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Bayesian Emulation for Multi-Step
Optimization in Decision Problems

Kaoru Irie∗ and Mike West†

Abstract. We develop a Bayesian approach to computational solution of multi-
step optimization problems, highlighted in the example of financial portfolio deci-
sions. The approach involves mapping the technical structure of a decision analysis
problem to that of Bayesian inference in a purely synthetic “emulating” statis-
tical model. This provides access to standard posterior analytic, simulation and
optimization methods that yield indirect solutions of the decision problem. We
develop this in time series portfolio analysis using classes of economically and
psychologically relevant multi-step ahead portfolio utility functions. Studies with
multivariate currency time series illustrate the approach and show some of the
practical utility and benefits of the Bayesian emulation methodology.

Keywords: Bayesian forecasting, dynamic dependency network models, marginal
and joint modes, multi-step decisions, portfolio decisions, sequential
optimization, synthetic model.

1 Introduction

This work stems from an interest in Bayesian analysis of sequential, multi-period deci-
sion problems. A key example is financial portfolio decisions where long-term, multi-step
investment objectives generate new classes of utility functions for which the result-
ing optimization problems raise computational challenges. We define new optimization
strategies that stem from the recognition that some such optimization problems can
be recast – purely technically – as problems of computing modes of marginal poste-
rior distributions in “synthetic” statistical models. We then have access to analytic and
computational machinery for exploring posterior distributions whose marginal modes
represent target optima in originating optimization/decision problems. We refer to this
as Bayesian emulation for decisions as the synthetic statistical model regarded as an
emulating framework for computational purposes. The concept of the emulation strategy
is general and will apply in many decision analysis contexts. That said, this paper uses
the motivating example of personal financial portfolio decisions to convey and exemplify
the methodological development in a concrete setting.

The use of decision analysis for portfolios coupled with dynamic models for fore-
casting financial time series continues to be a very active area of Bayesian analysis –
in research and in broad application in personal and corporate gambling on markets of
all kinds. Forecasting with multivariate dynamic linear/volatility models coupled with
extensions of traditional Markowitz mean-variance optimization (Markowitz, 1991) de-
fine benchmark approaches (e.g. Quintana, 1992; Aguilar and West, 2000; Quintana
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et al., 2003, 2010; Polson and Tew, 2000, chapter 10 of Prado and West, 2010, Jacquier
and Polson, 2011, among others). Much recent work has emphasised advances in fore-
casting ability based on increasingly structured multivariate models (e.g. Zhou et al.,
2014; Nakajima and West, 2013a,b, 2015, 2017; Zhao et al., 2016; Gruber and West,
2016, 2017) with benefits in portfolio outcomes based, in part, on improved charac-
terizations of dynamics in multivariate stochastic volatility. However, relatively little
Bayesian work addresses interests in more relevant utility/loss functions, especially in
longer-term, multi-step portfolio contexts; much of the cited work here employs standard
myopic/one-step ahead decision rules. Our emphasis is to complement these time series
forecasting advances with Bayesian decision analysis that explicitly reflects personal or
commercial utilities for stable portfolios in a multi-step context.

In stylized forecasting and decision problems, analysis involves computing portfolio
weight vectors to minimize expected portfolio loss functions, and to repeatedly apply
this sequentially over time. The solutions can be approximated numerically in a number
of ways, depending on the form of the loss function, but typically need customization
of the numerical techniques. The approach here – emerging naturally in the specific
context of multi-step portfolios – is a general approach applicable to a variety of loss
functions. At any one time point with decision variable w and expected loss function
L(w), the Bayesian emulation strategy is useful if/when there exists a purely synthetic
statistical model involving hypothetical random vectors (parameters, latent variables or
states) u, z and generating a posterior density p(u, z) under which the marginal mode of
u is theoretically equal to the optimal w in the portfolio decision. Minimizing L(w) can
then be approached by exploring p(u, z) with standard analytic and numerical methods
for posterior analysis. While novel in terms of our context and development, the basic
idea here goes back (at least) to Müller (1999). There, with discrete decision variables
in non-sequential design contexts, optimization is solved using a similar synthetic poste-
rior idea and combining optimization with estimation using Markov chain Monte Carlo
(MCMC). This approach has, surprisingly, seen limited development, although recent
work by Ekin et al. (2014) represents extension and new application. Our work here
is related while defining a broader emulating perspective and in creating a complete
separation of models/forecasting and decisions/optimization. We develop emulation of
portfolio decisions using forecast information from state-of-the-art multivariate depen-
dency network models (Zhao et al., 2016), treated as given. We then define the new
multi-step decision strategy for computing and revising Bayesian portfolios over time
based on these forecasts.

Section 2 summarizes the multi-step portfolio set-up in sequential forecasting. To
define and exemplify the emulation approach, we give summary details of its use in
multi-step portfolios with extensions of standard (myopic, constrained) quadratic loss
functions. Here the emulating synthetic statistical models are conditionally linear and
normal state-space models, i.e., dynamic linear models (DLMs), amenable to evaluation
using analytic forward filtering and backward smoothing (FFBS) methods. This is ex-
tended in Section 3 to a class of portfolios with sparsity-inducing penalties on portfolio
weights and turnover. The emulating models here also have state-space forms, but now
with non-normal structure. With augmented state-spaces, we can convert these to con-
ditional DLMs in which posterior evaluation and mode search are efficiently performed
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by combining FFBS with a customized EM method. Of directly related work, we note
that Kolm and Ritter (2015) recognized the relationship of constrained quadratic op-
timization for multi-step portfolios to posterior mode search in a synthetic DLM, and
considered a direct simulation approach to problems with sparsity-inducing loss func-
tions that are a special case of those we explore. Our main methodological contribution
based on Bayesian emulation for broad classes of decision problems is quite distinct and
novel, however.

Section 4 discusses new and fundamental questions about the definition of portfolio
loss functions and objectives in multi-step contexts, and a strategy for marginal mode
evaluation in cases where differences arise. A range of portfolio loss functions are then
evaluated in sequential forecasting and portfolio construction with a 9-dimensional se-
ries of daily foreign exhange (FX) prices. Section 5 discusses this, highlighting choices
of portfolio loss functions and objectives, and practical benefits arising with sparsity-
inducing, multi-step portfolio strategies. The latter shows the potential to improve port-
folio outcomes generally, and particularly in the presence of realistic assumptions about
transaction costs. Summary comments in Section 6 conclude the main paper. Appen-
dices provide technical details on optimization and on dynamic dependency network
models used for forecasting. The Appendices are available as on-line Supplementary
Material (Irie and West, 2018).

Notational Remarks: We use p(x|y) for a generic density of x given y. Normal,
exponential and gamma distributions are written as x ∼ N(μ,Σ), x ∼ Ex(m) with mean
1/m, and x ∼ G(a, b) with shape a and mean a/b; the values of their density functions
at a particular x are denoted by N(x|μ,Σ), Ex(x|m) and G(x|a, b), respectively. Indices
s, s + 1, . . . , t for s < t are shortened as s:t. The k-dimensional all-ones and all-zeros
vectors are 1k = (1, . . . , 1)′ and 0k = (0, . . . , 0)′, respectively, and 0 represents a zero
vector or matrix when dimensions are obvious.

2 Multi-Step Emulation: Constrained Quadratic Losses

2.1 Setting and Notation

Sequentially over time t=1, 2, . . . , we observe a k−vector asset price time series pt; the
returns vector rt has elements rjt = pjt/pj(t−1) − 1, (j = 1:k). At time t with current
information set Dt = {rt,Dt−1}, a model defines a forecast distribution for returns
at the next h time points. With no loss of generality and to simplify notation, take
current time t=0 with initial information set D0. Predicting ahead, the predictive mean
vectors and precision (inverse variance) matrices are denoted by ft = E[rt|D0] and
Kt = V [rt|D0]

−1 over the h−steps ahead t=1:h. The time t portfolio weight vector wt

has elements wjt, some of which may be negative reflecting short-selling. Standing at
t=0 with a current, known portfolio w0, stylized myopic (one-step) Markowitz analyses
are Bayesian decision problems focused on choosing w1 subject to constraints. Standard
mean-variance portfolios minimize w′

1K
−1
1 w1 subject to a chosen expected return target

m1 = w′
1f1, and usually a sum-to-one constraint w′

11k = 1, i.e., allowing only portfolios
closed to draw-down or additional investment.
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For multi-step portfolios, extend to consider the potential sequence of portfolio vec-
tors w1:h that might be realized over the next h periods. While the actual decision is to
choose w1, we are now interested in target returns and portfolio turnover control over
multiple steps, and so must consider how the decision analysis might play-out up to
time t=h. Consider multi-step (expected) loss functions of the form

L(w1:h) ≡ L(w1:h|D0) =

h∑
t=1

{
α−1
t (mt − f ′

twt)
2 + β−1

t w′
tK

−1
t wt + λ−1

t (wt − wt−1)
′W−

t (wt − wt−1)
}
,

(1)

where αt, βt and λt are specified positive weights defining relative contributions of
the terms in this sum, while W−

t is the (least-norm) generalized inverse of a specified
k×k positive-semi-definite matrix Wt, and will be the usual inverse in cases of positive-
definiteness. Also, D0 now includes the current portfolio vector w0.

The first set of terms in the sum involve specified multi-step target returns m1:h.
Individual investors typically prefer realized portfolios to progress relatively smoothly
towards an end-point target mh, rather than bouncing from high to low interim returns.
The weights αt can be used to increasingly emphasize the importance of later-stage
returns as t approaches h. Note that allowing αt → 0 theoretically implies the hard
constraint on expected return, f ′

twt = mt as in the standard myopic case. Hence we
refer to (1) as including “soft target constraints,” while having the ability to enforce
the hard constraint at the terminal point via sending αh to zero.

The second set of terms in (1) penalize portfolio uncertainty using the standard risk
measures V (w′

trt|D0) = w′
tK

−1
t wt, again allowing differential weighting as a function

of steps-ahead t. The final set of terms relates to portfolio turnover. If Wt = Ik these
terms penalize changes in allocations across all assets. If trades are at a fixed rate, this
is a direct transaction cost penalty; otherwise, it still relates directly to transactions
costs and so that terminology will be used. With a heavy emphasis on these terms – as
defined by the λt weights – optimal portfolios will be more stable over time, providing
less stress on investors (including emotional as well as workload stress for individual
investors). The Wt can play several constraint-related roles, as we discuss below.

2.2 Portfolio Optimization and Emulating Models

There are, of course, no new computational challenges to simple quadratic optimization
implied by (1). Key points are that it is easy to: (i) compute the joint optimizing values
w1:h, and (ii) deduce the one-step optimizing w1 for the Bayesian decision. Optimiza-
tion with respect to w1 alone can be immediately performed using a forward-backward
dynamic programming algorithm. Importantly, the optimizing value for w1 (or for any
subset of the wt) is – as a result of the quadratic nature of (1) – precisely that sub-vector
(or subset of vectors) arising at the global/joint maximizer w1:h.

The emulation idea translates the above concepts into a synthetic Bayesian model
immediately interpretable by statisticians. Rewrite (1) as
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e−
1
2L(w1:h) ∝

h∏
t=1

p(mt|wt)p(zt|wt)p(wt|wt−1) ≡ c p(w1:h|m1:h, z1:h, w0), (2)

where each p(·|·) term is a specific normal p.d.f., the m1:h, z1:h, w1:h are interpreted as
random quantities in a multivariate normal distribution underlying this density form,
and where each zt is set at zt = 0. Specifically, consider a dynamic linear model (DLM)
generating pairs of observations (mt, zt) – with mt scalar and zt a k−vector – based on
latent k−vector states wt via

mt = f ′
twt + νt, νt ∼ N(0, αt), (3)

zt = wt + εt, εt ∼ N(0, βtKt), (4)

wt = wt−1 + ωt, ωt ∼ N(0, λtWt) (5)

with a known initial state (the current portfolio) w0 and where the νt, εs, ωr are in-
dependent and mutually independent innovations sequences. In this model, observing
the sequence of synthetic observations m1:h, z1:h with z1:h = 0 immediately implies the
resulting posterior p(w1:h|m1:h, z1:h = 0, w0) as given in (2).

Observe that computing the minimizer of L(w1:h) is equivalent to calculating the pos-
terior mode for w1:h in the synthetic DLM. It is immediate that the required (marginal)
optimizing value for w1 is the marginal mode in this joint posterior. Since the joint pos-
terior is normal, marginal modes coincide with values at the joint mode, so we can regard
the Bayesian optimization as solved either way. We easily compute the mode of w1 using
the forward filtering, backward smoothing (FFBS) algorithm – akin to a Viterbi-style
optimization algorithm (e.g. Viterbi, 1967; Godsill et al., 2001, 2004) – widely used in
applications of DLMs (e.g. West and Harrison, 1997; Prado and West, 2010).

2.3 Imposing Linear Constraints

As noted above, some applications may desire a hard target mh at the terminal point,
and this is formally achieved by setting the synthetic variance αh = 0 in (3). The
multivariate normal posterior is singular due to the resulting constraint mh = f ′

hwh,
but this raises no new issues as the FFBS computations apply directly.

The general framework also applies with singular matrices Wt, now playing the roles
of the variance matrices of state innovations in (5). These arise to enforce linear port-
folio constraints Awt = a where a is a given n−vector and A is a full-rank n× k matrix
with n < k. Choose w0 to satisfy these constraints and ensure that each Wt is such
that AWt = 0. Then the priors and posteriors for the synthetic states wt are singular
and constrained such that Awt = a (almost surely). Again the FFBS analysis applies
directly to generate the optimal portfolio vector w1 – and the sequence of interim opti-
mizing values w1:h even though only w1 is used at t=0. This now involves propagating
singular normal posteriors for states, as is standard in, for example, constrained seasonal
DLMs (e.g. West and Harrison, 1997, sect. 8.4). A key portfolio case is the sum-to-one
constraint 1′kwt = 1 for all t. Here we redefine Wt beginning with the identity Ik –
representing equal and independent penalization of turnover across assets – and then
condition on the constraints to give rank k − 1 matrices Wt ≡ W = Ik − 1k1

′
k/k.
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3 Multi-Step Emulation: Constrained Laplace Losses

3.1 Basic Setting

Now consider modifications to (i) more aggressively limit switching in/out of specific
assets between time points – for both transaction and psychological cost considerations,
and to (ii) limit the numbers of assets invested at any time point. Several authors have
considered absolute loss/penalties to encourage shrinkage-to-zero of optimizing portfolio
vectors (e.g. Jagannathan and Ma, 2003; Brodie et al., 2009) and we build on this prior
work. Key points, however, are that such approaches have not been consistent with a
Bayesian decision analysis framework, while goals with respect to marginal versus joint
optimization in the multi-step context have been poorly understood and explored, and
require clarification. Our fully Bayesian emulation strategy adds to this literature while
also clarifying this critical latter point and defining relevant methodology.

The “Laplace loss” terminology relates to novel synthetic statistical models that
emulate portfolio optimization with absolute norm terms to penalize portfolio weight
changes. Modify (1) to the form

L(w1:h) ≡ L(w1:h|D0) =

h∑
t=1

{
α−1
t (mt − f ′

twt)
2 + β−1

t w′
tK

−1
t wt + 2λ−1

t 1′k|wt − wt−1|
}
,

(6)

where the final term now replaces the quadratic score with the sum of absolute changes
of asset weights 1′k|wt − wt−1| =

∑
j=1:k |wjt − wj,t−1|. Relative to (1), this aims to

more aggressively limit transaction costs, both monetary and psychological. Optimizing
globally over w1:h may/will encounter boundary values in which some portfolio weights
are unchanged between times t− 1 and t. This theoretical lasso-style fact is one reason
for the interest in such loss functions, due to the implied expectation of reduced portfolio
turnover – or “churn” – and hence reduced costs.

3.2 Emulating Dynamic Laplace Models

In parallel to Section 2.2, we identify a synthetic statistical model – again a state-
space model but now with non-normal evolution/transition components for the synthetic
latent states wt – of the form

mt = f ′
twt + νt, νt ∼ N(0, αt), (7)

zt = wt + εt, εt ∼ N(0, βtKt), (8)

wjt = wj,t−1 + ωjt, ωjt ∼ L(λ−1
t ), j = 1:k, (9)

where L(λ−1
t ) denotes the Laplace (double exponential) distribution – the p.d.f. for

each element is p(wjt|wj,t−1) = exp{−|wjt − wj,t−1|/λt}/(2λt). Also, the νt, εs, ωjr are
independent and mutually independent across the ranges of all suffices.

One of the immediate benefits of the Bayesian emulating model approach is that
we can exploit latent variable constructs. In particular here, the Laplace distributions
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are known to be scale mixtures of normals (Andrews and Mallows, 1974; West, 1984,
1987). Thus, there exist latent random quantities τjt > 0, (j=1:k, t=1:h), such that
τjt ∼ Ex(1/{2λ2

t}) independently over j, t, and based on which each synthetic state
evolution in (9) has the form

p(wjt|wj,t−1) =

∫ ∞

0

N(wjt|wj,t−1, τjt)Ex(τjt|1/{2λ2
t})dτjt. (10)

Augmenting by the vectors of latent scales τt = τ1:k,t, the evolutions in (9) become

wt = wt−1 +N(0,Wt), Wt = diag(τt), τjt : iid ∼ Ex(1/{2λ2
t}). (11)

This defines a conditionally normal DLM and the above/standard FFBS algorithm can
be used to evaluate the posterior mode of p(w1:h|W1:h,m1:h, z1:h) for any z1:h including
that at zero. To maximize over portfolios w1:h in the implied marginal with respect to
W1:h, Bayesian EM (e.g. Dempster et al., 1977) is the obvious and easily implemented
approach. Here the E-step applies to the latent W1:h, while FFBS gives the exact M-step
for w1:h at each iterate. In summary:

1. Initialization: Set each w
(0)
t arbitrarily. Candidates for initial values are the current

w0, or the trivially computed values that optimize the multi-step portfolios under
the quadratic loss of Section 2.

2. For EM iterates s = 1:S under a chosen stopping rule, repeat the following:.

• E-step: For j=1:k and t=1:h, update τjt via τ
(s+1)
jt = λ2

t |w
(s)
jt − w

(s)
j,t−1| to

give a new matrix W
(s+1)
t .

• M-step: Implement FFBS for the emulating model of (7) and (8) at zt = 0

and with augmented evolution in (11). This yields the exact mode w
(s+1)
1:h of

the synthetic posterior conditional on current W
(s+1)
1:h .

On stopping at iterate S, use w
(S)
1 as the approximate optimizing portfolio vector.

The addition of linear constraints modifies the Wt matrices with details extending
those of the normal model in Section 2.3. Write Vt = diag(τt). Then for the full-rank
set of n < k constraints Awt = a, the diagonal Wt ≡ Vt is replaced in (11) by singular
Wt = Vt−VtA

′(AVtA
′)−1AVt. In the key special case of sum-to-one constraints 1′kwt = 1

for all t, this reduces to Wt = diag(τt)− τtτ
′
t/(1

′
kτt).

3.3 Extended Laplace Loss for Sparser Portfolios

In the one-step, myopic context, penalizing portfolio variance w′
1K

−1
1 w1 with a term

proportional to 1′k|w1| =
∑

j=1:k |wjt| is an obvious strategy towards the goal of inducing
shrinkage to zero of optimized portfolio weights. As noted earlier, a number of recent
works have introduced such a lasso-style penalty directly on portfolio weights, rather
than on changes in weights, and with standard convex optimization algorithms for
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solution (e.g. Brodie et al., 2009) and demonstrating improved portfolio performance
in some cases (e.g. Jagannathan and Ma, 2003). We now integrate such penalties as
components of a more general class loss function embedded in the multi-step framework,
and develop the Bayesian emulation methodology for this novel context.

The shrinkage-inducing penalty 1′k|w1| aims to drive some subset of weights to zero –
exactly in the one-step, myopic context when balanced only by portfolio risk. A key point
to note is that, when the portfolio vector is also subject to the sum-to-one constraint,
then the combined loss function also more aggressively penalizes negative weights, i.e.,
short positions, and so is particularly of interest to personal investors and institutional
funds that generally adopt long positions. That is, the absolute weight penalty operates
as a soft constraint towards non-negative weights. In our broader context below, this
does not theoretically imply non-negative optimal weights, but does often yield such
solutions. Modify (6) to the form

L(w1:h) ≡ L(w1:h|D0) =

h∑
t=1

{
α−1
t (mt − f ′

twt)
2 + β−1

t w′
tK

−1
t wt + 2γ−1

t 1′k|wt|+ 2λ−1
t 1′k|wt − wt−1|

} (12)

with weights γt on the new absolute loss terms at each horizon t = 1:h. Extending
the latent variable construction of double exponential distributions to these terms in
addition to the turnover terms, we now see that optimizing (12) is equivalent to com-
puting the mode over states w1:h in a correspondingly extended synthetic DLM. This
emulating model is:

mt = f ′
twt +N(0, αt),

zt = wt +N(0, βtKt),

ut = wt +N(0, Ut), Ut = diag(φt), φjt : iid ∼ Ex(1/{2γ2
t }),

wt = wt−1 +N(0,Wt), Wt = diag(τt), τjt : iid ∼ Ex(1/{2λ2
t}),

(13)

with synthetic observations mt (scalar) and zt=ut=0 (k−vectors), and where latent
scales τt are augmented with additional terms φt = φ1:k,t for each t. Conditioning on
φjt converts the Laplace term exp(−|wjt|/γt) to a conditional normal. To incorporate
exact linear constraints on each wt, the above is modified only through the implied
changes to the Wt; this is precisely as detailed at the end of Section 3.2 above.

Extension of the FFBS/EM algorithm of Section 3.2 provides for computation of
the optimizing w1:h. Each E-step now applies to the latent U1:h as well as W1:h, while

the M-step applies as before to w1:h at each iterate. Following initialization at w
(0)
1:h, the

earlier details of iterates s = 1:S are modified as follows:

• E-step:

– Update the τjt via τ
(s+1)
jt = λ2

t |w
(s)
jt − w

(s)
j(t−1)| to give a new matrix W

(s+1)
t .

– Update the φjt via φ
(s+1)
jt = γ2

t |w
(s)
jt | to give a new matrix U

(s+1)
t .
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• M-step: FFBS applied to the extended emulating model (13) yields the exact mode

w
(s+1)
1:h of the synthetic posterior conditional on current U

(s+1)
1:h ,W

(s+1)
1:h .

The resulting w
(S)
1 defines the optimizing portfolio vector.

4 One-Step Decisions with Multi-Step Goals

4.1 Profiled Loss and Marginal Loss

In multi-step portfolio analysis, the decision faced at time t=0 is to choose w1 only.
The future weights w2:h are involved in the initial specification of the joint loss function
L(w1:h) in order to weigh expected fluctuations in risk and costs up to the target
horizon t=h. From the viewpoint of Bayesian decision theory, this is perfectly correct in
the context of the actual decision faced if the approach is understood to be minimizing

L(w1) = min
w2:h

L(w1:h). (14)

Joint optimization over w1:h to deliver the actionable vector w1 is Bayesian decision
analysis with this implied loss as a function of w1 alone.

The emulation framework provides an approach to computation, but also now sug-
gests an alternative loss specification. With emulating synthetic joint density p(w1:h),
minimizing the loss L(w1) above is equivalent to profiling out the future hypothetical
vectors w2:h by conditioning on their (joint) modal values. It is then natural to consider
the alternative of marginalization over w2:h; that is, define the implied marginal loss
function L∗(w1) as

L∗(w1) = −2 log {p(w1)} , p(w1) =

∫
p(w1:h)dw2:h. (15)

Call L(w1) the profiled loss function and L∗(w1) the marginal loss function.

In general, the resulting optimal vectors ŵ1 (profiled) and w∗
1 (marginal) will differ.

A key exception is the case of the quadratic loss function and normal synthetic models
of Section 2 where the joint posterior p(w1:h) is multivariate normal. In that case, joint
modes are joint means, whose elements are marginal means, i.e., ŵ1 = w∗

1 . The situation
is different in cases of non-normal emulating models, such based on the Laplace forms.
These are now considered further for comparisons of marginal and profile approaches.

4.2 Computing Marginal Portfolios under Laplace Loss

Return to the Laplace loss framework of Sections 3.1 and 3.2 (i.e., the extended Laplace
context with γt → ∞) with sum-to-one constraints. Here the key issues of profiled ver-
sus marginal losses are nicely illustrated. Similar features arise in the extended Laplace
loss context of Section 3.3, but with no new conceptual or practical issues so details
of that extension are left to the reader. The FFBS/EM algorithm easily computes the
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optimal profile portfolio ŵ1, but it does not immediately extend to evaluating the opti-

mal marginal portfolio w∗
1 . Of several approaches explored, the most useful is based on

MCMC analysis of the synthetic DLM, coupled with iterative, gradient-based numeri-

cal evaluation of the mode of the resulting Monte Carlo approximation to the required

marginal density function. Summary details are given here and further explored in ap-

plication in Section 5.

The density p(w1) is the w1 margin under the full joint posterior of (w1:h, τ1:h) where

τt = τ1:k,t is the vector of t−step ahead latent scales. The FFBS/EM approach is enabled

by the nice analytic forms of implied conditional posteriors; these also enable MCMC

analysis in this conditionally normal DLM with uncertain scale factors. This approach

is nowadays standard and easily implemented (e.g. West and Harrison, 1997, chapt. 15;

Prado and West, 2010, sect. 4.5). Now the FFBS is exploited to generate backward

sampling, rather than the backward smoothing that evaluates posterior modes. At each

MCMC iterate, FFBS applies to simulate one draw of the full trajectory of states w1:h

from the retrospective posterior p(w1:h|τ1:h) conditional on current values of the latent

scales. Then, conditional on this state trajectory, the conditional posterior p(τ1:h|w1:h)

is simulated to draw a new sample of the latent scales. In the emulating model of (11)

this second step involves a set of conditionally independent univariate draws, each from

a specific GIG (generalized inverse Gaussian) distribution. Applying the sum-to-one

constraint on each wt vector changes this structure for the τjt, however, and direct

sampling of the τjt is then not facile. To address this, we define a Metropolis-Hastings

extension for these elements to allow use of the constraint. Summary details of this, and

of MCMC convergence diagnostics related to the real-data application in Section 5, are

given in Appendix 1.

The MCMC generate samples indexed by superscript (i), i = 1:I, for some chosen

sample size I. The Rao-Blackwellized Monte Carlo approximation to the required margin

for w1 is then

p̂(w1) = I−1
∑
i=1:I

p(w1|τ (i)1:h). (16)

Importantly, this is the density of a mixture of I normals: each conditional p(w1|•) in
the sum is the implied normal margin in the DLM defined by conditioning values of

latent scales, with moments trivially computable via FFBS (using backward smoothing),

and the density values are easily evaluated at any w1. Thus the portfolio optimization

problem reduces to mode-finding in a mixture of multivariate normals, and there are

a number of numerical approaches to exploit for this. The most effective is really one

of the simplest – a Newton-type updating rule based on the first order derivative of

the density, with repeat searches based on multiple initial values for numerical iterates.

Relevant candidate initial values can be generated by evaluating the mixture at each of

the normal component means, and selecting some of those with highest mixture density.

Further details are noted in Appendix 1.
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5 Studies in FX Price Portfolios

5.1 Data

Evaluation of multi-step portfolios uses data on daily returns of k=9 financial series:

exchange rates of 9 international currencies (FX) relative to the US dollar; see Table 1.

The time series runs from August 8, 2000 to December 30, 2011. An initial period of

this data is used for exploratory analysis, followed by formal sequential filtering using a

multivariate dynamic model, as noted below. The main interest in portfolio evaluation

is then explored over the period of 500 days from January 1, 2009 to December 30, 2011.

Names Symbol Names Symbol

Australian Dollar AUD Swiss Franc CHF
Euro EUR British Pound GBP
Japanese Yen JPY New Zealand Dollar NZD
Canadian Dollar CAD Norwegian Kroner NOK
South African Rand ZAR

Table 1: Currencies.

5.2 Forecasting Model

Forecasts are generated from a time-varying, vector auto-regressive model of order

2 (TV-VAR(2), e.g. Primiceri, 2005; Nakajima and West, 2013a), with dynamic depen-

dence network structure (DDNM, Zhao et al., 2016). The core form of the model implies

a Cholesky-style representation of multivariate stochastic volatility in which dependence

parameters as well as variances evolve over time according to simple, discount-factor-

based random walks. The DDNM analysis is largely analytic and computationally simple

for forward-filtering, and multi-step forecasting is via direct simulation from coupled sets

of univariate conditional models. Exploratory analysis of the first 500 observations is

used to define the sparsity structure of the dynamic precision matrix for the TV-VAR

innovations, i.e., a sparse representation of multivariate volatility, following examples in

the above references. From day 501, the analysis is run sequentially in time, updating

and forecasting each day. The DDN structure enables analytic filtering and one-step

forecasting; forecasting multiple steps ahead in a TV-VAR with DDN structure is per-

formed by direct simulation into the future. For each day t during the investment period,

the model generates multiple-step ahead forecast mean vectors and variance matrices,

{ft+i,K
−1
t+i}i=1:h, given as Monte Carlo averages of 50000 forecast trajectories of the

return vectors rt+(1:h) simulated at time t. We take h=5 days as the portfolio horizon,

and reset the time index so that t= 0 represents the start of the investment period,

January 1, 2009. Appendix 2 provides detailed discussion of the DDN model, use of

exploratory training data, filtering and simulation-based forecasting.
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5.3 Parameters and Metrics

Comparisons summarized below used various values of the portfolio parameters in both
the quadratic/normal loss framework of Section 2 and the Laplace loss frameworks of
Section 3. In all cases, we take the target return schedule m1:h to be constant, with
mt = 0.0005 representing daily return targets of 0.05%, annualized (261 trading days)
to about 13.9%. Then, we have αt > 0 for t < h to define “soft” interim targets rather
than strictly enforcing the hard constraint αt = 0. The initial portfolio w0 is the myopic
Markowitz portfolio for comparison. Parameters αt, βt, λt, γt define relative weights of
the four components of loss. In a long-term context (e.g., when t indexes months or
more) some use of discounting into the future becomes relevant. For example, we may
take βt, λt, γt may be chosen to increase with t, but αt to decrease with t to more
aggressively target the soft targets as t approaches h, given the accurate and reliable
long-term predictions. In short-term contexts, such as with our 5−day context, this is
not relevant, so we take constant weights αt = α = 1, βt = β, λt = λ, γt = γ. Setting
α = 1 loses no loss of generality, as the remaining three weights are relative to α.
Examples use various values of β, λ, γ to highlight their impact on portfolio outcomes.
Larger values of β reduce the penalty for risk in terms of overall portfolio variance;
larger values of λ leads to more volatile portfolio dynamics due to reduced penalties
on transaction costs; and larger values of γ reduce shrinkage of portfolio weights, also
relaxing the penalties on shorting.

Portfolios are compared in several ways, key among which is cumulative return
over the investment period. With a fixed transaction cost of δ ≥ 0, time t optimal
portfolio vector wt and realized return vector rt, cumulative return Rt from the period
0:t is Rt = −1 +

∏
s=1:t{(rt + 1k)

′wt − δ1′k|wt − wt−1|}. In our examples, we compare
cases with δ = 0 and δ = 0.0001. This constraint on transaction cost can further be
generalized by replacing δ1′k by k-vector δt, implying the transaction costs are different
across currencies and also dynamic. Our example, however, still approximates the real
transaction rates as computed by bid-ask spreads; we observed that all 9 transaction
costs move around 0.0001. Also, it is important to note that actual transaction costs
observed as a result of the portfolio decision and outcome are distinct from penalties on
turnover in quadratic and/or Laplace-style loss functions. The penalizations on turnover
wt − wt−1 in such loss functions represent pre-decision preferences of the investor for
stable portfolios rather than a direct specification related to trading costs. Of course,
as noted in Section 2.1, a major weighting on such components of loss functions will
tend to drive down realized transaction costs as a result. We also compare our multi-
step portfolios with the standard one-step (myopic) Markowitz approach – naturally
expected to yield higher cumulative returns with no transaction costs as it then generates
much more volatile changes in portfolio weights day-to-day. Our portfolios constraining
turnover are naturally expected to improve this in terms of both stability of portfolios
and cumulative return in the presence of practically relevant, non-zero δ. Additional
metrics of interest are portfolio “risk” as traditionally measured by the realized portfolio
standard deviations (w′

tK
−1
t wt)

1/2, and patterns of volatility in trajectories of optimized
portfolio weights over time.

All computations are implemented in Ox (Doornik, 2007).
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5.4 Normal Loss Portfolios

First examples use the normal loss framework of Section 2 with β = 100. Figure 1 shows
trajectories over time of optimized portfolio weight vectors using λ = 100 and λ = 10000,
as well as those from the standard, myopic Markowitz analysis that corresponds to
λ → ∞. We see the increased smoothness of changes as λ decreases; at λ = 1 the
trajectories (not shown) are almost constant.

Figure 2 plots trajectories of cumulative returns for three normal loss portfolios (λ =
1, 100 and 10000) and for the Markowitz analysis. Markowitz and larger λ normal loss
portfolios performs best – in this metric – with no transaction costs; but the Markowitz
approach is very substantially out-performed by the smoother, multi-step portfolios
under even very modest transaction costs (δ = 0.0001). Smaller λ induces portfolios
more robust to transaction costs. Of note here is that, as seen in the differences between
returns with λ = 100 and 10000, during 2009 following the financial crisis, portfolios
with larger λ benefit as they are less constrained in adapting. However, later into 2010
and 2011, portfolios with lower λ are more profitable as they define ideal allocations
with less switching and therefore save on transaction costs.

Figure 3 shows trajectories of realized standard deviations of optimized portfolios, i.e.
(w′

tK
−1
t wt)

1/2 over time, for each of the portfolios in Figure 2, relative to the theoretical
lower bound trajectory (1′kK

−1
t 1k)

−1/2 from the myopic, one-step, minimum variance
portfolio. Less constrained portfolios with larger λ have lower standard deviations,
approaching those of the Markowitz portfolio while also generating smoother changes
in portfolio weights and higher cumulative returns. Thus, these portfolios are improved
in these latter metrics at the cost of only modest increases in traditional portfolio “risk.”
The relationship between λ and realized standard deviations is monotone; the larger λ
is, the more adaptive the portfolio becomes and the more aggresive in minimizing its
expected risk. Although this interpretation seems natural and general, other applications
show that this is not always true; a very low value of λ yielding an almost constant
portfolio over time might be able to control risk at a level not matched by modestly
more adaptive portfolios.

In addition, the comparison with the return trajectory in Figure 2 implies that, in
times of higher currency volatility, the portfolios are less profitable. One point to make
is that this relates partly to emphasis on targeting trajectories of expected portfolio
returns, as the resulting risk of portfolios is then naturally increased as a function of
increasing targets. In institutional settings it is more traditional to target risk directly,
i.e., to place a heavier weight on controlling the variance of portfolios at the cost of
typically lower returns. Modified loss functions, or current loss functions with much
higher values of α and lower values of β, would address this while not impacting on the
emulation methodology.

5.5 Extended Laplace Loss Portfolios

We explore similar graphical summaries from analyses using the extended Laplace loss
framework of Section 3.3, and with sum-to-one constraints. Figure 4 shows optimal
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Figure 1: Trajectories of optimal portfolio weights under normal loss with β = 100,
λ = 100 (upper) and λ = 10000 (center), compared to traditional Markowitz weights
(lower).
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Figure 2: Cumulative returns from normal loss portfolios with β = 100 and λ = 1 (red),
100 (blue), 10000 (green), together with Markowitz portfolios (pink). The transaction
cost is δ = 0 (upper) and 0.0001 (lower).

weight trajectories with α = 1 and β = 100, and with the different levels of penalization
of turnover and absolute weights, i.e., λ = 200, γ = 100. We see expected effects of
the two types of shrinkage – of changes in weights and in weights themselves. First, the
hard shrinkage of changes induces much less switching in portfolio allocation over time,
with longish periods of constants weights on subsets of equities. This occurs even with
larger λ where the portfolio becomes more volatile and similar to the Markowitz case.
Second, the penalty on absolute weights themselves, and implicitly on short positions
as a result in this context of sum-to-one weights, yields trajectories that are basically
non-negative on all equities over time. The joint optimization drives some of the weights
exactly to zero at some periods of time, indicating a less than full portfolio over these
periods. Furthermore, it is evident that there are periods where some of the weights
– while not zero – are shrunk to very small values, so that a practicable strategy of
imposing a small threshold would yield sparser portfolios – i.e., a “soft” sparsity feature.
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Figure 3: Trajectories of optimal portfolio standard deviations using normal loss with
β = 100, λ = 1 (red), 100 (blue), 10000 (green), the Markowitz portfolio (pink), devided
by the minimum variance portfolio.

Values λ > γ favor more stability/persistence in the portfolio allocations, and we see
more “stepwise” allocation switches rather than more volatile turnover. Conversely,
λ ≤ γ more aggressively favors no-shorting and encourages “soft” sparsity of allocations,
resulting in dynamically switching portfolio weights over, generally, fewer assets.

Figure 5 plots trajectories of cumulative returns for three extended Laplace loss
portfolios to show variation with the value of γ, together with one highly adaptive nor-
mal loss portfolio and the Markowitz analysis, for α = 1 and β = 100 fixed. Again
we compare cases with transaction cost δ = 0 and 0.0001. As with normal loss com-
parisons, all multi-step cases dominate the traditional Markowitz analysis under even
modest transaction costs. In addition, we now see the ability of the increasingly con-
strained multi-step Laplace portfolios to outperform unconstrained – and hence more
volatile – Markowitz as well as multi-step normal loss portfolios even when transactions
costs are zero or ignored. Then, cumulative returns with (λ, γ) = (100, 1000) are essen-
tially uniformly dominated after 2010 by those with (λ, γ) = (100, 10) and (100, 1000),
regardless of the existence of transaction costs in this example. This suggests values of γ
smaller than or comparable to λ to appropriately balance the two degrees of shrinkage
while maintaining relevant returns. One underlying reason for this is the encouragement
towards less volatile swings in weights to larger negative/positive values and towards
no-shorting as part of that, features that can lead to increased risk and transaction costs.

5.6 Comparison of Profiled and Marginal Loss Approaches

We now discuss some analysis summaries related to the discussion of profiled and
marginal losses of Section 4. As discussed in Section 4.2 we do this in the Laplace loss
framework of Sections 3.1 and 3.2 (i.e., with γ → ∞ in the extended context). First,
Figure 6 shows optimal weight trajectories with β = 100 and λ = 100, comparing the
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Figure 4: Trajectories of optimal portfolio weights (upper) and number of non-zero
portfolio weights (lower) using extended Laplace loss with β = 100, λ = 100 and
γ = 100.

profiled Laplace loss weights ŵ• of Section 3.2 with the marginal Laplace loss weights
w∗

• of Section 4. Both strategies generate positive weights on GBP, EUR, CAD and JPY
FX rates, with a number of the other assets having volatile or quite small weights for
longer periods of time. We see constant weights for long periods on adaptively updated
subsets of assets using the profiled weights, as expected; these trajectories are effectively
smoothed-out and shrunk towards zero under the marginal weights. The latter do not
exhibit the exact zero values that the former can, as we now understand is theoretically
implied by our representation via the emulating statistical model: marginal modes will
not be exactly at zero even when joint modes have subsets at zero.

Figure 7 plots trajectories of cumulative returns for both profiled and marginal port-
folios in each of the cases with λ = 100 and λ = 10000. With and without transaction
cost, the profiled and marginal portfolios are similarly lucrative whatever the value of
λ, whereas the profiled portfolios show greater differences. The performance of the two
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Figure 5: Cumulative returns from extended Laplace loss portfolios with β = 100,
λ = 100 and γ =10 (green), 100 (yellow) and 10000 (purple), together with those from
the normal loss portfolio with λ = 10000 (blue) and the Markowitz outcomes (pink).
The transaction cost is δ = 0 (upper) and 0.0001 (lower).

portfolios coincide uniformly and almost completely when λ = 10000, as expected; with-
out the transaction term in the synthetic model, the portfolio choice at each time point
is independent to one another, leading to the equivalence between profile and marginal
posteriors. In addition, not shown here, portfolios with smaller λ values define far more
stable weights while resulting in very similar cumulative returns under both profiled
and marginal strategies, as the resulting portfolio weights are very stable over time; this
extends this observation as already noted in the normal loss context in Section 5.4.

The marginal strategy tends to be less sensitive to λ than the profiled strategy,
suggesting relevance in a “conservative” investment context with respect to loss function
misspecification. Even with quite widely varying λ, resulting marginal loss portfolios will
be more stable, and far less susceptible to substantial changes and potential deterioration
in terms of cumulative returns, than profiled loss portfolios.
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Figure 6: Trajectories of optimal portfolio weights under Laplace loss with β = 100 and
λ = 100, showing profiled weights (upper) and marginal weights (lower).

6 Additional Comments

As noted in the introduction, our development of Bayesian emulation for decisions will
apply to various decision problems in which the resulting objective function to optimize
can be theoretically recast as a synthetic posterior distribution. We have anchored
presentation of the concept and resulting new methodology on the example of sequential,
multi-step portfolio decisions. Based on a novel class of personalistic utility functions
relevant for sequential portfolio decisions, the context illuminates the potential of the
emulation approach as well as providing useful practical examples and insights. By the
way, the paper has introduced these new classes of portfolio utility functions which,
coupled with the emulation methodology, now open the path to broader and more
detailed application in investment decision contexts.

In addition to showcasing the application of the concept of “Bayesian emulation for
decisions”, our interest in multi-step portfolios also highlights the central question of op-
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Figure 7: Cumulative returns with extended Laplace loss, comparing [profiled, λ = 100]
(red, dashed), [profiled, λ = 10000] (red, full), [marginal, λ = 100] (blue, dashed), and
[marginal, λ = 10000] (blue, full). The transaction cost is ignored; δ = 0.

timization for one-step decisions in the multi-step view; while specific numerical methods
using dynamic programming might be tuned and customized to a specific loss function
in this context, the Bayesian emulation approach opens up new approaches and suggests
new avenues for development. As we begin in our discussion of marginal versus profiled
loss functions, there is now opportunity to drive some part of the research agenda from
synthetic statistical models as a starting point, exploring and evaluating the implied loss
functions. There are interesting and open theoretical questions about the relationships
between marginal and profiled loss functions. In general, this relates to understanding
relationships between marginal and joint posterior modes in complicated multivariate
settings. In the portfolio context specifically, it will be of interest to explore connections
with other functional forms and shapes of investor utility functions, both personal and
institutional. Further, as discussed in the portfolio examples, a central applied focus will
require evaluation of investors’ preferences at a deeper level in order to more contex-
tually assess relevant values of the sets of weights (αt, βt, λt, γt) on components of loss
functions. Our empirical examples have illustrated the relative roles of these parameters
at a general level, but deployment in practice will involve context-specific elicitation as
well as robustness evaluations. In such studies, we would expect to see real practical
benefits in the use of the new utility functions, suggested by the initial examples here.
We have shown that versions of the Laplace loss functions generate multi-step portfo-
lios that consistently outperform traditional myopic approaches, both with and without
transaction costs; they define psychologically and practically attractive framework for
investors concerned about portfolio stability over multiple periods with defined targets.
These examples show the opportunity – through appropriate selection of loss function
parameters – for resulting portfolios to cushion the impacts of economically challenging
times for the market, and enhance recovery afterwards, as highlighted in the examples
using FX data over 2009–2012. Analysis and evaluation over longer time periods, and
in periods of more volatile market behavior such as experienced during 2007–2009, will
need to address questions of whether relative weights on components of utility functions
might be modified as a function of market conditions, among other things.
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In addition to developing a richer case study to explore and better understand the
new classes of portfolio utilities introduced here, one specific, current direction is to
define classes of non-normal, state-space models with skewed innovation/error distribu-
tions that induce asymmetric loss functions. A key idea here is to use discrete/mean-scale
mixtures of normals for the innovation/error distributions, so maintaining the ability to
use MCMC coupled with FFBS/EM methods for mode-finding while generating a very
rich class of resulting loss functions. One key and desirable feature of the latter, in partic-
ular, is to represent high penalties on portfolio short-fall relative to moderate or expected
gains. This direction, and others opened-up by the “Bayesian emulation for decisions”
approach, offers potential for impact on research frontiers in statistics and decision the-
ory as well as productive application in financial portfolio development and other areas.

Supplementary Material

Supplementary Material of Bayesian Emulation for Multi-Step Optimization in Decision
Problems (DOI: 10.1214/18-BA1105SUPP; .pdf).
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