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ON OPTIMAL DESIGNS FOR NONREGULAR MODELS

BY YI LIN∗, RYAN MARTIN† AND MIN YANG∗

University of Illinois at Chicago∗ and North Carolina State University†

Classically, Fisher information is the relevant object in defining optimal
experimental designs. However, for models that lack certain regularity, the
Fisher information does not exist, and hence, there is no notion of design op-
timality available in the literature. This article seeks to fill the gap by propos-
ing a so-called Hellinger information, which generalizes Fisher information
in the sense that the two measures agree in regular problems, but the former
also exists for certain types of nonregular problems. We derive a Hellinger
information inequality, showing that Hellinger information defines a lower
bound on the local minimax risk of estimators. This provides a connection
between features of the underlying model—in particular, the design—and
the performance of estimators, motivating the use of this new Hellinger in-
formation for nonregular optimal design problems. Hellinger optimal designs
are derived for several nonregular regression problems, with numerical re-
sults empirically demonstrating the efficiency of these designs compared to
alternatives.

1. Introduction. Optimal experimental design is a classical problem with
substantial recent developments. For example, Biedermann, Dette and Zhu (2006),
Dette et al. (2008), Feller et al. (2017) and Schorning et al. (2017) studied opti-
mal designs for dose-response models; Dette, Pepelyshev and Zhigljavsky (2016)
and Dette, Konstantinou and Zhigljavsky (2017) investigated optimal designs for
correlated observations; Dror and Steinberg (2006) and Gotwalt, Jones and Stein-
berg (2009) studied robustness issues in optimal designs; López-Fidalgo, Tommasi
and Trandafir (2007), Waterhouse et al. (2008), Biedermann, Dette and Hoffmann
(2009), Dette and Titoff (2009), and Dette et al. (2018) studied optimal discrimina-
tion designs; Biedermann, Dette and Woods (2011) studied optimal design for ad-
ditive partially nonlinear models; Yu (2011), Yang, Biedermann and Tang (2013),
Sagnol and Harman (2015) and Harman and Benková (2017) investigated algo-
rithms for deriving optimal designs; and Yang and Stufken (2009), Yang (2010),
Dette and Melas (2011), Yang and Stufken (2012) and Dette and Schorning (2013)
built a new theoretical framework for studying optimal designs. The focus of these
developments has been exclusively on regular models that enjoy certain normal
features asymptotically, such as generalized linear models. However, certain non-
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regular models may be appropriate in practical applications (e.g., Chernozhukov
and Hong (2004), Hirose and Lai (1997), Cousineau (2009)). In particular, Smith
(1994) describes a class of nonregular linear regression models,

y = x�θ + ε,

where the error ε is nonnegative, which implies a nonregular model for y, given
x, since its distribution has θ -dependent support. Such models are useful if the
goal is to study extremes; for example, x�θ might represent the lower bound on
remission time when a patient is subjected to treatment settings described by the
vector x. To date, there is no literature on optimal designs for cases like this, and
the goal of this paper is to fill this gap by developing an approach to optimal design
in nonregular problems.

Toward formulating a design problem in a nonregular model, the first obstacle
is that the Fisher information matrix—the fundamental object in the classical op-
timal design context—does not exist. To overcome this, we draw inspiration from
recent work on the development of noninformative priors in the Bayesian context,
thereby backtracking the path taken by Lindley (1956) and Bernardo (1979) from
information in an experiment to noninformative priors. In particular, Shemyakin
(2014) proposes an alternative to Fisher information and generalizes the noninfor-
mative prior construction of Jeffreys. An important feature of the Fisher informa-
tion is how it describes the local behavior of the Hellinger distance (see Section 2),
leading to its connection to estimator quality via the information inequality. Un-
fortunately, the role that Shemyakin’s information plays in the local approximation
of Hellinger distance for multiparameter models remains unclear; see Remark 2.
Since a connection to the quality of estimators is essential to our efforts to define a
meaningful notion of optimal designs, we take an alternative approach where the
focus is on a local approximation of Hellinger distance.

We start by looking at the local behavior of the squared Hellinger distance be-
tween models Pθ and Pϑ , for ϑ ≈ θ . In the regular cases, there is a local quadratic
approximation to the squared distance and the Fisher information matrix appears
in the approximating quadratic form. In nonregular problems, by definition, the
squared Hellinger distance is not locally quadratic, so there is no reason to ex-
pect that an “information matrix” can be extracted from this approximation. In
fact, not being differentiable in quadratic mean implies that the Hellinger distance
is continuous at θ , but not differentiable, so important features of the local ap-
proximation will generally depend on both the magnitude and the direction of the
departure of ϑ from θ . From the local Hellinger distance approximation for a given
direction, we define a direction-dependent Hellinger information, which is addi-
tive like Fisher information for independent data, and establish a corresponding
information inequality that suitably lower-bounds the risk function of an arbitrary
estimator along that direction. The direction-dependence is removed via profiling,
and the result is a locally minimax lower bound on the risk of arbitrary estimators,
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which is inversely related to our direction-free Hellinger information. Therefore,
just like in the familiar Cramér–Rao inequality for regular models, larger Hellinger
information means a smaller lower bound and, consequently, better estimation in
terms of risk.

The established connection between our Hellinger information for nonregular
models and the quality of estimators provides a natural path to approach the op-
timal design problem. In particular, our Hellinger information depends on the de-
sign, so we define the optimal design as one that maximizes the Hellinger informa-
tion. The intuition, just like in the regular case, is that maximizing the information
minimizes the lower bound on the risk, thereby leading to improved estimation.
If the model happens to be regular, then our proposed optimal design corresponds
to the classical E-optimal design that maximizes the minimum eigenvalue of the
Fisher information matrix, so the new approach at least has intuitive appeal. After
formally defining the notion of optimal design in this context, we develop some
novel theoretical results, in particular a complete class theorem for symmetric de-
signs in the context of nonregular polynomial regression. This theorem, along with
some special cases presented in Propositions 4–5, suggests the potential for a line
of developments parallel to that for regular models.

The remainder of the paper is organized as follows. Section 2 sets our notation
and briefly reviews the Fisher information and its properties under regularity con-
ditions. We relax those regularity conditions in Section 3 and develop a notion of
Hellinger information for certain nonregular models. The main result of the paper,
Theorem 1, establishes a connection between this Hellinger information and the
quality of estimators, thus paving the way for a framework of optimal designs for
nonregular models in Section 4. Some specific nonregular regression models are
considered in Section 5, and we derive some analytical optimality results and some
numerical demonstrations of the improved efficiency of the optimal designs over
other designs. Some concluding remarks are given in Section 6 and proofs of the
two main theorems are presented in the Appendix; the remaining details are given
in the Supplementary Material (Lin, Martin and Yang (2019)).

2. Review of information in regular models. The proposed model assumes
that the Y-valued observations Y1, . . . , Yn are independent, and the marginal dis-
tribution of Yi is Pi,θ , where θ is a fixed and unknown parameter in � ⊆ R

d . For
example, Pi,θ might be a distribution that depends on both the parameter θ and a
fixed covariate vector xi . We will further assume that, for each i = 1, . . . , n, Pi,θ

has a density pi,θ with respect to a fixed dominating σ -finite measure μ. When the
index i is not important, and there is no risk of confusion, we will drop the index
and write simply pθ for the density function with respect to μ.

It is common to assume that the model is regular in the sense that θ �→ pi,θ (y)

is smooth for each y, and that θ -derivatives of expectations can be evaluated by
interchanging differentiation and integration. For example, under conditions (6.6)
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in Lehmann and Casella (1998), one can define the d ×d Fisher information matrix
Ii(θ), whose (k, �) entry is given by

(1) Eθ

{
∂

∂θk

logpi,θ (Yi) · ∂

∂θ�

logpi,θ (Yi)

}
, k, � = 1, . . . , d.

The Fisher information matrix can be defined in broader generality for families
of distributions with a differentiability in quadratic mean property (e.g., Pollard
(1997), van der Vaart (1998)). That is, assume that there exists a function �̇θ , typi-
cally the gradient of logpθ , taking values in R

d , such that∫ (
p

1/2
θ+ε − p

1/2
θ − 1

2
ε��̇θp

1/2
θ

)2
dμ = o

(‖ε‖2)
, ε → 0,

where ‖ · ‖ denotes the �2-norm. Then the Fisher information matrix exists and
is given by the formula I (θ) = ∫

�̇θ �̇
�
θ pθ dμ. If we let H(Pθ ,Pϑ), denote the

Hellinger distance and define h as

h(θ;ϑ) ≡ H 2(Pθ ,Pϑ) :=
∫ (

p
1/2
θ − p

1/2
ϑ

)2
dμ = 2 − 2

∫
(pθpϑ)1/2 dμ,

then the above condition amounts to h being locally quadratic:

h(θ; θ + ε) = 1

4
ε�I (θ)ε + o

(‖ε‖2)
.

Therefore, a model is regular if the squared Hellinger distance is locally approxi-
mately quadratic, with the Fisher information matrix characterizing that quadratic
approximation. This is the description of Fisher information that we will attempt
to extend to the nonregular case below.

Recall, also, that Fisher information is additive under independence. That is, if
Y1, . . . , Yn are independent, with Yi ∼ pi,θ , regular as above for each i, then the
Fisher information in the sample of size n satisfies

In(θ) =
n∑

i=1

Ii(θ),

where Ii(θ) is the Fisher information matrix in (1) based on pi,θ alone. This prop-
erty has a nice interpretation: larger samples have more information.

Under differentiability in quadratic mean, one can prove an information in-
equality which states that, for any unbiased estimator T = T (Y1, . . . , Yn) of
m(θ) = Eθ(T ) ∈ R with finite second moment, the variance is lower-bounded and
satisfies

Vθ(T ) ≥ ṁ(θ)�In(θ)−1ṁ(θ),

where ṁ(θ) is the gradient of m(θ); see Pollard (2005). The information inequality
above, and its various extensions, establishes a fundamental connection between
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the quality of an estimator—in this case, the variance of an unbiased estimator—
and the Fisher information matrix. This connection has been essential to the devel-
opment of optimal design theory and practice since the quality of an estimator can
be “optimized” by choosing a design that makes the quadratic form in the lower
bound as small as possible, or the Fisher information as large as possible.

Finally, differentiability in quadratic mean implies local asymptotic normality
(e.g., van der Vaart (1998), Theorem 7.2) which is almost all one needs to show
that maximum likelihood estimators are efficient in the sense that they attain the
information inequality lower bound (e.g., van der Vaart (1998), Theorem 7.12).
Therefore, in sufficiently regular problems, there is a general procedure for con-
structing high-quality estimators, and that the quality of such estimators is con-
trolled by the Fisher information matrix. The remainder of this paper is concerned
with nonregular cases and, unfortunately, these differ from their regular counter-
parts in several fundamental ways. First, the Fisher information is not well defined
in nonregular cases, so we have no general way of measuring the quality of es-
timators. Second, one cannot rely on maximum likelihood for constructing good
estimators. For example, Le Cam writes (see van der Vaart (2002), page 674)

The author is firmly convinced that a recourse to maximum likelihood is justifiable only
when one is dealing with families of distributions that are extremely regular. The cases
in which maximum likelihood estimates are readily obtainable and have been proved to
have good properties are extremely restricted.

Therefore, to achieve our goals, we need a measure of information that is flexible
enough to handle nonregular problems and is connected to estimation quality in
general, but does not depend on a particular estimator. The Hellinger information,
defined in Section 3.1, will meet these criteria and will provide a basis for defining
optimal designs in nonregular problems.

3. Information in nonregular models.

3.1. Definition and basic properties. To start, we consider the scalar case with
d = 1. Suppose that there exists a constant α ∈ (0,2] such that, for each θ , the limit
J (θ) = limε→0 |ε|−αh(θ; θ + ε) exists, is finite and nonzero. If such an α exists,
then it must be unique; but there are cases where existence fails, for example,
when θ is not identifiable, so that h(θ, θ + ε) ≡ 0 for all sufficiently small ε. The
case α = 2 corresponds to differentiable in quadratic mean and, hence, “regular,”
while α ∈ (0,2) corresponds to “nonregular.” Differentiability of ϑ �→ H(Pθ ,Pϑ)

or lack thereof determines a model’s regularity, so the largest value α can take is 2;
otherwise, the limit is infinite. From the above limit, there is a local approximation,

(2) h(θ;ϑ) = J (θ)|θ − ϑ |α + o
(|θ − ϑ |α)

.

This resembles the local Hölder condition considered in Ibragimov and
Has’minskiı̆ (1981), Section I.6. We call α the index of regularity and J (θ) the
Hellinger information. Of course, if α = 2, then J (θ) is proportional to I (θ), the
Fisher information. Next, are a few quick examples, all with α = 1:
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• If Pθ = Unif(0, θ), θ > 0, then J (θ) = θ−1.
• If Pθ = Unif(θ−1, θ), θ > 1, then J (θ) = (θ2 + 1){θ(θ2 − 1)}−1.
• If Pθ = Unif(θ; θ2), θ > 1, then J (θ) = (2θ + 1){θ(θ − 1)}−1.

A class of nonregular models of particular interest to us here are those in Smith
(1994) based on location shifts of distributions supported on the positive half-line.
Consider a density p0 on (0,∞) that satisfies

(3) p0(y) = βcyβ−1 as y → 0,

where β ≥ 1 and c = c(β) ∈ (0,∞). For example, the gamma and Weibull fami-
lies, with shape parameter β and scale σ , have c = {βσβ�(β)}−1 and c = σ−β , re-
spectively. The next result identifies the regularity index α and the Hellinger infor-
mation J (θ) for this class of location parameter problems, with pθ(y) = p0(y−θ).
It shows that α need not be an integer and the Hellinger information, like Fisher’s,
is constant in location models.

PROPOSITION 1. Let p0 satisfy (3) with β ∈ [1,2). If, for some � > 0,

(4)
∫ ∞
�

( d

dy
logp0(y)

)2
p0(y) dy < ∞,

then α = β and J (θ) ≡ c{1 + β r(β)}, where c is as in (3) and

(5) r(β) =
∫ ∞

0
{(w + 1)(β−1)/2 − w(β−1)/2}2 dw.

PROOF. See Section S2.1 in the Supplementary Material. �

Ibragimov and Has’minskiı̆ (1981), Theorem VI.1.1, show that h(θ; θ + ε) =
O(|ε|α) as ε → 0, but they do not identify the constant c. Similar results have
appeared elsewhere in the literature on nonregular models; our condition (4) is
basically the same as Condition C5 in Woodroofe (1974), which is basically the
same as Assumption 9 in Smith (1985).

Turning to the general, nonregular multiparameter case, where � is an open
subset of R

d , defining Hellinger information requires some additional effort. In
particular, nonregularity implies that the familiar local quadratic approximation
of h fails, so we should not expect to have an “information matrix” to describe
the local behavior in such cases. In fact, h(θ;ϑ) depends locally on the direction
along which ϑ approaches θ , so there is no “direction-free” summary of the lo-
cal structure, and hence, no “information matrix”; see Remark 2. But this lack of
a convenient quadratic approximation need not stop us from defining a suitable
Hellinger information.

DEFINITION 1. Let � be an open subset of Rd , for d ≥ 1, and let u denote
a generic direction, a d-vector with ‖u‖ = 1. Suppose there exists α ∈ (0,2] such
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that, for all θ ∈ � and all directions u, the following limit exists and is neither 0
nor ∞:

(6) lim
ε→0

h(θ; θ + εu)

|ε|α = J (θ;u).

Then, the following local approximation holds:

(7) h(θ; θ + εu) = J (θ;u)|ε|α + o
(|ε|α)

, ε → 0.

This defines the index of regularity α and the Hellinger information J (θ;u) at θ

in the direction of u.

Since the approximation (7) is in terms of |ε|, it follows that J (θ;u) =
J (θ;−u), so J (θ;u) really only depends on the line defined by u. If d = 1, then
there is only one line, that is, u = ±1, hence, for the scalar case, we can drop the u

argument entirely and write J (θ) as described above. It is also worth pointing out
that Definition 1 assumes that a single index α suffices to describe the regularity
of a model with a d-dimensional parameter. This is appropriate for the kinds of
regression models we have in mind here, but can be a limitation in other cases; see
Remark 1 below.

As a quick example, let Pθ = Unif(θ1, θ1 + θ2), where θ1 ∈ R and θ2 > 0. In
this form, θ1 and θ2 are location and scale parameters, respectively. If u = (u1, u2)

is a generic vector on the unit circle, then J (θ;u) = θ−1
2 g(u), where g(u) has

a form which is slightly too complicated to present here; see Section S1 in the
Supplementary Material. This expression agrees with the familiar properties of
Fisher information for location–scale models.

Although we do not define an “information matrix” in the nonregular case (see
Remark 2), when the model is regular, that is, when α = 2, there are still some con-
nections between our Hellinger information and the familiar Fisher information. In
particular, J (θ;u) is a quadratic form involving the Fisher information I (θ) and
the direction u. This gives an alternative explanation of how the regular models
admit a separation of the dependence on θ and on the direction u of departure
from θ .

PROPOSITION 2. For a regular model, with α = 2, if I (θ) denotes the d × d

Fisher information matrix, then J (θ;u) = 1
4u�I (θ)u.

Another useful and familiar feature of Fisher information that also holds for
Hellinger information is the reparametrization formula (Proposition 3), which
comes in handy for regression problems where the natural parameter is expressed
as a function of covariates and another parameter.
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3.2. Hellinger information inequality. We now return to our original setup
where Y1, . . . , Yn are independent, but not necessarily identically distributed, with
Yi ∼ Pi,θ , i = 1, . . . , n, and θ is an unknown parameter taking values in an
open subset � of R

d for some d ≥ 1. Let P n
θ denote the joint distribution of

Yn = (Y1, . . . , Yn). Motivated by the regression problems below, we assume that
each Pi,θ has the same index of regularity, α ∈ (0,2]. Following our intuition from
the regular case, define the Hellinger information at θ , in the direction of u, based
on the sample of size n, as

(8) Jn(θ;u) =
n∑

i=1

Ji(θ;u),

where Ji(θ;u) is the Hellinger information based on Pi,θ as described above. See
Remark 3 for more on this additivity property. Theorem 1 below will establish
a suitable connection between Jn(θ;u) and the quality of an estimator, and this
will provide the necessary foundation for defining optimal designs for nonregular
models.

Suppose the goal is to estimate ψ(θ), where ψ : Rd →R
q , q ≤ d , is sufficiently

smooth. Let Tn = T (Y n) be an estimator of ψ(θ), and measure its quality by the
risk

(9) Rψ(Tn, θ) = En
θ

∥∥Tn − ψ(θ)
∥∥2

,

the q-vector version of mean square error, where expectation, En
θ , is with respect

to P n
θ . This covers the case where ψ(θ) = θ and q = d , so that interest is in the

full parameter θ , and the case where ψ(θ) is a single component of θ and q = 1,
as well as other intermediate cases. Next is the aforementioned lower bound on the
risk in terms of the total Hellinger information.

THEOREM 1. Let Yn = (Y1, . . . , Yn) consist of independent observations with
Yi ∼ Pi,θ , i = 1, . . . , n. Let α ∈ (0,2] denote the common index of regularity,
and Jn(θ;u) the corresponding Hellinger information in (8). Let ψ : � → R

q

be a differentiable function with full-rank q × d derivative matrix Dψ(θ), and
let Tn = T (Y n) be any estimator of ψ(θ) with risk function defined in (9). If
εn,u = {3Jn(θ;u)}−1/α , and

(10) lim
n→∞ inf

u

[
n−1Jn(θ;u)

]
> 0,

then, for all large n,

(11) inf
Tn

sup
ϑ∈Bn(θ)

Rψ(Tn,ϑ) �
[
inf
u

{∥∥Dψ(θ)u
∥∥−αJn(θ;u)

}]−2/α
,

where Bn(θ) ⊂ � is the region whose boundary is determined by the union of
{θ + εn,uu} over all directions u.
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PROOF. See Appendix A.1. �

Two very brief comments: first, the universal constant hidden in “�” is known
and given in the proof; second, there is nothing special about “3” in the definition
of εn,u, any number strictly greater than 2 would suffice.

Some additional comments about the interpretation of Theorem 1 are in or-
der. First, the reason for taking supremum over a small “neighborhood” of θ is
that a lucky choice of Tn ≡ ψ(θ) has excellent performance at θ , but poor per-
formance at a nearby ϑ . The theorem basically says that, if one looks at a locally
uniform measure of risk, which prevents “cheating” toward or luck at a particular
θ , then one cannot have smaller risk than that in the lower bound (11). The clas-
sical Cramér–Rao lower bound uses unbiasedness of the estimator to prevent this
kind of cheating/luck.

To assess the sharpness of the bound in (11) when regularity conditions do
not apply, consider the case where q = 1, so that ψ(θ) is a scalar function. For
the rate, if we consider the identically independently distributed case, so that
Jn(θ;u) = nJ1(θ;u), then it follows that the lower bound is of order n−2/α ,
which agrees with the known minimax rate for estimators in nonregular mod-
els (Ibragimov and Has’minskiı̆ (1981), Section I.5). Therefore, the bound cannot
be improved in terms of dependence on the sample size. To assess the quality of
the lower bound in terms of its dependence on θ , if the observations come from
Unif(0, θ), which has α = 1 and J (θ) = θ−1, the maximum likelihood estimator is
the sample maximum, and its mean square error is given by

θ2n

(n + 1)2(n + 2)
+

(
θn

n + 1
− θ

)2
.

Asymptotically, this expression is proportional to θ2n−2, which agrees with our
lower bound. Therefore, up to universal constants, the bound in Theorem 1 is
sharp. Whether there exists an estimator that can attain the bound exactly or
asymptotically is unclear in general; see Remark 4.

It is worth stating the special case where α = 2 as a corollary to Theorem 1.
This reveals some connection to the classical Cramér–Rao bound, even though we
do not have access to an information matrix, and demonstrates the generality of
our result.

COROLLARY 1. When α = 2, if ψ : � → R
q has q × d derivative matrix

Dψ(θ) of rank q ≤ d , and In(θ) is the positive definite d × d Fisher information
matrix, then the lower bound in (11) is proportional to

λmax
{
Dψ(θ)In(θ)−1Dψ(θ)�

}
,

where λmax(A) denotes the maximal eigenvalue of a matrix A.
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PROOF. See Section S2.2 in the Supplementary Material. �

For comparison to the classical setting, if we take ψ(θ) = θ , then the expression
in the above display simplifies to

(12) λmax
{
In(θ)−1} = λ−1

min

{
In(θ)

}
.

Wanting the information matrix to have a large minimal eigenvalue is a familiar
concept in the classical optimal design theory; see Section 4.

This and the previous subsection, along with the remarks in Section 3.3, es-
tablish some important properties and insights concerning our proposed Hellinger
information. A difficulty that has not yet been addressed is the dependence of
Jn(θ;u) on the arbitrary direction u. However, the lower bound in (11) is free of
a direction, so it makes sense to formulate a direction-free Hellinger information
based on that. For a nonregular model as formulated above, with index of regu-
larity α ∈ (0,2], we set the direction-free Hellinger information at θ , for interest
parameter ψ(θ), as

(13) J ψ
n (θ) = inf

u

{∥∥Dψ(θ)u
∥∥−αJn(θ;u)

}
.

In the special case where ψ(θ) = θ , this simplifies to

(14) Jn(θ) = inf
u
Jn(θ;u).

Moreover, in the regular case with α = 2, it follows from Corollary 1 and, in par-
ticular, (12), that Jn(θ) above is (proportional to) the smallest eigenvalue of the
Fisher information matrix. Therefore, definition (13) seems very reasonable; more
details are presented in Section 4.

3.3. Technical remarks.

REMARK 1. Definition 1 does not allow α to depend on u, so each compo-
nent of θ , treated individually, must have the same index of regularity. To see this,
consider an exponential distribution with location and rate parameters θ1 and θ2,
respectively. If θ1 was fixed and only θ2 was unknown, then it is a regular problem
and the above definition would hold with α = 2. Similarly, if θ2 was fixed and only
θ1 was unknown, then the definition holds with α = 1 according to Proposition 1.
However, if both θ1 and θ2 are unknown, then the model does not satisfy the condi-
tions of Definition 1. Consider two unit vectors u = (1,0) and u′ = (0,1). If α = 1,
then J (θ;u) is in (0,∞) but J (θ;u′) is zero; likewise, if α = 2, then J (θ;u′) is
in (0,∞) but J (θ;u) is infinite. Therefore, the above definition cannot accom-
modate situations where the components of θ , treated individually, would have
different regularity indices. But the design applications we have in mind in this
paper fit naturally within a setting where all components have the same regularity;
the more general case will be considered elsewhere.
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REMARK 2. Our definition of Hellinger information coincides with that in
Shemyakin (2014) for one-parameter models, but our perspectives differ when it
comes to multiparameter models. Shemyakin defines a “Hellinger information ma-
trix” for nonregular problems, which seems to contradict our above claim that no
such matrix is available, so some more detailed comments are necessary. She-
myakin makes no claim that his information matrix is related to the local behavior
of h, and we are unable to conclude definitively whether it is or is not. We do know,
however, that ϑ �→ h(θ,ϑ) is “bowl-shaped” (though not smooth) at each θ , so if
such a matrix could describe the local behavior, then it ought to be nonnegative def-
inite. However, Shemyakin ((2014), page 931) admits that a general nonnegative
definiteness result has not been established for his information matrix. Without a
nonnegative definiteness result for his Hellinger information matrix, lower bounds
like those in, for example, Shemyakin (1991, 1992) may not be informative, and
its use in defining optimal designs lacks justification.

REMARK 3. In (8), we defined the Hellinger information in an independent
sample of size n as Jn(θ;u) = ∑n

i=1 Ji(θ;u), the sum of the individual Hellinger
information measures. This, however, is not a choice made by us, it is a con-
sequence of the proof of Theorem 1. To see this, heuristically, start with the
Hellinger distance between joint distributions P n

θ and P n
ϑ , assuming independence.

A straightforward calculation reveals

H 2(
P n

θ ,P n
ϑ

) = 2 − 2
n∏

i=1

∫ {
pi,θ (yi)pi,ϑ (yi)

}1/2
dyi

= 2 − 2 exp

{
n∑

i=1

log
[
1 − 1

2
H 2(Pi,θ ,Pi,ϑ )

]}

Since log(1 + x) ≈ x for x ≈ 0, if ϑ is sufficiently close to θ , then the exponent is
approximately −1

2
∑n

i=1 H 2(Pi,θ ,Pi,ϑ) and then, by Taylor’s theorem applied to
x �→ e−x at x ≈ 0, we conclude that

H 2(
P n

θ ,P n
ϑ

) ≈
n∑

i=1

H 2(Pi,θ ,Pi,ϑ ).

Therefore, a local approximation of the left-hand side is roughly equal to a sum of
local approximations on the right-hand side, which leads to (8).

REMARK 4. An important unanswered question in the above theory is if there
are any estimators that are efficient in the sense that they attain the lower bound in
Theorem 1 in some generality. In the simple Unif(0, θ) example above, we showed
that the bound is asymptotically attained, up to universal constants, by the sample
maximum. General results about the rate of convergence in nonregular models are
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consistent with our lower bound, but, to our knowledge, more precise results con-
cerning the asymptotic behavior of estimators in nonregular problems is limited to
certain special cases. Our work here provides some motivation for further investi-
gation of these asymptotic properties. Not having an estimator that provably attains
the lower bound complicates our attempts to demonstrate the efficiency gains of
our proposed optimal designs in Section 4, but a quality estimator is available in
the applications we have in mind; see Section 5.3.

4. Optimal designs for nonregular models.

4.1. Definition. The previous section built up a framework of information,
based on a local approximation of the squared Hellinger distance, suitable for
nonregular problems where Fisher information does not exist. Our motivation for
building such a framework was to address the problem of optimal experimental
designs in cases where the underlying statistical model is nonregular. This section
defines what we mean by an optimal design for nonregular models, and provides
some additional details about the Hellinger information that are particularly rele-
vant to the design problem.

We start here with a slightly different setup than in the previous section, but
quickly connect it back to the preceding. Let Y1, . . . , Yn be independent obser-
vations, where Yi has density function qηi

, for i = 1, . . . , n. That is, each Yi has
its own parameter ηi , which we will assume is real-valued, as is typical in linear
and generalized linear models. Then the design problem proceeds by expressing
the unit-specific parameter ηi as a given function g(xi, θ) of a common parameter
θ ∈ R

d and a vector of unit-specific covariates; here, of course, the covariates are
constants that the investigator is able to set in any way he/she pleases, but prefer-
ably in a way that is “optimal” in some sense. By linking each ηi to a common
θ , we obtain the setup from previous sections, that is, Yi ∼ pi,θ , independent, for
i = 1, . . . , n.

The next result, stated in the context of n = 1, parallels a familiar one in the
regular case for Fisher information. It aids in computing the Hellinger information
under a reparametrization like the one described above.

PROPOSITION 3. Let qη be a density function depending on a scalar param-
eter η, and suppose that the index of regularity is α ∈ (0,2] and the Hellinger
information is J̃ (η). Define a new density pθ , for θ ∈ � ⊆ R

d , as qg(θ) where
g : � → R is a smooth function with nonvanishing gradient ġ. Then pθ also has
index of regularity α, and the corresponding Hellinger information at θ , in the
direction of u, is

J (θ;u) = ∣∣ġ(θ)�u
∣∣αJ̃

(
g(θ)

)
.
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PROOF. See Section S2.3 in the Supplementary Material. �

From the general theory in Section 3, if Y1, . . . , Yn are independent, then under
the assumptions in Proposition 3, that is, Yi ∼ pi,θ = qgi(θ), the Hellinger informa-
tion at θ , in direction of u, is

Jn(θ;u) =
n∑

i=1

∣∣ġi(θ)�u
∣∣αJ̃

(
gi(θ)

)
.

For the special case where gi(θ) = g(xi, θ) for covariates xi , it is clear that
Jn(θ;u) depends on x1, . . . , xn. For example, if Y1, . . . , Yn are independent, with
Yi ∼ g(xi, θ) + Gamma(β,1), where g(x, θ) = θ0 + ∑p

k=1 θkx
k+1, then it follows

from Propositions 1 and 3 that

Jn(θ;u) = 1 + βr(β)

β�(β)

n∑
i=1

∣∣∣∣∣
p∑

k=0

xk
i uk+1

∣∣∣∣∣
β

.

The Hellinger information’s dependence on the covariates (x1, . . . , xn) is what
makes our theory of optimal design possible.

In what follows, we focus exclusively on the case of ψ(θ) = θ , and the
direction-free definition of Hellinger distance in (14), though this is only for sim-
plicity. The same derivations can be carried out with any specific interest parameter
ψ(θ) in mind.

Following the now-standard approximate design theory put forth by Kiefer
(1974), let ξ denote a discrete probability measure defined on the design space—
the space where the covariates xi live—with at most m distinct atoms, represent-
ing the design itself. That is, the atoms of ξ represent the specific design points,
and the probabilities correspond to the weights (more details below). Next, with
a slight abuse of our previous notation, we write Jξ (θ;u) to indicate that the
Hellinger information in the direction u depends on the design ξ through the spe-
cific covariate values. For example, given design ξ = {(wi, xi) : i = 1, . . . ,m},
then Jξ (θ;u) = ∑m

i=1 wiJi(θ;u), where Ji(θ;u) is the Hellinger information in
the direction u based on one observation taken at location xi . Following (14), the
Hellinger information based on design ξ is defined as

Jξ (θ) = inf
u
Jξ (θ;u).

Naturally, the optimal design under this setup would be defined as the one that
maximizes this measure of information.

DEFINITION 2. Under the nonregular model setup presented above, the opti-
mal design ξ� is one which maximizes the Hellinger information, that is,

ξ� = arg max
ξ

Jξ (θ).
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For comparison to the classical design theory, property (12) implies that our
optimal design in Definition 2, under a regular model, corresponds to an E-optimal
design, one that maximizes the minimum eigenvalue of the Fisher information
matrix. For the nonregular case, however, we do not have an information matrix, so
it is not clear if other common notions of optimality, such as A- and D-optimality,
have any meaning. For example, nonregularity will cause sampling distributions
of estimators to be nonellipsoidal, so we cannot expect the determinant of some
information matrix to correspond to the volume of a confidence ellipsoid.

Definition 2 formulates a new class of optimal design problems, deserving fur-
ther attention. As discussed briefly in Section 1, there is now a substantial literature
on theory and computation related to the optimal design problem in regular cases,
and we hope that this paper stimulates a parallel line of work with similar devel-
opments for nonregular cases. There are some similarities to the regular case, in
particular, the Hellinger information is nonnegative and additive like Fisher in-
formation. Also, the map ξ �→ Jξ (θ) is concave for fixed θ , that is, for any two
designs ξ and ξ ′ and any w ∈ [0,1],
(15) Jwξ+(1−w)ξ ′(θ) ≥ wJξ (θ) + (1 − w)Jξ ′(θ),

which is important for numerical and/or analytical solution of the optimal design
problem. The following gives some first results along these lines.

4.2. A general result for nonregular polynomial models. Motivated by the
setup in Smith (1994), we consider a nonregular model of the form

(16) yi = g(xi, θ) + εi, i = 1, . . . , n,

where xi are scalars, g(x, θ) = θ0 + ∑p
k=1 θkx

k is a degree-p polynomial, θ ∈ R
d ,

with d = p + 1, is an unknown parameter, and εi are independent and identically
distributed with density p0 given in (3) and known shape parameter α ∈ [1,2).
As is customary (e.g., Koenker (2001)), we will insist that the design points be
centered at the origin, which puts a constraint on the design itself. In particular, we
will consider the space of designs ξ given by

� =
{
ξ = (wi, xi) : ∑

i

wixi = 0, xi ∈ [−A,A]
}
,

that is, designs on [−A,A] that are “balanced” in the sense that the mean x value
is 0, where A > 0 is fixed and known.

The following result shows that, among balanced designs, the subclass of sym-
metric designs is complete in the sense that the maximum information over sym-
metric designs is the same as that over the larger class of balanced designs. This
implies that the search for an optimal design can be simplified by restricting it to
the smaller class of symmetric designs.
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THEOREM 2. Let �sym ⊂ � denote the set of all balanced designs that are
also symmetric in the sense that if x is a design point, then it assigns equal weight
to both x and −x. Then

max
ξ∈�sym

Jξ (θ) = max
ξ∈�

Jξ (θ).

PROOF. See Appendix A.2. �

The next section applies this general result to identify optimal designs in some
special cases of the nonregular polynomial regression model above. The two re-
sults, Propositions 4 and 5, suggest that there is a de la Garza phenomenon (e.g.,
de la Garza (1954)) in the nonregular case as well, which would be an interesting
theoretical topic to pursue in future work.

5. Optimal designs for some nonregular regression models. In this sec-
tion, we apply the general result in Theorem 2 to identify optimal designs in two
important special cases of the polynomial model, namely, linear and quadratic.
Throughout we assume the model stated in (16), namely, that the regression model
has nonnegative errors with distribution having density of the form (3), with known
shape parameter α ∈ [1,2).

5.1. Linear model. Consider the linear version of (16), where g(x, θ) = θ0 +
θ1x. For linear models we have a strong intuition from the regular case as to what
the optimal design might be. It turns out that the same result holds in the nonregular
case as well.

PROPOSITION 4. The optimal design ξ�, according to Definition 2, for the
nonregular linear regression model is the symmetric two-point design with weight
1
2 on x = ±A.

PROOF. See Section S2.4 in the Supplementary Material. �

5.2. Quadratic model. Consider a quadratic case where g(x, θ) = θ0 + θ1x +
θ2x

2. Here we restrict our attention to the case where the errors εi in the model are
exponential, α = 1.

PROPOSITION 5. For the quadratic model, with α = 1 and the balanced de-
sign constraint, the optimal design ξ�, according to Definition 2, is one with
three distinct points {−A,0,A} with respective weights {1−π

2 , π, 1−π
2 } for some

π ∈ (0,1).
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PROOF. See Section S2.5 in the Supplementary Material. �

Although the proof of Proposition 5 holds only for the α = 1 case, we expect
that the result also holds for α ∈ [1,2), and the numerical results in Figure 3(b)
support this conjecture. The practical importance is that it simplifies the search
over �sym to a search over the scalar π ∈ [0,1]. The weight at point {0} of the
optimal design—or the likely optimal design for the case of α ∈ (1,2]—depends
on the value of A and α. Based on Proposition 5 and the definition of Hellinger
information, the optimal weight can be obtained by solving the optimization prob-
lem

(17) πA(α) = arg max
π∈[0,1]f (π),

where f (π) = fα,A(π) is given by

f (π) = min‖u‖=1

{
π |u1|α + 1 − π

2

(∣∣u1 + Au2 + A2u3
∣∣α + ∣∣u1 − Au2 + A2u3

∣∣α)}
.

This search for the optimal weight, πA(α), along with that over u on the surface
of the unit sphere, can be handled numerically.

Figure 1 shows α �→ πA(α) for several values of A. In particular, we see that
the (likely) optimal designs put more weight on 0 as either α or A increases. Our
optimal designs for nonregular regression models have a similar format to their
E-optimal counterparts in the regular case. That is, a regular E-optimal design for
quadratic regression over [−A,A] is given by{(

−A,
1 − wA

2

)
, (0,wA),

(
A,

1 − wA

2

)}
,

and, for A in {1,1.5,2}, the corresponding values of wA are {0.6,0.75,0.81}. From
Figure 1, as anticipated by Corollary 1, we observe that for α = 2, πA(2) matches

FIG. 1. Optimal weight πA(α) as a function of α for several A values.
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the weight wA of the corresponding regular E-optimal design. This is explained
by Corollary 1; when α = 2, optimal design under Hellinger information is the
E-optimal design.

Henceforth, we call the regular E-optimal design counterpart of a nonregular
model “regular-optimal.” For the nonregular linear model, based on Proposition 4,
the optimal design coincides with the “regular-optimal” design. In the numerical
results presented below, we compare optimal designs of nonregular quadratic mod-
els to their “regular-optimal” counterparts.

5.3. Numerical results. Here we show some numerical results to demonstrate
the efficiency gain in using the proposed optimal designs over other reasonable de-
signs. Recall our model is of the form (16) with nonnegative errors having density
(3), with known shape parameter α ∈ [1,2).

One complication is that currently there are no results that identify an estimator
whose risk attains the lower bound in Theorem 1. Consequently, we are currently
unable to guarantee that minimizing this lower bound will result in improved esti-
mation for any given estimator. But we do have a reasonable estimator, described
next, and the results below do indicate that the design that minimizes the lower
bound in Theorem 1 does indeed result in improved efficiency for this particular
estimation.

For the class of nonregular polynomial regression problems in consideration
here, Smith (1994) proposed an estimator based on solving a linear programming
problem: choosing (θ0, . . . , θp) such that θ0 is maximized subject to the condition
that yi ≥ ∑p

k=1 θkx
k
i for each i = 1, . . . , n. This estimator agrees with the max-

imum likelihood estimator in the case α = 1, has a O(n−1/α) convergence rate,
which matches the one given by the lower bound in (11), and can be readily com-
puted using the quantreg package in R (Koenker (2013)). Moreover, as Smith
((1994), page 174) argues, it is generally superior to maximum likelihood in non-
regular cases. For these reasons, comparisons of designs based on this estimator
ought to be informative.

Figure 2 presents simulation results on the quality of estimation for the
Hellinger optimal design versus 5-, 10- and 15-point uniform designs for the
nonregular linear models, while Figure 3 presents simulation results comparing
Hellinger optimal design versus 5-point uniform design and the regular-optimal
design. The study proceeds as follows. For each design space [−A,A] and candi-
date design, the n-vector y is simulated from the corresponding model, with the
specified value of α and θ , and then Smith’s estimator θ̂ is computed. Repeat this
process 1000 times and compute the Monte Carlo estimate of the risk R(θ̂, θ) as
usual. This risk is the sum of mean square errors for each component of the pa-
rameter vector.

Figure 2 shows that, under different regularity conditions, the optimal design
from Proposition 4 is superior in terms of risk. In particular, it is significantly
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FIG. 2. Comparison for the nonregular linear model, based on n = 120 and θ = (6,0.5).

better in the estimation of the slope, θ1, whereas no design performs significantly
better than the others in the estimation of the intercept. The results presented in
Figure 3(a) are consistent with Proposition 5 in the case of α = 1. In each case, the
optimal design performs significantly better than both the 5-point uniform design
and the regular-optimal design, despite the similarity of the optimal and regular-
optimal designs in terms of weight at point 0. Similarly, Figure 3(b) supports our
intuition that Proposition 5 can be extended to cases with α > 1.

6. Conclusion. This paper aims to establish a framework for optimal design
in the context of nonregular models where the Fisher information matrix does not
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FIG. 3. Comparison for nonregular quadratic model, based on n = 120 and θ = (2,4,0.8).

exist. Toward this goal, we defined an alternative measure of information, based
on a local approximation of the squared Hellinger distance between models, suit-
able for nonregular problems. The proposed Hellinger information has some close
connection to the Fisher information when both exist and, more generally, the for-
mer has many of the familiar properties of the latter. In particular, in Theorem 1
we establish a parallel to the classical Cramér–Rao inequality which connects our
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proposed Hellinger information measure to the quality of estimators. This naturally
leads to a notion of optimal designs in nonregular problems, that is, the “optimal
design” is one that minimizes the lower bound in Theorem 1.

The proposed optimal design framework introduces a new class of optimization
problems to solve, what we have considered here is only the tip of the iceberg.
However, the tools currently available in the optimal design literature for regular
problems are expected to be useful here. For example, in a particular nonregular
polynomial regression setting, we establish a theorem to simplify the numerical
and/or analytical search for a particular optimal design, and we apply this general
result in the linear and quadratic cases. Developing the theory and computational
methods to handle more complex nonregular models, as well as identifying estima-
tors that attain the lower bound (11), are interesting topics for future investigation.

Aside from creating a new class of design problems to be investigated, the de-
velopments here also shed light on how much our current understanding of design
problems depends on the regularity of the models being considered. That is, be-
yond its value in helping us tackle specific cases in which regularity conditions
do not apply, the study of nonregular problems also deepens our understanding of
regularity itself and how it affects optimal design. For example, questions about
the type of optimality criterion to consider (e.g., A- versus D- versus E-optimal)
are apparently only relevant for those regular cases where the Fisher information
matrix is exactly or approximately related to the dispersion matrix of an estimator.
While this paper provides some important insights about nonregular models and
corresponding optimal design problems, there is still much more to be done.

APPENDIX: PROOFS OF THEOREMS

A.1. Proof of Theorem 1. The proof requires a connection between Hellinger
distance and risk of an estimator. This first step is based in part on Section I.6 of
Ibragimov and Has’minskiı̆ (1981), although our setup and conclusions are more
general in certain ways. We summarize this in the following lemma, proved in the
Supplementary Material.

LEMMA 1. For data Y ∈ Y, consider a model Pθ , with μ-density pθ , indexed
by a parameter θ ∈ � ⊆ R

d . Let ψ = ψ(θ) be the interest parameter, where ψ :
R

d → R
q . For an estimator T = T (Y ) of ψ , the risk function Rψ(T , θ) for the

estimator T satisfies

Rψ(T , θ) + Rψ(T ,ϑ) ≥ min
{

1 − h(θ;ϑ)

4h(θ;ϑ)
,

1

16

}∥∥ψ(θ) − ψ(ϑ)
∥∥2

.

For the proof of Theorem 1, start with the squared Hellinger distance between
joint distributions P n

θ and P n
ϑ , given by

hn(θ;ϑ) := H 2(
P n

θ ,P n
ϑ

) = 2

[
1 −

n∏
i=1

{
1 − hi(θ;ϑ)

2

}]
,
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where hi(θ;ϑ) = H 2(Pi,θ ,Pi,ϑ ) is the squared Hellinger distance between indi-
vidual components. If θ and ϑ are sufficiently close, in the sense that hi(θ;ϑ) ≤ 1
for each i = 1, . . . , n, then, given the following inequalities:

1 − x ≤ − logx and − log(1 − x) ≤ 2x, x ∈ [0,1/2],
it follows that

(18) hn(θ;ϑ) ≤ −2
n∑

i=1

log
{

1 − hi(θ;ϑ)

2

}
≤ 2

n∑
i=1

hi(θ;ϑ).

According to our assumption about local expansion of the individual hi ’s, if ϑ =
θ + εu for a unit vector u, then

hn(θ; θ + εu) ≤ 2Jn(θ;u)εα + o
(
nεα)

, ε → 0.

When we take ε equal to εn,u = {3Jn(θ;u)}−1/α , then we get

hn(θ; θ + εn,uu) ≤ 2

3
+ o(1), n → ∞,

where the latter “o(1)” conclusion is justified by the assumption (10) about the rate
of information accumulation. Therefore, for large enough n, with ϑn,u = θ +εn,uu,
hn(θ;ϑn,u) ≤ 3

4 , it follows from the above lemma that

Rψ(Tn, θ) + Rψ(Tn,ϑn,u) ≥ 1

16

∥∥ψ(θ) − ψ(ϑn,u)
∥∥2

.

Since ψ is differentiable, there is a Taylor approximation at θ ,

ψ(θ) − ψ(ϑn,u) = Dψ(θ)(θ − ϑn,u) + o
(‖θ − ϑn,u‖)

,

where the latter little-oh means a q-vector whose entries are all of that magnitude.
Plugging in the definition of ϑn,u gives

ψ(θ) − ψ(θ + εn,uu) = −εn,uDψ(θ)u + o(εn,u), n → ∞,

and, hence,

∥∥ψ(θ) − ψ(θ + εn,uu)
∥∥2 = ε2

n,u

∥∥Dψ(θ)u + o(1)
∥∥2 ≥ 1

2
ε2
n,u

∥∥Dψ(θ)u
∥∥2

.

Plugging in the definition of εn,u establishes that

Rψ(Tn, θ + εn,uu) + Rψ(Tn, θ) �
∥∥Dψ(θ)u

∥∥2Jn(θ;u)−2/α.

Also, the constant that has been absorbed in “�” is (32)−13−2/α . Finally, the claim
(11) follows from the above display and the general fact that, for a function f

defined on a set A, f (y1) + f (y2) is smaller than 2 supA f (y).
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A.2. Proof of Theorem 2. Take any fixed design ξ = {(wm,xm) : m =
1, . . . ,M}, and define a function

L(u;x) = Jξ (θ;u) =
M∑

m=1

wm

∣∣∣∣∣
p∑

k=0

xk
muk+1

∣∣∣∣∣
α

.

The L function does not depend on θ because it is based on the information in a
location parameter problem, but it does depend implicitly on the w component of
the design ξ . From the trivial identity,

axk
m = a(−1)k(−xm)k any a ∈ R, any m, and any k,

it follows immediately that L(u;x) = L(v;−x), for any unit vector u ∈ R
p+1,

where vk+1 = (−1)kuk+1, k = 0, . . . , p. Since this new vector v is also a unit
vector, we have

min
u

L(u;x) = min
v

L(v;−x).

This implies that the reflected design ξ ′—the one that replaces the original xm in ξ

with −xm, but keeps the same weights—satisfies Jξ (θ) = Jξ ′(θ). Define the mix-
ture design ξ† = 1

2ξ + 1
2ξ ′, which is symmetric by construction, and by concavity

(15) satisfies

Jξ†(θ) = min
u

{
1

2
Jξ (θ;u) + 1

2
Jξ ′(θ;u)

}

≥ 1

2
min

u
Jξ (θ;u) + 1

2
min

u
Jξ ′(θ;u).

We showed above that the two terms in the lower bound are equal and, conse-
quently, Jξ†(θ) ≥ Jξ (θ). Therefore, for any design ξ there exists a symmetric
design with Hellinger information at least as big; hence, symmetric designs form
a complete class.
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Further technical details and proofs (DOI: 10.1214/18-AOS1780SUPP;
.pdf). This file contains details concerning the two-parameter uniform example
on page 3341 along with the remaining proofs.
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