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Control of Type I Error Rates in Bayesian
Sequential Designs

Haolun Shi∗ and Guosheng Yin†

Abstract. Bayesian approaches to phase II clinical trial designs are usually based
on the posterior distribution of the parameter of interest and calibration of certain
threshold for decision making. If the posterior probability is computed and as-
sessed in a sequential manner, the design may involve the problem of multiplicity,
which, however, is often a neglected aspect in Bayesian trial designs. To effectively
maintain the overall type I error rate, we propose solutions to the problem of mul-
tiplicity for Bayesian sequential designs and, in particular, the determination of
the cutoff boundaries for the posterior probabilities. We present both theoretical
and numerical methods for finding the optimal posterior probability boundaries
with α-spending functions that mimic those of the frequentist group sequential
designs. The theoretical approach is based on the asymptotic properties of the
posterior probability, which establishes a connection between the Bayesian trial
design and the frequentist group sequential method. The numerical approach uses
a sandwich-type searching algorithm, which immensely reduces the computational
burden. We apply least-square fitting to find the α-spending function closest to
the target. We discuss the application of our method to single-arm and double-
arm cases with binary and normal endpoints, respectively, and provide a real trial
example for each case.

MSC 2010 subject classifications: Primary 62C10; secondary 62P10.

Keywords: Bayesian design, group sequential method, multiple testing, phase II
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1 Introduction

Along with the frequentist method, one of the popular paradigms in clinical trial designs
is the Bayesian approach, where samples are treated as fixed and the parameter of
interest is assigned a prior probability distribution to represent the uncertainty about its
value; see, e.g., Berry (2006, 2011), Berger and Berry (1988), Efron (1986, 2005) and Yin
(2012). The posterior distribution of the parameter is continuously updated with regard
to the accrued samples. Bayesian approaches allow incorporating useful information into
the prior distribution and are usually more efficient provided that the prior distribution
is sensible. Inferences are made based on the posterior distribution of the parameter of
interest, which can be updated as the trial accumulates more data. Along this direction,
Thall and Simon (1994) proposed a Bayesian single-arm phase II clinical trial design that
continually evaluates the posterior probability that the experimental drug is superior to
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the standard of care, where the response rate of the new treatment is compared with a
fixed cutoff boundary at each interim analysis during the trial. Because the comparison
is made multiple times during the study, the design involves the problem of multiple
testing, and a failure to make proper adjustment for multiplicity is known to induce
potential inflation in the type I error rate. As an illustration of multiple testing problems
in the Bayesian setting, consider a random sample {y1, . . . , yn} from N(θ, 1), and we are
interested inH0 : θ ≤ 0 versusH1 : θ > 0. From a frequentist viewpoint, the test statistic
at the kth interim analysis is ȳk =

∑nk

i=1 yi/nk, where nk is the cumulative sample size
up to stage k. The decision rule for the O’Brien–Fleming type (O’Brien and Fleming,
1979) group sequential design is

√
nkȳk > COF(K,α)

√
K/k, k = 1, . . . ,K, where K is

the total number of analyses planned for the trial and COF(K,α) is the critical constant
for the design. By contrast, assuming a flat prior distribution for θ, f(θ) ∝ 1, under
a Bayesian approach, the posterior at interim analysis k is θ|ȳk ∼ N(ȳk, 1/nk). If we
employ the decision rule that the posterior probability of H1 should be greater than
1−α, our decision boundary would be

√
nkȳk > Φ−1(1−α), and thus there is no penalty

for multiple testing in the Bayesian setting. To effectively control the overall type I error
in Bayesian sequential designs, we study the problem of multiplicity, specifically, how
the cutoff boundaries for the posterior probabilities should be determined.

The issue of multiplicity either involves testing multiple hypotheses simultaneously,
or testing a single hypothesis repeatly over time. For the former, extensive research
has been conducted under the Bayesian paradigm, e.g., see Gopalan and Berry (1998),
Berry and Hochberg (1999), Scott and Berger (2006), Labbe and Thompson (2007),
Guindani et al. (2009), and Guo and Heitjan (2010). For the latter, various Bayesian
clinical trial designs involving sequential testing of a single hypothesis have been pro-
posed, e.g., see Thall and Simon (1994), Lee and Liu (2008), Thall et al. (1995), Heitjan
(1997), Rosner and Berry (1995), and Gsponer et al. (2014). However, a comprehen-
sive and unified approach to controlling the overall type I error rate and accounting
for the multiplicity is rarely discussed. With a focus on the binary endpoint, Zhu and
Yu (2017) adopted a numerical search method for calibrating the operating character-
istics of a Bayesian sequential design in terms of the α-spending function. Murray et al.
(2016) developed a computational algorithm for calibrating the spending of the type I
error rate for utility-based sequential trials with multinomial endpoints. Murray et al.
(2017) adopted a simulation-based approach to calibrating the empirical α-spending
function for a Bayesian design with two co-primary semicompeting time-to-event end-
points, which incorporates three interim analyses.

In the frequentist group sequential design, multiplicity is explicitly considered to
control the overall type I error rate, e.g., see Pocock (1977), O’Brien and Fleming
(1979), Wang and Tsiatis (1987), Eales and Jennison (1992), and Barber and Jennison
(2002). Limited research has been conducted on the problem of multiplicity adjustment
for Bayesian sequential designs. Bayesian multiple testing procedure should be ideally
conducted in a fully decision-theoretic framework, where a loss function and related
parametric assumptions are explicitly specified; e.g., see Lewis and Berry (1994), Chris-
ten et al. (2004), Müller et al. (2007), and Ventz and Trippa (2015). However, in clinical
trials, regulatory bodies (e.g., the Food and Drug Administration) often require explicit
evidence that the frequentist error rates are well maintained. As a result, it is a common
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practice to evaluate the frequentist properties of a Bayesian design based on simulations,
which require simulating a large number of repetitions of the trial conduct and differ-
ent trial designs may require different simulation setups. Our goal is to provide a more
unified framework to directly control the type I error rate for Bayesian sequential de-
signs. We propose both theoretical and numerical approaches to maintaining the overall
type I error rate for Bayesian designs that involve multiple comparisons using poste-
rior probabilities, such that the designs’ operating characteristics mimic those of the
commonly used group sequential methods. By carefully calibrating design parameters,
Bayesian methods can effectively maintain the frequentist type I and type II error rates
at the nominal levels. Although such a calibrated Bayesian design has similar operat-
ing characteristics to its frequentist counterpart, Bayesian designs bring more flexility
to the trial conduct, e.g., adaptive randomization based on the posterior distribution,
or prediction of trial success using posterior predictive distributions. Moreover, when
historical data are available, Bayesian approaches allow the incorporation of historical
information via informative priors, which would lead to savings in the sample size.

The rest of this article is organized as follows. In Section 2, we describe a motivating
example where a Bayesian design may inflate the type I error rate if no adjustment
is made to account for multiplicity. In Sections 3, we develop the Bayesian sequential
designs using posterior probabilities and describe the methods for maintaining the fre-
quentist error rates for single- and double-arm designs. Section 4 extends our methods
to trials with normal endpoints, and Section 5 compares the operating characteristics of
our methods with those of a Bayesian continuous monitoring scheme. Section 6 presents
examples of design applications. Section 7 concludes the article with some remarks.

2 Motivating Example

Thall and Simon (1994) proposed a Bayesian single-arm design for phase II trials. The
design continually evaluates the efficacy of the experimental treatment by monitoring
the binary outcomes and makes adaptive decisions throughout the trial. Let pE denote
the response rate of the experimental drug, and let pS denote that of the standard drug.
We are interested in testing the hypotheses

H0: pE ≤ pS = pnull versus H1: pE > pS = pnull.

We assume beta prior distributions for these two response rates, pE ∼ Beta(aE , bE)
and pS ∼ Beta(aS , bS), where the prior mean of pS is set to equal to pnull. Typically,
historical information for the standard treatment is often available and we may set
pnull to be the estimate from the historical data. We inflate the prior variance of pS
to account for the uncertainty due to between-trial effects, i.e., the differences between
the historical trials and the current trial. The beta prior for pE is usually much more
diffuse, with a large variance reflecting the fact that little information is known about
the experimental drug. For example, we may assume a vague prior distribution for the
experimental drug, pE ∼ Beta(0.2, 0.8), which is often considered to be equivalent to the
information of only one subject. For the standard drug, suppose that we have observed
200 responses among 1000 subjects in historical studies, we may set pnull to be the
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historical sample proportion while discounting the historical information by enlarging
the prior variance; for example, we may assume pS ∼ Beta(20, 80), which contains the
amount of information equivalent to 100 patients (Morita et al., 2008).

Suppose the trial has accrued n subjects to receive the experimental treatment, and
we observe y responses among them. Let D denote the observed data (n, y). Due to
the conjugate nature of the beta prior distribution when combined with a binomial
likelihood function, the posterior distribution of pE is still beta, pE |D ∼ Beta(aE +
y, bE+n−y). Let f(p; a, b) and F (p; a, b) denote the probability density function and the
cumulative distribution function of a Beta(a, b) distribution, respectively. We compute
the posterior probability that the experimental response rate is larger than the standard
rate in the form of

Pr(pE > pS |D) =

∫ 1

0

{1− F (p; aE + y, bE + n− y)}f(p; aS , bS)dp. (1)

Let θU and θL denote the upper and lower boundaries for the posterior probability.
At each step of the trial, we compute the value of Pr(pE > pS |D) and claim the
experimental drug promising if it is larger than θU , unpromising if it is smaller than θL,
or proceed to enroll the next subject if it lies between the two. At the end of the trial
when the prespecified maximum sample size Nmax is exhausted, if Pr(pE > pS |D) > θU ,
the drug is concluded to be promising, otherwise unpromising.

The design by Thall and Simon (1994) in fact suffers from the issue of multiplicity,
as the same hypothesis pE > pS is tested repeatedly and the drug can be declared
as promising over any interim result that produces a posterior probability larger than
θU . We define the type I error rate as the probability of rejecting the null hypothesis
when pE = pnull, and assess the degree of its inflation under Nmax = 60 and θU =
0.9, and assess the type I error rates under different prior sample sizes of pS . The
prior distribution of pE has a mean equal to that of pS and a prior sample size of 1.
We simulate one million trials by generating random samples from the Bernoulli(pE)
distribution, and calculate the empirical type I error rate as the proportion of times
the trial results lead to positive conclusions. Figure 1 shows the type I error rates
under different prior sample sizes of pS , for Bayesian sequential designs without futility
stopping and with futility stopping θL, respectively. A more informative prior of pS
would induce a larger type I error rate. The intuition behind such a pattern is that with
a larger prior sample size, the prior distribution of pS is more centered at pnull, which
makes it easier for the trial results to reach a high posterior probability of pE > pS .
Moreover, a larger value of pnull appears to be associated with a higher type I error
rate. A possible reason for this phenomenon could be that for smaller values of pnull,
the posterior probability decision boundaries tend to be more conservative and more
difficult to reach at pE = pnull when the cumulative sample size is relatively low. As an
example, consider the case when the cumulative sample size is 10, and under a prior
sample size of 1000, the probability of reaching the posterior probability boundary under
pnull = 0.1 is 0.07, whereas that under pnull = 0.6 is as high as 0.17. The type I error rate
inflation is slightly ameliorated with a futility stopping scheme by setting θL = 0.1. In all
cases, the type I error rate exceeds the nominal level of 1−θU = 0.1, and in some extreme
cases the type I error rate can be inflated up to 0.5. Therefore, it is recommended that
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Figure 1: Type I error rates under different prior sample sizes for pS (a) without fu-
tility stopping and (b) with futility stopping θL = 0.1 under the Bayesian single-arm
continuous monitoring design by Thall and Simon (1994).

for the Bayesian sequential design where the same hypothesis is tested multiple times,
the decision boundaries should be carefully adjusted and calibrated to prevent inflation
of the overall type I error rate, particularly when the design involves a strong degree of
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information borrowing from historical trials, i.e., an informative prior distribution or a
large prior sample size. Similar findings on the type I error rate inflation are also noted
in Jennison and Turnbull (2000), Chapter 18.

3 Bayesian Sequential Design with Binary Endpoints

3.1 Single-Arm Design

We propose a Bayesian sequential design based on posterior probabilties for single-arm
phase II trials with binary outcomes. Our goal is to not only maintain the overall type
I error rate, but also calibrate the decision boundaries such that the design’s operating
characteristics mimic those of the commonly used group sequential designs. Let K be
the total number of analyses to be conducted throughout the trial and let m be the
number of samples in each group, i.e., we conduct one analysis every time m additional
subjects are enrolled. Let ck be the efficacy decision boundary at stage k, k = 1, . . . ,K.
At the kth interim stage, the posterior probability of the experimental response rate
being larger than the standard rate is

P (H1|Dk) = P (pE > pS |Dk),

where Dk is the cumulative data up to stage k. If P (H1|Dk) > ck, we stop the trial
and declare treatment efficacy, otherwise we enroll the next group of m patients and
conduct another analysis at stage k + 1, or if k = K, i.e., we reach the end of the
trial, we declare treatment futility. We define the type I error rate to be the probability
of declaring treatment efficacy when pE = pnull. The amount of the type I error rate
spent at stage k, denoted as αk, is defined to be the probability of reaching the efficacy
boundary of stage k. Let b(y;n, p) denote the binomial probability mass function and
let I(·) denote the indicator function, and then

αk =

m∑
y1=0

m∑
y2=0

· · ·
m∑

yk=0

⎧⎨
⎩I(P (H1|Dk) > ck)

k−1∏
j=1

I(P (H1|Dj) ≤ cj)

k∏
i=1

b(yi;m, pnull)

⎫⎬
⎭ .

(2)

The overall type I error rate is thus
∑K

k=1 αk, which can be maintained at the nominal

level α if we set
∑K

k=1 αk ≤ α.

3.2 Posterior Probability Boundaries: Numerical Method

Our goal is to search for the optimal set {ck : k = 1, . . . ,K} that yields the closest fit
to a prespecified target α-spending function while controlling the overall type I error
rate. It is evident that the search space is of high dimension and a full enumeration
method would be computationally intensive. To overcome this issue, we shrink the
search space to the region where the optimal solution most probably lies so that the
numerical approach to the problem becomes feasible. We first establish that P (H1|Dk)
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is an increasing function of yk, the cumulative number of responses at stage k, because in
the integration of (1), it is true that F (p; aE+y+1, bE+n−y−1) < F (p; aE+y, bE+n−y)
by the two lemmas in Thall and Simon (1994). Based on such a monotonic relationship,
we can avoid the computationally intensive integration when calculating P (H1|Dk) and
directly calibrate uk, which is the boundary for the cumulative number of responses at
stage k, i.e., if yk > uk, we declare the drug promising. In other words, we translate
the information in the probability domain ck to the number of responses uk. As the
spending of the type I error rate αk is a function of all the upper boundaries up to stage
k, we denote it as a function αk(Uk), where Uk = (u1, . . . , uk)

T is a vector of design
parameters. Let α(k) denote the target amount of type I error rate to be spent at stage
k and α the overall type I error rate. More specifically, we propose the sandwich-type
searching algorithm which can immensely reduce the computational burden, and the
detail is described as follows.

1. At step k = 1, we iterate j from 0 to m.

(i) For each j, we compute the amount of type I error rate spent at stage 1 when
u1 = j, denoted as α1(U1j), where U1j is a scalar equal to j, corresponding
to an upper boundary value of j at the end of the first stage.

(ii) We find the pair (u∗
1j , u

∗
1j + 1), such that α1(U

∗
1j) < α(1) < α1(U

†
1j), where

U∗
1j and U†

1j are two scalars equal to u∗
1j and u∗

1j + 1, respectively. Let A1

be the set consisting of U∗
1j and U†

1j .

2. At step k, 1 < k < K, we iterate through each vector in Ak−1.

(i) Let Uk−1 denote the design vector consisting of the values of upper bound-
aries up to the (k−1)th interim analysis, and denote its last element as nmin.
Fixing Uk−1, we iterate j from nmin to km.

(ii) We find the pair (u∗
kj , u

∗
kj +1), such that αk(U

∗
kj) < α(k) < αk(U

†
kj), where

U∗
kj and U†

kj can be obtained by appending u∗
kj and u∗

kj + 1 to the current

design vector Uk−1, respectively. The vectors U
∗
kj and U†

kj represent the two
sets of upper boundaries up to stage k whose amounts of cumulative error
rate spending are closest to the target; the error rates under the design vector
U∗

kj are under-spent while those under U†
kj are over-spent. Let Ak be the

set consisting of vectors U∗
kj and U†

kj .

3. At step k = K, we iterate through each vector in AK−1.

(i) For each vector in AK−1, denoted as UK−1, we calculate the type I error rate

spent up to the (K − 1)th stage as α∗ =
∑K−1

k=1 αk(Uk), where Uk contains
the first k elements of the vector UK−1.

(ii) We find the decision boundary uK such that αk(UK) < α − α∗, where UK

is obtained by appending uK to UK−1.
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4. Among all the obtained vectors UK in the last step, we choose the one that yields
the smallest L2-distance to the target α-spending function, i.e., minimizing

K∑
k=1

{αk(Uk)− α(k)}2,

where Uk consists of the first k elements in UK . Based on the increasing relation-
ship between P (H1|Dk) and yk, we can then find the corresponding ck such that
yk > uk is equivalent to P (H1|Dk) > ck.

Steps 1 to 3 identify the sets of upper boundaries under which the amounts of
cumulative type I error rate spending are closest to the target, and step 4 selects the
best set of boundaries with the smallest L2-distance to the target function. In the first
step, only one pair of design vectors are identified. In each subsequent step k, further
pairs are identified and appended to the design vector in the set Ak−1 from the previous
step. The total number of design vectors assessed at step k is 2k. We can also minimize
the maximum difference between αk(Uk) and α(k) in the last step, which would give
similar results.

As the proposed numerical algorithm seeks to minimize the squared distance be-
tween the empirical spending function and the target, it is robust, accurate and flexible,
which can accommodate any types of α-spending functions in the group sequential
methods, including the commonly used Pocock, O’Brien–Fleming, and Wang–Tsiatis
types (Jennison and Turnbull, 2000). The specification of the target function depends
on the preferences on how the spendings of the type I error rate should be distributed
over the interim analyses.

3.3 Posterior Probability Boundaries: Theoretical Method

There exists an asymptotic connection between the Bayesian approach based on pos-
terior probabilities and the frequentist method using p-values. Dudley and Haughton
(2002) studied the asymptotic normality of the posterior probability of half-spaces. In
particular, let Θ be an open subset of a Euclidean space Rd. A half-space H is a set
satisfying a linear inequality,

H = {θ : aTθ ≥ b},

where θ ∈ Θ, a ∈ Rd and b is a scalar, and let ∂H represent the boundary hyperplane
of H,

∂H = {θ : aTθ = b}.

Examples of half-spaces under the context of clinical trials are {pE : pE > pnull} for
single-arm trials, or {(pE , pS) : pE > pS} for double-arm trials.

Let yi denote the observed data whose probability density function is f(yi,θ), for
i = 1, . . . , n. The likelihood ratio statistic for testing the null hypothesis H0 : θ ∈ ∂H is

Δm = 2 logL(θ̂)− 2 logL(θ̃),
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where logL(θ) =
∑n

i=1 log f(yi,θ), and θ̂ and θ̃ are the maximum likelihood estimates
for θ ∈ Θ and θ ∈ ∂H, respectively. Let Sn denote the signed root likelihood ratio
statistics, i.e., if θ̂ �∈ H, Sn = −

√
Δn; otherwise, Sn =

√
Δn. Let πn(H) denote the

posterior probability of the half space given the data with sample size n.

Theorem 1. Under the regularity conditions in Dudley and Haughton (2002), we have

(i) If Hn is a sequence of the same half-space, indexed by the cumulative sample sizes,
then as n → ∞, πn(Hn)/Φ(Sn) → 1 almost surely, where Φ(·) is the cumulative
distribution function of the standard normal random variable.

(ii) For cumulative sample sizes n1, . . . , nK , the joint statistics {Φ−1(πn1(Hn1)), . . . ,
Φ−1(πnK

(HnK
))} converges in distribution to (Sn1 , . . . , SnK

), which follows a mul-
tivariate normal distribution asymptotically.

The proof of the first part of the theorem can be found in Dudley and Haughton
(2002), and the second part follows from the continuous mapping theorem and the
argument on the joint canonical distribution of (Sn1 , . . . , SnK

) in Jennison and Turnbull
(1997), Scharfstein et al. (1997), and Jennison and Turnbull (2000), Chapter 11.2.

Based on the theoretical results, we propose a method to find the set of ck by
connecting the Bayesian and the frequentist group sequential designs. Specifically, let
{zk; k = 1, . . . ,K} denote a series of critical constants obtained from the frequentist
group sequential method and, without loss of generality, we assume that all the zk’s are
positive. We set ck to be equal to Φ(zk), because the decision rules using the posterior
probabilities of H1, . . . ,Hk are asymptotically equivalent to S1, . . . , Sk being greater
than z1, . . . , zk, respectively, which leads to the correct type I error rate spending of
α1, . . . , αk based on the canonical distribution in the group sequential design.

3.4 Double-Arm Design

Design Specification

In addition to the single-arm Bayesian sequential design, we also study the properties
of a double-arm Bayesian sequential design that uses the posterior probability at the
interim analyses. Consider a double-arm clinical trial with dichotomous outcomes, let
pE denote the response rate of the experimental drug, and let pS denote that of the
standard drug. Let K denote the total number of analyses and let m denote the sample
size per arm in each group. If we consider the one-sided hypothesis test, we are interested
in examining whether the experimental drug is superior to the standard of care,

H0: pE ≤ pS versus H1: pE > pS .

Under the Bayesian framework, we assume beta prior distributions for pE and pS ,
i.e., pE ∼ Beta(aE , bE) and pS ∼ Beta(aS , bS). At the kth interim analysis, the cumu-
lative number of patients accrued in each arm is km. If the numbers of responses in



408 Control of Type I Error Rates in Bayesian Sequential Designs

the experimental and standard arms are yE and yS respectively, the binomial likelihood
functions can be formulated as

P (yg|pg) =
(
km

yg

)
pyg
g (1− pg)

km−yg , g = E,S.

The posterior distributions of pE and pS are given by

pE |yE ∼ Beta(aE + yE , bE + km− yE),

pS |yS ∼ Beta(aS + yS , bS + km− yS),

whose density functions are denoted by f(pE |yE) and f(pS |yS), respectively. Let ck be a
prespecified cutoff probability boundary at stage k. Based on the posterior probability,
we can construct a Bayesian sequential testing procedure, so that the experimental
treatment is declared as promising if

Pr(pE > pS |yE , yS) ≥ ck,

where

Pr(pE > pS |yE , yS) =
∫ 1

0

∫ 1

pS

f(pE |yE)f(pS |yS)dpEdpS .

Otherwise, we fail to declare treatment efficacy.

To control the overall type I error rate, we may adopt the theoretical method that
connects the Bayesian sequential design with the frequentist group sequential method
by setting ck = Φ(zk), where {zk; k = 1, . . . ,K} is a series of critical constants obtained
from the frequentist group sequential method.

Extension to Biomarker Design

Wason et al. (2015) proposed a Bayesian adaptive design for analyzing the relationships
between biomarkers and the experimental treatment effects. Consider a biomarker trial
where there are L biomarkers and a total of J experimental treatment arms and one
control arm for the standard drug. When a patient is enrolled into the study, a test
is conducted to obtain his/her biomarker profile. Let Xi = (Xi1, . . . , XiL) denote the
biomarker profile of the ith patient, where Xil = 1 if the expression of biomarker l is
positive for the ith patient, andXil = 0 otherwise. Patients are equally randomized to all
treatment arms, and we denote Ti = (Ti1, . . . , TiJ) as the treatment assignment vector,
where Tij = 1 if the ith patient is allocated to the jth experimental treatment, and when
all entries of Ti are zero, the patient is assigned to the control arm. Let Yi denote the
binary endpoint for the ith patient and let pi denote the probability of treatment success.
The design utilizes a Bayesian logistic regression model to characterize the treatment
effect of the drug, the biomarker and their interaction, which is represented as

Yi ∼ Bernoulli(pi),

log

(
pi

1− pi

)
= β0 +

J∑
j=1

βjTij +

L∑
l=1

γlXil +

L∑
l=1

J∑
j=1

δjlXilTij ,
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where β0 is the intercept, βj represents the effect of the jth experimental treatment, γl
represents the effect of the lth biomarker, and δjl represents the effect of the treatment

and biomarker interaction. Noninformative normal prior distributions are specified for

all regression coefficients.

A total of J(L + 1) hypotheses are tested at the interim or the final analysis. In

particular, the set of alternative hypotheses are {H(j,l)
1 |j = 1, . . . , J ; l = 0, . . . , L}. When

l > 0, the hypothesis H
(j,l)
1 represents the case where the jth experimental treatment

is superior to the standard treatment in patients with positive biomarker l.

H
(j,l)
1 : βj + δjl > 0, l > 0.

When l = 0, the hypothesis H
(j,l)
1 represents the case where the experimental treatment

is superior for patients who have no positive biomarker profiles,

H
(j,0)
1 : βj > 0.

At the kth interim or final analysis, where k = 1, . . . ,K, we compute the posterior

probabilities Pr(H
(j,l)
1 |Dk), and if it is larger than ck, the superiority of the experimental

treatment can be declared for the corresponding subgroup of patients. The theoretical

method for controlling the overall type I error rate can be adopted for such a Bayesian

sequential design, i.e., we may set ck = Φ(zk).

Numerical Evaluation

We apply the theoretical posterior probability boundaries for controlling the type I

error rate in a double-arm sequential biomarker design. We assume that there are J = 2

experimental treatments and L = 2 biomarkers, and the trial involves K = 4 analyses

with sample size 480. Patients are equally randomized to the two treatment arms and

the control arm. Wason et al. (2015) recommended controlling the familywise error rate

(FWER) in a range of 0.4 to 0.5. As a total of 6 hypotheses are to be tested, we adopt

Bonferroni’s method for controlling the FWER at 0.48, i.e., we set the significance level

for each hypothesis test to be 0.48/6 = 0.08.

To examine the effectiveness of controlling the type I error rate, we consider a null

case where βj and δjl are all zero for j = 1, 2 and l = 1, 2, and β0 = γ1 = γ2 = 0.1.

Based on 1000 trial replications, we compute the empirical type I error rates spent at the

interim analyses using the theoretical posterior probability boundaries with the Pocock

type and O’Brien–Fleming type α-spending functions, which are exhibited in Table 1.

Due to symmetry, we only need to show results for the two alternative hypotheses

H
(1,1)
1 : β1 + δ11 > 0 and H

(1,0)
1 : β1 > 0. Because the endpoint is binary, slight

deviation between the total empirical type I error rate and the target level 0.08 is

observed. Nevertheless, the theoretical method controls the type I error rate spending

in accordance with the specified α-spending function.
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α-spending function α1 α2 α3 α4

∑K
k=1 αk

H
(1,0)
1 : β1 > 0

Pocock 0.040 0.022 0.021 0.009 0.092
O’Brien–Fleming 0.004 0.015 0.035 0.034 0.088

H
(1,1)
1 : β1 + δ11 > 0

Pocock 0.035 0.023 0.017 0.016 0.090
O’Brien–Fleming 0.002 0.013 0.039 0.032 0.086

Table 1: Type I error rate spendings in Bayesian sequential biomarker designs with
binary endpoints using the theoretical posterior probability boundaries with the Pocock
type and O’Brien–Fleming type α–spending functions.

4 Bayesian Sequential Design with Normal Endpoints

4.1 Design Specification

Consider a single-arm trial with a continuous endpoint from the normal distribution
N(μ, σ2). Let yi denote the observed outcome for the ith subject in the experimen-
tal arm and let n denote the number of observations. We assign a prior distribution
N(μ0, σ

2
0) to the mean μ, and for simplicity we assume the variance σ2 to be known.

The likelihood can be expressed as
∏n

i=1 φ(yi;μ, σ
2), where φ(·;μ, σ2) denotes the nor-

mal density function with mean μ and variance σ2. Based on the conjugacy of a normal
prior distribution under a normal likelihood, the posterior distribution of μ follows
N(μ∗, σ

2
∗), where

μ∗ =

(
μ0

σ2
0

+

∑n
i=1 yi
σ2

)
σ2
∗,

σ2
∗ =

(
1

σ2
0

+
n

σ2

)−1

.

We formulate the null and alternative hypotheses as

H0 : μ ≤ δ versus H1 : μ > δ,

where δ is the minimum value of μ that warrants further investigation. We reject the null
hypothesis if Pr(μ > δ|D) > c, D = {y1, . . . , yn}, which is equivalent to (μ∗ − δ)/σ∗ >
Φ−1(c), and it can be further expressed as

ȳ > Q(c;μ0, σ0, σ) =
σ2

n

{
Φ−1(c)

σ∗
+

δ

σ2
∗
− μ0

σ2
0

}
,

where ȳ =
∑n

i=1 yi/n and Q(·) is a nondecreasing function of c.

To control the overall type I error rate for a series of sequential tests, we can equate
Q(c;μ0, σ0, σ) to the corresponding critical constant in the group sequential design.
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Under the group sequential methodology, we reject the null at an interim analysis if√
n(ȳ − δ)/σ > z, or ȳ > zσ/

√
n + δ, where z is a known critical constant from the

interim boundaries in the group sequential test with the same specification of the overall
type I error rate, power and α-spending function. The value of c can be solved by setting

Q(c;μ0, σ0, σ) = zσ/
√
n+ δ.

In the case with a two-arm trial, we are interested in comparing the means of the
endpoints between the experimental and control arms, denoted by μE and μS respec-
tively. Under a normal likelihood function with normal prior distributions on the means,
the posterior distributions of μE and μS are both normal. The posterior distribution of
μE − μS is also normal and, as a result, the decision boundary c can be derived along
similar lines.

4.2 Commensurate Prior

One of the advantages of Bayesian trial designs is the ability to incorporate useful his-
torical information in the prior distribution, which, if adopted correctly, leads to higher
power and saving in sample size. Hobbs et al. (2011) proposed several classes of commen-
surate prior distributions for normal endpoints. Commensurate priors can adaptively
adjust the amount of information borrowing from the historical data according to the
degree of commensurability between the data in the historical trials and the current one.

We consider a class of commensurate prior distributions proposed by Hobbs et al.
(2011) called the location commensurate prior. Let μS and μH be the mean parameter
for the current and historical data respectively, and let DH denote the historical data.
The location commensurate prior is a hierarchical construct where we first specify a
prior distribution p(τ) for the commensurability parameter τ > 0, which serves as the
primary mechanism for adjusting the influence of prior information relative to its com-
mensurability with the data in the current trial. Conditional on the commensurability
parameter τ , we center the prior of μS at the historical mean μH , i.e., a normal dis-
tribution with mean μH and precision τ (i.e., variance 1/τ), and multiply it with the
historical likelihood, which results in a prior of the form,

p(μS |DH , μH , τ) ∝ L(μH |DH)p(μS |μH , τ)p0(μS).

As τ → 0, p(μS |DH , μH , τ) approaches p0(μS), such that the historical data are com-
pletely ignored due to noncommensurability; and as τ → ∞, p(μS |DH , μH , τ) ap-
proaches L(μS |DH)p0(μS), leading to full exchangeability between the historical and
current data, and thus the current and historical data are equally weighed and can be
simply merged.

Assume that the historical data follow a normal distribution, N(μH , σ2
H), with sam-

ple size nH , and the current data in the standard arm follow N(μS , σ
2
S). Let ȳH denote

the historical sample mean, and let σ̂2
H denote the maximum likelihood estimator of

σ2
H . We specify p(τ) to be a Gamma(ντ̃ , ν) distribution with mean τ̃ and variance τ̃ /ν,
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p(μS |μH , τ) a normal distribution with mean μH and precision τ , and p0(μS) ∝ 1. The
location commensurate prior for μS under such hierarchical models can be derived as

p(μS , σ
2
S , τ |DH) ∝ φ

(
μS

∣∣ȳH ,
1

τ
+

σ̂2
H

nH

)
× 1

σ2
S

× p(τ).

We apply the theoretical approach to determining posterior probability boundaries
in a Bayesian double-arm sequential trial that utilizes the commensurate prior in the
standard arm. For the experimental arm, we assume a vague prior N(μ0, σ0) for μE . At
the kth interim analysis, if the posterior probability Pr(μE > μS |D,DH) > ck, where
D denotes the data in the current trial, we terminate the trial and declare treatment
superiority; otherwise, we continue to recruit the next group of patients.

4.3 Numerical Evaluation

We conduct two simulation studies to study the trial performance with informative
priors: one for a single-arm design and the other for a double-arm design. In the single-
arm study, we compute the empirical type I error rate based on normal endpoints with
mean μ and variance 1. We are interested in testing whether μ is greater than δ = 0.
The sample size is 200 and a total of K = 4 analyses are considered. Our desired type
I error rate is α = 0.1. We set the prior distribution of μ to be N(0, 100). We simulate
one million trials by generating random samples from the standard normal distribution
N(0, 1) and the proportion of times the null hypothesis is rejected is defined as the
empirical type I error rate. Figure 2 shows the target α-spending functions versus the
empirical ones for the Pocock type and O’Brien–Fleming type boundaries, respectively.
Clearly, the proposed method maintains the type I error rate under the nominal level
and the empirical pattern of the type I error rate spent at each stage is close to that of
the target α-spending function.

For the double-arm trial, we apply the theoretical method for calculating the poste-
rior probability boundaries by setting ck = Φ(zk) where zk’s are the critical constants
from the frequentist group sequential designs. The commensurate prior is adopted for
the standard arm to facilitate information borrowing from the historical data with sam-
ple size nH = 200. As the variances in the current and historical trials are not of direct
interest, for simplicity we assume that variances are known to be 1 in both trials. Four
interim analyses are involved and the sample size in each arm is 200. As we are interested
in the influence of the commensurability parameter τ and the historical mean param-
eter μH on the current trial’s operating characteristics, we consider various values of
μH and commensurate prior distributions for τ . In particular, we consider cases where
μH = μS and μH = μS ± 0.05; and we specify p(τ) to be a Gamma(ντ̃ , ν) distribution
and consider the cases with τ̃ = ν = 1 and τ̃ = ν = 1000, i.e., respective prior means
of 1 and 1000 and prior variances of 1, which correspond to weak and strong degrees
of information borrowing. Based on 1000 trial replications, we compute the empirical
type I error rates spent under the null where μS = μE = 0.5, and the power under the
alternative where μS = 0.5 and μE = 0.8.
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Figure 2: The target α-spending functions versus the empirical counterparts of (a) the
Pocock type and (b) the O’Brien–Fleming type boundaries for a single-arm study with
normal endpoints.

Table 2 shows the type I error rate spending and power under various values of his-
torical means, commensurate priors and α–spending functions. Compared with those
with a weak degree of information borrowing (τ̃ = ν = 1), the cases with highly infor-
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μH α-spending function α1 α2 α3 α4

∑K
k=1 αk Power

τ̃=1, ν=1, ck = Φ(zk)
0.45 Pocock 0.039 0.032 0.031 0.025 0.127 0.765

O’Brien–Fleming 0.001 0.024 0.043 0.057 0.125 0.750
0.5 Pocock 0.035 0.035 0.022 0.028 0.120 0.767

O’Brien–Fleming 0.000 0.026 0.041 0.064 0.131 0.758
0.55 Pocock 0.043 0.026 0.039 0.018 0.126 0.752

O’Brien–Fleming 0.003 0.022 0.060 0.050 0.135 0.745

τ̃=1, ν=1, ck = Φ(zk) + ζk
0.45 Pocock 0.033 0.025 0.028 0.020 0.106 0.733

O’Brien–Fleming 0.001 0.018 0.035 0.041 0.095 0.699
0.5 Pocock 0.027 0.033 0.020 0.020 0.100 0.767

O’Brien–Fleming 0.000 0.020 0.028 0.052 0.100 0.758
0.55 Pocock 0.037 0.025 0.032 0.014 0.108 0.752

O’Brien–Fleming 0.000 0.018 0.042 0.031 0.091 0.745

τ̃=1000, ν=1000, ck = Φ(zk)
0.45 Pocock 0.056 0.045 0.036 0.033 0.170 0.888

O’Brien–Fleming 0.004 0.030 0.064 0.076 0.174 0.878
0.5 Pocock 0.028 0.022 0.022 0.024 0.096 0.833

O’Brien–Fleming 0.000 0.011 0.032 0.055 0.098 0.809
0.55 Pocock 0.016 0.012 0.010 0.005 0.043 0.760

O’Brien–Fleming 0.000 0.008 0.019 0.022 0.049 0.762

Table 2: Type I error rate spending and power in Bayesian sequential designs with nor-
mal endpoints using the commensurate priors and the theoretical posterior probability
boundaries with the Pocock type and O’Brien–Fleming type α-spending functions.

mative priors (τ̃ = ν = 1000) have higher power values, but may suffer from inflation or
over-stringentness in the type I error rate when μH deviates from μS . When the histor-
ical mean is over/under-estimated, the design would have higher/lower values of power.
Clearly, under the Pocock type and O’Brien–Fleming type α–spending functions, the
pattern of type I error rate spending matches the desired target. It is worth emphasizing
that under the theoretical posterior probability boundaries, the overall type I error rate
might not be controlled exactly at the target level, particularly when a complex and
informative prior distribution is adopted. To achieve an exact control of the type I error
rate, we may compute the empirical type I error rate by simulating a large number of
trials, and adjust the posterior probability boundaries to be ck = Φ(zk) + ζk, where
the value of ζk can be easily calibrated via grid search or bisectional search, such that
the empirical type I error rate can be maintained at the desired level. For example, we
may set ζk = {1− Φ(zk)} × u, where 0 ≤ u ≤ 1, and perform numerical calibration on
the value of u. The middle part of Table 2 shows the spendings of the type I error rate
where u is calibrated to be 0.141 and 0.237 under the null case (μH = 0.5) with the
Pocock type and the O’Brien–Fleming type boundaries, respectively.
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5 Design Comparison

Wathen and Thall (2008) proposed a Bayesian doubly optimal group sequential design,
abbreviated as “BDOGS”, which optimizes the expected utility function under the
frequentist constraints. As a comparison, we consider the BDOGS design for the binary
endpoint, which takes an interim look once every time a new outcome is observed.
At each interim analysis, the posterior probability is updated and compared with a
boundary function PU (n) = aU + bU (n/Nmax)

cU , where n is the cumulative sample size
and Nmax is the maximum sample size, to decide whether the trial should be stopped for
efficacy. The design calibration involves finding the optimal values for the parameters
(aU , bU , cU ) such that the expected utility is optimized under the constraints on the type
I error rate and power. The expected utility under the BDOGS design is specified to be
the average of the expected sample sizes under the null and the alternative hypotheses.
Calculations of the expected utility, the type I error rate and power are conducted via
a forward simulation approach (Carlin et al., 1998), and a simple grid search method is
used for finding the optimal parameters (aU , bU , cU ).

The proposed Bayesian group sequential designs incorporating the Pocock type and
O’Brien–Fleming type α-spending functions are compared with the BDOGS design,
under the constraints of the type I error rate being at most 0.1 and power at least 0.8.
Considering a binary endpoint, the single-arm design aims to test the hypotheses H0:
pE ≤ 0.2 versus H1: pE > 0.4. For the Bayesian group sequential designs with K = 4
analyses, the minimally required group sizes are 11 for the Pocock type design and 9 for
the O’Brien–Fleming type design. For the BDOGS design, we specify Nmax = 45 and
the optimal parameters are found to be (aU , bU , cU ) = (0.985,−0.015, 0.600).

Figure 1 in the Supplementary Material (Shi and Yin, 2018) shows the stopping
boundaries for the three designs under comparison, and Figure 2 in the Supplementary
Material exhibits the distributions of the spendings of the type I error rates. Except
for the first interim analysis under the O’Brien–Fleming type design, the boundary
values of the Bayesian group sequential designs are smaller than those of the BDOGS
design, as the latter requires much more interim looks. In terms of the type I error
rate spendings, the Bayesian group sequential design allows specifying the pattern of
the distribution of the spendings, whereas the BDOGS design is less flexible and the
majority of the spendings are distributed at the first few analyses. The expected sample
sizes are similar across the three designs, which are 30.7, 32.7 and 30.1 for the BDOGS,
Pocock and O’Brien–Fleming types of designs, respectively.

6 Clinical Trial Application

6.1 Acute Myeloid Leukemia Trial

Thall and Simon (1994) described a single-arm clinical trial using fludarabine + ara-C
+ granulocyte colony stimulating factor (G-CSF) in the treatment of acute myeloid
leukemia. The study aimed at assessing whether the addition of G-CSF to the standard
therapy (fludarabine + ara-C) can improve the clinical outcomes of the patients. The
complete remission of the disease is defined as the binary endpoint of the study. We
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Bayesian Posterior Probability Frequentist Z-test

α-spending function k Cutoff ck αk

∑K
k=1 αk Zk αk

∑K
k=1 αk

Pocock 1 (0.923,0.963) 0.0432 1.7299 0.0432
2 (0.940,0.965) 0.0227 1.7299 0.0227
3 (0.957,0.973) 0.0111 1.7299 0.0217
4 (0.933,0.954) 0.0213 0.0983 1.7299 0.0170 0.1046

O’Brien–Fleming 1 (0.993,0.998) 0.0029 2.8141 0.0029
2 (0.965,0.981) 0.0198 1.9898 0.0198
3 (0.934,0.957) 0.0318 1.6247 0.0318
4 (0.905,0.933) 0.0355 0.0900 1.4070 0.0355 0.0900

Table 3: Bayesian single-arm sequential designs with binary endpoints using the numer-
ical calibration method versus frequentist group sequential designs using Z-test with
the Pocock type and O’Brien–Fleming type α-spending functions.

provide an illustrative trial example where the proposed design is adopted. The trial
has a maximum sample size of Nmax = 160, and there are a total of K = 4 analyses
to be carried out in the trial. We take the type I error rate α = 0.1, pnull = 0.2
and noninformative prior pE ∼ Beta(0.2, 0.8). For the Pocock design and the O’Brien–
Fleming design, the α-spending functions are respectively given by

α(t) = αlog{1 + (e− 1)t} Pocock type,

α(t) = 2− 2Φ(zα/2/
√
t) O’Brien–Fleming type,

where t ∈ [0, 1] denotes the information fraction, taking values of 0.25, 0.5, 0.75, and
1 in our case, and zα/2 denotes the 100(1 − α/2)th percentile of the standard normal
distribution. The target type I error rate to be spent at the kth analysis is thus α(k/4)−
α{(k − 1)/4}. We provide Bayesian sequential designs whose empirical type I error
spending functions are respectively calibrated towards those of the two classical group
sequential designs.

Table 3 shows the values of the posterior probability cutoff and the α-spending func-
tion at each interim analysis for the Bayesian Pocock type and O’Brien–Fleming type
sequential designs, respectively. It is worth emphasizing that because P (H1|Dk) is dis-
crete and takes a finite number of values, the upper cutoff ck can take any value within
a certain interval to satisfy the type I error constraint. For example, in the Pocock type
sequential design, the first cutoff c1 can be any value within the interval (0.923,0.963).
Figures 3 and 4 show the posterior probability cutoff intervals and the empirical type I
error spending functions versus the target for the Pocock and O’Brien–Fleming designs,
respectively. Because the endpoint is binary, exact calibration to the target function is
not possible. Therefore, the empirical spending function under the proposed methods
would slightly deviate from the target one. For the Pocock type design, the numerical
method (dashed) and the theoretical method (dot–dashed) yield similar solutions, al-
though the former produces a closer fit to the target α-spending function. Similar to
the constant critical values in the frequentist Pocock design, the posterior probability
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Figure 3: Bayesian single-arm sequential trial design with binary endpoints under the
Pocock type α-spending function with (a) the target α-spending function versus numer-
ical and theoretical approaches to finding the cutoff boundaries, where the grey dashed
lines represent all the feasible designs obtained from the numerical searching algorithm
and the bold dashed line is the one closest to the target; and (b) the posterior probability
cutoff value (theoretical) and interval (numerical) at each interim analysis.
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Figure 4: Bayesian single-arm sequential trial design with binary endpoints under the
O’Brien–Fleming type α-spending function with (a) the target α-spending function
versus numerical and theoretical approaches to finding cutoff boundaries, where the
grey dashed lines represent all the feasible designs obtained from the numerical searching
algorithm and the bold dashed line is the one closest to the target; and (b) the posterior
probability cutoff value (theoretical) and interval (numerical) at each interim analysis.
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cutoffs are also constant with a value of 0.958 under the theoretical calibration, while
the critical intervals under the numerical approach are also close to each other with
substantial overlappings. For the O’Brien–Fleming type design, the theoretical method
produces the posterior probability cutoffs of 0.998, 0977, 0.948, and 0.920, while the
numerical method leads to cutoff intervals that tend to decline throughout the trial.
The O’Brien–Fleming sequential design imposes more stringent posterior probability
cutoffs at the early stages of the trial, and then gradually relaxes the cutoffs as the trial
progresses.

Jennison and Turnbull (1989) provided a formulation of the repeated confidence
intervals across interim analyses under a group sequential design. As a counterpart
in the Bayesian paradigm, a similar notion of the repeated credible interval can be
naturally developed. In particular, we obtain the posterior distribution of the parameter
of interest, and adopt the highest posterior density interval repeatedly based on the type
I error rate spent for each interim analysis. Figure 3 in the Supplementary Material
shows the repeated credible intervals when the number of responses attains the efficacy
boundary, i.e., the minimum value of yk such that P (H1|Dk) > ck is satisfied, which
can be back-solved based on the monotonic relationship between yk and the posterior
probability P (H1|Dk). As more data are accumulated in each interim analysis, the width
of the repeated credible interval decreases.

6.2 Soft Tissue Sarcoma Trial

Maki et al. (2007) described a phase II randomized study comparing the efficacy of gemc-
itabine alone and the gemcitabine–docetaxel combination in the treatment of metastatic
soft tissue sarcoma. Based on the binary outcomes of tumor response, the study aimed
at determining whether the addition of docetaxel could improve the efficacy of gemc-
itabine. For illustrative purpose, we applied the proposed design to the trial and ex-
amined the empirical type I error rates under various types of sequential boundaries.
We experimented the total sample size of 50 and 500 respectively, and for both cases
K = 5 interim analyses were considered. We took non-informative prior distributions,
pS ∼ Beta(0.2, 0.8) and pE ∼ Beta(0.2, 0.8), and the type I error rate was controlled at
α = 0.1. The type I error rates were computed as the probabilities of trial success with
pE = pS at different values of pE (or pS).

Figure 5 shows the type I error rates under different types of boundaries. Due to
the finite sample size, the joint distribution of the test statistics at the interim analyses
may deviate from the multivariate normal canonical distribution under the frequentist
group sequential framework. As a result, the type I error rates can be different from the
nominal level. As expected, when no adjustment is made to account for the multiplicity,
i.e., the posterior probability boundaries are all set equal to 1 − α = 0.9 throughout
the trial, the type I error rate is inflated up to the level of 25%. Both the Pocock type
and O’Brien–Fleming type boundaries work well for the large-sample cases, but suffer
from slight inflation of the type I error rate when the response rate is very low for the
small-sample cases.
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Figure 5: Type I error rates under different types of boundaries in Bayesian double-arm
sequential designs with binary endpoints and K = 5, (a) sample size of 50 subjects per
arm and (b) sample size of 500 subjects per arm. The solid line represents the type
I error rate with a fixed posterior probability cutoff of 0.9 throughout the trial, and
the dashed and dotted lines correspond to those with the posterior probability cutoffs
calibrated using the Pocock type and O’Brien–Fleming type α-spending functions.
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7 Discussion

Controlling the type I error rate for clinical trial designs that involve multiple interim
assessments on the posterior probabilities is often a neglected aspect in Bayesian sequen-
tial designs. Although Bayesian methods can serve as a useful and flexible alternative
to conventional frequentist designs, it is crucial to understand its frequentist proper-
ties. As shown in the motivating example, a failure to account for the multiplicity in
a Bayesian trial may lead to a severe inflation of the type I error rate. The proposed
method connects the aspect of multiple testing in Bayesian designs with that of the
frequentist group sequential method. Although the theoretical method is primarily ap-
plied to the binary case with an assumed beta prior distribution on the response rate,
it can be used under a more general family of prior and posterior models, as long as
the regularity conditions for the asymptotic properties of the posterior probability are
satisfied.

We consider both the binary and normal endpoints and single- and double-arm
trials. We develop a numerical approach as well as establishing a connection based on
the asymptotic properties of the posterior probability between the Bayesian sequential
design and the frequentist counterpart. The numerical method involves the calculation of
the exact type I error rate. When the number of analyses and the group size are large, the
summation of the product of binomial probabilities could be computationally intensive.
To overcome this issue, simulation-based computation or normal approximation to the
binomial distribution might be preferred.

For the numerical approach, the sandwich-type algorithm can be generalized to
more complex model settings. The error rate formulation would be similar to that in
(2) except for the binomial distribution, which can be approximated using a simulation-
based approach. A more general formulation of error rates can be implemented by first
setting up a null parametric model representing H0, and then simulating a large number
of trials, and the proportion of trials that reach the decision boundary at each interim
step can be used as an approximation to the type I error rate. Based on the prespecified
error rates, suitable design parameters can be calibrated either by a grid-based search
or a bisection approach in order to yield the desirable pattern of the type I error rate
spendings. Examples of such calibration methods can be found in Murray et al. (2016)
and Murray et al. (2017).

For the theoretical approach, we assume a non-informative prior distribution when
assessing the design’s operating characteristics, and show that the type I error rates
can be well maintained under such a prior assumption. It should be emphasized that
the theorem in Dudley and Haughton (2002) only holds asymptotically, and simulation
studies on finite-sample performance of the design might be necessary for assessing the
adequacy of the theoretical boundaries. In the settings where the prior distribution is
highly informative or the sample size is relatively small, the empirical performance of
the decision boundaries under the theoretical approach might not be satisfactory. It
is then advised to adopt the numerical approach, either by explicitly formulating the
error rates as discussed in this paper, or by averaging the number of error cases with
computer simulation.
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Supplementary Material

Supplementary Material of the Control of type I error rates in Bayesian sequential

designs (DOI: 10.1214/18-BA1109SUPP; .pdf).
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