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SAMPLING AND ESTIMATION FOR (SPARSE) EXCHANGEABLE
GRAPHS1

BY VICTOR VEITCH AND DANIEL M. ROY

Columbia University and University of Toronto

Sparse exchangeable graphs on R+, and the associated graphex frame-
work for sparse graphs, generalize exchangeable graphs on N, and the asso-
ciated graphon framework for dense graphs. We develop the graphex frame-
work as a tool for statistical network analysis by identifying the sampling
scheme that is naturally associated with the models of the framework, for-
malizing two natural notions of consistent estimation of the parameter (the
graphex) underlying these models, and identifying general consistent esti-
mators in each case. The sampling scheme is a modification of independent
vertex sampling that throws away vertices that are isolated in the sampled
subgraph. The estimators are variants of the empirical graphon estimator,
which is known to be a consistent estimator for the distribution of dense ex-
changeable graphs; both can be understood as graph analogues to the empir-
ical distribution in the i.i.d. sequence setting. Our results may be viewed as
a generalization of consistent estimation via the empirical graphon from the
dense graph regime to also include sparse graphs.

1. Introduction. This paper is concerned with foundations for the statisti-
cal analysis of real-world networks. For densely connected networks, the graphon
(dense exchangeable) framework has emerged as a powerful tool for both theory
and applications in network analysis; many of the models used in practice are
within the remit of this framework (e.g., [1, 18, 26–28]; see Orbanz and Roy [30]
for a review). However, most real-world networks are sparsely connected; that is,
as one studies larger networks, one finds that they tend to exhibit only a vanishing
fraction of all possible links. The graphex (sparse exchangeable) framework has
been introduced as a natural generalization of the graphon framework to include
the sparse graph regime [8, 11, 32]. Sampling distribution properties of models
in this framework show that they admit the rich graph structure (such as small-
world connectivity and power law degree distributions) found in large real-world
networks [11, 32]. Further, graphex models have already been applied to practi-
cal data modeling [11, 17, 31]. Accordingly, the graphex framework has promise
for practically useful modeling that is flexible enough to capture the structure of
real-world data. However, fundamental statistical questions remain open.
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The present paper develops the graphex framework as a tool for statistical net-
work analysis by formalizing and answering two foundational questions:

1. What is the notion of sampling naturally associated with this statistical
network model? and

2. How do we use an observed dataset to consistently estimate the network
model’s parameters?

The answers to these questions clarify both the meaning of the modeling frame-
work and its connection to existing frameworks.

1.1. Background. Statistical network models are parameterized families of
probability distributions over graphs. An observed network is modeled as a re-
alization of a random graph distributed according to some element of the model
with parameters in an unknown state. The underlying properties of the network are
studied by inferring the likely parameters.

The graphon framework relies on probability distributions over graphs spec-
ified by the following generative model: Each vertex i ∈ N is assigned a latent
feature xi ∈ X, drawn independently and identically from some distribution, and,
given the latent features, each edge i, j is included independently with probability
W(xi, xj ), where the graphon W : X × X → [0,1] is a map from pairs of latent
features to edge inclusion probabilities. For example, in order to model a social
network, we might take the latent features to be community identities, and W to
encode the probability that members of different communities interact.

Graphons generate graphs that are either empty, that is, W = 0 almost every-
where or dense: that is, as larger graphs are sampled, a constant fraction of all
possible edges are included. It is generally thought that real-world networks do
not have this property. For example, as models of social networks, graphon mod-
els posit that each individual is friends with a constant fraction of all individuals
in the sample, no matter how large the sample is.

The graphex framework [8, 11, 32] resolves this pathology. The basic structure
of the generative models is the same: Each vertex i is associated with a latent
feature ϑi ∈ ϑ and, given the features, each pair of vertices i, j is connected by
an edge independently with probability W(ϑi,ϑj ), where W : ϑ × ϑ → [0,1] is
again called a graphon. The difference with the dense approach is that each vertex
has a real-valued label θi ∈ R+ and the latent features are no longer necessarily
generated independently. Instead, the latent features are generated according to a
Poisson process on the measure space (ϑ,Bϑ , ν). If this latent feature space has
finite measure, the associated models are dense graphon models [32]. By general-
izing the latent feature space to allow infinite measure, graphex models are able to
produce samples with realistic network structure, including sparsity [11, 32].

In detail, let � = {(θi, ϑi)}i∈N be a Poisson (point) process on R+ × ϑ with
intensity �⊗ ν, where � is the Lebesgue measure. Each atom of the point process
is a candidate vertex of the sampled graph; the {θi} are interpreted as (real-valued)
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labels, and the {ϑi} as latent features that explain the graph structure. Each pair of
points (θi, θj ) with i ≤ j is connected independently with probability W(ϑi,ϑj ).
A size-s sample, denoted �s , is defined as the collection of connected pairs (θi, θj )

such that θi, θj ≤ s. We interpret �s as the edge set of a graph, whose vertex set is
composed of those θi that participate in at least one edge in �s .

In general, graphex models may contain additional structure beyond the
graphon. The graphon W is generalized to a parameter W , called the graphex,
that allows additional structure corresponding to isolated edges and stars in the
sampled graphs. In full generality, graphex models are defined by a certain no-
tion of exchangeability. Informally, this is the natural requirement that the labels
of (�s)s∈R+ carry no information about the associated graph structure. A similar
property is satisfied by dense graphon models. This is the origin of the “dense
exchangeable” and “sparse exchangeable” nomenclature. For brevity, we defer the
explanation of exchangeability and the associated full generative model to Sec-
tion 2.

In summary, (�s)s∈R+ is a continuously indexed sequence of graphs with ver-
tices labeled in R+, and constitutes a sample generated according to a graphex.
The sequence of unlabeled graphs associated to (�s)s∈R+ is denoted (Gs)s∈R+ ,
where Gs is the graph isomorphism class of �s . Statistically, we model the graph
structure of an observed network as a realization of Gs for some size s.

1.2. Sampling. Realizations (Gs)s∈R+ from graphex models have the property
that Gs ⊂ Gt whenever s ≤ t . This allows us to interpret an increase in the size
parameter as corresponding to the collection of additional data. This raises the
question: What is the data collection mechanism that is naturally associated with
the graphex framework?

We idealize a data set as a random sample from some (very large) population. In
the present setting, both the population and the sample are represented as graphs,
and data collection corresponds to randomly sampling a subgraph from the popu-
lation graph.

The first contribution of the present paper is the identification of the sampling
scheme that is naturally associated with the graphex models.

DEFINITION 1.1. For p ∈ [0,1], a p-sampling of a graph G is a random sub-
graph of G obtained by including each vertex of G independently with probability
p, keeping only those edges connecting included vertices, and then discarding all
isolated vertices in the resulting induced subgraph.

In Section 3, we prove the following key property of this sampling scheme: For

s > 0 and r ∈ [0, s], if G′
r is an r/s-sampling of Gs then G′

r
d= Gr .

This result justifies the interpretation of the parameter s as a sample size, and
clarifies the sense in which a change in size parameter corresponds to collecting
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additional data. Namely, if Gs represents a data set that has been collected by p-
sampling some large population graph, then Gr represents a data set collected by
(pr/s)-sampling from the same population. By the same token, moving from a
size-r sample to a size-s sample can be interpreted as increasing the sample size
by collecting additional vertices for inclusion in the induced subgraph. Note that
the notion of sample size here differs from traditional approaches that take the
sample size to be the number of vertices; indeed, the number of vertices of Gs is
random.

1.3. Estimation. The connection with p-sampling provides a natural statistical
interpretation of graphex models. A large graph (the population) is studied through
a random subgraph (the sample) collected by p-sampling the population. Graphex
models provide the statistical model for the subsample. Inference of properties of
the population takes the form of inference of the underlying graphex W . This is the
analogue of the classical i.i.d. model that identifies the population of interest with
the distribution that generates the sample. The fundamental statistical problem is to
estimate W from the observed sample. Estimation has been achieved in practice for
some models by restricting to special forms of the graphex [11, 17, 31]. However,
key questions remain: What are natural ways to formalize consistent estimation?
When, and how, can estimation be achieved?

We consider two cases distinguished by whether the sample size is considered
to be part of the observed sample. In the first case, the data consists of both a
size-s sample Gs from a graphex model and the sample size s itself. This case
is mathematically natural, although knowing the size s is not realistic for most
practical data modeling scenarios. The second case takes the observation to be only
the graph, that is, the observation does not include the sample size s. Removing
the sample size from the observation forces us to pinpoint the properties of the
generating graphex that are identifiable from graph data alone.

Consistency is the requirement that, as more data is collected, the estimator con-
verges in probability for some suitable notion of convergence. To formalize con-
sistent estimation, we introduce two new notions of convergence for sequences of
graphexes. Namely, a sequence of graphexes W1,W2, . . . converges to a graphex
W if the distributions generated by Wk converge weakly to the distribution gen-
erated by W . The two notions of convergence correspond to whether or not the
sample size s is taken to be part of a sample generated according to W .

In both cases, the estimator we identify is a natural analogue of the empirical
distribution. The estimators we identify are related to the empirical graphon, the
natural analogue of the empirical distribution in the dense exchangeable graph set-
ting. For the case where sizes are part of the observation, we introduce the dilated
empirical graphon and show that it is consistent. For the case where only the graph
is observed, we build on the consistency of the dilated empirical graphon to show
that the empirical graphon itself is a consistent estimator of the generating graphex.
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Both estimators share the basic strengths and weaknesses of the empirical distri-
bution. The main strength is that they are always consistent, without any restriction
or assumption about the form of the generating graphex. This agnosticism to the
generating graphex is also the main weakness: The estimators need not be inter-
pretable in terms of real-world quantities of interest, and, in general, cannot be
expected to yield convergence rates as fast as those arising in well-specified re-
stricted models. Like the empirical distribution, the main statistical importance of
the two estimators is foundational: The estimation results establish natural notions
of consistency, and show that consistent estimation in this sense is always possible.

1.4. Organization. In Section 2, we give formal definitions for the basic tools
of the paper. The sampling result is established in Section 3. In Section 4, we
identify a consistent estimator for the setting where sizes are observed. We build
on these results in Section 5 to identify a consistent estimator for the setting where
the sizes are not observed. Finally, we discuss connections to related work and the
interpretation of our results in Section 6.

2. Preliminaries. The edge set of a graph with labels in N can be represented
by its adjacency matrix A, where Aij = 1 indicates an edge exists between vertices
i and j and Aij = 0 indicates no edge exists. As described above, we will be inter-
ested in graphs with real-valued labels for modeling sparse graphs. The analogue
of the adjacency matrix for R+-labeled graphs is the adjacency measure.

DEFINITION 2.1. An adjacency measure is a purely atomic, symmetric, lo-
cally finite measure on R2+ such that every atom has unit mass.

If ξ = ∑
i δ(θ ′

i ,θ
′′
i ) is a finite adjacency measure, then the associated graph is

the graph with edge set {(θ ′
i , θ

′′
i )}, and vertex set {θ ′

i }. The size-s restriction of
an adjacency measure ξ is the adjacency measure ξs = ξ(· ∩ [0, s)2). Note that
the graphs (Gs)s∈R+ associated to the size-s restrictions (ξs)s∈R+ of an adjacency
measure ξ satisfy Gs ⊂ Gt for all s ≤ t . For every finite adjacency measure ξ , the
unlabeled graph associated with ξ , denoted G(ξ), is the graph isomorphism class
of the associated graph.

As motivated in the Introduction, we are interested in adjacency-measure-
valued stochastic process (�s)s∈R+ such that, for some random adjacency mea-
sure � on R2+, each �s is the size-s restriction of �. The defining property of the
graphex model is that the underlying adjacency measure � is jointly exchangeable.

DEFINITION 2.2 ([21]). A random measure � on R2+ is jointly exchangeable

if � ◦ (φ ⊗ φ)−1 d= � for every measure-preserving transformation φ :R+ →R+.
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Joint exchangeability implies that the labels of the vertices of the graph are
uninformative about the graph structure. The relevance of jointly exchangeable
random measures for modeling sparse graphs was first highlighted by Caron and
Fox [11].

A representation theorem for jointly exchangeable random measures on R2+ was
given by Kallenberg [21, 24]. This result was translated to the setting of random
graphs in [8, 32] (and was earlier quoted in [11]). Writing � for Lebesgue measure
and letting μW(·) = ∫

R+ W(x, ·)dx, the representation is expressed in terms of a
graphex.

DEFINITION 2.3. A graphex is a triple (I, S,W), where I ≥ 0 is a nonnega-
tive real, S : R+ → R+ is a measurable function such that S ∧ 1 is integrable, and
the graphon W : R2+ → [0,1] is a symmetric, measurable function and satisfies:

1. �{μW = ∞} = 0 and �{μW > 1} < ∞,
2.

∫
R2+ W(x,y)1[μW(x) ≤ 1]1[μW(y) ≤ 1]dx dy < ∞ and

3.
∫
R+ W(x,x)dx < ∞.

We say that a graphex is nontrivial if I + ‖S‖1 + ‖W‖1 > 0.

The next result explains how every jointly exchangeable adjacency measure on
R2+ arises from a possibly random graphex. The integrability conditions of Def-
inition 2.3 are necessary and sufficient to force every size-s restriction to have a
finite number of edges almost surely [24, 32]. Note that integrability of S and W

suffices.
The representation theorem is the following.

THEOREM 2.4 (Theorem 4.7 [32]). Let � be a random adjacency measure.
Then � is jointly exchangeable iff there exists a (possibly random) graphex W =
(I, S,W) such that, almost surely,

� = ∑
i,j

1
[
ζ{i,j} ≤ W(ϑi,ϑj )

]
δθi,θj

+ ∑
j,k

1
[
χjk ≤ S(ϑj )

]
(δθj ,σjk

+ δσjk,θj
)

+ ∑
k

1[ηk ≤ I ](δρk,ρ
′
k
+ δρ′

k,ρk
),(2.1)

for some collection of independent uniformly distributed random variables (ζ{i,j})
in [0,1] and some independent unit-rate Poisson processes � = {(θj ,ϑj )} on R2+,
�star

i = {(σij , χij )}j , for i ∈ N, on R2+, and �isolate = {(ρj , ρ
′
j , ηj )} on R3+.

DEFINITION 2.5. A Kallenberg exchangeable graph (KEG) is a jointly ex-
changeable adjacency measure. A KEG � is an (ergodic) KEG generated by W0 if
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� satisfies the representation in Theorem 2.4 for W = W0 a.s. Writing KEG(W)

for the distribution of a KEG � generated by a graphex W , a graphex model is a
family of distributions (KEG(W)), where W ranges over some set of graphexes.

REMARK 2.6. We will often pass without comment from � to the adjacency
measure-valued stochastic process (�s)s∈R+ defined by �s = �(· ∩ [0, s)2). It will
often be useful in exposition to view the restrictions �s as labeled graphs, so that
statements such as “the number of edges in �s” are sensible.

REMARK 2.7. In the Introduction, we allowed for a general latent feature
space ϑ for the vertices. The representation theorem implies that there is no loss of
generality in taking ϑ =R+, although in practice it is often natural to impose some
interpretable structure on ϑ . Here, we take ϑ = R+ for mathematical convenience.

Kallenberg exchangeable graphs consist of three parts, associated with each
of the three parts of the graphex. The part of a Kallenberg exchangeable graph
generated by the graphon W provides the interesting graph structure; this has been
described in the Introduction. The part generated by S consists of stars centered at
points of of the graphon component: the terms δθj ,σjk

+ δσjk,θj
in the Kallenberg

representation theorem correspond to edges between vertices θj (from the graphon
component) and vertices σjk that never connect to any other vertex beyond θj .
The part of the graph generated by I consists of isolated edges; that is, edges
connecting vertices that never connect to any other part of the graph. See Figure 1
for a depiction the full generative process of the Kallenberg exchangeable graph.

3. Sampling. The restriction of a finite size-s Kallenberg exchangeable graph
�s to [0, r]2, r < s, is a size-r Kallenberg exchangeable graph �r . In this section,
we show that this restriction has a natural relation to p-sampling: an r/s-sampling
of G(�s) is equal in distribution to G(�r). See Section 6 for a discussion of the
interpretation of this result when the larger graph is considered to be a population
(i.e., as s → ∞).

We require the following scheme for passing from a graph to an adjacency mea-
sure by randomly labeling the vertices independently and uniformly in some range.

DEFINITION 3.1. Let G be a graph with edge set E, and let s > 0. A random
labeling of G into [0, s] is a random adjacency measure with the same distribution

as Lbls(G, {Ui}) = ∑
(i,j)∈E(δ(Ui,Uj ) +δ(Uj ,Ui)), where Ui

i.i.d.∼ Uni[0, s], for i ∈ N.
If G is an unlabeled graph, we define the random labeling of G to be a random
labeling of any representative of the graph isomorphism class. Where there is no

risk of confusion, we will write Lbls(G) for Lbls(G, {Ui}) where Ui
i.i.d.∼ Uni[0, s],

for i ∈ N, independently of everything else.
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FIG. 1. Generative process of a Kallenberg exchangeable graph with graphex W = (I, S,W).
First panel: a realization of the latent Poisson process �t = {(θi , ϑi) : θi ≤ t}. Second panel:
Edges due to the graphon component W are sampled by connecting each distinct pair of points
(θi , ϑi), (θj ,ϑj ) ∈ �t independently with probability W(ϑi,ϑj ). Only a finite number of edges ap-
pear, despite there being an infinite number of points in �t . Third panel: The edge set �t represented
as an adjacency measure on [0, t]2. Edges in the graphon component appear as (symmetric pairs
of) black dots; edges from the star component (S) appear in green; isolated edges (from the I com-
ponent) appear in blue. At size s, only the edges in [0, s]2 (inner dashed black line) appear in the
graph. The graphon component contains only a single edge at size s. The final panel shows the
graphs corresponding to the adjacency measure at sizes s and t .

The first result we need is that random labelings preserve the law of exchange-
able adjacency measures. This is an intuitive consequence of exchangeability, al-
though we rely on the representation theorem equation (2.1) for the proof.

LEMMA 3.2. Let s > 0 and let �s be a size-s Kallenberg exchangeable graph

generated by W . Then Lbls(G(�s))
d= �s .

PROOF. Recall the generative model for �s given in equation (2.1). For sim-
plicity of exposition, suppose that the generating graphex is (0,0,W), and the as-

sociated latent Poisson process is �s = {(θi, ϑi)}. Let {θ ′
i }i∈N i.i.d.∼ Uni[0, s], and let

�′
s = {(θ ′

i , ϑi) : (θi, ϑi) ∈ �s}. By a property of the Poisson process, �′
s

d= �s . Let
�′

s be a size-s Kallenberg exchangeable graph generated using the same latent vari-

ables as �s , but with �′
s replacing �s . Then, by construction, �′

s
d= Lbls(G(�s)).

Moreover, �′
s is a size-s Kallenberg exchangeable graph, so �′

s
d= �s .

An essentially identical argument proves the result for a Kallenberg exchange-
able graph generated by a general graphex. �

Recall that the definition of p-sampling is given in Definition 1.1. The main
sampling result is the following.

THEOREM 3.3. Let W be a graphex, let s > 0 and r ∈ [0, s], let � be gener-

ated by W and let Gr be an r/s-sampling of G(�s). Then Gr
d= G(�r).
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PROOF. Let ξs = Lbls(Gs). By Lemma 3.2, ξs
d= �s . Let ξr be the restriction

of ξs to [0, r]2, so ξr
d= �r . Each vertex of ξs has a label in [0, r] independently

with probability r/s; thus, G(ξr)
d= Gr . �

4. Estimation with known sizes. This section describes a canonical estima-
tor for the graphex W generating a Kallenberg exchangeable graph (�s)s∈R+ when
one observes a sequence

(G1, s1), (G2, s2), . . . ,

where s1, s2, . . . ∈ R+, sk ↑ ∞, and

Gk = G(�sk )

is the observed graph structure of the size-sk restriction.
To formalize estimation, we require notation for the distribution corresponding

to a graphex W . Recall that KEG(W) denotes the distribution of a Kallenberg
exchangeable graph � generated by W .

DEFINITION 4.1. Let W be a graphex, let � be a Kallenberg exchangeable
graph, and let (�s)s∈R+ be its restrictions to finite sizes. The finite Kallenberg ex-
changeable graph distribution with parameters W and s, denoted KEG(W, s), is
the distribution of �s . The finite unlabeled Kallenberg exchangeable graph dis-
tribution with parameters W and s, denoted uKEG(W, s) is the distribution of
G(�s).

We formalize estimation in terms of the following notion of convergence.

DEFINITION 4.2. LetW1,W2, . . . be a sequence of graphexes. WriteWn →GP
W as n → ∞ when, for all s ∈ R+, it holds that uKEG(Wn, s) → uKEG(W, s)

weakly as n → ∞.

For each k, we will construct a random graphon Ŵk , measurable with respect
to (Gk, sk), such that, in probability, as k → ∞,

(0,0, Ŵk) →GP W .

We now describe our estimator. Let v(G) denote the number of vertices of a
graph G. Our results build on results for estimating (dense) exchangeable arrays
[23], presented here in the special case of graphs, as in [30].

DEFINITION 4.3 (Empirical graphon). Let G be some nonempty graph over
the vertex set {1, . . . , n}, and write A ∈ {0,1}n×n for its adjacency matrix. The em-
pirical graphon W̃G : (0,1]2 → {0,1} of G is the function W̃G(x, y) = A�nx�,�ny�,
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that is, the function produced by partitioning (0,1]2 into an n × n grid and map-
ping every input in the (i, j)-cell to the value 1 if edge (i, j) is included in G,
and 0 otherwise. When G is empty, the empirical graphon is defined by W̃G = 0.
Two empirical graphons are equivalent when their underlying graphs are isomor-
phic as graphs. We define the empirical graphon of a finite unlabeled graph G as
the equivalence class of the empirical graphon of an arbitrary labeling of G, with
vertex set [v(G)].

The estimator we identify is a dilation of the empirical graphon.

DEFINITION 4.4. Let G be a finite graph and let s > 0. The dilated empirical
graphon of (G, s) is the function Ŵ(G,s) : [0, v(G)/s)2 → {0,1} defined by

Ŵ(G,s)(x, y) =
⎧⎪⎨
⎪⎩

W̃G

(
x

v(G)/s
,

y

v(G)/s

)
x, y ≤ v(G)/s,

0 otherwise.

Intuitively, when the generating graphex is W = (0,0,W), the sequence of di-
lated empirical graphon estimates are higher and higher resolution pixel pictures
of the generating graphex W . See Figure 2.

FIG. 2. Realizations of dilated empirical graphons of KEGs generated by (0,0,W) for W given
in the rightmost column, at sizes given in the bottom row. Note that the ordering of the vertices used
to define the estimator is arbitrary. Here, we have suggestively ordered the vertices according to the
latent values from the process simulations; with this ordering the dilated empirical graphons are
approximate pixel pictures of the generating graphon where the resolution becomes finer as the size
of the observed sample grows. All three graphons satisfy ‖W‖1 = 1, and thus the expected number
of edges (black pixels) at each size s is 1

2 s2 in each column. Note that the rate of dilation is faster
for sparser graphs; as established in [32], the topmost KEG used for this example is sparser than the
middle KEG, and the graphon generating the bottom KEG corresponds to a dense graph.
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The main result of this section is that the dilated empirical graphon of (Gk, sk)

is a consistent estimator for the W , that is, Ŵ(Gk,sk) →GP W in probability as
k → ∞.

REMARK 4.5. Building on an earlier version of the present paper, Janson [20]
has provided various technical improvements to the proofs of this section. Particu-
larly, Janson extends convergence through the continuous sample size parameter s,
and extends our result from convergence in probability to almost sure convergence.

4.1. Convergence in distribution of randomly labeled graphs. This section is
devoted to proving that, with probability one, as k → ∞, the conditional distribu-
tion of Lblsk (Gk) given Gk converges weakly to KEG(W). This establishes that
the distribution generated by W can be recovered from observed data.

THEOREM 4.6. Let � be a KEG generated by a nontrivial graphex W , let
s1, s2, . . . be a sequence in R+ such that sk ↑ ∞ as k → ∞ and let Gk = G(�sk )

for all k. Then P(Lblsk (Gk) ∈ · | Gk) → KEG(W) weakly almost surely.

SKETCH. For brevity, we sketch the main idea and defer the technical details
to Section 2 of the Supplementary Material, where we provide a full proof [33].

Given Gk , let ξk = Lblsk (Gk). Let U ⊂ [0, r)2 be a rectangle with rational co-
ordinates, for some r ∈ R+. We sketch an argument showing that P(ξk(U) ∈ · |
Gk) → P(�(U) ∈ ·) weakly as k → ∞. It can be shown that this suffices to estab-
lish the claim by invoking results from the theory of distributional convergence of
point processes.

It suffices to show that limk→∞E[f (ξk(U)) | Gk] → E[f (�(U))] almost
surely for arbitrary bounded functions f . Let �−s be the partially labeled graph
derived from � by forgetting the labels of all nodes with label θi < s, and let F−s

be the σ -algebra generated by �−s . The first key observation is that, for sk > r ,

E
[
f

(
ξk(U)

) | Gk

] = E
[
f

(
�(U)

) | F−sk

]
.

In words: randomly relabeling the graph is the same as deleting the label informa-
tion.

Next, let Ut = U + (t, t) and define

X(r)
s = 1

s − r

∫ s−r

0
f

(
�(Ut)

)
dt.

The second key observation is that, for all s > r and all t < s − r , the joint ex-
changeability of � implies E[f (�(Ut)) | F−s] = E[f (�(U)) | F−s], and thus also
E[X(r)

s | F−s] = E[f (�(U)) | F−s].
Finally, X

(r)
s → E[f (�(U))] almost surely by the ergodic theorem, and the re-

quired result then follows by a reverse martingale convergence argument. �
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It is natural to take the sequence G1,G2, . . . to be all distinct graph structures
that occur in (�s)s∈R+ . To formalize this, let ξ be an adjacency measure and define
E :R+ →N by

E(s) = 1

2
ξ [0, s]2 for s ∈ R+.

In the absence of self loops, E(s) is the number of edges present between vertices
with labels in [0, s]. The jumps of E correspond with the appearance of edges.

DEFINITION 4.7. Let ξ be an adjacency measure. The jump sizes of ξ , written
as τ(ξ), is the sequence τ1, τ2, . . . of jumps of E in order of appearance as s

increases.

τ1, τ2, . . . are the sample sizes at which edges are added to the unlabeled graph
as more data is collected.

The convergence also holds in the case where the observed samples are taken at
the jumps of the Kallenberg exchangeable graph.

THEOREM 4.8. Let � be a Kallenberg exchangeable graph generated by a
nontrivial graphex W , and let τ1, τ2, . . . be the jump sizes of �. Let Gk = G(�τk

)

for each k ∈ N. Then P(Lblτk
(Gk) ∈ · | Gk, τk) → KEG(W) weakly almost surely

as k → ∞.

SKETCH. For brevity, we sketch the main idea and defer the technical details
to Section 2 of the Supplementary Material, where we provide a full proof [33].

As in the proof of Theorem 4.6, we consider convergence of Lbl(Gk, τk)(U). We
couple this random variable with Lbl(Gk, sk)(U) for a sequence s1, s2, . . . chosen
so that |τk − sk| → 0 almost surely as k → ∞. The required convergence then
follows from Theorem 4.6. �

4.2. Asymptotic equivalence of sampling schemes. Let Poi(λ) denote the Pois-
son distribution with expectation λ, and let Bin(n,p) denote the binomial distri-
bution with parameters n and p.

An r/sk-sample from Gk can be drawn by restricting Lblsk (Gk) to vertices with
label less than r , and then dropping the labels of the induced subgraph. The results
of the previous subsection then suggest that r/sk-samples from Gk will converge
in distribution to a sample from uKEG(W, r) as k → ∞. Indeed, the results of
the next subsection show that this holds. Given this observation, it is natural to
seek a coupling of uKEG(Ŵ(Gk,sk), r) and r/sk-sampling of Gk . Such a coupling
will allow us to use the results of Section 4.1 to show that Ŵ(Gk,sk) is a consistent
estimator.

The key insight is: conditional on Gk , a graph generated according to
uKEG(Ŵ(Gk,sk), r) may be viewed as a random subgraph of Gk induced by sam-
pling Poi( r

sk
v(Gk)) vertices from Gk with replacement and returning the edge set
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of the vertex-induced subgraph. The correctness of this scheme can be seen as
follows:

1. Let � be the latent Poisson process used to generate a sample from
uKEG(Ŵ(Gk,sk), r), as in Theorem 2.4, and let �r = �(· ∩ [0, r]2). Because
Ŵ(Gk,sk) has support [0, v(Gk)/sk]2, only atoms of �r in [0, r] × [0, v(Gk)/sk]
can ever participate in any edge.

2. �r restricted to [0, r] × [0, v(Gk)/sk] may be generated by producing

Jsk,r ∼ Poi(rv(Gk)/sk) points (θi, ϑj ) where, conditional on Jsk,r , θi
i.i.d.∼ Uni[0, r]

and ϑi
i.i.d.∼ Uni[0, v(Gk)/sk], also independently of each other.

3. The {0,1}-valued structure of Ŵ(Gk,sk) means that choosing latent values

ϑi
i.i.d.∼ Uni[0, v(Gk)/sk] is equivalent to choosing vertices of Gk uniformly at ran-

dom with replacement.

Our aim is to show that the sampling scheme just described is asymptotically
equivalent to r/sk-sampling of Gk . Observe that r/sk-sampling is the same as
sampling Bin(v(Gk), r/sk) vertices of Gk without replacement and returning the
induced edge set. Thus, there are two main distinctions between the sampling
schemes: Binomial versus Poisson number of vertices sampled, and with versus
without replacement sampling.

We first show that the Poi(r/skv(Gk)) and Bin(v(Gk), r/sk) samplings are
asymptotically equivalent. Note that the rate (v(Gk)/sk) at which the empiri-
cal graphon is dilated guarantees that the expected number of vertices sampled
according to each scheme is equal; this is the reason that this rate was cho-
sen.

LEMMA 4.9. Let G be an almost surely finite random graph with v vertices.
Let Hr be a random subgraph of G given by sampling Bin(v, r

s
) vertices without

replacement and returning the induced edge set, and let Nr be a random subgraph
of G given by sampling Poi(v r

s
) vertices without replacement and returning the

induced edge set. Then there is a coupling such that

P(Hr �= Nr | G) ≤ r

s
a.s.

PROOF. If the number of vertices chosen by each sampling scheme is equal,
then we may couple the graphs by choosing the same set of vertices. Hence, it suf-
fices to couple the number of vertices, say Ks,r ∼ Bin(v, r/s) and Js,r ∼ Poi(r v

s
).

Note that E[Ks,r | G] = E[Js,r | G]. The approximation of a sum of Bernoulli
random variables by a Poisson with the same expectation as the sum is well stud-
ied: if X1, . . . ,Xl are independent random variables with Bern(pi) distributions
such that λ = ∑�

i=1 pi and T ∼ Poi(λ) then there is a coupling [15], Section 5.3,
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such that P(T �= ∑�
i=1 Xi) ≤ 1

λ

∑�
i=1 p2

i . This implies that there is a coupling of
Ks,r and Js,r such that

P(Ks,r �= Js,r | G) ≤ r

s
,

completing the proof. �

LEMMA 4.10. Let G be an almost surely finite random graph with v vertices.
Let Nr be a random subgraph of G given by sampling Poi(v r

s
) vertices without re-

placement and returning the induced edge set, and let Mr be a random subgraph of
G given by sampling Poi(v r

s
) vertices with replacement and returning the induced

edge set. Then there is a coupling such that

P
(
Mr �= Nr | G,v(Nr)

) ≤ v(Nr)
1

1 + exp(− r
s
)s/2r

a.s.

PROOF. By coupling the number of vertices selected by each sampling
scheme, we can choose a coupling such that the unique vertices of Nr contain
the unique vertices of Mr . Label the vertices of the graph by 1, . . . , v(Nr) such
that 1, . . . , v(Mr) are the unique vertices selected by Mr .

Note that Mr can be sampled by including Oi copies of each vertex indepen-
dently, with Oi ∼ Poi( r

s
). The sampled graphs will be equal if Oi ≤ 1 for all i.

Let F be the number of vertices sampled more than once. Under the coupling
described in the first paragraph,

F = ∑
i

1[Oi ≥ 2] = ∑
i≤v(Mr)

1[Oi ≥ 2] ≤ ∑
i≤v(Nr)

1[Oi ≥ 2].

Then

E
[
F | v(Nr)

] ≤ v(Nr)P(Oi ≥ 2 | Oi ≥ 1)(4.1)

= v(Nr)
1

1 + P(Oi = 1)/P(Oi ≥ 2)
(4.2)

≤ v(Nr)
1

1 + exp(− r
s
) r
s
/ r2

s2

.(4.3)

The final line follows from Chebyshev’s inequality. �

LEMMA 4.11. Let � be generated by graphex W and fix r ∈ R+. For all
s > r ∈ R+, let Hs

r be a r/s-sampling of G(�s) and let Ms
r ∼ uKEG(Ŵ(G(�s),s), r).

Then, for any sequence s1, s2 ↑ ∞, there is a sequence of couplings such that

P
(
Hsk

r �= Msk
r | G(�sk )

) → 0

in probability as k → ∞. Further, letting τ1, τ2, . . . be the jump sizes of �,

P
(
Hτk

r �= Mτk
r | G(�τk

)
) → 0

in probability as k → ∞.
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PROOF. Let Ns
r be a random subgraph of G(�s) given by sampling Poi(v r

s
)

vertices without replacement and returning the induced edge set. Recall that a
Ms

r ∼ uKEG(Ŵ(G(�s),s), r) may be sampled by sampling Poi(v r
s
) vertices with

replacement and returning the induced edge set. Thus, by Lemma 4.10,

P
(
Hs

r �= Ms
r | G(�s)

) ≤ v
(
Hs

r

) 1

1 + exp(− r
s
)s/2r

+ P
(
Hs

r �= Ns
r | G(�s)

)
.

Then, by Lemma 4.9,

P
(
Hs

r �= Ms
r | G(�s)

) ≤ v
(
Hs

r

) 1

1 + s/2r
+ r

s
.

Finally, note that v(Hs
r ) ≤ 2e(Hs

r ), where e(·) denotes number of edges. Using
the fact that r/s-sampling is equivalent to random relabeling in [0, s] and restrict-
ing to vertices with label ≤ r , Theorem 4.6 shows that e(H

sk
r ) converges in distri-

bution to a bounded random variable. This establishes the first part of the claim.
The second part follows mutatis mutandis by substituting Theorem 4.8 for The-

orem 4.6. �

4.3. Estimating W . We now combine our results to show that the law of the
Kallenberg exchangeable graph generated by the dilated empirical graphon con-
verges to the law of a Kallenberg exchangeable graph generated by the underly-
ing W .

In Section 4.1, we showed that r/s-samples from the data set are asymptotically
distributed as samples from the true generating graphex. In Section 4.2, we showed
that samples generated according to the dilated empirical graphon are asymptot-
ically equivalent subgraphs drawn by r/s-sampling the data set. Together, these
results imply that, asymptotically, samples generated according to the dilated em-
pirical graphon have the same distribution as samples from the true underlying
graphex; this is the required estimation result.

There is an immediate subtlety to address: Section 4.1 deals with convergence
in distribution of point processes (i.e., labeled graphs), and Section 4.2 deals with
convergence in distribution of unlabeled graphs. We first give the main conver-
gence result for the point process case.

To prove this result, it is convenient to metrize weak convergence. The space of
boundedly finite measures may be equipped with a metric such that it is a complete
separable metric space ([14], equation (A.2.6)). Let dp(·, ·) be the Prokhorov met-
ric on the space of probability measures over boundedly finite measures induced
by the aforementioned metric. Then dp(·, ·) metrizes weak convergence.

THEOREM 4.12. Let � be a Kallenberg exchangeable graph generated by
nontrivial graphex W and let s1, s2, . . . be a (possibly random) sequence in R+
such that sk ↑ ∞ almost surely as k → ∞. Let Gk = G(�sk ) for k ∈ N. Suppose
that either:
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1. (sk) is independent of �k , or
2. sk = τk for all k ∈ N, where τ1, τ2, . . . are the jump sizes of �.

Then

KEG(Ŵ(Gk,sk)) → KEG(W),

weakly in probability, as k → ∞.

PROOF. For notational simplicity, we treat the deterministic index case first.
For r ∈ R+, let Qsk (Gk, r) = P(Lblsk (Gk)|r ∈ · | Gk, sk), where Lblsk (Gk)|r =

Lblsk (Gk)(· ∩ [0, r)2). That is, Qsk (Gk, r) is the distribution induced by randomly
labeling the observed graph and restricting to vertices with labels less than r .

By the triangle inequality, dp(KEG(Ŵ(Gk,sk), r),KEG(W, r)) is bounded by
dp(KEG(Ŵ(Gk,sk), r),Qsk (Gk, r)) + dp(Qsk (Gk, r),KEG(W, r)).

Conditional on Gk and sk , let Hk
r be an r/sk-sampling of Gk and let Mk

r ∼
uKEG(Ŵ(Gk,sk), r). Note that the couplings of Lemma 4.11 lift to a sequence cou-
pling such that

P
(
Lblr

(
Mk

r

) �= Lblr
(
Hk

r

) | Gk, sk
) p−→ 0, k → ∞.

This is simply by using the same random labels for both graphs.
Observe that Lblr (Mk

r ) is distributed as a sample from KEG(Ŵ(Gk,sk), r) and
Lblr (Hk

r ) is distributed as a sample from Qsk (Gk, r). The relationship between
couplings and total variation distance then implies

∥∥KEG(Ŵ(Gk,sk), r) − Qsk (Gk, r)
∥∥

TV
p−→ 0, k → ∞,

so also,

dp
(
KEG(Ŵ(Gk,sk), r),Qsk (Gk, r)

) p−→ 0, k → ∞.

Second, by Theorem 4.6,

dp
(
Qsk (Gk, r),KEG(W)

) p−→ 0, k → ∞.

Thus,

dp
(
KEG(Ŵ(Gk,sk), r),KEG(W, r)

) p−→ 0, k → ∞.(4.4)

It remains to extend convergence for each r to convergence of the entire point
process. Let �k ∼ KEG(Ŵ(Gk,sk)) for each k, and let � ∼ KEG(W). Let B be
some bounded set, and fix r such that B ⊂ [0, r]2. By equation (4.4), there is some

subsequence k1, k2, . . . such that, almost surely, �kj (B)
d−→ �(B). By taking fur-

ther subsequences, this argument extends to show that for any countable collection
of bounded sets {Bn}n there is a further subsequence k′

1, k
′
2, . . . of k1, k2, . . . such
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that, almost surely, �kj (Bn)
d−→ �(Bn) for each Bn. Since � is a simple point pro-

cess, [22], Lemma 16.16, establishes that KEG(Ŵ(G′
k,s

′
k)

) → KEG(W) weakly a.s.
along k′

1, k
′
2, . . . .

The same argument shows that if we first choose any infinite sequence N ⊂ N

then there is a further subsequence N ′ ⊂ N such that KEG(Ŵ(G′
k,s

′
k)

) → KEG(W)

weakly a.s. along N ′. Hence, KEG(Ŵ(Gk,sk)) → KEG(W) weakly in probability,
as required.

The same proof mutatis mutandis applies for convergence along the jump sizes.
The main substitution is the use of Theorem 4.8 in place of Theorem 4.6. �

The following theorem is a formalization of Ŵ(Gk,sk) →GP W as k → ∞ in
probability, and is the main estimation result for the case where the sizes are in-
cludes as part of the observation.

THEOREM 4.13. Let � be a Kallenberg exchangeable graph generated by
nontrivial graphex W and let s1, s2, . . . be a (possibly random) sequence in R+
such that sk ↑ ∞ almost surely as k → ∞. Let Gk = G(�sk ) for k ∈ N. Suppose
that either:

1. (sk) is independent of �k , or
2. sk = τk for all k ∈N, where τ1, τ2, . . . are the jump sizes of �.

Then, for every infinite sequence N ⊆ N, there exists an infinite subsequence
N ′ ⊆ N , such that

Ŵ(Gk,sk) →GP W a.s.

along N ′.

The proof is deferred to Section 3 of the Supplementary Material [33]. The
basic strategy is to use the convergence in distribution of the adjacency measures
established in Theorem 4.12. The main difficulty is that the map from adjacency
measures to graph structures is measurable but not continuous, so the result does
not follow immediately from the continuous mapping theorem.

5. Estimation for unknown sizes. We now establish estimation results for
the case where only the graph structure of the Kallenberg exchangeable graph
is observed, rather than the graph structure and the sizes of the observation. We
first characterize what is possible to estimate in principle—namely, the graphex
up to dilation—and we then adapt the known sizes estimation results to define an
estimator for this setting—namely, the empirical graphon up to dilation—and to
prove consistency.

In this section, we are interested in the distinct unlabeled graphs that occur in
(�s)s∈R+ .
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DEFINITION 5.1. Let ξ be an adjacency measure, with jump sizes τ1, τ2, . . . .
The graph sequence of ξ , written G (ξ), is the sequence, G(ξ(· ∩ [0, τ1]2)),G(ξ(· ∩
[0, τ2]2)), . . . , consisting of all distinct graph unlabeled graphs in (ξs)s∈R+ .

The next result shows that distinct adjacency measures may give rise to the
same graph sequence. For a measurable map φ : R+ →R+ and adjacency measure
ξ , define ξφ to be the adjacency measure given by ξφ(A × B) = ξ(φ−1(A) ×
φ−1(B)), for every measurable A,B ⊆ R+.

LEMMA 5.2. Let ξ be an adjacency measure and let φ : R+ →R+ be strictly
monotonic. Then G (ξ) = G (ξφ).

PROOF. Let {τk} and {τφ
k } be the jump sizes of ξ and ξφ , respectively.

Since φ is strictly monotonic it is also invertible. From this observation, it is
easily seen that (θi, θj ) is an atom of ξ if and only if (φ(θi), φ(θj )) is an atom

of ξφ . It is then clear that, for all k ∈ N, φ(τk) = τ
φ
k and, moreover, the graph

structure of {(xi, τk) : (xi, τk) ∈ ξ} is equal to the graph structure of {(yi, τ
φ
k ) :

(yi, τ
φ
k ) ∈ ξφ}. That is, the subgraph of all edges added at the kth step is equal

for both graph sequences, for all k ∈ N. Moreover, the first entry of each graph
sequence is (obviously) equal to the subgraph of all edges added at the first step.
The proof is then completed by induction. �

If φ is an arbitrary strictly monotonic mapping and ξ is an exchangeable ad-
jacency measure, it will not generally be the case that ξφ is exchangeable. One
family of mappings that preserves exchangeability is φ(x) = cx, for c ∈ R+. We
define the c-dilation of an adjacency measure ξ to be the adjacency measure ξφ

for this map. Because ξφ is exchangeable there is some graphex W ′ that generates
it: The next result shows that the 1

c
-dilation of a Kallenberg exchangeable graph

corresponds to a c-dilation of its graphex.

LEMMA 5.3. Let � be a Kallenberg exchangeable graph with graphex W =
(I, S,W). Then the 1

c
-dilation of � is a Kallenberg exchangeable graph �′ with

generating graphex W ′ = (I ′, S′,W ′) where I ′ = c2I , S′(x) = cS(x/c), and
W ′(x, y) = W(x/c, y/c).

PROOF. For simplicity of exposition, we prove the result for W = (0,0,W).
The same argument extends to general graphexes by considering dilations of the
latent Poisson processes used to generate the star and isolated edges components.

Recall the generative model for � given in equation (2.1). Let the � be the latent
Poisson processes used to generate �, and let (ζ{i,j}) be the i.i.d. uniform random
variables.
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Define f (�) = {(1
c
θ, cϑ) : (θ,ϑ) ∈ �}. Note that f (�) is a unit-rate Poisson

process on R2+, so that a �′ generated by W ′ = (0,0,W ′) may be generated by
using latent Poisson process f (�) and by reusing (ζ{i,j}).

Note that �′ includes edge (1
c
θi,

1
c
θj ) if and only if ζ{i,j} ≤ W ′(cϑi, cϑj ) which

occurs if and only if ζ{i,j} ≤ W(ϑi,ϑj ) which itself occurs if and only if � includes
edge (θi, θj ). Thus, �′ is the 1

c
-dilation of �, as was to be shown. �

Define the c-dilation of a graphex W to be the graphex W ′ defined in the state-
ment of Lemma 5.3.

THEOREM 5.4. Let W be a graphex, let W ′ be the c-dilation of W for some
c > 0, and let � and �′ be Kallenberg exchangeable graphs with graphexes W
and W ′, respectively. Then G (�)

d= G (�′).

PROOF. The proof follows immediately from Lemmas 5.3 and 5.2. �

As a consequence of this result, when the observed data is a graph sequence—
that is, the size s is unknown—then the dilation of the generating graphex is
not identifiable. We introduce a weaker notion of convergence to accommodate
this.

DEFINITION 5.5. Let W,W1,W2, . . . be a sequence of graphexes, and let
�,�1,�2, . . . be Kallenberg exchangeable graphs generated by each graphex.

Write Wk →GS W as k → ∞ when G (�k)
d−→ G (�) as k → ∞.

Note that this is equivalent to requiring convergence in distribution of the length-
l prefixes of the graph sequences, for all l ∈ N. A length-l graph sequence gener-
ated by the estimator is close in distribution to a length-l graph sequence gen-
erated by the true graphex, provided the observed graph is large enough. This
perspective explains how a sequence of graphexes with support on sets of fi-
nite measure can estimate a graphex that has support on a set of infinite mea-
sure.

The following is immediate from Theorem 5.4.

COROLLARY 5.6. Let W,W1,W2, . . . be a sequence of graphexes, let
c, c1, c2, . . . > 0 and let Wc,W

c1
1 ,W

c2
2 , . . . be the corresponding dilations. Then

Wk →GS W as k → ∞ if and only if Wck

k →GS Wc as k → ∞.

Wk →GS W as k → ∞ demands less than Wk →GP W as k → ∞ because in
the former case we do not need to find a correct rate of dilation for the graphex.
This is borne out by the next lemma.
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LEMMA 5.7. Let W,W1,W2, . . . be graphexes where W is nontrivial and
Wk →GP W as k → ∞. Then Wk →GS W as k → ∞.

PROOF. Let �k be Kallenberg exchangeable graphs generated by Wk , and let
� be generated by W . For n ∈N, let Gk

n = G(�k
n), and let Gn = G(�n).

Consider the sequence Hk
n = (G (�k

1),G (�k
2), . . . ,G (�k

n)), where each entry is
itself an a.s. finite graph sequence and entry j is a prefix of entry j + 1. Let ηk

n =
P(Hk

n ∈ ·), and let ηn = P((G (�1),G (�2), . . . ,G (�n)) ∈ ·). We are breaking up
the graph sequence of the entire Kallenberg exchangeable graph into the graph
sequences up to size 1,2, . . . , and ηn is the joint distribution of the first n of these
partial graph sequences. Our short term goal is to show that ηk

n → ηn weakly as
k → ∞.

To that end, let G be a finite graph and consider the random variable

Ln(G) = (
G

(
Lbln(G)

([0, j)2 ∩ ·)))j=1,...,n.

This is a nested sequence of graph sequences given by mapping G to an adja-
cency measure on [0, n)2 and then returning the sequence of graph sequences
corresponding to this adjacency matrix at sizes 1, . . . , n. The significance of this
construction is that we may use it to define a probability kernel,

Kn(G, ·) = P
(
Ln(G) ∈ ·),

such that P(Gk
n ∈ ·)Kn = EKn(G

k
n, ·) = ηk

n and P(Gn ∈ ·)Kn = EKn(Gn, ·) = ηn.

By assumption, we have Wk →GP W as k → ∞, whence Gk
n

d−→ Gn as k → ∞.
By the discreteness of the space of finite graphs and [22], Lemma 16.24, it then
holds that

P
(
Gk

n ∈ ·)Kn → P(Gn ∈ ·)Kn,

weakly as k → ∞. It thus holds by the construction of Kn that

ηk
n → ηn,(5.1)

weakly as k → ∞.
We now have that an arbitrary length prefix of the graph sequence converges

in distribution, when the notion of length is given by the latent sizes. It remains
to argue that this convergence holds for arbitrary prefixes in the usual sequence
sense. To that end, we observe that because equation (5.1) holds for all n ∈ N, by
[22], Theorem 4.29, it further holds that

(
G

(
�k

1
)
,G

(
�k

2
)
, . . .

) d−→ (
G (�1),G (�2), . . .

)
, k → ∞.(5.2)

Now, observe that there exists some function f that maps prefixes of graph se-
quences to the associated graph sequence. That is, for every locally finite measure
ξ on R2+ with restrictions ξj to [0, j)2,

f
(
G (ξ1),G (ξ2), . . .

) = G (ξ).
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Moreover, f is even continuous because every finite prefix of G (ξ) is determined
by some finite prefix of the left-hand side. Hence, the claim follows by the contin-
uous mapping theorem [22], Theorem 4.27, and equation (5.2). �

We now establish the main estimation result of the paper. The observed data
is an increasing sequences of graphs G1 ⊂ G2 ⊂ · · · . We consider two models
for this sequence: In one model, Gk = G(�sk ) for some Kallenberg exchangeable
graph � and increasing and diverging sequence of sizes s1, s2, . . . . In the other
model, the sequence G1,G2, . . . is the graph sequence G (�) of some Kallenberg
exchangeable graph �.

Our estimator is the empirical graphon, W̃Gk
, defined in Definition 4.3. This

choice reflects the intuition that, because the dilation of the generating graphex
is not identifiable, we need not dilate the estimator. Somewhat more precisely, we
view the empirical graphon as the canonical representative of the equivalence class
of graphons given by equating graphons that induce the same distribution on graph
sequences. The main estimation result is the following.

THEOREM 5.8. Let � be a Kallenberg exchangeable graph generated by some
nontrivial graphex W and let G1,G2, . . . be some sequence of graphs such that
either:

1. There is some random sequence (sk), independent from �, such that
sk ↑ ∞ a.s. and Gk = G(�sk ) for all k ∈ N, or

2. (G1,G2, . . . ) = G (�).

Then, for every infinite sequence N ⊆ N, there is an infinite subsequence N ′ ⊆ N ,
such that

W̃Gk
→GS W a.s.,

along N ′.

PROOF. We prove case (1). Case (2) follows mutatis mutandis, substituting τk

for sk .
Let Ŵ(Gk,sk) denote the dilated empirical graphon of Gk with observation

size sk . By Theorem 4.13, for every sequence N ⊆ N, there is an infinite sub-
sequence N ′ ⊆ N , such that Ŵ(Gk,sk) →GP W along N ′ a.s. By Lemma 5.7 and W
being nontrivial, this implies that Ŵ(Gk,sk) →GS W along N ′ a.s. For every k, W̃Gk

is some dilation of Ŵ(Gk,sk), hence the result follows by Corollary 5.6. �

6. Discussion and related work. We end by explaining some connections to
related work, and remarking on the interpretation of the results developed here.
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Percolated graphon models. The motivation for graphex models is that they
generalize classical graphon models to allow for sparse graphs. A different ap-
proach to resolving the dense graph pathology is to sparsify samples from graphon
models by randomly deleting edges [3, 4, 9, 10]. We call these percolated graphon
models. This approach has been particularly impactful in the study of graph limits,
and has also provided the setting for significant statistical theory.

To enforce sparsity, the probability of edge deletion must grow as the size of
the graph increases. Accordingly, Gn �Gn+1 for typical samples from percolated
graphon models. That is, as the size of the sampled graphs increases, edges that are
present in smaller samples are deleted. This means that network growth in these
models cannot be interpreted as the collection of additional data. This is funda-
mental distinction with the graphex models we consider. For instance, there is no
natural percolated graphon analogue of Theorem 3.3 interpreting the size parame-
ter in terms of some sampling scheme. This considerably complicates the statisti-
cal interpretation and application of these models in the case where the network is
understood as a sample from a larger population.

Sampling. We idealize observed data as a random sample from some (very
large) population graph. If the population graph Gt is itself a size-t sample from
a graphex process, and the observation is selected by s/t-sampling then Theo-
rem 3.3 shows that the observation is marginally distributed as a size-s sample
from a graphex process. If t is very large—as assumed for a population—then
Theorem 4.13 shows that the observed data is approximately distributed as a size-s
sample from a graphex process even conditional on the population. The approxi-
mation becomes exact as t → ∞.

This provides an interpretation of graphex models in terms of p-sampling. How-
ever, the requirement that the population is generated by some graphex process is
onerous. This requirement has been significantly weakened by Borgs et al. [5],
building on an earlier version of the present paper. In brief, they study the case
where the population graph Gt generated according to some arbitrary mechanism,
and the observed data is collected from the population by s/

√
e(Gt)-sampling,

where e(Gt) is the number of edges of Gt . They show that there is some graphex
that characterizes the distribution of the sample in the limit e(Gt) → ∞. Accord-
ingly, the graphex encapsulates the information about the population that can be
learned by p-sampling. This enforces an identification of the graphex and the pop-
ulation. This idea has been further generalized to other sampling schemes by Or-
banz [29]. See also Crane and Dempsey [13] for a general discussion of the role of
sampling design in statistical network modeling.

It is not clear when realistic data collection schemes are well approximated
by p-sampling, and so it may be unclear when graphex models should be used in
practice. We note that the analogous sampling scheme for classical graphon (dense
exchangeable) models is independent vertex sampling. It is also unclear when, if
ever, independent vertex sampling is a good model for realistic data collection
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procedures. Nevertheless, graphon models are in widespread use and have been
successfully applied in practice. Because p-sampling is a simple modification of
independent vertex sampling that allows for sparsity, it seems appropriate to use
graphex models in situations where a graphon model would have been used, but
where the graph is believed to be sparse. Alternatively, comparing p-sampling
and independent vertex sampling reveals that the key difference between graphon
models and graphex models is that the latter disallow isolated vertices; thus, it is
appropriate to use graphex models in situations where isolates are excluded from
the observed data. This is common in practice.

Estimation. Our results connect with the literature on (nonparametric) graphon
estimation [2, 6, 7, 12, 16, 25, 34, 35]. Typically, these results allow for spar-
sity of the observation by making use of the percolated graphon model. The real-
world problems motivating this literature are the same as the problems motivating
graphon estimation in the graphex framework. However, the fact that the perco-
lated graphon models do not admit a sampling interpretation makes the statistical
interpretation of the models very different. A clear articulation of the statistical
connection between the two approaches is an open problem. A particularly in-
teresting question is whether, and how, the estimation ideas from the percolated
graphon setting can be imported to the graphex setting; the proof techniques and
development of the present paper are largely disjoint from the approach of the
percolated graphon development.

Our estimation results are inspired by Kallenberg’s development of the theory
of estimation for exchangeable arrays [23]. Restricted to the graph setting (i.e., 2-
dimensional arrays interpreted as adjacency matrices), and translated into modern
language, that paper introduced the empirical graphon (although not named as
such) and formalized consistency in a fashion analogous to our approach. Our
estimation results may be seen as generalizations of Kallenberg [23] to the sparse
graph regime. Additionally, our proof technique for estimator consistency in the
known-sizes setting is partially inspired by Kallenberg’s development, although
our technical development is wholly disjoint.

Graph limits. The present paper is also closely related to the recent paper [8].
Building on the work of Caron and Fox [11], they generalize notions of graph
limits from the dense graph regime to the sparse graph regime. The key idea is
to map graphs to graphons, and define a notion of convergence for sequences of
graphons (thereby also defining a notion of convergence for sequences of graphs).
An estimator is also a mapping from graphs to graphons. In fact, the mapping that
they use is nearly identical to the dilated empirical graphon. The difference is that
they replace the size s by

√
e(Gs).

This suggests an alternative approach to consistent estimation with unknown
sizes: namely, use the known-sizes estimator of the present paper with the substi-
tution s → √

e(Gs). Indeed, building on an earlier version of the present paper,
this approach to estimation has now been realized [5].
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The connection between graph limits and estimation is also manifest in Janson
[19, 20]. Janson [20] builds on an earlier version of the present paper, studying
the convergence notions we introduce. In particular, that paper metrizes the con-
vergence, and strengthens some of our technical results—notably, proving consis-
tency almost surely for general graphexes, while the present paper establishes only
convergence in probability.
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SUPPLEMENTARY MATERIAL

Supplemental Material for “Sampling and estimation for (sparse) ex-
changeable graphs” (DOI: 10.1214/18-AOS1778SUPP; .pdf). Proofs of several
results, including several technical lemmas.
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