of q, we have for some T > 0

E
[
|Yt+` − Yt|q

]
∼ C(q)`ζ(q), for 0 < ` ≤ T,

where C(q) > 0 is a constant and ζ(·) is a non-linear concave function. In particular, the
multifractal random walk model for the log-price of an asset in [1] satisfies such property.
It is defined as Yt = BM([0,t]), where B is a Brownian motion and

M(t) = lim
l→0

σ2

∫ t

0

ewl(u)du, a.s.,
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Fractional Brownian motion with zero Hurst parameter

with σ2 > 0 and wl a Gaussian process such that for some λ2 > 0 and T > 0

Cov[wl(t), wl(t
′)] = λ2log(T/|t− t′|), for l < |t− t′| ≤ T,

see [2] for details. Hence we see that M formally corresponds to a measure of the form
exp(Xt)dt, where X is a LGF. For the precise definition of such measures, see [22] and
the generalizations on Gaussian multiplicative chaos in [30, 31, 32] and the references
therein. Finally note that LGFs and more generally the associated theory of Gaussian
multiplicative chaos have extensive use in other fields than finance, such as turbulence,
see [10, 18], disordered systems, see [17, 25] and Liouville quantum gravity, see [30, 31].

In the following section we introduce our main theorem, that is an accurate statement
about the convergence of the normalized fBm towards a LGF as H goes to zero. We also
discuss the multifractal properties of the limiting LGF in the same section. The proof of
our theorem can be found in Section 3.

2 Convergence of the fBM towards a LGF

2.1 Main result

We define the weak convergence of elements in S ′ as in Proposition 12.2 in [24]. We
say that XH converges weakly to X as H tends to 0 if for any φ ∈ S we have

〈XH , φ〉 → 〈X,φ〉,

in law, as H tends to 0. The main result of our paper is the following.

Theorem 2.1. The sequence {XH
t }t∈R converges weakly as H tends to zero towards a

centered Gaussian field X satisfying for any φ1, φ2 ∈ S

E[〈X,φ1〉〈X,φ2〉] =
∫
R

∫
R

K(t, s)φ1(t)φ2(s) dt ds,

where for −∞ < s, t < ∞, s 6= t and s, t 6= 0

K(t, s) = log
1

|t− s|
+ g(t, s),

with

g(t, s) =
1

t

∫ t

0

log |s− u|du+
1

s

∫ s

0

log |t− u|du− 1

ts

∫ t

0

∫ s

0

log |u− v|dudv.

We see that when t, s > δ for some δ > 0, then g(t, s) is a bounded continuous function.
Hence the covariance kernel exhibits the same type of singularity as that of a LGF.
Consequently, in our framework, the limit when H goes to zero of a normalized version
of the fBm is “almost" a LGF.

2.2 Multifractal properties

In [30], the authors study the case of centered Gaussian fields on any domain D ⊂ R
with covariance kernel satisfying

K(x, y) = log+
1

|x− y|
+ f(x, y), x, y ∈ D, (2.1)

where log+(x) := max{0, log x} and f(x, y) is a bounded continuous function. Thus, if we
restrict X to the domain [δ, 1] for some fixed δ > 0, then X is included in the framework
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of [30]. In particular, their results on the multifractal spectrum of Gaussian fields apply
on this restricted domain.

Motivated by the preceding paragraph, we first fix δ > 0 and define an approximate
volatility measure ξHγ by

ξHγ (dt) = eγX
H
t − γ2

2 E[(X
H
t )2]dt, δ ≤ t ≤ 1,

for some constant γ > 0. Here we assume that ξHγ (·) vanishes on [δ, 1]c. From the result
of Theorem 2.1 we deduce the following corollary. In what follows, convergence in the
L1 norm stands for the usual convergence of random variables in L1.

Corollary 2.2. For γ <
√
2, {ξHγ }H∈(0,1) converges as H approaches zero to a random

measure ξγ in the following sense,∫
R

φ(t)ξHγ (dt)
L1

→
∫
R

φ(t)ξγ(dt), for all φ ∈ S.

Moreover, the limiting measure ξγ is the so-called Gaussian multiplicative chaos.

The proof Corollary 2.2 is given in Section 3. For the definition and properties of
Gaussian multiplicative chaos we refer to a survey paper by Rhodes and Vargas [30]. We
will briefly explain some of the properties of ξγ from the theory of Gaussian multiplicative
chaos.

We first describe the behavior of the moments of ξγ . Note that for t ∈ [δ, 1], K is
of the form (2.1). From Proposition 2.5 in [31], it follows that for all t ∈ (δ, 1) and
q ∈ (−∞, 2/γ2), there exists C(t, q) > 0 such that

E
[
ξγ
(
B(t, r)

)q
] ∼ C(t, q)rζ(q), as r → 0,

where ζ(q) = (1+γ2/2)q−γ2q2/2. Hence we do obtain a multifractal scaling as described
in the introduction.

Finally we consider a quantity closely related to the function ζ above: the spectrum
of singularities of ξγ . For any 0 < γ <

√
2 and 0 < r <

√
2/γ, we define

Gγ,r =
{
x ∈ (δ, 1); lim

ε→0

log ξγ(B(x, ε))

log ε
= 1 +

(1
2
− r

)
γ2

}
.

The set Gγ,r somehow corresponds to the points x where the Hölder regularity of
ξγ is equal to 1 + (1/2− r)γ2. Let dimH(A) denote the Hausdorff dimension of a set A.
Theorem 2.6 in [31] states that

dimH(Gγ,r) = 1− γ2r2

2
.

In particular, we remark that

dimH(Gγ,r) = inf
p∈R

{
p
(
1 +

(1
2
− r

)
γ2

)
− ζ(p) + 1

}
.

This equality means that the Frisch-Parisi conjecture relating the scaling exponents of
a process to its spectrum of singularities holds in our case, see [15] and [30] for more
details on the multifractal formalism.

The rest of this paper is devoted to the proofs of Theorem 2.1 and Corollary 2.2.
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Fractional Brownian motion with zero Hurst parameter

3 Proof of Theorem 2.1 and Corollary 2.2.

For t, s ∈ R, letKH(t, s) = E[XH
t XH

s ] . We start the proof with the following important
lemma.

Lemma 3.1. For any non-zero −∞ < s, t < ∞ with s 6= t, we have

lim
H→0

KH(t, s) = K(t, s). (3.1)

Proof. We write KH(t, s) = IH1 (t, s) + IH2 (t, s) + IH3 (t, s) + IH4 (t, s), where

IH1 (t, s) = − 1

2H
|t− s|2H , IH2 (t, s) =

1

2H

1

t

∫ t

0

|s− u|2Hdu,

IH3 (t, s) =
1

2H

1

s

∫ s

0

|t− u|2Hdu, IH4 (t, s) = − 1

2H

1

st

∫ t

0

∫ s

0

|u− v|2Hdudv

(3.2)

and K(t, s) = I01 (t, s) + I02 (t, s) + I03 (t, s) + I04 (t, s), where

I01 (t, s) = log
1

|t− s|
, I02 (t, s) =

1

t

∫ t

0

log |s− u|du,

I03 (t, s) =
1

s

∫ s

0

log |t− u|du, I04 (t, s) = − 1

st

∫ t

0

∫ s

0

log |u− v|dudv.

We have
KH(t, s) = KH(s, t) and K(t, s) = K(s, t),

so we can assume that −∞ < s < t < ∞.

Note that for any s 6= t,

IH1 (t, s) +
1

2H
= − 1

2H

(
e2H log |t−s| − 1

)
and therefore

lim
H→0

IH1 (t, s) +
1

2H
= − log |t− s| = I01 (t, s).

Next we deal with IHi , i = 2, ..., 4. We consider several cases.

Case 1: Assume that 0 < s < t. We easily get

IH2 (t, s) + IH3 (t, s) =
1

2H(2H + 1)ts

(
t2H+2 + s2H+2 − (t− s)2H+2

)
.

For IH4 (t, s), note that∫ t

0

|u− v|2H du =
1

2H + 1
v2H+1 +

1

2H + 1
(t− v)2H+1.

Hence we obtain∫ s

0

∫ t

0

|u− v|2H dudv =
1

(2H + 1)(2H + 2)

(
t2H+2 − (t− s)2H+2 + s2H+2

)
and therefore

IH4 (t, s) = − 1

2H(2H + 1)(2H + 2)ts

(
t2H+2 + s2H+2 − (t− s)2H+2

)
.
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Define

IH2,4(t, s) =

4∑
i=2

IHi (t, s).

It follows that

IH2,4(t, s) =
1

2H(2H + 2)ts

(
t2H+2 + s2H+2 − (t− s)2H+2

)
.

Thus we have

IH2,4(t, s)−
1

H(2H + 2)

=
1

2H(2H + 2)ts

(
t2H+2 + s2H+2 − (t− s)2H+2

)
− 1

2H(2H + 2)ts

(
t2 + s2 − (t− s)2

)
=

1

2H(2H + 2)ts

(
t2(t2H − 1) + s2(s2H − 1)− (t− s)2((t− s)2H − 1)

)
.

Consequently,

lim
H→0

IH2,4(t, s)−
1

H(2H + 2)
=

1

2ts

(
t2 log t+ s2 log s− (t− s)2 log(t− s)

)
and

lim
H→0

IH2,4(t, s)−
1

2H
=

1

2ts

(
t2 log t+ s2 log s− (t− s)2 log(t− s)

)
− 1

2
.

We also easily get that for 0 < s < t

I02 (t, s) + I03 (t, s) =
1

st

(
t2 log t+ s2 log s− (t− s)2 log(t− s)

)
− 2.

Furthermore, ∫ t

0

log |u− v| du = v log v + (t− v) log(t− v)− t.

Thus we obtain∫ s

0

∫ t

0

log |u− v| du dv = −st+
s2

4
(2 log s− 1) +

t2

4
(2 log t− 1)

− (t− s)2

4
(2 log(t− s)− 1)

=
1

2

(
t2 log t+ s2 log s− (s− t)2 log(s− t)− 3st

)
and we deduce

I04 (t, s) = − 1

2ts

(
t2 log t+ s2 log s− (s− t)2 log(s− t)

)
+

3

2
.

Now define

I02,4(t, s) =

4∑
i=2

I0i (t, s).

We have

I02,4(t, s) =
1

2st

(
t2 log t+ s2 log s− (t− s)2 log(t− s)

)
− 1

2
.
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Finally we obtain

lim
H→0

IH2,4(t, s)−
1

2H
= I02,4(t, s),

from which (3.1) readily follows for 0 < s < t < ∞.

Case 2: Assume that −∞ < s < t < 0. We use that

KH(t, s) = KH(−t,−s) = KH(−s,−t) and K(t, s) = K(−t,−s) = K(−s,−t)

to deduce that (3.1) follows from the proof of Case 1.

Case 3: Assume that s < 0 < t. We write s = −u. Repeating the same steps as in
Case 1, we get

IH2,4(t,−u)− 1

H(2H + 2)

=
1

2H(2H + 2)tu

(
(t+ u)2((t+ u)2H − 1)− t2(t2H − 1)− u2(u2H − 1)

)
,

and

I02,4(t,−u) =
1

2ut

(
(t+ u)2 log(t+ u)− t2 log t− u2 log u

)
− 1

2
.

It follows that

lim
H→0

IH2,4(t,−u)− 1

2H
= I02,4(t,−u)

and we get (3.1).

Let φ1, φ2 ∈ S. Since XH and X are centered Gaussians taking values in S ′, to prove
Theorem 2.1, it is enough to show that

lim
H→0

E[〈XH , φ1〉〈XH , φ2〉] =
∫
R

∫
R

K(t, s)φ1(t)φ2(s) dt ds.

Furthermore, for any H ∈ (0, 1) we have

E[〈XH , φ1〉〈XH , φ2〉] =
∫
R

∫
R

KH(t, s)φ1(t)φ2(s) ds dt.

Hence Theorem 2.1 immediately follows from the next lemma.

Lemma 3.2. For any φ1, φ2 ∈ S,

lim
H→0

∫
R

∫
R

KH(t, s)φ1(t)φ2(s) ds dt =

∫
R

∫
R

K(t, s)φ1(t)φ2(s) ds dt. (3.3)

Proof. First note that for x ≥ 0, 1− e−x ≤ x. Therefore for any 0 < |t− s| ≤ 1,

|1− |t− s|2H |
2H

=
1

2H
(1− e2H log |t−s|) ≤ − log |t− s|.

Moreover,

−
∫ ∫

|t−s|≤1

log |t− s||φ1(t)||φ2(s)| dt ds ≤ −‖φ2‖∞
∫
R

|φ1(t)|
∫
|v|≤1

log |v| dv dt

= −2‖φ2‖∞
∫
R

|φ1(t)|
∫ 1

0

log(v) dv dt

≤ C‖φ1‖1‖φ2‖∞.
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Hence, from dominated convergence, it follows that

lim
H→0

∫ ∫
|t−s|≤1

1− |t− s|2H

2H
φ1(t)φ2(s) dt ds = −

∫ ∫
|t−s|≤1

log |t− s|φ1(t)φ2(s) dt ds.

Let f(x) = x2H/(2H), where x > 0 and H ∈ (0, 1/2). Since f is concave, for any x ≥ 1,
we have 0 ≤ f(x)− f(1) ≤ f ′(1)(x− 1). Therefore for any |t− s| ≥ 1,

||t− s|2H − 1|
2H

≤ |t− s| − 1 ≤ 2(|t|+ |s|).

Since

2

∫ ∫
|t−s|>1

(|t|+ |s|)|φ1(t)||φ2(s)| dt ds < ∞,

we get from dominated convergence

lim
H→0

∫ ∫
|t−s|>1

1− |t− s|2H

2H
φ1(t)φ2(s) dt ds = −

∫ ∫
|t−s|≥1

log |t− s|φ1(t)φ2(t) dt ds.

It remains to show that

lim
H→0

∫
R

∫
R

(
IH2,4(t, s)−

1

2H

)
φ1(t)φ2(s) dt ds =

∫
R

∫
R

I02,4(t, s)φ1(t)φ2(s) dt ds.

We again consider several cases.

Case 1: Assume that 0 < s < t. We obviously have

s2

2H(2H + 2)ts
|s2H − 1| ≤ 1

2H(2H + 2)
|s2H − 1|.

Moreover, from a Taylor expansion, we get t2H−(t−s)2H ≤ 2H(t−s)2H−1s and therefore

1

2Hts
|t2(t2H − 1)− (t− s)2((t− s)2H − 1)|

≤ 1

2Hts

(
|t2(t2H − 1)− (t− s)2(t2H − 1)|

+|(t− s)2(t2H − 1)− (t− s)2((t− s)2H − 1)|
)

≤ 1

2Hts

(
|t2H − 1||s2 − 2st|+ 2H(t− s)2(t− s)2H−1s

)
≤ 1

H
|t2H − 1|+ (t− s)2H .

It follows that for any 0 < s < t,∣∣IH2,4(t, s)− 1

H(2H + 2)

∣∣ ≤ 1

2H
|s2H − 1|+ 1

2H
|t2H − 1|+ (t− s)2H := LH

1 (t, s). (3.4)

Case 1bis: Assume that 0 < t < s. Since IH2,4(t, s) = IH2,4(s, t) we get

∣∣IH2,4(t, s)− 1

H(2H + 2)

∣∣ ≤ LH
1 (s, t).

Case 2: Assume that −∞ < −t,−s < 0. Since IH2,4(−t,−s) = IH2,4(t, s), we have

∣∣IH2,4(−t,−s)− 1

H(2H + 2)

∣∣ ≤ LH
1 (t, s).
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Case 3: Assume that −s < 0 < t and s ≤ t. Recall that when −s < 0 < t,

IH2,4(t,−s)− 1

H(2H + 2)

=
1

2H(2H + 2)ts

(
(t+ s)2((t+ s)2H − 1)− t2(t2H − 1)− s2(s2H − 1)

)
.

Since s < t we have∣∣ s2

2H(2H + 2)ts
(s2H − 1)

∣∣ ≤ 1

2H(2H + 2)
|s2H − 1|.

Using a Taylor expansion, we get (t+ s)2H − t2H ≤ 2Ht2H−1s and therefore

1

2Hts
|(t+ s)2((t+ s)2H − 1)− t2(t2H − 1)|

≤ 1

2Hts

(
|(t+ s)2((t+ s)2H − 1)− (t+ s)2(t2H − 1)|

+|(t+ s)2(t2H − 1)− t2(t2H − 1)|
)

≤ 1

2Hts

(
2H(t+ s)2t2H−1s+ |t2H − 1||s2 + 2st|

)
≤ (t+ s)2H +

3

2H
|t2H − 1|.

It follows that∣∣IH2,4(t,−s)− 1

H(2H + 2)

∣∣ ≤ 1

2H
|s2H − 1|+ 1

H
|t2H − 1|+ (t+ s)2H := LH

2 (t, s).

Case 4: Assume that −s < 0 < t and t < s. Repeating the same lines as in Case 3 but
exchanging the roles of t and s we get∣∣∣IH2,4(t,−s)− 1

H(2H + 2)

∣∣∣ ≤ LH
2 (s, t).

Case 5: Assume that −t < 0 < s and t < s. Since IH2,4(−t, s) = IH2,4(s,−t), it follows
from Case 3 that ∣∣∣IH2,4(−t, s)− 1

H(2H + 2)

∣∣∣ ≤ LH
2 (s, t).

Case 6: Assume that −t < 0 < s and s < t. Using again IH2,4(−t, s) = IH2,4(s,−t), we
get from Case 4 that ∣∣∣IH2,4(−t, s)− 1

H(2H + 2)

∣∣∣ ≤ LH
2 (t, s).

Finally, we clearly have∫
R

∫
R

(
sup

H∈(0,1/2)

(
LH
1 (s, t) + LH

1 (t, s) + LH
2 (s, t) + LH

2 (t, s)
))

φ1(t)φ2(s) dt ds < ∞.

Thus we conclude the proof using the dominated convergence theorem.

Before we prove Corollary 2.2, we recall an approximation of log+(1/|x|), from
Example 2.2 in [30]. For any x ∈ R we define the cone C(x) in R×R+:

C(x) =
{
(y, t) ∈ R×R+; |x− y| ≤ t ∧ 1

2

}
.
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Fractional Brownian motion with zero Hurst parameter

A direct computation gives

f(x) =

∫
C(0)∩C(x)

dy dt

t2
= log+

1

|x|
.

We approximate f by the following functions,

f̃ε(x) :=

∫
C(0)∩C(x); ε<t<∞

dy dt

t2
, for ε > 0. (3.5)

Proof of Corollary 2.2 From Theorem 25 in [33] we obtain that Corollary 2.2 follows
from (3.3), provided we show that {ξH}H∈(0,1) are uniformly integrable.

First note that all ξH , 0 < H < 1, can be constructed on the same probability space, as a
convolution of the same Brownian motion with different kernels which depend on H (see
[27]). From (3.2) and (3.4) we have for δ ≤ s, t ≤ 1,

KH(s, t) ≤ 1

2H
|1− |t− s|2H |+ 1

2H
|s2H − 1|+ 1

2H
|t2H − 1|+ (t− s)2H + C

≤ 1

2H
|1− |t− s|2H |+ C(δ).

Using 1− e−x ≤ x for x > 0 we get for all δ ≤ s, t ≤ 1,

KH(s, t) ≤ − log |t− s|+ C(δ).

On the other hand for δ ≤ s, t ≤ 1 we have

KH(s, t) ≤ 1

2H
+ C(δ).

It follows that

KH(s, t) ≤
( 1

2H

)
∧ log

1

|t− s|
+ C(δ)

= log
1

|t− s| ∨ e−
1

2H

+ C(δ).

Let ε ∈ (0, 1) be arbitrary small. Let X̃ε be a centred Gaussian random field with the
covariance kernel f̃ε + C(δ), where f̃ε is given in (3.5), i.e.

K̃ε(t, s) := E[X̃
ε
t X̃

ε
s ] = f̃ε(t− s) + C(δ), −∞ < t, s < ∞.

Since ε ∈ (0, 1), we get from (3.5) for 0 < x ≤ 1,

f̃ε(x) =

∫
C(0)∩C(x); ε<r<∞

dy dr

r2

=

∫ ∞

x∨ε

dr

r2

∫ (r∧1)/2

x−(r∧1)/2

dy

= − log(x ∨ ε)− x

x ∨ ε
+ 1.

Note that f̃ε is an even function and therefore,

K̃ε(t, s) ≥ log
1

|t− s| ∨ ε
+ C(δ), 0 < t, s ≤ 1.
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Fractional Brownian motion with zero Hurst parameter

We define the following of measure

ξ̃εγ(dt) = eγX̃
ε
t −

γ2

2 E[(X̃
ε
t )

2]dt, δ ≤ t ≤ 1.

Recall that γ2 < 2 by our assumption. Then from the proof of Proposition 3.5 in [32] it
follows that there exists p = p(γ) > 1, such that

sup
ε>0

E
[(
ξ̃εγ([0, 1])

)p]
< ∞.

By chosing H = H(ε) = (−2 log ε)−1, we note that KH(s, t) ≤ K̃ε(s, t), and from the
comparison principal with F (x) = xp (see Corollary A.2 in [32]), we get

sup
H∈(0,1)

E
[
ξHγ ([δ, 1])p

]
< ∞.

We therefore conclude that {ξH}H∈(0,1) are uniformly integrable.
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