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Learning Markov Equivalence Classes
of Directed Acyclic Graphs: An Objective Bayes
Approach

Federico Castelletti*, Guido Consonnif, Marco L. Della Vedova!, and Stefano Peluso®

Abstract. A Markov equivalence class contains all the Directed Acyclic Graphs
(DAGS) encoding the same conditional independencies, and is represented by a
Completed Partially Directed Acyclic Graph (CPDAG), also named Essential
Graph (EG). We approach the problem of model selection among noncausal sparse
Gaussian DAGs by directly scoring EGs, using an objective Bayes method. Specif-
ically, we construct objective priors for model selection based on the Fractional
Bayes Factor, leading to a closed form expression for the marginal likelihood of an
EG. Next we propose a Markov Chain Monte Carlo (MCMC) strategy to explore
the space of EGs using sparsity constraints, and illustrate the performance of our
method on simulation studies, as well as on a real dataset. Our method provides a
coherent quantification of inferential uncertainty, requires minimal prior specifica-
tion, and shows to be competitive in learning the structure of the data-generating
EG when compared to alternative state-of-the-art algorithms.

Keywords: Bayesian model selection, CPDAG, essential graph, fractional Bayes
factor, graphical model.

1 Introduction

Graphical models based on Directed Acyclic Graphs (DAGs) are widely used to repre-
sent dependency relationships among potentially many variables; see Lauritzen (1996),
Cowell et al. (1999), Koller and Friedman (2009). Applications of DAG models in var-
ious scientific areas abound, especially in genomics; see for instance Friedman (2004),
Sachs et al. (2005), Shojaie and Michailidis (2009), Nagarajan and Scutari (2013). DAGs
are also used for causal inference; see Pearl (2000) for a scholarly treatment and Pearl
(2003) for a more expository overview. For the benefit of the reader we summarize in
Section 2.1 the basics of graph theory used in this paper.

Within a noncausal framework, a DAG encodes conditional independencies of the
variables in the graph determined using the notion of d-separation (Pearl, 2000). Under
faithfulness, these independencies are exactly those entailed by the joint distribution
of the variables. However, it is well known that different DAGs can encode the same
set of conditional independencies, and thus one cannot distinguish between DAGs using
observational data; see Chickering (2002). All DAGs encoding the same conditional in-
dependencies form a Markov equivalence class, which can be represented by a completed
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partially directed acyclic graph (CPDAG) (Chickering, 2002), also called essential graph
(EG) by Andersson et al. (1997a). An EG is a particular chain graph (CG) whose chain
components are decomposable undirected graphs (UG) linked by arrowheads; see Lau-
ritzen (1996) for all relevant graph-theoretic definitions. Typically the structure of a
DAG governing the joint distribution of the observations is unknown; accordingly our
goal, from a noncausal perspective, is to learn the underlying EG.

Although there are fewer EGs than DAGs, their number still increases super-exponen-
tially with the number of vertices (Gillispie and Perlman, 2002). For this reason, struc-
tural learning in the space of EGs has been confined to small graphs. An early paper
which explores the space of EGs by means of Markov chains is Madigan et al. (1996),
followed by Castelo and Perlman (2004), and more recently by Sonntag et al. (2015).
He et al. (2013) propose a reversible irreducible Markov chain for sparse EGs, having
fewer edges than a small multiple of the number of vertices.

From a statistical perspective, learning an EG is a problem in model selection which
we tackle through the Bayes factor (Kass and Raftery, 1995), and adopting an objective
Bayes (OB) approach, requiring minimal input from the user; see Berger and Pericchi
(1996) and Pericchi (2005) for an overview. Additionally, we rely on a method for
the construction of parameter priors for the selection of DAGs, originally laid out in
Geiger and Heckerman (2002), subsequently revisited and implemented from an OB
perspective in Consonni and La Rocca (2012) for Gaussian DAG models, and extended
to the multivariate regression setting in Consonni et al. (2017).

The contribution of this paper is twofold: i) we enhance the OB methodology for
sparse DAG selection by learning directly the Markov equivalence class generating the
observations, that is the corresponding EG; ii) we develop an MCMC strategy to explore
the space of EGs.

The rest of this paper is organized as follows. Section 2 contains some background
material on EGs, on objective priors for model selection (with special emphasis on
the fractional Bayes factor), and on recent results on marginal likelihoods for Gaussian
multivariate regression DAG models with objective priors. The latter are used in Section
3 to compute the marginal likelihood of an EG, whilst Section 4 contains a detailed
description of the MCMC method adopted to explore the space of EGs. Section 5
applies the methodology to a few simulation settings and to the analysis of the protein-
signaling data presented in Sachs et al. (2005). Finally, Section 6 presents some points
for discussion.

2 Background
2.1 Essential graphs

We consider a multivariate setting comprising ¢ variables, wherein interest centers on
the dependencies among such variables. The data are represented by g-dimensional
i.i.d. observations yi, ..., ¥y, from a parametric family of sampling distributions, where
vi = (Yi1, - - - ,yiq)T, i =1,...,n. We use graphs to encode dependencies. To this end, we
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provide below some basic graph terminology which is useful to understand our method;
further notions and details may be found for instance in the book of Lauritzen (1996).

A graph G is a pair (V, E), where V is a finite set of vertices, and E C V x V is a set
of edges. If (u,v) € E, but (v,u) ¢ E, we say that G contains the directed edge u — v. If
(u,v) € E, and (v,u) € E, we say that G contains the undirected edge u—v. We assume
that G contains no loop v — u. An undirected graph (UG) contains only edges of type
u — v, while a directed graph contains only directed edges. A path in G is a sequence
of vertices vg,v1,...,v,, such that, for all ¢ = 1,...,m, either G contains v;_1; — v; or
G contains v;_1 — v;. A path is undirected when it only consists of undirected edges,
otherwise it is semidirected. A cycle is a path such that vy = v,,. If a directed graph
has no cycles, then it is a directed acyclic graph (DAG), and we denote it by D. A
chain graph (CG) is a graph that may contain both directed and undirected edges, but
is adicyclic, that is, it has no semidirected cycles. A consistent extension of a CG G is
a DAG on the same underlying set of edges, with the same orientations on the directed
edges of G and the same set of v-structures (Dor and Tarsi, 1992). Two distinct vertices
of a CG @G belong to the same chain component when they are joined by an undirected
path. Let T denote the set of chain components of G. Because of adicyclicity, we can
regard T as the “vertex” set of a DAG containing 7 — 7/, 7 € 7, 7/ € T if and only if
G contains u — v for some u € 7 and v € 7. We denote with G4 = (A, E4), A CV, the
subgraph of G = (V, E) induced by A, whose edge set is E4 = E'[) A x A. The subgraph
of G induced by any given chain component 7 € T, G, is an UG.

Each of the ¢ variables is associated to a vertex of a graph G whose structure will
constrain the distribution of each observation y;. More specifically, we assume that
the distribution of y; satisfies conditional independencies which are all encoded in the
graph (Markov property determined by G); see Lauritzen (1996, sect. 3.2). The resulting
sampling family is called a graphical model, which for simplicity we may still label as G.

Let D be a DAG with vertex set V', and let [D] denote its Markov equivalence class,
that is, the set of all DAGs with vertex set V' that determine the same graphical model.
It is known that D’ € [D] if and only if D and D’ have the same skeleton (that is
are equal as UG) and immoralities (induced subgraphs of the form u — v <+ 2); see
Verma and Pearl (1991). Additionally, the class [D] is uniquely determined by the EG
D* = U{D’| D’ € [D]}, where the union is to be interpreted over the edge sets, so that
©—vin D and v — w in D’ gives w — v in D*. An important result of Andersson et al.
(1997a) is the characterization of those graphs that may occur as an EG.

Theorem 1. (Andersson et al., 1997a, Thm. 4.1) A graph G = (V, E) is the EG D* for
some DAG D with vertex set V if and only if G satisfies the following four conditions:
(i) G is a CG; (it) for each chain component T € T the subgraph G, is a decomposable
UG; (i) G has no flags (no induced subgraphs of the form u — v—z); (iv) each directed
edge u — v contained in G is strongly protected (as in Definition 3.8 of Andersson et al.,
1997a)

From the theory presented in Andersson et al. (2001) and Drton and Eichler (2006),
the joint density of y; relative to the CG G factorizes as
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fo(yi10g) = [ fo. Wir |Yipag(r): 0a,); (1)
T€T

where y; » = (yi5, J € 7)T denotes the subvector of y; whose components are indexed
by the vertices in 7 C V, and similarly for Yipag(r), With pag (1) the parents of T in G,
i.e., the set of all u € V such that u — v is contained in G for some v € 7. In expression
(1) g is the global parameter indexing the graphical model, whereas 8¢ is a local
parameter indexing the conditional sampling distribution of y; - given y; pa(r)- If we
let Og € Og and Og, € Og_, we find Og = X, c7 Og_, ie., the components Og_s of g
are variation independent (Drton and Eichler, 2006).

In the sequel we collect all n observations into a single n x ¢ matrix Y by stacking
the n row-vectors y{ ,..., ¥y, :

Y = : . (2)
Yn
A similar definition holds for the n x |7| matrix Y7, and for the n x |pag(7)| matrix
Yya, (), Where |7] is the cardinality of 7, and similarly for [pag(7)|.

Recall that the observations, conditionally on 8¢, are i.i.d.; whence

fg (Y | 09) = H H fgr (yi,T | yi7pag (1) OQT)

i=17€T

= I fo. (¥ | Yyag(r): 0.)- (3)
TET

Since the 0.s are variation independent, we can further assume that the prior on 6g
factorizes as

p(0g) = ] r(6g.); (4)

TET

see also Castelo and Perlman (2004). Condition (4) extends the assumption of global
(parameter) independence, which is typical for DAG models (Cowell et al., 1999, p. 193),
to CG models. In this way we obtain

mg(Y) = . fo(Y |6g)p(0g)dOg

H o ng (YT | nag (1) 097— )p(egr )dagr
TET gr

= H mg. (YT | Ypag(T))v (5)
TET

so that the marginal distribution for the data matrix admits the same CG factorization
that holds under the sampling distribution (3).
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2.2 Fractional marginal likelihoods

We assume that the reader is familiar with the basic concepts of model selection from
the Bayesian perspective, as described for instance in O’Hagan and Forster (2004, ch. 7).
Here we provide some background on objective Bayes model selection.

Let Mq,..., Mg be a collection of Bayesian models for the data matrix Y. Each
model My, k=1,..., K, consists of a family of sampling densities faq, (Y | %), indexed
by a model specific parameter 8, and of a prior density p(0x) on By, which we assume
to be proper. We focus on the computation of m, (Y) = [ fam, (Y | 0x)p(6k)d0y, the
marginal density of Y under My, also known as the marglnal likelihood of M. We
set p(8) = pP(04), where the latter is some default objective parameter prior, such as
the Jeffreys’ prior or the more general reference prior (Berger et al., 2009). However,
objective priors are often improper and they cannot be naively used to compute marginal
likelihoods, even when the result is finite and non-zero, because of the presence of
arbitrary constants which do not cancel out in their ratios; see Pericchi (2005) for a
review of several proposals to address this issue. In this paper, we adopt the fractional
Bayes factor originally introduced by O’Hagan (1995).

Let b = b(n), 0 < b < 1, be a fraction of the number of observations n. Define the
fractional marginal likelihood of model My, as

J Fri (Y | 85)p" (65)d6;,
J £34, (Y 1 0)pP (01)d6) "
where R (Y [6r) = (fam, (Y | 6x))? is the sampling density under model M, raised to

the b-th power, and the two integrals are assumed to be finite and non-zero. Equation (6)
can be rewritten as

mmy, (Y; b) =

(6)

e, (Y5b) = / P(Y | 00)pF (61 | b, Y )6,

where pf'(0;]b,Y) ka(Y|9k)p (0k) is the implied fractional prior (actually a
“posterior” based on the fractional likelihood and the default prior). Notice that the
fractional likelihood utilizes all the data, and not part of the data; it is actually a
discounted full likelihood.

Usually b is chosen to be small, so that the dependence of the prior on the data will
be weak. Model selection consistency is achieved provided b — 0 for n — oo. (O’Hagan,
1995, sect. 4). A default choice is b = ng/n, where ng is the minimal (integer) training
sample size which makes the induced fractional prior proper. Other choices are possible,
but Moreno (1997) argues in favor of the default choice, and we follow suit. In the sequel
we simply write maq, (Y') when the choice of b is understood.

2.3 Gaussian multivariate regression DAG models

We say that the random matrix Y follows the matriz normal distribution with mean
matrix M, row covariance matrix ®, and column covariance matrix 3, written

Y|M7(I)72NNn,q(Ma(I)vz)a (7)
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when vec(Y') follows the multivariate normal distribution with mean vector vec(M)
and covariance matrix 3 ® ®; see Gupta and Nagar (2000, p. 55), and Dawid (1981) for
more details. For any two matrices A and B, vec(A) denotes the column vector obtained
by stacking the columns of A, while A ® B is the Kronecker product of A and B.

Let Q be a ¢ x ¢ unconstrained s.p.d. random matrix. We will write Q ~ W, (a, R)
to mean that Q follows a Wishart distribution with density

1 a a—qg—1 1
Q) = e |RIF |0 exp{——trmR)}, ®)
27 Fq(§) 2

when Q s.p.d., and p(€2) = 0, otherwise. In (8) R is a ¢ X ¢ s.p.d. matrix, a is a scalar

a(g—1) q a 1—751 - . .
1 =1 I'(§ + —5?) is the g-dimensional

gamma function evaluated at a/2 (generalizing I'(a/2) = [~ 25 ~te~*dz).

strictly greater than ¢ — 1, and I'y(§) = 7

Consonni et al. (2017) describe an objective Bayes method for model selection within
the class of Gaussian multivariate regression DAG models

Y |B,Qp ~ N, (XB, I, 95", (9)

where Y is the n x ¢ matrix of observations on the responses, X the n x (p + 1)
design matrix of the observations on the p exogenous variables (plus an additional
column vector with all entries equal to 1 to account for the intercept term), B the
(p+ 1) X ¢ matrix of unconstrained regression parameters, and Qp the ¢ X ¢ precision
matrix (inverse of the covariance matrix) assumed to be Markov with respect to a
DAG D. This means that, if there is no directed edge from vertex u to vertex v, then
Puv-{1,...0} = 0, (1 < u < v <gq)in any well-numbering of the vertices, where py,.x
is the sampling partial correlation between y;,, and y;, given (y;x |k € K \ {u,v}) for
{u,v} € K C V; see Drton and Perlman (2008, formula (2.7)). Alternative ways of
expressing the Markov property of a Gaussian DAG model are available, e.g., in terms
of the Choleski decomposition of Qp.

To start with, assume that the DAG D in (9) is complete, i.e., all pairs of edges are
present, so that there are no conditional independencies among the ¢ responses. In this
case, the precision matrix, which we denote simply with €2, is symmetric and positive
definite (s.p.d.) but otherwise unconstrained. The methodology presented in Geiger
and Heckerman (2002) for the construction of parameter priors under DAG models
was employed in Consonni and La Rocca (2012) for Gaussian DAGs, and extended
by Consonni et al. (2017) to the Gaussian multivariate regression setup, leading to an
objective Bayes methodology for graphical model selection based on the fractional Bayes
factor. The key-point is that the fractional prior on (B, Q) is conjugate to the likelihood
under the complete DAG model. A very important point to be noticed is that, when the
likelihood is written recursively as the product of the conditional density of each node
given its predecessors, the local parameters indexing each conditional density become
stochastically independent under the fractional prior, allowing the application of the
methodology of Geiger and Heckerman (2002) for obtaining the prior under any DAG
model, and eventually its marginal likelihood.
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Of special interest for this paper is the case in which the precision matrix in (9)
is Markov with respect to a decomposable UG G. Since the class of decomposable UG
models is strictly smaller than the class of DAG models (Andersson et al., 1997b)
the above fractional Bayes factor methodology allows to compute also the marginal
likelihood of G,

_ Hcgc m(Ye|X)
HSeS m(Ys|X)’

see Consonni et al. (2017, formula (28)), where conditioning on X is tacitly assumed.
In (10) C is the set of cliques, and S the set of separators, of the decomposable graph G
(Lauritzen, 1996), while Y is the submatrix of responses belonging to C' € C, with a
similar interpretation for Ys. It is crucial to remark that, in the right-hand-side of (10),
m(Yc|X) is computed under any complete graph (hence the lack of a subscript) and
similarly for m(Ygs|X).

mg(Y|X) (10)

Expression (10) will be used in Subsection 3.2 to obtain the marginal likelihood of
an EG.

3 Gaussian essential graphs

3.1 Likelihood factorization

We consider observations yi, ..., ¥y, which, conditionally on their mean vector p and
their precision matrix Qp are i.i.d. Nq(u,ﬂgl), with Qp Markov with respect to a
DAG D.

Now consider the EG G for the equivalence class of D, and the factorization in the
first display of (3). It is easy to verify that

fg. (yi,‘r | Yipag(r)> 997) = MTI (yi,‘r ‘ pr+Tx (yi,pag('r) - Ni,pag('r))v Qéf)a (11)

or equivalently, letting o = p — Fr#i,pag(r)»

fo. Wi | Yipag(r),06.) = Nir|(Uir | 0 + Loy pag (1), g, (12)

where p; = E(y; - |, Qp), I'; is the matrix of regression parameters and g, is the
conditional precision matrix, i.e. Q;Tl = Var(y;.r | Yipag(r)s Qg ).

Collecting terms we can write
fo. (Yir | Yipag(r) 0g.) = ./\/’l-,—‘ (Yi,r | B;rxiﬂ—’ Qg}), (13)
where T
1 «
T = ; Br= . 14
’ [ Yipag(r) } { r } (4

Notice that the matrix B, consists of unconstrained components; this happens because
the EG G has no flags (Theorem 1).
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Letting
],
X, = : ; (15)
T,
we can write
YT|XT3BT)QQ7- NNn,\Tl(X‘rBTaIn7Q§T1)7 (16)
so that
fQ(Y“l'aQQ): HNn,\T|(K'|XTBT,Invn§T1)» (17)

T€T

where X is the collection (column binding) of the Xs.

3.2 Marginal likelihood

Formula (17) shows that the formal structure of each term indexed by 7 is that of
a multivariate Gaussian regression model whose precision matrix is Markov w.r.t. a
decomposable UG; this is the setting described in Section 2.3. We now detail the calcu-
lations leading to the marginal likelihood mg_(Y; | X;).

Because of global parameter independence (4), we only need to specify priors sepa-
rately under each chain component 7. Let €2, denote the precision matrix of the variables
in 7 under a complete graph. A default prior on (B, 2;), with Q. s.p.d., is

ap—|rl—1

pD(BﬂQT) o [T, (18)

which is flexible enough to accommodate different default choices. In particular, setting
ap = |7| — 1, gives pP(B,, Q) o |2,]|71, which is the prior discussed in Geisser and
Cornfield (1963).

Using the prior (18), and setting the fraction b equal to ng/n, ng < n, the fractional
prior for model (16) is given by

aptng—Iri-1

pF(BT’QT) o« (92| 2

o u(0-{(B-~B)TC. (B~ B 1R }) (19)

where B, = (XJX,)"'X]Y,, E. = (Y, — X,B,), C, = n"'XJX,, and R, =
n~lE]E,. Formula (19) can be expressed as

B; | Q; ~ Mpag(7)|+1,|‘r\ (BAT? (noé‘r)_17 9;1)7 (203)
Q ~ Wir(ap +no — |pag(r)| — 1, noR.). (20b)

The prior characterized by the density in (19), or by the hierarchical structure in (20),
belongs to the family of matriz normal Wishart distributions, and is conjugate to the
sampling model (16). It is proper under two conditions: i) ap + ng — |pag(7)| > |7
ii) n > ||+ |pag(7)|; see Consonni et al. (2017). Condition ii) is a sparsity condition on
the graph structure. Condition i) becomes ng > |pag(7)|+ 1, upon setting ap = |7|— 1.
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As described below in (22), to compute the marginal density of Y, given X, we
need an expression for the density of selected columns of Y.

In general, let J C 7 and denote with Y, the submatrix of Y, containing the
columns corresponding to the variables in J. Using formula (22) of Consonni et al.
(2017), we get

ap+n—pag (r)|~1-17]
L) ( = 3 )

v X _ _(n*'f;o)lJ\
mr(¥ir| X7) = ap+no—|pag(r)|—1—|J]|
Ly 5
ngH Lentno=17D _—
e
(=2) BT Bl =3, (21)

where J = 7\ J, so that |J| = |7| — |J], and EAJ,T =(Y;, - XTBJJ-), with BJJ- =
(X]X.)7'X]Y;,. Recall that G, is decomposable; let C, be the set of (maximal)
cliques of G, and let S; be the corresponding set of separators. Then using (10)

_ HCeCT m, (Yo - | X7)
l_IsesT m;(Ys,- | Xr)
We compute m, (Yo, | X;) and m,(Ys- | X,) in (22) by setting J = C and J = 5,

respectively, in (21). Finally, using (5), we can recover the overall marginal distribution
of Y under G by multiplying the terms given in (22)

mg(Y) = H mg, (Y- | X7), (23)
TET

mg, (Y; | X,)

(22)

which from a model choice perspective represents the marginal likelihood of G.

4 An MCMC algorithm on equivalence classes of DAGs

In this section we describe in detail an MCMC algorithm to investigate the posterior
distribution on the space of essential graphs, which we name EG-space. Because the
number of Essential Graphs grows super-exponentially in the number of nodes (Gillispie
and Perlman, 2002), and a full enumeration of the EGs is not feasible (Madigan et al.,
1996), the posterior probability of each EG is only available up to a normalizing con-
stant. We therefore resort to an MCMC algorithm to approximate the posterior distri-
bution across EGs. Specifically, we first sample an EG from a candidate distribution,
which is accepted with a probability given by a Metropolis-Hastings ratio defined to
guarantee the convergence of the algorithm to the correct posterior distribution. The
starting point of our sampler is He et al. (2013), who propose a reversible irreducible
Markov chain on Markov equivalence classes of DAGs. We use their Markov chain as a
proposal distribution in a Metropolis-Hastings algorithm whose target is the posterior
distribution on the EG-space.

Let S, be the set of all EGs having ¢ nodes and S any subset of S,. In a sparse setting,
S can be the set of all EGs on ¢ nodes having fewer edges than a specified threshold
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M. Let G € S denote an EG belonging to the space S. He et al. (2013) introduce a
suitable set of operators that determine the transition from G to G’ € S through a local
modification of G. We say that G’ is a direct successor of G if G’ can be reached from G
in a single transition. Given an EG G they consider six types of operators: inserting an
undirected edge (denoted by InsertU), deleting an undirected edge (DeleteU), inserting
a directed edge (InsertD), deleting a directed edge (DeleteD), converting two adjacent
undirected edges in a v-structure (MakeV) and converting a v-structure in two adjacent
undirected edges (RemoveV). Each operator is then characterized by two features: its
type, and the edges it modifies (notice that MakeV and RemoveV may modify two
edges). The modified graph of an operator on G is the same as G except for the modified
edges. The modified graph of an operator on G need not be an EG in general (see
He et al. 2013, Supplement). Nevertheless such an operator can still be valid, in the
sense that it might result in a transition to an EG. This is substantially different from
other authors, e.g. Madigan et al. (1996), who only allow moves leading directly to an
EG, thus significantly reducing the number of possible transitions from each state (an
EG) of the chain. In summary: the modified graph is not required to be an EG, but
only a chain graph that admits a consistent extension, whilst the direct successor is the
EG corresponding to the Markov Equivalence class of such consistent extension, and
represents the final output of a Markov chain move. For detailed examples we refer the
reader to He et al. (2013, Supplement).

The collection of operators in He et al. (2013) is perfect; this means that such
operators induce a Markov chain on a set of EGs guaranteed to have the following
desirable properties: a) for any G’ direct successor of G, the modified graph of an operator
is a CG with a consistent extension and all modified edges in the modified graph occur
in G’ (validity), b) there is a unique operator that transforms G in G’ (distinguishability),
¢) starting from G, there is a positive probability of reaching any other EG in S via a
sequence of operators (irreducibility), d) if G’ is a direct successor of G, then G is also
a direct successor of G’ (reversibility). Let Og be the set of perfect operators on G and
O = UgesOg. Each operator og € Og determines the transition of G into another EG
G’ (one of its direct successors). The Markov chain {G;} defined on S is such that the
probability of transition from G to G’ is

pg.g = 1/|0g, (24)

if G’ is a direct successor of G € S and 0 otherwise. It follows from (24) that all
direct successors of G have the same probability of being reached for any given G.
Furthermore, we remark that the adoption of different types of operators, as those
proposed by Madigan et al. (1996), might result in extra-connectivity among the states
of the model space (Chickering, 2002), that is in a higher number of direct successors,
but it could cause a loss of some of the above-mentioned properties of the Markov chain.

Let mg(Y') be the marginal likelihood for model G; see (23). Additionally, let p(G)
be a prior on G, and ¢(- | G) a proposal distribution on & when the chain is in state G.
In order to have an appropriate posterior sample of EGs, the transition from G to G/,
is accepted with probability

mg (Y) p(G) q(G|G) } _ (25)

o mm{l; mg(Y) (@) 4(G10)
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In the sequel a proposal is taken to be a step in the Markov chain of He et al. (2013),
so that ¢(G' | G) = 1/|Og| in accord with (24)

Briefly, an MCMC algorithm on the space S can be constructed as follows. Starting
from an arbitrary Go, fort = 1,...,T: (1) set G = G;_1; (2) generate G’ from the proposal
q(G"| G); (3) compute the probability of acceptance « in (25); (4) update G; = G’ with
probability «, G; = G;_1 with probability 1 — a.

We assign a prior to G through a prior on the adjacency matrix of G*, where G* is
the skeleton of G (same edges as in G, but with no orientation):

u iid .
g(j) ‘71— ~ Ber(w), J = 173‘1((171)/27
m ~ Beta(a,b), (26)

where QEJJ.) is the j-th element of the vectorized lower triangular part of the adjacency
matrix of G*, and ¢(¢ — 1)/2 is the maximum number of edges in an EG on ¢ nodes.
A similar prior on the space of decomposable UG was also implemented in Bhadra and
Mallick (2013) in the context of covariate-adjusted graphical model selection. Notice
that the prior on G only depends on the skeleton of the graph: two EGs with the same
number of edges (directed or undirected) will be assigned the same prior probability.
Alternative priors, specifically targeted to EGs, are not available in the literature to our
knowledge, and would be beyond the scope of the present paper. The ratio between the
prior assigned to the proposed EG G’ and the current G is then

p@) T +a) T 11+0)
p@)  T(gGl+a) 1 (@ — 1G]+ b) ’

(27)

where |G| denotes the number of edges in G. A common choice is @ = b = 1 so that
7w ~ Unif(0, 1). However, to favor sparsity, we can set a < b, so that E(w) < 0.5. Our
choiceisa =1,b = (2¢—2)/3—1, whence E(7) = 3/(2¢—2), which resembles the sparse
simulation setting as defined in Peters and Bithlmann (2014). We note however that all
the results given below are generally insensitive to the choice of a and b, because the ratio
of marginal likelihoods mg:/(Y)/mg(Y’) is by far the leading factor in the acceptance
probability of the proposed EG given in (25). Since the marginal likelihood of the EG
appears to be the driving force in the MCMC algorithm, one can reasonably expect that
results will also be insensitive to prior specifications on graph space alternative to (26).

5 Simulations and real data analysis

In the present section we compare our methodology, which henceforth we name Objec-
tive Bayes Essential graph Search (OBES) for easier reference, with a few benchmark
methods, namely: i) Greedy Equivalence Search (GES); ii) PC algorithm (PC); iii)
Greedy DAG Search (GDS). The GES algorithm is a search-and-score method which
provides an estimate of the true EG using the greedy equivalence search algorithm of
Chickering (2002). Through additions and deletions of single edges, GES maximizes a
score function in the space of the EGs, with a modification introduced by Hauser and
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Bithlmann (2012) to improve estimation performance. The PC algorithm is a constraint-
based method (Spirtes et al., 2000) which outputs an estimate of the true EG using a
sequence of conditional independence tests. The skeleton is estimated using an order-
independent modified version (Colombo and Maathuis, 2014) of the original PC al-
gorithm, and the edges are directed following the orientation rules in Algorithm 2 of
Kalisch and Biihlmann (2007). Finally, the GDS algorithm (Chickering, 2002; Hauser
and Biithlmann, 2012) estimates the true EG by greedily optimizing a score function
in the space of DAGs. The GDS is viewed as a suboptimal alternative, because greedy
search takes place in the space of DAGs instead of EGs. As a consequence it is more
prone to be stuck in local optima of the score function, and is expected to yield worse
results than GES. We include GDS in our comparative study to highlight the usefulness
of operating directly on the space of EGs. We remark that, while each of the above
algorithms results in a single graph, OBES provides a richer output, that is an approxi-
mation of the posterior distribution on the space of EGs. This in turn allows to quantify
probabilistically our uncertainty not only on the structure of the true EG, but also on
interesting related features, such as the number of directed or undirected edges, the
number of v-structures, as well as multiple-edge inclusion probabilities. For comparison
purposes we analyse a variety of simulation scenarios, and a real data set.

5.1 Simulation studies

A simulation framework is characterized by the pair (¢, n), where ¢ € {5,10,20} is the
number of nodes and n € {50,100,200} the sample size, giving rise to nine scenarios.
A total of 50 datasets, corresponding to 50 true EGs, are generated in each scenario.
Following Peters and Bithlmann (2014), each dataset is obtained as follows: we randomly
generate a topologically ordered DAG with probability of edge inclusion peqge = 3/(2¢—
2). The DAG thus obtained implies the following set of equations

Yij=pi+ Y. BuVik+eiy, i=1...n j=1...4q (28)

kepa(j)
where g; ; ~ N (0,032) independently. For each j we fix u; = 0 and generate each O'JQ-
from a Unif(0,2), while the regression coefficients S ; are uniformly chosen in the
interval [—1, —0.1] U [0.1, 1]. Datasets of size n are then generated accordingly. In order
to compare the EG estimates we need to obtain, for each randomly generated DAG,
the corresponding EG (the true EG). This is done through the function dag2essgraph
in the R package pcalg; see Hauser and Biithlmann (2012) for details.

With regard to OBES, a few pilot runs are used as a diagnostic tool to evaluate
MCMC convergence and mixing relative to some graph feature. OBES relies on the
method by He et al. (2013), which allows to constrain the EG-space to a subspace with
no more than a given number of edges, so that sparsity of the EG can be introduced
to improve structural learning. Specifically, we require that the number of edges is not
higher than 1.5 the number of nodes. This threshold is well above the number of edges
expected in the true EG in each simulation scenario described above (4, 8 and 15 edges
respectively for 5, 10 and 20 nodes), and it is in line with the average sparsity constraint
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in the simulation scenarios of He et al. (2013). For comparison purposes with the other
methods, an estimate of the true EG is also provided under OBES. To this end, define
the inclusion probability of the directed edge u — v as

pu—w(Y) = Z p(g | Y)a

GESu v

where S,_,, is the class of EGs containing the directed edge u — v (recall that an
undirected edge u — v is equivalent to u — v and v — w). The median probability
(graph) model is defined as the graph containing only those directed edges u — v
such that p,—,(Y) > 0.5. This definition is in accord with that of median probability
model introduced in a Gaussian regression setting by Barbieri and Berger (2004) where
it was shown to be predictively optimal. Peterson et al. (2015) also use the median
probability model for learning graph structures. In general, the median probability
model is not guaranteed to be an EG, but it is a partially directed acyclic graph (PDAG).
Accordingly, our final estimate is the projected median probability model built by first
generating a consistent extension of the median probability model and then deriving the
corresponding EG. According to Theorem 1 in Verma and Pearl (1991), all consistent
extensions of a PDAG, if they exist, belong to a unique Markov equivalence class, and
therefore any consistent extension of the median probability model will produce the
same EG. OBES only requires to specify the value of the hyperparameters a¢ and b in
the beta prior for the edge inclusion probability. However we found that results are
robust to the choice of a and b even in scenarios with small sample sizes. Based on
sparsity considerations, we use a = 1 and b = (2¢ — 2)/3 — 1.

With regard to the alternative benchmark methods under consideration, we note that
the output of the PC algorithm depends on the choice of the significance level employed
in a sequence of conditional tests. We present results for significance levels 1%, 5%
and 10%. The GES approach is computed for three different optimization criteria: the
Bayesian Information Criterion (Schwarz, 1978) and the Extended Bayesian Information
Criterion with tuning coefficient v € {0.5, 1} recommended in Foygel and Drton (2010);
see also Chen and Chen (2008).

Each method under comparison is evaluated using several performance indicators
measuring its effectiveness in recovering the true underlying EG. This is achieved by
comparing some features of the true EG with the corresponding ones in the estimated
EG produced by the method. We start with the Structural Hamming Distance (SHD),
which represents the number of edge insertions, deletions or flips needed to transform
the estimated EG into the true EG. Clearly lower values of SHD correspond to better
performances. The SHD for each method is reported in Figure 1 as a boxplot of the SHD
values over the 50 replicates. For OBES we report not only the final estimate OB Proj
(projected median probability model), but also the intermediate median probability
model (OB Med): this is done to highlight the impact of the consistent extension of
the PDAG to the CPDAG. For ¢ = 5, the space of EGs is relatively small, and all
methodologies perform similarly, regardless of the sample size, with our method always
better or equal to the best alternative. For higher number of nodes ¢, it becomes clear
that GDS is not competitive and suffers from exploring the space of DAGs instead of the
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Figure 1: Simulation studies. Structural Hamming distances between the estimated EGs
and the true EG, over 50 datasets, for number of nodes ¢ € {5, 10,20} and sample size
n € {50,100,200}. The performances are measured for our intermediate output, the
median probability model (OB Med), our final estimate, the projected median probability
model (OB Proj), the GDS algorithm (GDS), the GES algorithm with tuning parameter
equal to 0, 0.5 and 1 (respectively GES 0, GES 0.5 and GES 1), and the PC algorithm
at significance levels 1%, 5% and 10% (respectively PC 0.01, PC 0.05 and PC 0.1).

space of EGs. All methods improve their performance as the sample size increases. OBES
remains highly competitive in all scenarios, only slightly underperfoming relative to the
best GES methods in one scenario. The very slight difference between OB Med and OB
Proj shows that the impact of the consistent extension is minimal. For each scenario
and method we also evaluate the performance in learning the graphical structure of
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OB Proj GDS GES O GES 0.5 GES1 PC0.01 PC0.05 PC 0.1

MISR 8.24 13.07 11.04 8.44  8.64 9.20 8.78 8.98
SPE 97.81 93.24 94.70 97.82 98.69 98.56 98.01 97.34
n =50 SEN 51.63 49.43 54.06 49.90 40.99 38.81 46.77  50.36
PRE 75.10 48.69 56.78 74.56 78.79 76.72 73.57  69.89
MCC 60.58 49.35 54.98 59.11  55.17 53.29 57.20 57.93
MISR 7.98 10.80  9.00 749 7.44 7.49 7.62 7.93
SPE 96.99 93.93 95.94 97.95 98.61 98.71 98.10 97.37
n =100 SEN 60.07 61.14 60.67 57.01 51.77 51.31 54.98 58.54
PRE 73.00 56.60 64.29 78.21 83.04 83.15 77.10  72.82
MCC 64.39 57.74 61.36 64.74 62.99 63.28 63.72  64.01
MISR 4.67 8.69 542 4.67  4.84 5.62 5.16 5.80
SPE 98.30 95.08 97.81 98.96 99.12 99.02 98.75  98.08
n =200 SEN 75.96 70.10 75.21 71.56  69.13 64.38 69.80 69.92
PRE 85.52 66.36 81.54 89.66 90.78 89.50 88.30 82.41
MCC 78.99 66.60 76.85 78.18 77.18 73.82 76.64 74.08

Table 1: Simulation studies. Misspecification rate (MISR), specificity (SPE), sensitivity
(SEN), precision (PRE) and Matthews correlation coefficient (MCC) for all methods
under comparison, for number of nodes ¢ = 10 and sample size n € {50, 100, 200}.

the EG in terms of misspecification rate, specificity, sensitivity, precision and Matthews
correlation coefficient, defined as
_ FN4FP _ _TN _ _ TP
MISR = W=D SPE = 7x1rp: SEN = 7525w,
MCC — TP-TN—FP-FN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)’

PRE

_ _TP
~ TP+FP>

where TP, TN, FP, FN are the numbers of true positives, true negatives, false positives
and false negatives (respectively). The results in the simulation settings with number
of nodes ¢ = 10 and n € {50,100, 200} are summarized in Table 1: with the exception
of MISR, better performances correspond to higher indicators. The table decomposes
the raw performances of Figure 1 in finer measures: for all indicators and scenarios,
OBES is better than GES 0.5, GES 1, PC 0.01 and PC 0.05 most of the time, and it
is almost uniformly better than the alternatives GDS, GES 0 and PC 0.1. Results not
shown here for the sake of brevity also confirm that OBES is broadly insensitive to the
choice of tuning parameters. On the other hand, from Table 1 it is evident that the
tuning parameter of GES highly affects its performance, with simulation results giving
no clear indication of superiority between GES 0.5 and GES 1. Similar considerations
apply to the significance level of PC, with no clear-cut ranking between PC 0.01 and PC
0.05, and with PC 0.1 always outperformed. The tables for the remaining scenarios with
q = 5 and ¢ = 20 are similar, and for this reason they are not reported. Also, similar
results hold in terms of learning the skeleton of the graph, that is when directionality
of edges in the estimated and true graph is ignored.

We investigate the computational time of the proposed methodology as a function of
the number of nodes ¢ and of the sample size n: in the left panel of Figure 2 we report the
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Figure 2: Simulation studies. Computational time (in seconds) of 1000 MCMC iterations
of OBES, as a function of the sample size n for fixed number of nodes ¢ = 20 (left panel)
and as a function of ¢ for n = 1000 (right panel), averaged over 50 simulated datasets.

time in seconds required by our algorithm to perform 1000 MCMC iterations for ¢ = 20
and n between 50 and 10000, whilst in the right panel we show the computational
time for n = 1000 and ¢ between 5 and 500 (all the results we quote are averages
over 50 simulated datasets). The codes are written in R and Python, and were run
on a 2 x Intel(R) Xeon(R) CPU E5-2687W v3 3.10GHz machine. The computational
burden of the alternative methodologies is generally lower; on the other hand OBES
is based on an MCMC algorithm that not only provides a point estimate of the EG,
but also an approximation of the whole posterior distribution over the EG-space. The
fastest methods are the two GES approaches under the Extended Bayesian Information
Criterion, whose computing times are on average three seconds in the worst scenario.
Exceptions are the GES under the Bayesian Information Criterion and the PC algorithm
with significance level 1%. Both algorithms are more time consuming in the scenario
with ¢ = 500: in particular the PC algorithm shows an average computing time of
approximately 70 minutes (4200 seconds).

5.2 Protein-signaling dataset

The data, provided as a supplement to Sachs et al. (2005), include the levels of eleven
phosphorylated proteins and phospholipids quantified using flow cytometry under nine
different experimental conditions, each with sample size in the range 700-1000. In the
original work of Sachs et al. (2005), the objective was to infer a single DAG, whilst
Friedman et al. (2008) used the same dataset to learn a single undirected graph. More
recently, Peterson et al. (2015) analyzed this protein dataset to infer an undirected
graph for each of the nine conditions, allowing for the possibility of shared structural
features among graphs. Our focus instead is on learning the structure of the generating
EG, independently in each of the nine experimental conditions. In Table 2 we report
the SHDs between OBES and the estimates provided by the alternative methodologies
in each of the nine scenarios. To save space, we restrict the output of the analysis to the
first experimental condition, and to the benchmarks GDS, GES with v = 0.5 and PC
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with significance level 0.01 (those with a better performance in the simulation studies).
Similar results hold for the other experimental conditions and for the variants of GES
and PC. The last line of Table 2 reports the number of edges in the EG estimate under
OBES (|Gosrs|)- When this information is taken into account, it appears that the
number of modifications required to convert the estimate under each benchmark to the
estimate under OBES is generally small.

Dataset 1 2 3 4 5 6 7 8 9
GDS 3 0 2 1 0 4 0 0 0
GES 0 0 2 5 3 4 4 0 0 0
GES05 0 3 o 1 0 0 2 0 0
GES 1 1 4 o 0 3 1 5 0 0
pPCo001 0 3 0O 0 5 0 7 0 0
PC005 0 3 5 0 6 4 4 0 0
PC 0.1 7 0 8 0 6 3 3 0 0
|Gogrs| 8 11 10 7 10 9 11 11 10

Table 2: Protein-signaling data. Structural Hamming distances between the estimated
EG under OBES, and the one estimated by the alternative methods (rows of the table)
under different experimental conditions (columns of the table). Number of edges in the
EG estimate under OBES (last line).

As clarified in Section 5.1, our final EG estimate is the projected median probability
model. The median probability model specifies a threshold for edge inclusion of 50%. By
varying this threshold one obtains distinct projected quantile probability models. Each
such model represents an EG estimate with specific graph features. Figure 3 reports for
a grid of thresholds, the distribution of four selected graph features. We also indicate the
value of each feature under GES 0.5, PC 0.01 and GDS. It appears that OBES always
exhibits a prevailing value coinciding with that under the two best alternatives. On the
other hand, GDS deviates to some extent from this pattern. The output of Figure 3 is
confirmed in the graphs of Figures 4 and 5: EG estimates under OBES, GES 0.5 and
PC 0.01 coincide, whilst GDS does not detect a v-structure created by 10 — 9 < 11.

As already recalled, an advantage of OBES is that it accounts for model uncertainty
in a principled way through the posterior distribution on the space of EGs. In particular
we can evaluate the uncertainty of edge inclusion by computing the marginal posterior
probability of inclusion for each directed edge u — v. These probabilities are reported
in the heat map of Figure 4, which exhibits sparsity with a clear indication for the
presence of some edges. Specifically we can recognize the six undirected edges together
with the v-structure 10 — 9 + 11 Finally, we report in Figure 6 the MCMC trace plots
of the number of undirected and directed edges, chain components and v-structures, for
the EGs visited at each MCMC iteration.

6 Discussion

Observational data cannot distinguish among Directed Acyclic Graphs (DAGs) encoding
the same set of conditional independencies, that is among Markov equivalent DAGs.
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Figure 6: Protein-signaling data. First experimental condition. MCMC trace plots of
visited EGs features: number of undirected and directed edges, chain components and
v-structures.

Each Markov equivalence class is represented by a special chain graph, known as CPDAG
or Essential Graph (EG). In this paper we have presented an objective Bayes method
to learn the structure of the EG generating the data. Building on recent results for the
objective Bayesian comparison of Gaussian multivariate regression graphical models
(Consonni et al., 2017), we obtain a closed form expression for the marginal likelihood
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of an EG. Next we construct an MCMC sampler that explores the space of EGs under
sparsity constraints. We apply the proposed methodology, named OBES, to simulated
and real datasets, and provide comparisons with state-of-the-art benchmark methods
in the literature. We illustrate on simulated datasets that OBES is competitive with
GES under the Extended BIC, and it outperforms GES under BIC, GDS and the PC
algorithm in producing a point estimate of the underlying EG. On the other hand, our
method yields a posterior distribution on the space of the EGs. Accordingly, it can
provide not only single estimate of the EG, but also an uncertainty evaluation of other
features of interest, such as the probability of inclusion of a particular edge. Finally,
being objective, it is virtually free from prior specifications.

Besides the fractional Bayes factor adopted in this paper, there exist a few other
general methods for the construction of objective priors for Bayesian model comparison,
such as the Intrinsic prior (Berger and Pericchi, 1996) and the Expected Posterior Prior
(EPP) of Peréz and Berger (2002), and variants thereof as in Consonni et al. (2013) or
Fouskakis et al. (2015). A more principled setup is presented in Bayarri et al. (2012). An
appealing feature of the priors produced by the above methods is that they are not data-
dependent. They have been successfully implemented in the classic scenario of variable
selection for Gaussian linear models although the expression of the model marginal
likelihood may be analytically available only up to an integral; see for instance Womack
et al. (2014) for the case of intrinsic priors. Outside linear regression the implementation
of the above priors becomes even more burdensome; see for instance Fouskakis et al.
(2017) in the setting of generalized linear models using (power) EPP.

Computational expediency is however not the only reason for using the fractional
Bayes factor as an objective Bayes method in the context of graphical models. The
methodology of Geiger and Heckerman (2002), which we adopt, requires that the prior
on the parameter of the complete DAG induces global parameter independence; in that
paper the Normal Wishart distribution is shown to be the only prior which satisfies this
condition when the number of variables is at least three. Global parameter indepen-
dence is crucial for the marginal likelihood to be Markov with respect to the underlying
DAG, and conjugacy affords a closed-form expression. The same concept is expressed
by the strong hyper-Markov property of Dawid and Lauritzen (1993). Finally Con-
sonni et al. (2017) extended the analysis to the multivariate regression setting showing
that the conjugate matrix Normal Wishart prior also induces global parameter inde-
pendence, and that the fractional prior belongs to this conjugate family. This result
has been instrumental in deriving the marginal likelihood of an essential graph in this
paper. Of course one could argue that any proper matrix Normal Wishart prior would
be equally valid; however its specification would be problematic because the parame-
ter entails a covariance matrix (possibly high-dimensional). Additionally, resorting to
“vagueness” assumptions, in order to alleviate the elicitation task, is hardly a solution
in a model selection context even when the prior is proper; see Pericchi (2005, Sect. 1.6).
Finally other desirable features that priors for model selection should satisfy, such as
compatibility (Consonni and Veronese, 2008), could be hardly expressed in a subjective
elicitation, thus reinforcing our motivation for an objective approach. Specifically, the
use of a fraction of the likelihood to update the default parameter prior under each
model establishes a connection between distributions across models.
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DAGs can be used to model data that are not only observational, as in the current
paper, but also interventional, produced by exogenous perturbations of variables, or
by randomized intervention experiments; see Hauser and Bithlmann (2015). The ensu-
ing intervention distribution is still amenable to a factorization similar to that holding
in the observational case (Pearl, 2000), and one can define the interventional Markov
equivalence class. The latter can be appreciably smaller than the corresponding class in
the observational setting, thus improving the identifiability of the true data generating
DAG. Similarly, the interventional essential graph (I-EG) will contain fewer undirected
edges than its observational counterpart, because some will be oriented through inter-
ventions (He and Geng, 2008). Additionally, Hauser and Biithlmann (2012) show that
I-EGs are still chain graphs with decomposable chain components. Such a characteri-
zation is important because it makes our approach feasible also for the computation of
the marginal likelihood when both interventional and observational data are available.
From the computational viewpoint one should extend the Markov chain of He et al.
(2013) to the I-EG space, thus extending OBES to this setting, too.

The protein-signaling dataset was collected under nine distinct experimental con-
ditions. As a consequence, nine distinct graphical structures could be considered. The
basic choice is to estimate them separately, as we did in Subsection 5.2. Another pos-
sibility is to analyze them jointly in order to exploit potential shared features among
graphs, in the hope of improving inference through Bayesian borrowing strength. Joint
structural learning for multiple Gaussian undirected graphical models is carried out in
Peterson et al. (2015) through a suitable Markov random field prior which encourages
common edges, as well as a spike-and-slab prior on the parameters that measure network
relatedness. While an extension of our methodology to infer multiple essential graphs
with a shared structure is beyond the scope of the present work, it is conceptually
feasible and is currently under investigation.
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