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A Bayesian Nonparametric Spiked Process Prior
for Dynamic Model Selection

Alberto Cassese∗†, Weixuan Zhu∗‡, Michele Guindani§, and Marina Vannucci¶

Abstract. In many applications, investigators monitor processes that vary in
space and time, with the goal of identifying temporally persistent and spatially
localized departures from a baseline or “normal” behavior. In this manuscript, we
consider the monitoring of pneumonia and influenza (P&I) mortality, to detect
influenza outbreaks in the continental United States, and propose a Bayesian non-
parametric model selection approach to take into account the spatio-temporal de-
pendence of outbreaks. More specifically, we introduce a zero-inflated conditionally
identically distributed species sampling prior which allows borrowing information
across time and to assign data to clusters associated to either a null or an alter-
nate process. Spatial dependences are accounted for by means of a Markov random
field prior, which allows to inform the selection based on inferences conducted at
nearby locations. We show how the proposed modeling framework performs in an
application to the P&I mortality data and in a simulation study, and compare with
common threshold methods for detecting outbreaks over time, with more recent
Markov switching based models, and with spike-and-slab Bayesian nonparametric
priors that do not take into account spatio-temporal dependence.

Keywords: nonparametric Bayes, variable selection, Markov random field,
spatio-temporal data.

1 Introduction

In disease surveillance, investigators are often concerned with monitoring a health con-
dition, in order to understand patterns of disease progression across space and time. An
outbreak may persist only briefly, since the monitored condition is eventually expected
to revert to a long-term trend, or recur and endure over time. Anomalies may be confined
locally to specific regions, or instead spread to large areas, possibly after some delay.

The methods routinely employed by the U.S. Center for Disease Control and Preven-
tion (CDC) for outbreak detection are based on thresholding a specific time series based
on historical data (Muscatello et al., 2008). More sophisticated methods proposed in the
literature have employed hidden Markov models (HMMs) (Madigan, 2005) or more flex-
ible Markov switching models (Mart́ınez-Beneito et al., 2008) to capture the transition
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between the epidemic and the non-epidemic phase of a disease. A few spatio-temporal
models have assumed a first-order autoregressive model on the temporal dynamics of
the epidemics (see, e.g. Heaton et al., 2012; Zou et al., 2012).

In this manuscript, we investigate the modeling of possibly temporary and localized
changes in disease patterns as a problem of model selection over space and time. In order
to identify departures of a monitored process from a baseline or “normal” behavior,
we start by assuming a two-groups modeling framework (Efron, 2004, 2008): a data
point, say y, is assigned either to a null model, H0 : y ∼ F (y; θ0), or to an alternative
model H1 : y ∼ F (y), according to the realizations of a latent binary indicator variable
γ ∼ Bern(ω), i.e.

y|ω ∼ ω F (y; θ0) + (1− ω)F (y). (1)

In Bayesian nonparametrics, it is common to assume a Dirichlet process mixture (DPM)
model on F (y), in order to describe the heterogeneity of realizations under the alterna-
tive model (Ferguson, 1983), i.e.

F (y) =

∫
F (y|θ)G(dθ), (2)

where G ∼ DP (α,G∗) indicates a Dirichlet Process, with concentration (mass) pa-
rameter α > 0 and base distribution G∗. The null distribution F (y; θ0) may be either
parametric or nonparametric. For example, Do et al. (2005) and Guindani et al. (2014)
employ DPM priors to infer differential gene expression (respectively, sequence abun-
dances) under two different conditions. As a further example, Scarpa and Dunson (2009)
consider a mixture of a null parametric model and an alternative nonparametric con-
tamination to model functional data. A different approach is presented in Kim et al.
(2009), who directly assume y ∼ F (y) as in (2), with the base measure G∗ modeled as
a “spiked” mixture of a point-mass and a diffuse measure. Canale et al. (2017) refer
to (1) as an “outer” mixture, as opposed to the “inner” spike-and-slab mixture prior
of Kim et al. (2009), and show how two types of mixtures yield structurally different
priors. In particular, model (1)–(2) does not coincide with the typical DPM model, due
to the constraint that y ∼ F (y; θ0) with probability ω.

In this paper, we assume the outer mixture formulation (1), and we further allow
model selection varying across space and time, by modeling the slab component F (y) in
(1) with a flexible non-exchangeable species sampling prior process. More specifically,
we assume a state-space model, where the state process is the realization of a condition-
ally identically distributed (CID) species sampling sequence (Berti et al., 2004; Bassetti
et al., 2010). In this formulation, the state of a process at time t depends on past obser-
vations through a generalized Pólya urn scheme. This allows to describe the evolution
of a non-stationary process over time, with limited assumptions on the temporal de-
pendence among observations. With respect to Dirichlet processes, CID sequences only
require that, conditionally upon the past, sequences of future observations are identi-
cally distributed, i.e. a weaker dependence than exchangeability and a requirement akin
to predictive stationary. For the analysis of regime-switching processes, CID sequences
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provide a robust and flexible alternative to general hidden Markov and semi-Markov
models (Airoldi et al., 2014).

We further account for spatial dependencies in the selection of the states, by coupling
the species sampling model that guides the temporal evolution of the process with a
spatial Markov random field (MRF). Thus, observations are assumed to have a higher
probability a priori to originate from the baseline process if nearby locations also do.
Similarly, deviations may propagate in space, although their levels could vary. Since
the spatial MRF model is used at each time to infer if the process is in its baseline
state, our approach is different than the one by (Jo et al., 2017), where a conditionally
autoregressive (CAR) specification is used to specify the weights of a random probability
measure, with no baseline and with independent observations at each location.

In an application to the detection of outbreaks of pneumonia and influenza (P&I)
mortality in the continental United States, we show how our approach provides a
more flexible description of spatio-temporal dependencies with respect to other meth-
ods used in disease surveillance, namely the thresholding-based method of Muscatello
et al. (2008), which is similar to the one currently employed by the CDC, and Bayesian
Markov-switching models, which assumes two levels of the process (Mart́ınez-Beneito
et al., 2008). We also compare the performance of our approach with “inner” spike-
and-slab Dirichlet process (SS-DP) and Pitman-Yor (SS-PY) mixture priors, which en-
able clustering of observations without any assumption on their temporal dependence
(Canale et al., 2017). Our approach allows to cluster observations at different states
over time, avoiding a strict homogeneous Markov assumption, while still retaining spa-
tial dependence in the modeling of outbreaks in neighboring regions.

The paper is organized as follows. In Section 2, we formulate our dynamic model se-
lection approach, with a spiked CID process prior to capture the evolution of the process
over time and a Markov Random Field prior to inform spatial selection. In Section 2.3,
we describe posterior inference under a compound decision theoretic framework. In Sec-
tion 3 we apply our model to a CDC pneumonia and influenza mortality dataset, and
compare with respect to alternative methods. In Section 4, we further investigate the
performance of our modeling approach by means of a simulation study. We conclude
with some final remarks in Section 5.

2 Bayesian dynamic model selection

Let Y (s, t) denote a spatio-temporal stochastic process defined on a spatial domain
D, at times t ∈ T . We have measurements available at a finite set of locations, s ∈
{s1, . . . , sn} ⊂ D, at discrete times t = 1, . . . , T . In the following, we assume D as a
spatial lattice, although our framework may be extended to include spatial dependences
on a general domain D ⊂ R

d, d > 1. We assume a random effect formulation for the
stochastic process Y (s, t), i.e.

Y (s, t) = μ(s, t) + θ(s, t) + ε(s, t), (3)

where μ(s, t) denotes a general regression term, capturing the effect of baseline charac-
teristics, which may include temporal trends and spatially varying covariates, θ(s, t) is
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a pure random effect, capturing deviations from the baseline trend localized in space
and time, and ε(s, t) is a residual uncorrelated measurement error, e.g.

ε(s, t)
i.i.d.∼ N(0, τ2s ), (4)

for s ∈ D and t = 1, . . . , T . The regression term μ(s, t) is modeled on the basis of
available covariate information, according to the formulation which is typical in Bayesian
spatio-temporal process modeling, see e.g. Banerjee et al. (2014). Here, we are mainly
interested in inference about the random effect process, θ(s, t).

2.1 Spiked CID process prior

We formulate the dynamic model selection problem by assuming that at each location
s and at each time point t, the random effect θ(s, t) is either a realization from a latent
spatio-temporal baseline (“null”) process, e.g. θ(s, t) = θ0(s, t), or a realization from
an alternate spatio-temporal process, i.e. θ(s, t) ∼ G(s, t), with G(s, t) indicating the
marginal distribution of a general process G(·, ·) defined on D × T , which we further
specify below. Without loss of generality, we assume θ0(s, t) = 0, i.e. under baseline con-
ditions the observations are fully described by the regression μ(s, t), possibly including
an intercept, and by the measurement error variances.

We further characterize the evolution of the process θ(·, ·) over time as the re-
alization of a sequence of conditional distributions, where the realization at time t,
θ(s, t), depends on past realizations θ(s, j), j < t. More specifically, let θ(t−1)(s) =
[ θ(s, 1), θ(s, 2), . . . , θ(s, t − 1) ]T denote the t − 1-dimensional vector containing the
past realizations of the latent process at location s, s ∈ {s1, . . . , sn}. Then, for s ∈
{s1, . . . , sn} and any t > 1, we define the conditional distribution of θ(s, t) as the spiked
mixture,

θ(s, t)|θ(t−1)(s) ∼ (1− ω(s, t)) δ0(·) + ω(s, t) Gt−1(·), (5)

where δ0(·) denotes a point mass on the baseline value θ(s, t) = 0, and ω(s, t) is a
weight, which in general is assumed to be both spatially and temporally varying. The
conditional distribution Gt−1(·) encodes the temporal dependence of the realizations of
the process θ(s, t), given θ(t−1)(s). Here, we assume that the sequence of conditional
distributions Gt−1(·), t > 1, is defined by the predictive distributions of a generalized
species sampling sequence. For notational simplicity, we indicate with Gt−1(·) also the
sequence of conditional cumulative distribution functions, and write:

Gt−1(x) = Pr
{
θ(s, t) ≤ x|θ(t−1)(s)

}
=

t−1∑
j=1

p
(j)
s,t−1 δθ(s,j)(−∞, x] + rs,t−1 G

∗(x), (6)

where the weights p
(j)
s,t−1 specify the probability that the value of the process at time t

coincides with a past value, θ(s, j), j < t, and rs,t−1 is the remainder probability that
θ(s, t) does not cluster with any previous value. G∗(x) is a non-atomic base distribution,
characterizing the values of the latent random effect under the alternate process. Thus,

at each location we have
∑t−1

j=1 p
(j)
s,t−1 < 1 and rs,t−1 = 1−

∑t−1
j=1 p

(j)
s,t−1.
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Due to the positive probability of ties θ(s, t) = θ(s, j), j < t, equation (6) can be
used to describe the temporal persistence of outbreaks (i.e., departures from the baseline
process), and to identify sparse clusters of observations over time. To this purpose, we
further assume that Gt−1(·) is a conditionally identically distributed (CID) species
sampling sequence (Bassetti et al., 2010). The species sampling weights are defined as a
function of independent (not necessarily identically distributed) latent random variables
W1(s, t),W2(s, t), . . . as follows:

p
(j)
s,t−1 = (1−W (s, j))

t−1∏
i=j+1

W (s, i),

rs,t−1 =

t−1∏
i=1

W (s, i),

(7)

with the realizations W (s, j) ∈ (0, 1), j = 1, . . . , t. Thus, the prior predictive spatio-
temporal effects θ(s, t+ k), k ≥ 0, are identically distributed conditionally to the past,

θ(t−1)(s). The specification of the weights p
(j)
s,t−1 and rs,t−1 in (6)–(7) leads to different

characterizations of CID sequences. A computationally convenient specification assumes

W (s, j)
ind.∼ Beta(j, 1), (8)

for j = 1, . . . , t, which defines a Beta-GOS sequence at each location (Airoldi et al.,
2014). Since the predictive weights depend on the latent sequence W (·, ·), the evolution
of the process does not depend on the estimation of a single transition matrix across
all time points. Therefore, this choice provides an alternative to more complicated non-
homogeneous Hidden Markov Models for modeling a non-stationary temporal process.
In particular, although our approach assumes two states of the process, the outbreaks
can be clustered at multiple levels. The number of clusters is estimated directly from
the data, using the Bayesian nonparametric specification. Moreover, by specifying the
latent random variables as in (8), we assume that the process is characterized by long
memory properties, with high and persistent autocorrelation, on average. This might
be appropriate to capture the recurrent seasonality of the clusters over time. We refer
to Airoldi et al. (2014) for details and further discussion of the asymptotic properties.

2.2 Modeling spatial selection

The model described in the previous section can be regarded as a zero-inflated CID
sequence at each location s, which allows for unsupervised clustering of the null and
alternative processes over time. We further allow for outbreaks to be clustered in space,
by introducing a latent indicator at each s ∈ {s1, . . . sn} and t = 1, . . . , T ,

γ(s, t) =

{
0 if θ(s, t) = 0,

1 if θ(s, t) ∼ G∗(·),
(9)

which specifies if the observations are a realization from the null or alternate process,
respectively. Then, the probability of observing an outbreak at time t is a function of
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the weights of the spiked mixture of CID sequence defined in (5)–(6). More specifically,
we can compute the conditional probability of an outbreak at time t given the past
realizations of the process, θ(t−1)(s), as

Pr(γ(s, t) = 1|θ(t−1)(s)) = ω(s, t)π(s, t), (10)

where π(s, t) =
∑

{j:j<t,γ(s,j)=1} p
(j)
s,t−1 + rs,t−1 denotes the total probability mass as-

sociated to pairing θ(s, t) with any of the past realizations of the random effect, j < t,
or to a new draw from G∗. Let Γ be the n × T matrix of the latent binary indicators
γ(s, t). Since (6) is a CID sequence, then, conditionally on Γ, the marginal model of
θ(s, t) is a spike-and-slab mixture,

θ(s, t)|γ(s, t) ∼ (1− γ(s, t)) δ0(·) + γ(s, t)G∗(·).

In order to account for spatial dependence, in our application to outbreak detection,
we leverage the lattice structure of the data, and model the weights ω(s, t) in (10)
using a Markov random field prior (MRF). MRF priors have been widely used to model
spatial dependence for non-dynamic variable selection (see, for example Zhang et al.,
2014, for an application in neuroimaging). More specifically, we define a neighbor set of
each location s, Ns,t, which in general could depend on the specific time t, and allow the
probability of an outbreak to increase if some outbreaks are detected at the same time
in neighboring locations. Let γ(Ns,t) = {γ(k, t), k ∈ Ns,t} denote the vector of selection
indicators in Ns,t. Then, we can define the probability of an outbreak conditionally on
the status of neighboring locations as

Pr(γ(s, t) = 1|θ(t−1)(s),γ(Ns,t)) = ω∗(s, t)π(s, t),

where the weight ω∗(s, t) captures the spatial dependence in (10) conditionally on the
neighborhood Ns,t and it is defined as

ω∗(s, t) =
exp(d+ e

∑
k∈Ns,t

γ(k, t))

1 + exp(d+ e
∑

k∈Ns,t
γ(k, t))

, (11)

with d ∈ R being a sparsity parameter, and e > 0 indicating a smoothing parameter
that controls the degree of spatial dependence in a neighborhood of s, s ∈ {s1, . . . sn}. In
particular, the conditional probability of an outbreak will be (exp(d)/1+exp(d))π(s, t),
if e = 0, or if γ(k, t) = 0, for all k ∈ Ns,t, i.e. there are no outbreaks in a neighborhood
of s at time t. Since ω∗(s, t) increases as a function of the number of locations k ∈
N(s, t) where γ(k, t) = 1, our specification (11) favors the detection of spatial clusters of
outbreaks. Other spatial priors could be considered, e.g. a spatial probit model where the
probability of an outbreak depends on a latent gaussian Markov random field process. In
Section 4, we provide a sensitivity analysis to guide the selection of the parameters d and
e. In order to complete our model, we select an inverse-gamma conjugate prior for the
region specific variance, i.e. τ2s ∼ IG(a0, b0), and we further choose a Normal distribution
as the base measure for the atoms of the alternate process, that is G∗(·) ≡ N (μ0, σ

2
0).
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2.3 Posterior inference

In order to obtain inferences on the latent process θ(s, t) and the other parameters of
the proposed dynamic selection process, we need to employ Markov chain Monte Carlo
(MCMC) posterior sampling techniques. The details of the MCMC are provided in the
supplementary material (Cassese et al., 2018).

The detection of outbreaks relies on the evaluation of the posterior probability of
selection (PPS) of the alternate process at each location s ∈ {s1, . . . , sn} and at each
time t = 1, . . . , T , which is computed from the MCMC output for the elements of the
selection matrix Γ as

PPS(s, t) ≈ 1

B

B∑
b=1

I{γb(s,t)=1}, (12)

where γb(s, t) denotes the value of the selection indicator γ(s, t) sampled at iteration b
out of B MCMC iterations after burn in.

Let a = {a(s, t)}, s ∈ {s1, . . . sn}, t = 1, . . . , T be the vector of decisions (actions)
in the multiple hypothesis testing problem, with a(s, t) = 0 indicating that the observa-
tions are assumed from the baseline process, and a(s, t) = 1 otherwise. In a compound
decision theoretic framework, the spatio-temporal multiple testing problem for point-
wise detection can be addressed by minimizing the posterior expectation of the loss
function,

L(Γ,a) =
∑
s,t

γ(s, t) (1− a(s, t)) + λ
∑
s,t

(1− γ(s, t)) a(s, t), (13)

which weights false negatives and false positives results, through a penalty parameter,
λ. The optimal decision rule minimizes E(L(Γ,a)|data) and corresponds to a threshold
on the posterior probability of selection, i.e. a∗(s, t) = 1 if PPS(s, t) > 1/(1 + λ), and
a∗(s, t) = 0 otherwise (Sun et al., 2015). The value of λ can be chosen so to guarantee
a small expected Bayesian FDR,

BFDR(h) =

∑
s

∑
t(1− PPS(s, t))I{(1−PPS(s,t))≤h}∑

s

∑
t I{(1−PPS(s,t))≤h}

, (14)

where h = 1/(1 + λ) (Newton et al., 2004). For example, h may be chosen so that
BFDR(h) < 0.05.

3 Detection of P&I outbreaks from CDC data

In this Section, we illustrate the performances of the proposed spiked CID process prior
for the analysis of weekly data on pneumonia and influenza (P&I) mortality. The data
are made publicly available by the U.S. National Center for Health Statistics (NCHS), a
section of the Centers for Disease Control and Prevention (CDC)(http://www.cdc.gov/
nchs/), and they are released weekly, in order to provide a system capable of supporting
near real-time surveillance. Here, we focus on weekly percentage of P&I death in the
continental U.S. states, over the years 2011–2014. This leads to a total of n = 48 regions

http://www.cdc.gov/nchs/
http://www.cdc.gov/nchs/
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and T = 208 time points. P&I data are often used as a proxy measure for influenza
activity and have been extensively employed for the detection of influenza epidemics.
They are considered a reliable and specific endpoint for studying timing and amplitude
of influenza related mortality, both at the local and national scales.

We also comment on the inference obtained by the thresholding approach in Mus-
catello et al. (2008), which is similar to the method currently employed by the CDC for
their analyses. The method relies on a threshold approach, which is based on an estimate
of a non-epidemic seasonal baseline. However, since the threshold is based on a nation-
ally defined baseline, local patterns of influenza outbreaks may be difficult to detect.
The model also assumes spatial and temporal independence of the outbreaks (Amorós
et al., 2015), which may result in decreased power of the testing procedures. To over-
come those shortcomings, Mart́ınez-Beneito et al. (2008) have proposed a method based
on hidden Markov switching models to identify and cluster epidemic periods over time,
although with no spatial dependence. They also assume only two levels of the process,
whereas our method allows to cluster outbreaks at multiple levels. We also consider two
purely Bayesian nonparametric methods, namely the spike-and-slab Dirichlet Process
prior (SS-DP) of Kim et al. (2009) and the spike-and-slab Pitmann-Yor prior (SS-PY) of
Canale et al. (2017), which assume exchangeability of the data. A more comprehensive
comparison on simulated data is presented in Section 4.

To provide a limited seasonal adjustment, we first center the P&I weekly percentage
of death data with respect to their yearly mean. We then fit the spiked CID model
(3)–(7) by setting G∗(·) ≡ N(0, 25), τs ∼ IG(a0 = 2.001, b0 = 0.04), corresponding to
a vague specification centered around a mean of 0.04, and the Beta distribution for the
weights as in (7). Lastly, we set the parameters of the MRF in (11) to d = −1 and
e = 0.5, based on the sensitivity analysis presented in Section 4. In the implementation
of the SS-DP and SS-PY models, we set the base measure as a weighted mixture of
a point mass at zero and a N(0, 25), with a Beta(1, 1) prior on the mixture weight.
Additionally, we set the concentration parameter to 1, and set the discount parameter
of the Pitman-Yor process to 0.5. The results reported below are obtained by running
MCMC chains with 10,000 iterations and a burn-in of 2,000. Using a 4-core 2.5GHz
R©Intel core i5 processor with 8 GB memory, our code takes approximately 90 minutes
to run. We assessed convergence by inspecting the MCMC traces, and more formally
by using the Geweke (1992) and Heidelberger and Welch (1981) tests. As an example,
the z-score from the Geweke (1992) test was −0.01957 for Γ, whereas the Heidelberger
and Welch (1981) test returned a p-value of 0.835.

We first illustrate our inference on the estimation of the matrix Γ, obtained as
outlined at the end of Section 2.3, and the values of the process θ(s, t). Figure 1(a) shows
a cloropleth map of the P&I mortality rates for the time window between the 47th week
of 2012 and the 3rd week of 2013. The map provides an illustration of the spatio-temporal
evolution of P&I mortality rates. For example, the last row shows higher intensities of
P&I mortality across all states, with nearby States characterized, on average, by similar
values. Figure 1(b) shows the results of our inference, namely the outbreaks detected
by our method, after thresholding the PPS using a BFDR control at the α = 0.05
level. The states identified as under an epidemic state are colored in black, whereas the
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Figure 1: Case Study: (a) Map of centered P&I mortality rates over the time window:
week 47 in 2012 – week 3 in 2013; (b) outbreaks detected by our method, using a 0.05
Bayesian FDR threshold of the PPS. States marked in black are identified as epidemic.

baseline process is marked in white. The figure highlights the spatio-temporal patterns
and spread of diseases typical of an epidemic period: epidemics start in a few isolated
States at first, possibly with limited temporal persistence (weeks 47–50), then there’s
a more noticeable propagation, in a behavior typical of transitioning periods (weeks
51–52), until all or almost all the States have been involved (weeks 1–3).
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Figure 2: Case Study: Weekly P&I mortality rates for the state of Oklahoma, data
centered accordingly to their yearly mean (2011–2014). Black dots (•) indicate outbreaks
identified by the proposed spike CID process, empty circles (◦) by the CDC thresholding
method.

As a further illustration of the temporal dependence, Figure 2 shows the centered
time series of the weekly P&I mortality rates for the state of Oklahoma over 2011–2014.
The black dots indicate the outbreaks flagged by our model, whereas the results of the
CDC thresholding approach are indicated by empty circles. For the sake of graphical
clarity, we report the plots for the SS-DP and SS-PY in the supplementary material,
and only briefly discuss the comparison here. All methods identify outbreaks in the
Winter, and more specifically close to the end of one year and the beginning of the
next. Indeed, it is known that P&I epidemics usually start in this period, with pat-
terns that are quite irregular and with unpredictable persistence over time, as high-
lighted also by our results. The method employed by CDC identifies also some iso-
lated time points, which are not detected by any of the other methods. Those iso-
lated peaks occur at times generally characterized by low P&I mortality, which may
be due to the use of a national baseline for threshold determination, possibly affect-
ing the sensitivity of the method. On the other hand, SS-DP and SS-PY share similar
performances and tend to select only higher values of P&I mortality rates. Based on
the simulation study in Section 4, we speculate this might be due to the fact that
those methods do not account for the spatio-temporal dependence between observa-
tions. Instead, our method clearly identifies temporally persistent clusters of P&I out-
breaks, which may provide relevant information to delineate the duration of the out-
breaks.

We further compared our results with those obtained fitting a Markov switching
model on each series of differenced incidence rates, following the guidelines in Mart́ınez-
Beneito et al. (2008). More specifically, we set 0.001 and 25 as respectively the lower
and upper bounds to specify the uniform distribution for the variance parameters in
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Figure 3: Case study: Time series for New York, Pennsylvania and Ohio. Aberrant
mortality rate cluster labels are marked with different shapes within each time series.

the model. The result of this analysis led to flag all or none of the weeks as epidemic,

depending on the State. This unrealistic result is probably related to Mart́ınez-Beneito

et al. (2008) modeling the differenced time series as a mixture of two hidden dynamics.

The first dynamic is of lower variance and corresponds to low incidence rate levels, while

the other one is of relatively higher variance and corresponds to high incidence rate

levels. Although this assumption may be appropriate to describe the rates of influenza-

like illness data, it seems not to be realistic to capture the behavior of the P&I mortality

data.

Lastly, Figure 3 shows the effect of modeling spatial dependence on within-series

clustering, for the States of New York, Pennsylvania and Ohio. Each cluster partition is

obtained by post-hoc analysis of the MCMC iterations. For the sake of illustration, here

we show the partitions obtained from the last MCMC iteration. Alternatively, one could

find a modal partition (Kim et al., 2009). Each cluster is represented by a different shape

in Figure 3. Observations assigned to the same cluster show similar mortality rate levels,

with clear temporal persistence. Also, the clusters of those time points characterized by

high mortality rates (i.e., significantly above the yearly mean) have similar patterns

across the three neighboring regions.
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4 Simulation study

In this Section, we assess the performance of our model on a set of simulated scenarios,
and compare the results with the threshold based model of Muscatello et al. (2008),
which is similar to the method currently employed by the CDC, the Markov switching
model of Mart́ınez-Beneito et al. (2008), the SS-DP of Kim et al. (2009) and the SS-
PY of Canale et al. (2017). We assume D as the spatial lattice comprising the 48 US
continental States and consider two data generating mechanisms, mimicking the type
of spatio-temporal dependence of epidemic incidence data.

Data Generating Processes: First, we consider a deterministic model of spatio-tempo-
ral propagation of epidemic outbreaks across the US, and the corresponding recovery
of a non-epidemic situation (baseline). More specifically, we assume that a process may
spring from the North West of the United States, say the state of Washington, at
time t, based on a first order HMM with only two latent states, characterizing the
epidemic and non-epidemic processes. At time t+1, the process originated in the state
of Washington spreads to nearby states, say Oregon and Idaho, following the pattern
defined by state borders. The process then propagates similarly in neighboring states
at times t + 2, t + 3, . . .. This deterministic process generates a strong spatio-temporal
dependence in the selection of the baseline and alternate processes.

The second scenario is designed to simulate more localized spatial dependence.
Specifically, we subdivide all the continental US states into nine divisions (New England,
Middle Atlantic, South Atlantic, East South Central, West South Central, East North
Central, West North Central, Mountain, and Pacific), using the R function state.division.
For each of those divisions, we simulate a time series of binary indicators γ(·, t), accord-
ing to a two states HMM. We assume the same realizations γ(s, t), t = 1, . . . , T , for all
states s in a division. Yet, we allow for a range of different distributions to generate each
observation y(s, t) under either the baseline model f0 (γ(s, t) = 0) and the alternate
model f1 (γ(s, t) = 1), as we detail further below. We set the transition probability
matrix of the HMM modeling the change points between epidemic and non-epidemic
processes (only in the state of Washington in the first scenario; in each division in the
second scenario) to

( γ(s, t) = 0 γ(s, t) = 1

γ(s, t− 1) = 0 0.9 0.1
γ(s, t− 1) = 1 0.2 0.8

)
,

with initial condition γ(s, 1) = 1. The diagonal elements contain the probabilities of
persistence, which are assumed relatively higher for the epidemic than for the non-
epidemic process. In particular, we assume a low probability of transitioning to an
epidemic state, Pr(γ(s, t) = 1|γ(s, t − 1) = 0) = 0.1, reflecting the irregular nature of
epidemic periods.

In both scenarios, the observations are generated independently for each state ac-

cording to the following procedure. If γ(s, t) = 0, we assume y(s, t)|(γ(s, t) = 0)
i.i.d.∼

f0 ≡ N(0, τ2sim). On the other hand, if γ(s, t) = 1, we assume y(s, t)|(γ(s, t) = 1)
i.i.d.∼
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f1 ≡
∑L

l=1 cl N(μl, τ
2
sim), i.e. a mixture of L components with weights cl, l = 1, . . . , L.

More precisely, here we show the results for a four component mixture of normal distri-
butions, f1 ≡ 0.25N(−1, τ2sim)+ 0.25N(−0.5, τ2sim)+ 0.25N(0.5, τ2sim)+ 0.25N(1, τ2sim).
We further set τ2sim = 0.04 and the number of time points T = 200. We note that in
both scenarios the data generating processes are different than the proposed model, and
allow for both higher and lower process means with respect to the baseline. Further-
more, the mixture framework allows to cluster the realizations of the process, without
imposing any temporal persistence to such clusters, contrary to the assumptions of our
model (6).

Model Fitting: We employ our Spiked Process prior model (6)–(8). We use a vague
specification for the base measure, namely G∗(·) ≡ N(0, 52). We choose a vague inverse
gamma distribution for the variance of the measurement error (3), i.e. τ2s ∼ IG(a0 =
2.001, b0 = 0.04), which leads to a prior mean of 0.04 with relatively large variance.
Unless otherwise noted, we present here the results obtained by informing spatial de-
pendence via the MRF prior with d = −1 and e = 0.5. We ran 10,000 iterations of
the MCMC scheme, discarding the first 1,000 iterations as burn-in. We assessed conver-
gence by inspecting the MCMC sample traces for all parameters. We further tested the
convergence and stationarity of the chains by the Geweke (1992) diagnostic test and
the Heidelberger and Welch (1981) approach, respectively.

Posterior inference and sensitivity analysis: Figure 4(a) shows the map of the pos-
terior probabilities of selection PPS(s, t) for one of the simulated datasets in the first
scenario, across the 48 US continental states and for 6 representative time points (100–
105). The maps illustrate the spread of an epidemic process both spatially and tem-
porally. Figure 4(b) shows the corresponding map of binary indicators γ(s, t) of the
true spatio-temporal processes over the same period, with black-colored states indicat-
ing γ(s, t) = 1. Our method appears to recover the true spatio-temporal pattern of
the processes quite closely. Some results for the second scenario are reported in the
Supplementary material.

Next we investigate the effect of the choice of the MRF parameters d and e on the
selection performances. It is well known that allowing e to vary widely can lead to a
phase transition problem, i.e. the expected number of selections increases greatly for
small increments of e. This is warranted by (11) being an increasing function of the
number of indicators γ(s, t) equal to 1. Therefore, a careful selection of the parameter
e is necessary to avoid inaccurate inferences, due to too many false selections. Li et al.
(2015) show that e should be small when the average number of neighbors is large;
viceversa, a small d is required to induce small prior odds of θ(s, t) ∼ f1 for a large
number of sites. Indeed, for e = 0, the MRF prior reduces to an independent Bernoulli,
with parameter exp(d)/[1 + exp(d)], and thus can be used to provide a lower bound on
the prior probability of selection. As for e, any value of e below the phase transition point
can be considered a good choice, with values closer to the phase transition point leading
to higher prior probabilities of selection in a neighborhood of sites already assigned to
the alternate process.

Here, we report the effect of different choices of the parameters d and e in terms
of the resulting specificity, sensitivity and accuracy rates. For each s and t, sensitivity
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Figure 4: Simulation Study: (a) Map of posterior probabilities of selection PPS(s, t) in
a simulated dataset from the first scenario in the simulation study in Section 4, over
the time window (time points 100–105); (b) map of true values of γ(s, t) in the first
scenario over the time window from point 100 to 105.

is calculated as the ratio of true positive selections (TP) over the total number of
observations truly from the alternate process, sensitivity as the ratio of true negative
selections (TN) over the total number of observations truly from the baseline process,
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e = 0 e = 0.4 e = 0.5 e = 0.6 e = 0.7

Scenario 1 Sensitivity 0.6914 0.7381 0.7421 0.7440 0.7435

(0.0543) (0.0511) (0.0492) (0.0464) (0.0445)

Specificity 0.9922 0.9898 0.9895 0.9894 0.9895

(0.0033) (0.0044) (0.0045) (0.0044) (0.0041)

Accuracy 0.8922 0.9068 0.9078 0.9082 0.9078

(0.0175) (0.0130) (0.0132) (0.0140) (0.0147)

Scenario 2 Sensitivity 0.7085 0.7485 0.7516 0.7510 0.7508

(0.0257) (0.0230) (0.0223) (0.0224) (0.0227)

Specificity 0.9929 0.9905 0.9902 0.9901 0.9901

(0.0018) (0.0025) (0.0026) (0.0025) (0.0024)

Accuracy 0.8995 0.9111 0.9118 0.9115 0.9114

(0.0098) (0.0084) (0.0087) (0.0097) (0.0096)

Table 1: Simulation Study: sensitivity analysis to the choice of e for the two scenarios
averaging over 20 independently generated datasets with d = −1, standard error within
brackets.

and accuracy is the ratio of observations correctly assigned to either the baseline or
alternate processes (TP+TN) over the total number of observations. Table 1 shows
the average and standard error of the previous measures, obtained for each of the two
scenarios over 20 independently generated datasets, for varying values of e with d = −1
fixed. As expected, the table suggests that greater values of e generally lead to increased
sensitivity at the expense of the specificity. In the first scenario, setting e = 0.6 leads
to the best performance in terms of accuracy with e = 0.5 having similar performance,
whereas in the second scenario the best performance is obtained for e = 0.5. Those
results suggest that an optimal setting 0.5 ≤ e ≤ 0.6, and we discuss the case e = 0.5
for the results presented in this manuscript. For e = 0, the model assumes no spatial
dependence, and deviations from the baseline process are detected only based on each
single time series, since the MRF reduces to a Bernoulli prior. We observe markedly
increased sensitivity and accuracy for considering the spatial information in the selection
prior, with only a small reduction in specificity. We also explored the effect of different
choices of the sparsity parameters d, for which accuracy appears to be maximized at
d = −1.(see Table 2).

Performance comparisons:We further compare the performances of our method with
the thresholding method used by CDC (Muscatello et al., 2008), the Markov Switching
model in Mart́ınez-Beneito et al. (2008) (using the public open source code of Conesa
et al., 2009) and the Bayesian nonparametric methods, SS-DP and SS-PY. The compar-
ison results are averaged over the 20 independently generated datasets. The threshold-
ing procedure of Muscatello et al. (2008) achieves high specificity, but performs much
worse in terms of sensitivity, and accuracy: in the first scenario, the CDC procedure
achieves 0.4245(0.0678) sensitivity, 0.9998(0.0002) specificity, and 0.7993(0.0635) accu-
racy; in the second scenario, 0.4273(0.0369) sensitivity, 0.9997(0.0004) specificity, and
0.8102(0.0275) accuracy. The Markov switching model performs quite well, comparably



568 BNP Spiked Process Prior for Dynamic Model Selection

d = 0 d = −1 d = −2

Scenario 1 Sensitivity 0.5548 0.7421 0.7274

(0.1194) (0.0492) (0.0602)

Specificity 0.9967 0.9895 0.9932

(0.0015) (0.0045) (0.0035)

Accuracy 0.8406 0.9078 0.9059

(0.0725) (0.0132) (0.0120)

Scenario 2 Sensitivity 0.5598 0.7516 0.7319

(0.0709) (0.0223) (0.0267)

Specificity 0.9966 0.9902 0.9937

(0.0010) (0.0026) (0.0019)

Accuracy 0.85134 0.9118 0.9078

(0.0331) (0.0087) (0.0087)

Table 2: Simulation Study: sensitivity analysis to the choice of d for the two scenarios
averaging over 20 independently generated datasets with e = 0.5. Standard errors are
reported in parentheses.

with our model. This is in line with our expectations, since the data are simulated from
a HMM with two states. The performance of the Markov switching model slightly de-
creases in the presence of stronger spatial dependence: in the first scenario, the model
achieves 0.7747(0.0931) sensitivity, 0.9832(0.0018) specificity, and 0.9046(0.0423) accu-
racy; in the second scenario, the achieved performance is 0.7905(0.0869) sensitivity,
0.9820(0.0041) specificity and 0.9164(0.0246) accuracy. However, the Markov switch-
ing model assumes the differenced time series are realizations from a mixture with two
hidden dynamics, characterized by low and high variance. This may limit the ability
of the model to detect outbreaks, if more than two states are reasonably supported
by the data, as in our data analysis. The results from the comparison with the two
exchangeable Bayesian nonparametric models confirms the conclusions from the data
analysis: failing to account for spatio-temporal dependence leads to a loss in sensi-
tivity, despite maintaining high specificity. Specifically, in the first scenario, the SS-DP
achieves 0.6526(0.06163) sensitivity, 0.9935(0.0019) specificity and 0.8768 (0.0359) accu-
racy, whereas the SS-PY achieves 0.66051(0.0625) sensitivity, 0.9932(0.001) specificity,
and 0.8810(0.0222) accuracy. In the second scenario, the SS-DP achieves 0.6725(0.0451)
sensitivity, 0.9930(0.0021) specificity and 0.8869(0.0209) accuracy, whereas the SS-PY
achieves 0.6835(0.0322) sensitivity, 0.9922(0.0010) specificity and 0.8879(0.012) accu-
racy. Those performances are slightly worse than those achieved by our Spiked-CID
process with no-spatial dependence (e = 0, see Table 1). Therefore, we are led to con-
clude that borrowing information across time and sites leads to more stable inference
and higher accuracy for the Spike-CID process with respect to exchangeable Bayesian
non-parametric priors.

Prediction: Outbreak detection typically relies on the nearly real-time monitor-
ing of carefully chosen proxy measures, and not on the prediction of future values
of the observed process. This is due to the difficulty of identifying the early determi-
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nants/predictors of an outbreak in syndromic surveillance. For example, P&I data are

usually considered as proxy measures for influenza activity. The analysis of past data

is important for monitoring disease trends. At the same time, detection of past out-

breaks is meaningful in evaluating the effectiveness of disease control programs and

policies. Thus, most models typically employed for outbreak detection do not focus on

statistical prediction. Nevertheless, here we investigate the prediction performance of

the Spiked-CID process in a leave-one-out simulation, where we assume the value of

the process at the last available time-point, y(s, T ), is not observed. More in detail, let

γ∗ = {γ∗(s)} indicate the vector comprising the true epidemic status at each location

at time T . Then, we can compute the posterior predictive probability of assigning the

correct epidemic status,

p(γ(s, T ) = γ∗(s)| y(s, 1), . . . , y(s, T − 1)) =

∫
p(γ(s, T ) = 1|θ(t−1)(s))

× p(θ(t−1)(s)|y(s, 1), . . . , y(s, T − 1)),

using Monte Carlo composition sampling from the MCMC posterior samples. Results are

obtained for the 48 states, averaged across 20 simulated datasets, according to the data

generating mechanisms previously outlined. The assessment about the epidemic status

is conducted by thresholding the posterior predictive probability at the median, i.e. we

set γ̂(s, T ) = 1 if p(γ(s, T ) = 1| y(s, 1), . . . , y(s, T − 1)) > 0.5. In the first simulation

scenario, our method correctly detects the true status 69.8% of the times (median across

all datasets, IQR 40.6% − −98.4%); in the second simulated scenario, which describes

more localized patterns of spatial dependence, the method correctly detects the true

status 62.5% of the times (median across all datasets, IQR 55.2%−−83.3%).

5 Discussion

We have proposed a Bayesian nonparametric approach for modeling temporary and lo-

calized changes in the distribution of a spatio-temporal process. Our proposal defines

a spiked process prior, where clustering-inducing CID species sampling prior processes

and a Markov random field prior are used to identify and propagate changes over time

and space. We show good performances of our methods in the analysis of CDC data on

P&I mortality rates and in a simulation study. Several generalizations of the proposed

modeling framework are possible. The Markov random field prior formulation is partic-

ularly suitable for the analysis of spatio-temporal areal data. For point-referenced data,

spatial selection could be obtained via a latent logistic regression with a Gaussian spatial

random effect. Alternatively, it could be possible to incorporate spatial dependence in a

more direct way, by defining interacting partially CID sequences (Fortini et al., 2017).

Scalability of the MCMC posterior sampling is a limitation of the proposed method.

However, CID sequences provide a promising flexible framework for scalable and fast

implementation through sequential Monte Carlo approaches and approximate MCMC

algorithms. Those extensions are the objective of ongoing work.
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Supplementary Material

Supplementary Material to “A Bayesian Nonparametric Spiked Process Prior for Dy-

namic Model Selection” (DOI: 10.1214/18-BA1116SUPP; .pdf).
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