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Abstract. In adaptive crossover design, our goal is to allocate more patients
to a promising treatment sequence. The present work contains a very simple
three period crossover design for two competing treatments where the allo-
cation in period 3 is done on the basis of the data obtained from the first
two periods. Assuming normality of response variables we use a reliability
functional for the choice between two treatments. We calculate the allocation
proportions and their standard errors corresponding to the possible treatment
combinations. We also derive some asymptotic results and provide solutions
on related inferential problems. Moreover, the proposed procedure is com-
pared with a possible competitor. Finally, we use a data set to illustrate the
applicability of the proposed design.

1 Introduction

Crossover trials assign two or more treatments sequentially to the same subject with two or
more groups of subjects receiving different treatment sequences. The most commonly used
crossover design with two treatments, say A and B , is the AB/BA design where some of the
experimental units under trial receive treatment A in period 1 and another treatment B in
period 2, whereas the others have B and then A. The pros and cons of AB/BA design are dis-
cussed in Senn (1994) and Jones and Kenward (2015). In absence of baseline measurements,
AB/BA design suffers from several drawbacks. For example, (i) tests for carryover effect have
low power since they are based on between-subject variation and (ii) the carryover effect, the
treatment-by-period interaction effect and the sequence difference are all completely aliased
with one another. To overcome these issues, several authors suggest higher order crossover
designs with two treatments. See, for example, Patterson and Lucas (1959), Balaam (1968),
Ebbutt (1984), Fleiss (1986) and Kabaila and Vicendese (2012). The advantages of using a
higher order design are for its ability to obtain within subject estimators of the carryover ef-
fect or the treatment-by-period interaction effect and in some designs these estimators are not
aliased with each other. Another point in favor of higher order design is that it is not neces-
sary to assume that the subject effects are random variables in order to test for a difference
between the carryover effects.

In usual crossover designs, as discussed earlier, the number of experimental units allotted
to different treatment sequences are fixed in advance. But in clinical trials it would be ethical
to allocate larger number of patients to the better treatment sequence. Some works in this
direction are due to Kushner (2003), Liang and Carriere (2009), Bandyopadhyay, Biswas and
Mukherjee (2009, 2012), Bandyopadhyay and Mukherjee (2015) and Liang et al. (2014). In
the present work, we consider a two treatment three period design with four treatment se-
quences: ABA, ABB, BAA, BAB. This design was earlier considered by Ebbutt (1984) and
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it was compared with an existing two treatment three period design allowing two sequences
ABB and BAA as proposed by Patterson and Lucas (1959). But our design, unlike the equal
allocation design by Ebbutt, use the information of the first two periods for allocation of a
patient in period 3, and hence it ultimately results unequal allocations to the possible treat-
ment sequences. Our three-period model of this present paper is an extension of the adaptive
crossover design for normal responses of Bandyopadhyay and Mukherjee (2015) which is
based on a two-period design.

We plan to organize the paper in the following way. In Section 2, we provide some prob-
ability measures for normal response variables and observe the nature of such functionals
in the context of ethical design. We then propose an adaptive allocation rule on the basis of
these functionals and give some related asymptotic results. In Section 3, we carry out a test
for treatment effects. Section 4 demonstrates various numerical computations to compare the
performance of the proposed design with that of its comparable competitor. The application
of the proposed design is illustrated through a data study in Section 5. The paper ends with a
discussion in Section 6.

2 Proposed adaptive crossover design and related asymptotic results

2.1 Preliminaries

Let A and B be two competing treatments in clinical trial. Suppose there is a fixed horizon
of n patients for trial and the patients come to the clinic sequentially. The trial size n is
determined from the cost to conduct the trial. Here, as in a standard two treatment two period
crossover design, each entering patient is allotted to treatment sequence AB or BA for the
first two periods. In period 3, each entering patient is randomized between A and B , and
thus a patient under this trial receives one of the following treatment sequences: ABA, ABB,
BAA, BAB. The potential outcome from each patient under such trial can then be represented
by a three-component vector X = {Xk1,Xk1k2,Xk1k2k3}, k1 �= k2, k1, k2, k3 = A,B . Note that
the first component of this vector is the response to treatment A or B in period 1, the second
component is that in period 2 corresponding to treatment B (followed by A) or to A (followed
by B) and similarly for the third component. The present work is based on the following
assumptions on the response variables:

(I) Moment assumptions:
M1. E(Xk1) = μk1,E(Xk1k2) = μk2 +φk1,E(Xk1k2k3) = μk3 +φk2, k1 �= k2, k1, k2, k3 =

A,B . The parameters μA and μB represent, respectively, the effects of treatments A

and B while the parameters φA and φB are for the carryover effects of treatments A

and B . Here, we use between subject evaluation in which the analysis remains un-
affected by the presence of possible period effects. As a result, we need not require
to incorporate the period effect in the moment assumption.

M2. The response from each subject have constant variance (σ 2) and the pairs of re-
sponses from the same subject have constant covariances (ρσ 2). Moreover, the re-
sponses from different subjects are independent.

(II) Distribution assumptions:
D1. Xk1 has normal distribution with mean μk1 and variance σ 2, k1 = A,B .
D2. Given Xk1 , the random variable Xk1k2 has normal distribution with conditional mean

μk2 + φk1 + ρ(Xk1 − μk1) and variance σ 2(1 − ρ2), ρ2 < 1
2 , k1, k2 = A,B, k1 �= k2.

D3. Given {Xk1,Xk1k2}, the random variable Xk1k2k3 has normal distribution with con-
ditional mean μk3 + φk2 + ρ

1+ρ
(Xk1 − μk1) + ρ

1+ρ
(Xk1k2 − μk2 − φk1) and variance

σ 2(1 − 2ρ2), k1, k2, k3 = A,B; k1 �= k2.
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In fact, combining all assumptions mentioned above, it can be seen that the random vector
(Xk1,Xk1k2,Xk1k2k3) follows a trivariate normal distribution with mean vector (μk1,μk2 +
φk1,μk3 + φk2) and dispersion matrix σ 2R where R = ((1 − ρ)I3 + ρ11′) with I3 as the
identity matrix of order 3 and 1 as the vector with all the elements unity.

2.2 Reliability functional

In the third period, patients are allocated to the treatments A or B by using a reliability func-
tional. Earlier, Bandyopadhyay and Mukherjee (2015) have used some reliability functionals
in a two-treatment two-period crossover trial with four possible treatment combinations AA,
AB, BA and BB. In our present study, we use the following reliability functional

π = P [XA + XBA > XB + XAB],
in which larger response indicates the promising treatment. By our assumptions, XA +XBA−
XB −XAB is normally distributed random variable with mean 2(μA −μB)+ (φB −φA) and
variance 4σ 2(1 − ρ2). Hence, we can write the above functional as

π = �

(
(μA − μB) + 1

2(φB − φA)√
σ 2(1 − ρ)

)
.

The motivation behind the choice of the above reliability functional is the fact that in simple
two treatment two period crossover design with treatment sequences AB and BA, if treat-
ment A is said to be better than treatment B , the occurrences of total response of a patient
receiving treatment A is stochastically larger than that under treatment B . In terms of the no-
tations introduced in the present paper the superiority of treatment A over treatment B can be
expressed by the inequality 2(μA − μB) + (φB − φA) > 0 which in turn implies that π > 1

2 .
So the allocation design based on the reliability functional π is ethical in the sense that, when
A is better than B , there is a fair chance (more than 50%) for a patient to receive A. Under
equivalence of two treatments π = 1

2 , so π -based design is also balanced in that situation.

2.3 Proposed design

In practice π is unknown. So for implementing the allocation procedure, we need to es-
timate π from the available data. In the proposed design, we estimate π on the basis
of data obtained in the first two periods. For this, corresponding to the ith entering pa-
tient under the trial, we define the pair of indicator variables {δ(A,B, i), δ(B,A, i)} where
δ(A,B, i) = 1 − δ(B,A, i) = 1 or 0 as the ith patient receives treatment sequence AB or
BA. Using these assignment indicator variables, the response variables Zi and Ui can be
represented by

Zi = δ(A,B, i)XAi + δ(B,A, i)XBi

and

Ui = δ(A,B, i)XABi + δ(B,A, i)XBAi,

where {XAi,XBi} and {XABi,XBAi} are, respectively, the potential outcome vectors for
the ith patient corresponding to {A,B} in period 1 and {B,A} in period 2. Now, to im-
plement the allocation procedure, the entering patients in period 1 are randomized equally
between the treatments A and B . The patients, who receive treatment A(B) in period 1,
are treated by treatment B(A) in period 2. We estimate the components of parameter vec-
tor θ = (μA,μB,φA,φB,σ 2, ρ) on the basis of the data (δ(A,B, i),Zi,Ui), i = 1, . . . , n.
In the present work, we adopt the maximum likelihood (ML) method for estimating the un-
known parameters. If fk1,k2(z, u) denotes the density of a bivariate normal distribution with
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means μk1 and μk2 + φk1 , common variance σ 2 and the common correlation coefficient ρ,
k1 �= k2 = A,B , the likelihood function, based on allocation and responses up to the nth
patient, is given by

c(n)

n∏
i=1

∏
k1 �=k2=A,B

[
fk1,k2(Zi,Ui)

]δ(k1,k2,i),

where c(n) represents the product of the allocation probabilities up to the outcome of the
nth patient, and is independent of the parameters of the response distributions. Hence, the
corresponding log-likelihood function, ignoring additive constant, is given by

Ln(θ) = −1

2σ 2(1 − ρ2)

n∑
i=1

∑
k1 �=k2=A,B

δ(k1, k2, i)
[
(Zi − μk1)

2

− 2ρ(Zi − μk1)(Ui − μk2 − φk1)

+ (Ui − μk2 − φk1)
2] − n log

(
2πσ 2

√
1 − ρ2

)
.

Consequently, the likelihood equations,

∂Ln(θ)

∂μk

= 0 and
∂Ln(θ)

∂φk

= 0, k = A,B,

yield

n∑
i=1

δ(A,B, i)
[−(Zi − μA) + ρ(Ui − μB − φA)

]

=
n∑

i=1

δ(B,A, i)
[
ρ(Zi − μB) − (Ui − μA − φB)

]
, (2.1)

n∑
i=1

δ(B,A, i)
[−(Zi − μB) + ρ(Ui − μA − φB)

]

=
n∑

i=1

δ(A,B, i)
[
ρ(Zi − μA) − (Ui − μB − φA)

]
, (2.2)

n∑
i=1

δ(A,B, i)ρ(Zi − μA) − (Ui − μB − φA) = 0 (2.3)

and
n∑

i=1

δ(B,A, i)ρ(Zi − μB) − (Ui − μA − φB) = 0. (2.4)

Using (2.3) and (2.4) in (2.1), we get

(
1 − ρ2) n∑

i=1

δ(A,B, i)ρ(Zi − μA) = 0,

which implies

μ̂A =
∑n

i=1 δ(A,B, i)Zi∑n
i=1 δ(A,B, i)

.
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Similar use of (2.3) and (2.4) in (2.2) yields

μ̂B =
∑n

i=1 δ(B,A, i)Zi∑n
i=1 δ(B,A, i)

.

Next, using μ̂A and μ̂B in (2.3) and (2.4), we get

φ̂A =
∑n

i=1δ(A,B, i)(Ui − μ̂B)∑n
i=1δ(A,B, i)

, φ̂B =
∑n

i=1δ(B,A, i)(Ui − μ̂A)∑n
i=1δ(B,A, i)

.

Finally, the likelihood equations ∂Ln(θ)

∂σ 2 = 0 and ∂Ln(θ)
∂ρ

= 0 yield

σ̂ 2 =
∑n

i=1
∑

k1 �=k2=A,B δ(k1, k2, i)[(Zi − μ̂k1)
2 + (Ui − μ̂k2 − φ̂k1)

2]
2n

,

ρ̂ = 1

nσ̂ 2

[
n∑

i=1

δ(A,B, i)(Zi − μ̂A)(Ui − μ̂B − φ̂A)

+
n∑

i=1

δ(B,A, i)(Zi − μ̂B)(Ui − μ̂A − φ̂B)

]
.

Then, writing θ̂ = (μ̂A, μ̂B, φ̂A, φ̂B, σ̂ , ρ̂) as an estimate of θ based on the observations in
periods 1 and 2, we get

π̂ = �

(
(μ̂A − μ̂B) + 1

2(φ̂B − φ̂A)√
σ̂ 2(1 − ρ̂)

)
.

Next, corresponding to the ith entering patient in period 3, we define a pair of variables (τAi ,
Vi), where τAi = 1 − τBi = 1 or 0 as the ith patient receives treatment A or B and Vi =
δ(A,B, i)τAiXABAi + δ(A,B, i)τBiXABBi + δ(B,A, i)τAiXBAAi + δ(B,A, i)τBiXBABi .
Then, our rule is defined by the following allocation probability

P(τAi = 1 | Dn) = π̂ ,

where Dn = {δ(k1, k2, i),Zi,Ui,1 ≤ i ≤ n, k1 �= k2, k1, k2, k3 = A,B} represents the data
obtained from the first two periods crossover trial. That means, for each entering patient in
period 3, a Bernoulli trial is performed with probability of success π̂ and the patient receives
treatment A or B as the success or failure occurs. We now provide the following results
(without proof) as these are useful for any adaptive design.

Result 1. If θ̂n denotes the ML estimate of θ based on the data obtained from the first two
periods, then θ̂n converges to θ almost surely.

Note. As a consequence of the above result, it follows that π̂ converges almost surely to π

as n approaches to ∞.

Result 2. As n → ∞, almost surely,

1

n

n∑
i=1

τAi → π.

Note. If Nk1k2k3 represents the number of patients allocated to the treatment sequence
{k1k2k3}, we have

Nk1k2k3 =
n∑

i=1

δ(k1, k2, i)τk3i , k1 �= k2;k1, k2, k3 = A,B.
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As a consequence of the above results, we get

NABA

n
→ 1

2
π,

NABB

n
→ 1

2
(1 − π),

NBAA

n
→ 1

2
π,

NBAB

n
→ 1

2
(1 − π)

almost surely, as n → ∞.

3 Test for equivalence and related asymptotics

A natural follow up of the proposed rule is to consider some testing problems. At present, for
illustration, we consider the testing problem represented by the null hypothesis

H01 : Treatments A and B are equivalent,

and the alternative hypothesis

H11 : Treatment A is better than B.

After period 3, for A to be better than B , we have

E

(
XA + XBA + 1

2
(XABA + XBAA)

)
> E

(
XB + XAB + 1

2
(XABB + XBAB)

)
⇒ μA + μA + φB + 1

2
(μA + φB + μA + φA)

> μB + μB + φA + 1

2
(μB + φA + μB + φB)

⇔ (μA − μB) + 1

3
(φB − φA) > 0.

Unlike a two period two treatment design, we here set the equivalence of A and B by

(μA − μB) + 1

3
(φB − φA) = 0

and A to be better than B by

(μA − μB) + 1

3
(φB − φA) > 0.

Now, if we set

S =
∑n

i=1δ(A,B, i)Zi

NAB

+
∑n

i=1δ(B,A, i)Ui

NBA

+ 1

2

[∑n
i=1δ(A,B, i)τAiVi

NABA

+
∑n

i=1δ(B,A, i)τAiVi

NBAA

]

−
∑n

i=1δ(B,A, i)Zi

NBA

+
∑n

i=1δ(A,B, i)Ui

NAB

+ 1

2

[∑n
i=1δ(A,B, i)τBiVi

NABB

+
∑n

i=1δ(B,A, i)τBiVi

NBAB

]
,
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it is not difficult to show that S approaches almost surely to 3(μA − μB) + (φB − φA) as
n → ∞. Then, for testing H01 against H11, it would be reasonable to use an upper tail test
based on the statistic S.

Defining statistics T1, T2, . . . , T8 as

T1 =
n∑

i=1

δ(A,B, i)(Zi − μA), T2 =
n∑

i=1

δ(B,A, i)(Zi − μB),

T3 =
n∑

i=1

δ(A,B, i)(Ui − μB − φA), T4 =
n∑

i=1

δ(B,A, i)(Ui − μA − φB),

T5 =
n∑

i=1

δ(A,B, i)τAi(Vi − μA − φB),

T6 =
n∑

i=1

δ(A,B, i)τBi(Vi − μB − φB),

T7 =
n∑

i=1

δ(B,A, i)τAi(Vi − μA − φA),

T8 =
n∑

i=1

δ(B,A, i)τBi(Vi − μB − φA),

and using H01, we get

S =
[

T1

NAB

+ T4

NBA

− T2

NBA

− T3

NAB

]
+ 1

2

[
T5

NABA

+ T7

NBAA

− T6

NABB

− T8

NBAB

]
,

after some routine algebraic manipulations. Note that, as the exact null distribution of S

cannot be obtained algebraically, we carry out our test procedure by using the asymptotic
distribution of S that can be obtained from the following result whose proof is given in the
Appendix.

Result 3. Let T be a 8-component vector with elements T1, T2, . . . , T8. Then, as n → ∞,

1√
n

T
D−→N8(0,
), (3.1)

where “−→D” represents convergence in distribution and the non-zero elements σjj ′ of 


are given by

σjj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ 2

2
for j = 1,2,3,4,

σ 2
[
π(1 − π)(1 − 2ρ2)

4
+ ρ2π2

1 + ρ

]
for j = 5,7,

σ 2
[
π(1 − π)(1 − 2ρ2)

4
+ ρ2(1 − π)2

1 + ρ

]
for j = 6,8
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and

σjj ′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ 2ρ if
(
j, j ′) ∈ {

(1,3), (2,4)
}
,

σ 2πρ if
(
j, j ′) ∈ {

(1,5), (3,5), (2,7), (4,7)
}
,

σ 2(1 − π)ρ if
(
j, j ′) ∈ {

(1,6), (3,6), (2,8), (4,8)
}
,

σ 22π(1 − π)
ρ2

1 + ρ
if

(
j, j ′) ∈ {

(5,6), (7,8)
}
.

4 Simulation studies

We carry out a detailed simulation study with 10,000 repetitions for each set of parameter
values. We take the total sample size n = 100. We vary μA −μB , in which we consider three
cases: (a) φA = φB , (b) φA − φB = 0.3, and (c) φA − φB = −0.3.

In Figure 1, we present the allocation proportions to the four sequences ABA, ABB, BAA
and BAB. For each of the three situations (a)–(c), the solid lines correspond to the allocation
proportions of ABA and BAA (which are same), and the dashed lines correspond to the
allocation proportions of ABB and BAB (which are also same by our proposed design).

The case for (a), that is, φA = φB is represented by ◦. At μA − μB = 0 (i.e., when the
treatments are equivalent), the allocation proportion to each sequence is 0.25 provided φA =
φB . Thereafter, as μA −μB increases, the line corresponding to ABA and BAA goes close to
the 0.5 mark. The opposite scenario is observed for the line corresponding to ABB and BAB,
where the line goes close to the 0 mark.

The case for (b), that is, φA −φB = 0.3 is represented by �. Here the allocation proportion
to the sequences ABA or BAA is less than 0.25 (and hence the allocation proportion to the
sequences ABB or BAB is greater than 0.25) when μA − μB = 0. However, the allocation
proportion to ABA/BAA increases (and that for ABB/BAB decreases) with μA − μB . Here
allocation proportion for each sequence becomes 0.25 when μA − μB = 0.15.

The case for (c), i.e. φA − φB = −0.3 is represented by +. Here the allocation proportion
to the sequences ABA or BAA starts at a point greater than 0.25 and goes on increasing with

Figure 1 Allocation proportions to the four sequences ABA, ABB, BAA and BAB. The solid lines corresponds
to the allocation proportions of ABA/BAA (which are same), and the dashed lines corresponds to the allocation
proportions of ABB/BAB (which are also same). Here ◦ indicates φA = φB ; � indicates φA − φB = 0.3; +
indicates φA − φB = −0.3; × indicates equal sample size case.
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Figure 2 Power of the test against one-sided alternative, solid lines correspond to the adaptive allocation and
dashed lines correspond to the equal allocation. Top row: case for φA = φB ; Bottom left: case for φA −φB = 0.3;
Bottom right: case for φA − φB = −0.3.

μA − μB . The opposite scenario happens for the sequences ABB/BAB where it starts with a
value less than 0.25 for μA − μB = 0 and goes on decreasing with μA − μB . Here allocation
proportion for each sequence becomes 0.25 when μA − μB = −0.15.

The allocation proportion for the all the four sequences remain at the 0.25 mark for the
equal allocation case which is represented by ×. The departure from this line gives an indi-
cation of the gain by our response-adaptive crossover design.

The standard errors of the allocation proportions are low, and are between 0.00030 to
0.00045.

In Figure 2, we represent the power of the test H01 against one-sided alternative (H11 :
μA − μB + 1

3(φB − φA) > 0) for the adaptive allocation as well as for the equal allocation
taking the nominal level (α) at 0.05. The adaptive case is represented by solid line, whereas
the equal allocation case is given by dashed line. The case for (a) φA = φB (for both adaptive
and equal sample size cases) are represented by ◦; the case for (b) φA − φB = 0.3 (for both
adaptive and equal sample size cases) are represented by �; the case for (c) φA −φB = −0.3
(for both adaptive and equal sample size cases) are indicated by +. We observe that in case
(a) the power of the equal allocation case is marginally higher, the difference being never
large (keeping empirical levels at 5%). However, in the case (b), the power for the adaptive
case is slightly higher (keeping the empirical levels at 5%), whereas in case (c), both the
adaptive and equal sample size cases give almost same power (keeping the empirical levels
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at 5%). Thus, we conclude that we achieve ethical gain almost without sacrificing power by
using our proposed allocation design.

5 Real data analysis

In this section, we illustrate the applicability of the proposed procedure by use of the data
set, provided by Matthews (1989), on three-period crossover trial of two antihypertensive
agents. This data was analyzed by Ebbutt (1984), Bandyopadhyay, Biswas and Mukherjee
(2009, 2012), Bandyopadhyay and Mukherjee (2015), Jones and Kenward (2015), among
others. In this data set, treatments A and B are used to represent the two antihypertensive
agents. 17 patients are allocated to each of the sequences ABB, BAA, ABA and BAB without
any washout periods. The response is the systolic blood pressure of each subject at the end of
each period.

We consider |systolic blood pressure − 80| as the new response variables Zi , Ui and
Vi . Using our proposed model, the data provide the estimates of μA, μB , φA, φB , σ 2

and ρ as μ̂A = 78, μ̂B = 67.9545, φ̂A = 1.067677, φ̂B = −5.477273, σ̂ 2 = 444.37 (i.e.
σ̂ = 21.08009), and ρ̂ = 0.6799437. The value of the test statistic S comes out to be
24.31844.

Treating the estimates of the parameters as true values, we then carry out a simulation study
with 10,000 repetitions where we take n = 89, the total sample size in the data (combining
the four sequences). We denote the estimates of the parameters obtained from this simulation
exercise by ̂̂μA, . . . , ̂̂ρ. We observe that the estimates of the parameters come out to be close
to the true values in the simulation study, with ̂̂μA = 77.9593 (with s.e. = 0.0315764), ̂̂μB =
67.9817 (with s.e. = 0.03168162), ̂̂φA = 0.9975704 (s.e. = 0.04417591), ̂̂φB = −5.386931
(with s.e. = 0.04538528), ̂̂σ = 21.02954 (with s.e. = 0.01372007), ̂̂ρ = 0.6749431 (with s.e.
= 0.000592441).

The average sample number (ASN) for the four sequences come out to be ASN(ABA) =
ASN(BAA) = 17.85875 and ASN(ABB) = ASN(BAB) = 26.64125 (with standard errors
nearly 0.04).

Although the estimate of μA is larger than the estimate of μB , the ASN for the sequences
ABA and BAA (where the occurrences of A are more than that of B) is lower than that of the
sequences ABB and BAB. This is because the estimate of φA is much larger than that of φB ,
and the estimates of φA and φB , along with the estimates of μA and μB , play important role
in the allocation for the third period.

Note that, the allocation is skewed in favour of the sequences dominated by treatment B

(due to the estimates of the carry-over effects φA and φB ), and our test procedure is able to
catch the significant difference in treatment effects.

The proposed methodology is concerned with some practical restriction. It requires that
all patients in the study to complete the first two periods before the time for the third period
arrives. The given data example does not satisfy this issue. However, the data example just is
redesigning a real situation to illustrate the proposed model and methodology, and hence we
ignore this point. However, in practice, such a restriction can be maintained in real crossover
trials.

6 Concluding remarks

In the present paper, we studied an adaptive three-period two-treatment crossover trial with
normally distributed responses. We specifically stick to the Balaam design, and induced adap-
tive allocation only at the third period. We can carry out the exercise in a similar fashion with
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all the 23 treatment sequences AAA,AAB, . . . ,BBB are allowed, and we can induce adap-
tive allocation in all the three periods. The allocation will be much more skewed in that case.
The development is routine following the mechanism used in this paper, and hence is omitted.

As in the test for H01 against H11, one may wish to carry out a test for H0 : μA = μB

against H1 : μA > μB . Here, as in the case of S, we can find the statistic

S∗ =
[

T1

NAB

+ T4

NBA

+ T5

NABA

+ T6

NABB

]
−

[
T2

NBA

+ T3

NAB

+ T7

NBAA

+ T8

NBAB

]
,

which approaches almost surely to 2(μA −μB) as n → ∞. Hence, an upper tail test based on
S∗ would be appropriate for testing H0 against H1. Similar to S, as the exact null distribution
of S∗ cannot be obtained algebraically, the asymptotic distribution of S∗ can be obtained.
Also one may wish to carry out the likelihood ratio test instead of the ad-hoc test procedure
suggested in the present paper. But there is no closed form expression of the test statistic in
that case, and hence we skip the details.

Appendix

Proof of Result 3. For any fixed constants c1, c2, . . . , c8, writing

Wni = c1√
n
δ(A,B, i)(Zi − μA) + c2√

n
δ(B,A, i)(Zi − μB)

+ c3√
n
δ(A,B, i)(Ui − μB − φA)

+ c4√
n
δ(B,A, i)(Ui − μA − φB) + c5√

n
δ(A,B, i)τAi(Vi − μA − φB)

+ c6√
n
δ(A,B, i)τBi(Vi − μB − φB)

+ c7√
n
δ(B,A, i)τAi(Vi − μA − φA) + c8√

n
δ(B,A, i)τBi(Vi − μB − φA),

we provide the limiting distribution of

Wn =
n∑

i=1

Wni.

Next, given {δ(A,B, i), δ(B,A, i),Zi,Ui, i = 1,2, . . . , n}, the asymptotic distribution of
Wn is normal with mean

μ̂cn = c1√
n

n∑
i=1

δ(A,B, i)(Zi − μA) + c2√
n

n∑
i=1

δ(B,A, i)(Zi − μB)

+ c3√
n

n∑
i=1

δ(A,B, i)(Ui − μB − φA)

+ c4√
n

n∑
i=1

δ(B,A, i)(Ui − μA − φB)

+ π̂
c5√
n

n∑
i=1

δ(A,B, i)

[
ρ

1 + ρ
(Zi − μA) + ρ

1 + ρ
(Vi − μB − φA)

]
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+ (1 − π̂ )
c6√
n

n∑
i=1

δ(A,B, i)τBi

[
ρ

1 + ρ
(Zi − μA)

+ ρ

1 + ρ
(Vi − μB − φA)

]

+ π̂
c7√
n

n∑
i=1

δ(B,A, i)τAi

[
ρ

1 + ρ
(Zi − μB) + ρ

1 + ρ
(Vi − μA − φB)

]

+ (1 − π̂ )
c8√
n

n∑
i=1

δ(B,A, i)τBi

[
ρ

1 + ρ
(Zi − μB)

+ ρ

1 + ρ
(Vi − μA − φB)

]
,

and variance

σ̂ 2
cn = π̂(1 − π̂)σ 2(

1 − 2ρ2)1

n

[
NAB

(
c2

5 + c2
6
) + NBA

(
c2

7 + c2
8
)]

,

which converges to σ 2
c = σ 2

4 π(1 −π)(1 − 2ρ2)(c2
5 + c2

6)+ c2
7 + c2

8) in probability. Moreover,
the asymptotic distribution of μ̂cn is normal with zero mean and variance

b2 = σ 2

2

(
c2

1 + c2
2 + c2

3 + c2
4
) + σ 2ρ2π2

1 + ρ

(
c2

5 + c2
7
)σ 2ρ2(1 − π)2

1 + ρ

(
c2

6 + c2
8
)

+ σ 2ρ(c1c3 + c2c4)

+ σ 2πρ(c1c5 + c3c5 + c2c7 + c4c7)

+ σ 2(1 − π)ρ(c1c6 + c3c6 + c2c8 + c4c8)

+ 2σ 2π(1 − π)ρ2

1 + ρ
(c5c6 + c7c8).

Hence, as in Hajek and Sidak (1967, Ch. V, pp. 194–195), combining all the above we
conclude that the asymptotic distribution of Wn is normal with mean zero and variance
η2 = σ 2

c + b2. Finally, the required result then follows by using the Cramer–Wold device. �
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