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Testing correlation structures has attracted extensive attention in the lit-
erature due to both its importance in real applications and several major the-
oretical challenges. The aim of this paper is to develop a general framework
of testing correlation structures for the one , two and multiple sample testing
problems under a high-dimensional setting when both the sample size and
data dimension go to infinity. Our test statistics are designed to deal with both
the dense and sparse alternatives. We systematically investigate the asymp-
totic null distribution, power function and unbiasedness of each test statistic.
Theoretically, we make great efforts to deal with the nonindependency of all
random matrices of the sample correlation matrices. We use simulation stud-
ies and real data analysis to illustrate the versatility and practicability of our
test statistics.

1. Introduction. Consider random samples obtained from K independent
populations. Let z(�) be a p-dimensional random vector for � = 1, . . . ,K . We de-
note z(�)

1 , . . . , z(�)
n� to be the n� independent samples of z(�) for the �th population

and z̄(�) = (z̄
(�)
1 , . . . , z̄

(�)
p )T = n−1

�

∑n�

i=1 z(�)
i as its sample mean. Then the sample

covariance matrix and sample correlation matrix of {z(�)
i = (z

(�)
1i , . . . , z

(�)
pi )T : i =
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1, . . . , n�} are, respectively, given by

S� = (n� − 1)−1
n�∑

i=1

(
z(�)
i − z̄(�))(z(�)

i − z̄(�))T and

R̂� = [
diag(S�)

]−1/2S�

[
diag(S�)

]−1/2
,

where diag(S�) is a diagonal matrix constructed from the diagonal elements of S�.
There has been growing interest in the development of methods and theory for
hypothesis testing on correlation structures {R�}K�=1 in different settings [Aitkin
(1969), Browne (1978), Cole (1968), Gao et al. (2017), Jennrich (1970), Kullback
(1967), Schott (1996), Schott (2005), Zhou, Han, Zhang and Liu (2015), Debashis
and Alexander (2014)]. See, for example Anderson (2003) and Cai (2017) for
overviews of statistical challenges associated with such developments.

1.1. Existing literature. Under the classical setting with fixed p as min�{n�} →
∞, there are three major testing problems corresponding to K = 1, K = 2 and
K > 2, respectively. As K = 1, it is one sample testing problem that focuses on
testing H01 : R1 = R∗ against HA1 : R1 �= R∗, where R1 is the population correla-
tion matrix and R∗ is a specific correlation matrix. An interesting asymptotic result
is that the test statistic

(n1 − 1) log
(|R∗|/|R̂1|) − p + tr

(
R−1∗ R̂1

)
is asymptotically distributed as a linear form in 0.5p(p − 1) independent χ2

1
random variables, and not in general χ2

0.5p(p−1) unless R∗ = Ip [Aitkin (1969),
Bartlett and Rajalakshman (1953), Kullback (1967)], where Ip is the p × p iden-
tity matrix. This fact shows that testing the correlation matrix is a more difficult
task than testing the covariance matrix. As K = 2, it is two sample testing prob-
lem that tests H02 : R1 = R2 against HA2 : R1 �= R2, where R1 and R2 are two
population correlation matrices. Several test statistics as distances between R̂1 and
R̂2 and their asymptotic distributions have been studied in the literature [Aitkin
(1969), Jennrich (1970), Larntz and Perlman (1985)]. As K > 2, it is multiple
sample testing problem that tests H0K : R1 = · · · = RK against HAK : notH0K .
Many test statistics and their asymptotic distributions have been extended from the
case K = 2 to K > 2 [Browne (1978), Cole (1968), Gupta, Johnson and Nagar
(2013), Kullback (1967), Schott (1996)].

Recently, ultra-high dimensional data arise from a variety of applications, in-
cluding neuroimaging and genetics; that is, both p and min�{n�} converge to in-
finity. Testing correlation structures {R�}K�=1 in this high-dimensional setting has
attracted extensive attention in the past decade due to both its importance in real
applications and two major theoretical challenges, including high dimensionality
and dependency [Cai (2017), Debashis and Alexander (2014)]. In this case, the
test statistics developed for the classical setting either do not perform well or are
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no longer applicable. Therefore, under the high-dimensional setting, a collection of
new testing statistics have been developed in the last few years for both the one and
two population testing problems [Bodwin, Zhang and Nobel (2018), Cai (2017),
Cai and Zhang (2016), Gao et al. (2017), Schott (2005), Zhou et al. (2015)]. For the
one sample case, the existing results focus on the test of short-range dependence,
which includes independency as a special case, since the standard random matrix
theory results are not directly applicable for a composite null. Moreover, the ex-
isting testing statistics are particularly powerful under either a “sparse” alternative
or a dense alternative. For instance, Zhou et al. (2015) proposed several extreme
value statistics to test the equality of two large U-statistic based correlation matri-
ces, which include the rank-based correlation matrices as special cases.

1.2. Our contributions. The aim of this paper is to provide a general frame-
work of testing correlation structures {R�}K�=1 for the one, two and multiple sam-
ple testing problems as p → ∞. Compared with the existing literature discussed
above, we make four major contributions as follows:

(I) For the first time, we develop a set of test statistics to test correlation struc-
tures {R�}K�=1 for the one, two and multiple sample testing problems under the
high-dimensional setting. Our test statistics are designed to deal with both the
dense and sparse alternatives. Specifically, they are the sum or the maximum of
two terms, including a term for the dense alternative and the other for the sparse
alternative.

(II) We propose the test statistics for testing H01 : R1 = R∗ as K = 1 and then
derive its asymptotic distribution and power function, even when R∗ is an arbitrary
correlation matrix. We make great efforts to deal with the nonindependent elements
of population random vectors during the derivation. In contrast, the existing results
based on the standard random matrix theory [Bai and Silverstein (2004)] are lim-
ited to the covariance matrix or independent correlation [Gao et al. (2017), Li and
Xue (2015), Qiu and Chen (2012), Shao and Zhou (2014)].

(III) Similar to testing H01 : R1 = R∗, we derive the asymptotic distribution of
the test statistics and stride to deal with the nonindependency of the two random
matrices of the sample correlation matrices for testing H02 : R1 = R2.

(IV) To the best of our knowledge, we propose the first test statistic for testing
H0K : R1 = · · · = RK under the high-dimensional setting and then establish its
asymptotic distribution under both H0K and HAK without assuming the normality.
We also stride to deal with the nonindependency of all random matrices of the
sample correlation matrices.

The rest of this paper is organized as follows. Section 2 focuses on the one
sample problem, whereas Section 3 focuses on two- and multiple-sample testing
problems. In each section, we propose the test statistics and establish its asymptotic
distribution, power function and unbiasedness. Section 5 will present simulation
studies. We apply the test statistics to the ADHD data sets in Section 6. All proofs
are collected in the Appendices.
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2. Test statistics for one sample testing problem. In this section, we focus
on the one sample problem of testing H01 : R1 = R∗ against HA1 : R1 �= R∗. This
section consists of three parts. In Section 2.1, we describe two proposed test statis-
tics. We characterize its asymptotic null distributions in Section 2.2 and its power
properties in Section 2.3.

2.1. Test statistics. We first introduce two terms as follows:

Ln,1 = tr
[
(R̂1 − R∗)2]

and

Tn,1 = max
1≤h<j≤p

n1(r̂1hj − r∗1hj )
2(

θ̂−1
1hj δ{R∗�=Ip} + δ{R∗=Ip}

)
,

where θ̂1hj = n−1
1

∑n1
i=1{(z(1)

hi − z̄
(1)
h )(z

(1)
j i − z̄

(1)
j )/(s1hhs1jj )

1/2 − 0.5r̂1hj [(z(1)
hi −

z̄
(1)
h )2/s1hh + (z

(1)
j i − z̄

(1)
j )2/s1jj ]}2 with R̂1 = (̂r1hj )

p
h,j=1, R∗ = (r∗1hj )

p
h,j=1, S1 =

(s1hj )
p
h,j=1 and δ{·} is an indicator function. The first term Ln,1 is designed for the

dense alternative, whereas Tn,1 is for the sparse alternative.
Based on Ln,1 and Tn,1, we propose a weighted test statistic Mn,1 as follows:

(2.1) Mn,1 = Ln,1 + C0δ{Tn,1>s∗(n1,p)},

where the second term of Mn,1 is a hard thresholding, C0 is a large positive number
and s∗(n1,p) is a scalar threshold depending on (n1,p). The choices of C0 and
s∗(n1,p) will be given in the following Remark 2.1. For a given significance level
α, we construct the acceptance region of Mn,1 to be

(2.2)
{(

z(1)
1 , . . . , z(1)

n1

) : (Mn,1 − μz0)/
[
2(n1 − 1)−1 tr

(
R2∗

)] ≤ q1−α

}
,

where q1−α is the (1−α)100% quantile of N(0,1) and μz0 will be specified below.
We also propose a maximum test statistic M ′

n,1 as follows:

M ′
n,1 = max

{
(Ln,1 − μz0)/

[
2(n1 − 1)−1 tr

(
R2∗

)]
,

C′
0(Tn,1 − 4 logp + log logp)

}
,(2.3)

where C′
0 is a positive constant and different C′

0 represents different contributions
from Ln,1 and Tn,1 to M ′

n,1. For a given significance level α, we construct the
acceptance region of M ′

n,1 to be{(
z(1)

1 , . . . , z(1)
n1

) : M ′
n,1 ≤ cα

}
,

where cα is a critical value and the choices of cα and C′
0 will be given in Re-

mark 2.1.

2.2. Null distribution. Our first theoretical result is to characterize the limit-
ing null distribution of Ln,1. We introduce two assumptions that will be used later.
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Assumption (a) specifies the moment assumption of z(�)
i . Assumption (b) speci-

fies the ratio of the dimension of z(�)
i to the sample size n�. We then introduce

Assumption (a) as follows.

ASSUMPTION (a). z(�)
i has the independent component structure z(�)

i = μ
(�)
z +

�
1/2
� w(�)

zi , where w(�)
zi = (w

(�)
z1i , . . . ,w

(�)
zpi)

T with independently and identically dis-

tributed (i.i.d.) elements w
(�)
zjis’, E(w

(�)
zji) = 0, E[(w(�)

zji)
2] = 1 and the kurtosis of

w
(�)
zji is equal to β� = E[(w(�)

zji)
4] − 3. That is, {w(�)

zji} are standardized i.i.d. random
variables only requiring that the fourth moment exists. The spectral norm of R� is
bounded.

Assumption (a) imposes the independent component structure on z(�)
i , which

has been commonly used in random matrix theory [Bai and Silverstein (2004),
Chen, Zhang and Zhong (2010)]. It only requires the existence of moments until
the fourth order. The identically distributed assumption is not critical for most
theoretical developments below.

We state Assumption (b) as follows.

ASSUMPTION (b). The ratio of the dimension p to the sample size n� tends to
a constant, that is, p/n� → y� ∈ (0,∞).

Assumption (b) gives the convergence regime of the data dimension and the
sample sizes. It assumes that the data dimension increases proportionally with the
sample size, even when the limit y� can be extremely small (or large). Therefore,
the data dimension may be much smaller (or greater) than the sample size.

Our first theoretical result quantifies the limiting distribution of the statistic

tr[(R̂1 − R∗)2]. Let
L→ denote the convergence in distribution.

THEOREM 2.1. If Assumptions (a)–(b) hold for � = 1 and under H01, we con-
clude that:

(I.1) (Ln,1 − μz0)/[2(n1 − 1)−1 tr(R2∗)] L→ N(0,1);

(I.2) (Mn,1 − μz0)/[2(n1 − 1)−1 tr(R2∗)] L→ N(0,1) holds under some addi-
tional conditions, including s∗(n1,p) − 4 logp → +∞ and (C1), (C2) and (C3)
in Cai, Liu and Xia (2013) for R∗ and z(1)

i , where μz0 is defined as

(n2
1 − n1 − 1)p2

n1(n1 − 1)2 − 2n2
1 + n1 + 1

(n1 − 1)3 tr
(
R2∗

) + (n2
1 − 3n1)

(n1 − 1)3

p∑
j=1

p∑
j ′=1

(r∗1jj ′)4

+ n1pβ1

(n1 − 1)2 − 2n1β1

(n1 − 1)2

p∑
j=1

p∑
j ′=1

r∗ 3
2 jj ′(r∗ 1

2 jj ′)3
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+ (n2
1 − 5n1)β1

2(n1 − 1)3

p∑
j=1

[
r∗2jj

p∑
j=1

(r∗ 1
2 jj ′)4

]

+ (n2
1 − 3n1)β1

2(n1 − 1)3

p∑
j=1

p∑
j ′=1

[
(r∗1jj ′)2

p∑
h=1

(r∗ 1
2 hj

)2(r∗ 1
2 hj ′)2

]

with r∗khj being the (h, j) entry of Rk∗ for k = 1/2,1,3/2 and 2.

REMARK 2.1. When R∗ = Ip , Cai and Jiang (2011) proved that
max1≤h<j≤p n1(r̂1hj − r∗1hj )

2 − 4 logp + log logp converged to a type I ex-
treme value distribution function F(t) = exp[−(8π)−1/2 exp(−t/2)] under H01.
When R∗ �= Ip , similar to (22) of Cai and Zhang (2016), we conclude that
max1≤h<j≤p n1(r̂1hj − r∗1hj )

2θ̂−1
1hj − 4 logp + log logp converges to the type I

extreme value distribution function under H01 and (C1), (C2) and (C3) in Cai, Liu
and Xia (2013) for R∗ and z(1)

i . The choices of s∗(n1,p), C0, C′
0 and cr are given

as follows:

• Choice of the threshold s∗(n1,p): The test statistic Mn,1 mainly targets at Ln,1.
For simplicity, the threshold is taken to be

s∗(n1,p) = [
4 + (log logn1 − 1)2]

(logp − 0.25 log logp) + u0,

where u0 satisfies exp[−(8π)−1/2 exp(−u0/2)] = 0.99. The threshold ensures
that even if n1 and p are small, the probability of the event {Tn,1 > s∗(n1,p)}
is bounded by 0.01 under H01. The probability of the event {Tn,1 > s∗(n1,p)}
becomes negligible under H01 when either n1 or p is relatively large.

• Choice of the constant C0: The role of C0 is to ensure that the second term
of Mn,1 acts as the main term in Mn,1 when Tn,1 > s∗(n1,p). It is enough to
require that C0/[2(n1 − 1)−1 tr(R2∗)] is far away from q1−α . For simplicity, let
C0 be p2 throughout this paper.

• Choice of the constant C′
0 and the critical value cα : Theorem 2.1 shows that

(Ln,1 − μz0)/[2(n1 − 1)−1 tr(R2∗)] is asymptotically distributed as N(0,1) un-
der H01. To balance the contribution of Ln,1 and that of Tn,1, C′

0 should be
relatively small for extremely dense R1 − R∗, whereas C′

0 should be large for
extremely sparse R1 − R∗. However, it is unknown whether R1 − R∗ is dense
or sparse, so we choose C′

0 such that (Ln,1 − μz0)/[2(n1 − 1)−1 tr(R2∗)] and
C′

0(Tn,1 −4 logp+ log logp) have the same (1−α/2)100% quantile, where α is
the significance level. That is, we have C′

0 = q1−α/2/u
′
0 and cα = q1−α/2, where

u′
0 satisfies exp[−(8π)−1/2 exp(−u′

0/2)] = 1 − α/2. Then we have P(M ′
n,1 >

q1−α/2) ≤ α under H01.

PROOF. We will give the skeletons of the proof of Theorem 2.1. The details
of the proof are placed in Appendices. The proof proceeds in three steps.
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Skeleton of Step 1. To obtain the expansion of tr[(R̂1 − R∗)2] as follows:

tr
[
(R̂1 − R∗)2] = tr

(
S2

1
) + tr

(
R2∗

) − 2 tr(S1R∗)

− 2 tr
{
S2

1
[
diag(S1) − Ip

]} + 2 tr
{[

diag(S1) − Ip

]
S1R∗

}
+ 2 tr

{
S2

1
[
diag(S1) − Ip

]2} − 1.5 tr
{[

diag(S1) − Ip

]2S1R∗
}

+ tr
{
S1

[
diag(S1) − Ip

]
S1

[
diag(S1) − Ip

]}
− 0.5 tr

{[
diag(S1) − Ip

]
S1

[
diag(S1) − Ip

]
R∗

} + op(1),

we assume Cov(z(1)
1 ) = R1 without loss of generality. This step is mainly to use

the Taylor expansions of s−1
1jj = 1 − (s1jj − 1)+ (s1jj − 1)2 + o(p−1) and s

−1/2
1jj =

1 − 1
2(s1jj − 1) + 3

8(s1jj − 1)2 + o(p−1) with S1 = (s1ij )
p
i,j=1.

Skeleton of Step 2. We want to derive the limits of the following four
terms: tr{S2

1[diag(S1)− Ip]2}, tr{[diag(S1)− Ip]2S1R∗}, tr{S1[diag(S1)− Ip]S1 ×
[diag(S1) − Ip]} and tr{[diag(S1) − Ip]S1[diag(S1) − Ip]R∗} in probability.

Skeleton of Step 3. We want to derive the limiting null distribution of (tr(S2
1) −

E tr(S2
1), tr(S1R∗) − E tr(S1R∗), tr{S2

1[diag(S1) − Ip]} − E tr{S2
1[diag(S1) − Ip]},

tr{[diag(S1) − Ip]S1R∗} − E tr{[diag(S1) − Ip]S1R∗)}. Thus by the delta method,
we obtain the central limit theorem (CLT) of tr[(R̂1 − R∗)2]. Because these terms
involve diag(S1) − Ip , we cannot directly use the random matrix theory on linear
spectral statistics of S1 to obtain the limiting distribution of these terms. To solve
the problem, we construct four martingale difference sequences to establish the
CLT of these terms. Especially, the derivation of the CLT for the case R∗ �= Ip is
much more difficult than the derivation for the case R∗ = Ip . �

COROLLARY 2.1. Under the assumptions of Theorem 2.1, we have the fol-
lowing results:

• If R∗ is the identity matrix Ip , then μz0 reduces to

μz0 = (n2
1 − n1 − 1)p2

n1(n1 − 1)2 − (n2
1 + 4n1 + 1)p

(n1 − 1)3 − 3pn1β1

(n1 − 1)3 .

• If the population is Gaussian, then μz0 reduces to

(n2
1 − n1 − 1)p2

n1(n1 − 1)2 − 2n2
1 + n1 + 1

(n1 − 1)3 tr
(
R2∗

) + (n2
1 − 3n1)

(n1 − 1)3

p∑
j=1

p∑
j ′=1

(r∗1jj ′)4

where r∗1jj ′ is the (j, j ′) entry of R∗.

Theorem 2.1 provides a unified framework of testing H01 : R1 = R∗ for an arbi-
trary R∗. Our test statistics account for both dense and sparse alternatives, and they
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work for z(1)
i satisfying the independent component structure specified in Assump-

tion (a) and a ratio of p/n1 = y1 in Assumption (b). Technically, to prove Theo-
rem 2.1, we develop a set of novel tools to deal with the dependence between S1
and diag(S1), which is technically nontrivial and is of independent interest for han-
dling the sample correlation in more general settings. In contrast, Gao et al. (2017)
only established the CLT of the sample correlation matrices of a high-dimensional
vector whose elements have an identity correlated structure R∗ = Ip . Moreover,
their theoretical result involves some two-dimensional contour integrals, which
can be difficult to compute.

2.3. Power properties and optimality. We examine the power properties of
Mn,1 and M ′

n,1. We first establish the asymptotic distribution of the statistic
tr[(R̂1 − R∗)2] under the alternative hypothesis HA1.

THEOREM 2.2. Assuming that Assumptions (a) and (b) hold for � = 1, we
have

tr[(R̂1 − R∗)2] − μzA

σzA

L→ N(0,1),

where μzA and σzA depend on the alternative population correlation matrix R1
and will be given in the Appendix.

Given the result in Theorem 2.2, we can characterize the properties of the power
functions, which is given by

g1(R1, α) = P
(
(Mn,1 − μz0)/

[
2(n1 − 1)−1 tr

(
R2∗

)]
> q1−α

)
,

g′
1(R1, α) = P

(
M ′

n,1 > cα

)
.

In the following, we will study the properties of the power functions g1(R1, α) and
g′

1(R1, α).

COROLLARY 2.2. Assuming that Assumptions (a) and (b) hold for � = 1, we
have the following results:

• If tr[(R1 − R∗)2] > c0 > 0, then g1(R1, α) > α when the sample size n1 is large
enough and c0 is any given small constant.

• If tr[(R1 − R∗)2] tends to infinity, then g1(R1, α) and g′
1(R1, α) are close to one

as n1 → ∞.
• If the absolute value of at least one entry of R1 − R∗ is greater than

n
−1/2
1

√
log(p) log(n1) and the conditions (C1), (C2) and (C3) in Cai, Liu and

Xia (2013) hold for R1 and z(1)
i , then g1(R1, α) and g′

1(R1, α) are close to one
as n1 → ∞.
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Corollary 2.2 shows that the proposed test Mn,1 is asymptotically unbiased. In
the Appendix, we will prove that (i) for the dense alternative tr[(R1 −R∗)2] → ∞,
the power functions tend to one; (ii) for the sparse alternative, if the absolute value
of at least one entry of R1 − R∗ is greater than n

−1/2
1

√
log(p) log(n1), then the

power functions will be close to one.
Similar to Cai and Ma (2013), we define


∗
1(b1, b10) = {

R1 : ‖R1 − R∗‖F > b1
√

p/n1 or ‖R1 − R∗‖∞ > b10

√
logp/n1

}
,

where b1, b10 are positive constants, ‖R1 −R∗‖F = {tr[(R1 −R∗)2]}1/2 and ‖R1 −
R∗‖∞ = max1≤i≤j≤p |eT

i (R1 −R∗)ej | with ei and ej being the ith column and j th
column of the p × p identity matrix, respectively.

THEOREM 2.3. Let 0 < α < β < 1. Suppose that as p/n1 → y1 > 0 as n1 →
+∞. Then there exist two constants 0 < b1, b10 < 1 such that for any test φ with
the significance level α for testing H01 : R1 = R∗, we have

lim sup
n1→∞

inf
R1∈
∗

1(b1,b10)
ER1φ < β,

where ER1 is the expectation under the population correlation matrix being R1.

Theorem 2.3 shows that no level α test can distinguish the null hypothesis from
the alternative hypothesis with the power tending to one as p/n1 → y1 > 0, ‖R1 −
R∗‖F = O(

√
p/n1) or ‖R1−R∗‖∞ > b10

√
logp/n1. Then Theorem 2.3 gives the

lower bound for the optimality of our proposed procedure.

3. Extensions to two and multiple sample testing problems. This section
consists of two parts. In Section 3.1, we focus on the two-sample problem of testing
H02 : R1 = R2 against HA2 : R1 �= R2. In Section 3.2, we consider the multiple
sample testing problem.

3.1. Extension to two sample testing problem.

3.1.1. Test statistics and their null distributions for two-sample testing problem.
Let R̂� = (r̂�hj )

p
h,j=1 and S� = (s�hj )

p
h,j=1 for � = 1,2. We introduce two terms as

follows:

Ln,2 = tr
[
(R̂1 − R̂2)

2]
and

Tn,2 = max
1≤h<j≤p

(
n−1

1 θ̂1hj + n−1
2 θ̂2hj

)−1
(r̂1hj − r̂2hj )

2,
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where θ̂�hj is defined as

θ̂�hj = n−1
�

n�∑
i=1

{(z
(�)
hi − z̄

(�)
h )(z

(�)
j i − z̄

(�)
j )

(s�hhs�jj )1/2

− 0.5r̂�hj

[
(z

(�)
hi − z̄

(�)
h )2

s�hh

+ (z
(�)
j i − z̄

(�)
j )2

s�jj

]}2
.

The first term Ln,2 is introduced to deal with the dense alternative, whereas the
second term Tn,2 is for the sparse alternative.

We propose a weighted test statistic Mn,2 as follows:

(3.1) Mn,2 = Ln,2 + C0,2δ{Tn,2>s(n1,n2,p)},

where C0,2 and the threshold s(n1, n2,p) will be given in Remark 3.1. For a given
significance level α, we construct an acceptance region of Mn,2 to be{{

z(�)
i : i = 1, . . . , n�

}2
�=1 : (Mn,2 − μ̂z12)

/
{
2
[
(n1 − 1)−1 + (n2 − 1)−1]

â
} ≤ q1−α

}
,

where μ̂z12 and â will be defined below.
We also propose a maximum test statistic M ′

n,2 as follows:

M ′
n,2 = max

{
(Ln,2 − μ̂z12)/

{
2
[
(n1 − 1)−1 + (n2 − 1)−1]

â
}
,

C′
0,2(Tn,2 − 4 logp + log logp)

}
,(3.2)

where C′
0,2 is a positive constant. For a given significance level α, we construct an

acceptance region of M ′
n,2 to be{{

z(�)
i : i = 1, . . . , n�

}2
�=1 : M ′

n,2 ≤ cα,2
}
,

where the positive constant C′
0,2 and the critical value cα,2 will be given in Re-

mark 3.1.
We establish the asymptotic null distribution of Ln,2 as follows.

THEOREM 3.1. Let R be the common correlation matrix R = R1 = R2. As-
suming that Assumptions (a) and (b) hold for � = 1 and 2 and under H02, we
conclude that:

(II.1) (Ln,2 − μz12)/{2[(n1 − 1)−1 + (n2 − 1)−1] tr(R2)} L−→ N(0,1);

(II.2) (Mn,2 − μz12)/{2[(n1 − 1)−1 + (n2 − 1)−1] tr(R2)} L−→ N(0,1) holds
under some additional conditions, including s(n1, n2,p) − 4 logp → +∞ and
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(C1), (C2) and (C3) of Cai, Liu and Xia (2013) for R and z(�)
i , where μz12 is given

by

μz12 =
2∑

�=1

(n2
� − n� − 1)p2

n�(n� − 1)2 −
2∑

�=1

2n2
� + n� + 1

(n� − 1)3 tr
(
R2) +

2∑
�=1

β�n�p

(n� − 1)2

−
2∑

�=1

β�2pn�

(n� − 1)2 b0 +
2∑

�=1

β�p(n2
� − 5n�)

2(n� − 1)3 c0 +
2∑

�=1

p(n� − 3)n�

2(n� − 1)3 d�,

with r0khj being the (h, j) entry of Rk for k = 1/2,1,2/3 and 2 and

b0 = p−1
p∑

j=1

p∑
j ′=1

r0 3
2 jj ′(r0 1

2 jj ′)3,

c0 = p−1
p∑

j=1

r02jj

p∑
j ′=1

(r0 1
2 jj ′)4,

d� = p−1
p∑

j=1

p∑
j ′=1

[
2(r01jj ′)4 + β�(r01jj ′)2

p∑
h=1

(r0 1
2 hj

)2(r0 1
2 hj ′)2

]
.

REMARK 3.1. Similar to (22) of Cai and Zhang (2016), we conclude that

max
1≤h<j≤p

(
n−1

1 θ̂1hj + n−1
2 θ̂2hj

)−1
(r̂1hj − r̂2hj )

2 − 4 logp + log log(p)

converges to the type I extreme value distribution function under H02 and (C1),
(C2) and (C3) in Cai, Liu and Xia (2013) for R and z(�)

i . The choices of
s(n1, n2,p), C0,2, C′

0,2 and cα,2 are given as follows:

• Choice of the threshold s(n1, n2,p): The test statistic Mn,2 mainly targets at
Ln,2. For simplicity, we set s(n1, n2,p) as

s(n1, n2,p) = [
4 + (

log log(n1 + n2) − 1
)2]

(logp − 0.25 log logp) + u′
0,

where u′
0 satisfies exp[−(8π)−1/2 exp(−u′

0/2)] = 0.99. The threshold en-
sures that even for small n1, n2 and p, the probability of the event {Tn,2 >

s(n1, n2,p)} is bounded by 0.01 under H02. The probability of the event
{Tn,2 > s(n1, n2,p)} becomes negligible under H02 when either n1, n2 or p

is moderately large.
• Choice of C0,2, C′

0,2 and cα,2: The constants C0,2, C′
0,2 and cα,2 are the same as

C0, C′
0 and cα in Remark 2.1. Moreover, P(M ′

n,2 > q1−α/2) ≤ α under H02.

PROOF OF THEOREM 3.1. We will give the skeletons of the proof of Theo-
rem 3.1. The details of the proof are placed in the Appendices. The proof proceeds
in three steps.
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Skeleton of Step 1. It is assumed that Cov(z(�)
i ) = R� holds for � = 1,2 without

loss of generality. We obtain the expansion of tr[(R̂1 − R̂2)
2] as follows:

tr
[
(R̂1 − R̂2)

2]
= tr

(
S2

1
) + tr

(
S2

2
) − 2 tr(S1S2) − 2 tr

[
S2

1
(
diag(S1) − Ip

)]
− 2 tr

[
S2

2
(
diag(S2) − Ip

)]
+ 2 tr

{[
diag(S1) − Ip

]
S1S2

} + 2 tr
{[

diag(S2) − Ip

]
S1S2

}
+ 2

2∑
�=1

tr
[
S2

�

(
diag(S�) − Ip

)2]

+
2∑

�=1

tr
[
S�

(
diag(S�) − Ip

)
S�

(
diag(S�) − Ip

)]
− 1.5 tr

{[
diag(S1) − Ip

]2S1S2
} − 1.5 tr

{[
diag(S2) − Ip

]2S1S2
}

− 0.5 tr
{[

diag(S1) − Ip

]
S1

[
diag(S1) − Ip

]
S2

}
− 0.5 tr

{
S1[diag S2 − Ip]S2[diag S2 − Ip]}

− tr
{[

diag(S2) − Ip

][
diag(S1) − Ip

]
S1S2

}
− tr

{
S1

[
diag(S1) − Ip

]
S2

[
diag(S2) − Ip

]} + op(1).

This step is mainly to use the Taylor expansions of s−1
�jj = 1 − (s�jj − 1) + (s�jj −

1)2 + o(p−1) and s
−1/2
�jj = 1 − 1

2(s�jj − 1) + 3
8(s�jj − 1)2 + o(p−1) with S� =

(s�ij )
p
i,j=1 for � = 1,2.

Skeleton of Step 2. We want to derive the limits of the following ten terms
in probability: tr[S2

1(diag(S1) − Ip)2], tr[S2
2(diag(S2) − Ip)2], tr{[diag(S1) −

Ip]2S1S2}, tr{[diag(S2) − Ip]2S1S2}, tr[S1(diag(S1) − Ip)S1(diag(S1) − Ip)],
tr[S2(diag(S2) − Ip)S2(diag(S2) − Ip)], tr{[diag(S1) − Ip]S1[diag(S1) − Ip]S2},
tr{S1[diag S2 − Ip]S2[diag S2 − Ip]}, tr{[diag(S2) − Ip][diag(S1) − Ip]S1S2},
tr{S1[diag(S1) − Ip]S2[diag(S2) − Ip]}.

Skeleton of Step 3. We want to derive the limiting null distribution of (tr(S2
1) −

E tr(S2
1), tr(S2

2) − E tr(S2
2), tr(S1S2) − E tr(S1S2), tr[S2

1(diag(S1) − Ip)] −
E tr[S2

1(diag(S1) − Ip)], tr[S2
2(diag(S2) − Ip)] − E tr[S2

2(diag(S2) − Ip)],
tr{[diag(S1) − Ip]S1S2} − E tr{[diag(S1) − Ip]S1S2}, tr{[diag(S2) − Ip]S1S2} −
E tr{[diag(S2) − Ip]S1S2)}. Thus by the delta method, we obtain the CLT of
tr[(R̂1 − R̂2)

2]. Because these terms involve the product of any two or three terms
among S1, diag(S1) − Ip , S2 and diag(S2) − Ip , the CLT for Theorem 2.1 is not
directly applicable. Thus, in order to derive the CLT of these terms, eight new
martingale difference sequences are constructed. Especially, the derivation of the
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CLT for the two population case R1 = R2 is very different from and more difficult
than the derivation for the one population case R1 = R∗. �

REMARK 3.2. Under the null hypothesis H02, we do not know the true R, so
we have to estimate the terms related to R in the asymptotic mean and variance.
Let

ω1 = n1/(n1 + n2), ω2 = 1 − ω1 and

M�i = x(�)
i

(
x(�)
i

)T for � = 1,2,

â� = [tr(R̂2
�) − (n2

� − n� − 1)p2n−1
� (n� − 1)−2 − β�n�p(n� − 1)−2](n� − 1)2

p(n2
� − n� + 2)

,

� = 1,2,

where x(�)
i = (x

(�)
1i , . . . , x

(�)
pi )T = [diag(S�)]−1/2(z(�)

i − z̄(�)) with i = 1, . . . , n�.

Then, we estimate a0 = p−1 tr(R2), b0, c0, and d� as follows:

â0 = ω1â1 + ω2â2,

b̂0 =
2∑

�=1

ω�β
−1
� p−1

(
n−1

�

n�∑
i=1

tr
{
R̂{1,2}/{�}M�i

[
diag(M�i) − Ip

]} − 2pâ0

)
,

ĉ0 =
2∑

�=1

ω�β
−1
� p−1

(
n−1

�

n�∑
i=1

tr
{
R̂{1,2}/{�}

[
R̂� − (n� − 1)−1M�i

]

× [
diag(M�i) − Ip

]2} − 2pâ0

)
,

d̂� = p−1{n−1
�

n�∑
i=1

tr
{[

R̂� − M�i(n� − 1)−1][
diag(M�i) − Ip

]
× R̂{1,2}/{�}

[
diag(M�i) − Ip

]}
,

with letting β−1
� = 0 if β� = 0, R̂{1,2}/{1} = R̂2 and R̂{1,2}/{2} = R̂1. Finally, we can

obtain an estimate of μz12 as follows:

μ̂z12 =
2∑

�=1

(n2
� − n� − 1)p2

n�(n� − 1)2 −
2∑

�=1

p(2n2
� + n� + 1)

(n� − 1)3 â0 +
2∑

�=1

β�n�p

(n� − 1)2

−
2∑

�=1

β�2pn�

(n� − 1)2 b̂0 +
2∑

�=1

β�p(n2
� − 5n�)

2(n� − 1)3 ĉ0 +
2∑

�=1

p(n� − 3)n�

2(n� − 1)3 d̂�.

COROLLARY 3.1. Under the same assumptions of Theorem 3.1, we concluded
that:
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• (Ln,2 − μ̂z12)/{2[(n1 − 1)−1 + (n2 − 1)−1]pâ0} L→ N(0,1);

• (Mn,2 − μ̂z12)/{2[(n1 − 1)−1 + (n2 − 1)−1]pâ0} L→ N(0,1) holds under some
additional conditions, including s(n1, n2,p) − 4 logp → +∞ and (C1), (C2)
and (C3) in Cai, Liu and Xia (2013) for R and z(�)

i .

3.1.2. Power properties and optimality. In the following, we will study the
power properties of the statistics Mn,2 and M ′

n,2.

THEOREM 3.2. Under Assumptions (a) and (b), we have

σ−1
A12

{
tr

[
(R̂1 − R̂2)

2] − μA12
} L→ N(0,1),

where μA12 and σA12 depend on the alternative population correlation matrices
R1 and R2 and will be given in the Appendix.

Theorem 3.2 gives the asymptotic distribution of the statistic tr[(R̂1 − R̂2)
2]

under the alternative hypothesis. The power function is given by

g2(R1,R2, α) = P
(
(Mn,2 − μ̂z12)/

{
2
[
(n1 − 1)−1 + (n2 − 1)−1]

pâ0
}
> q1−α

)
,

and g′
2(R1,R2, α) = P(M ′

n,2 > cα,2). Then g2(R1,R2, α) and g′
2(R1,R2, α) have

the following properties.

COROLLARY 3.2. Under the same assumptions of Theorem 3.2, we have the
following results:

• If tr[(R2 − R1)
2] > c0 > 0, where c0 is a positive scalar, then g2(R1,R2, α) > α

when the sample size is large enough.
• If tr[(R1 − R2)

2] → ∞, then g2(R1,R2, α) and g′
2(R1,R2, α) are close to one

as n1, n2 → ∞.
• If the absolute value of at least one entry of R1 − R2 is greater than

[log(p) log(n1 + n2)]1/2/
√

min{n1, n2} and the conditions (C1), (C2) and (C3)
in Cai, Liu and Xia (2013) hold for R� and z(�)

i , � = 1,2, then g2(R1,R2, α)

and g′
2(R1,R2, α) are close to one as n1, n2 → ∞.

Corollary 3.2 shows that the proposed test Mn,2 is asymptotically unbiased. In
the Appendix, we will prove that for the dense alternative tr[(R1 −R2)

2] → ∞, the
power functions tend to one. For the sparse alternative, if the absolute value of at
least one entry of R1 − R2 is greater than [log(p) log(n1 + n2)]1/2/

√
min{n1, n2},

then the power functions are close to one.
Similar to Cai and Ma (2013), we define


∗
2(b2, b20) = {R1,R2 : ‖R1 − R2‖F > b2 min{√p/n1,

√
p/n2}

or ‖R1 − R2‖∞ > b20 min{
√

logp/n1,
√

logp/n2},



TEST FOR HIGH-DIMENSIONAL CORRELATION MATRICES 2901

where b2, b20 are positive constants, ‖R1 −R2‖F = {tr[(R1 −R2)
2]}1/2 and ‖R1 −

R2‖∞ = max1≤i≤j≤p |eT
i (R1 −R2)ej | with ei and ej being the ith column and j th

column of the p × p identity matrix, respectively.

THEOREM 3.3. Let 0 < α < β < 1. Suppose that p/ni → yi > 0 as ni → ∞
for i = 1,2. Then there exist two constants 0 < b2, b20 < 1 such that for any test φ

with the significance level α for testing H02 : R1 = R2, we have

lim sup
n1,n2→∞

inf
R1,R2∈
∗

2(b2,b20)
ER1,R2φ < β,

where ER1,R2 is the expectation under the two population correlation matrix being
R1 and R2.

Theorem 3.3 shows that no level α test can distinguish between the null hypoth-
esis and all alternative hypotheses with the power tending to one as p/ni → yi > 0
for i = 1,2 and ‖R1 − R2‖F = O(min{√p/n1,

√
p/n2}) or ‖R1 − R2‖∞ >

b20 min{√logp/n1,
√

logp/n2}. Then Theorem 3.3 gives the lower bound for the
optimality of our proposed procedure.

3.2. Test statistic for multiple sample testing problem. We extend the test
statistic from two samples to K samples. The one weighted test statistic is con-
structed as

Mn,K = ∑
1≤�1<�2≤K

ω�1,�2 tr
[
(R̂�1 − R̂�2)

2] + Tn,K,

where

Tn,K = C0
∑

1≤�1<�2≤K

ω�1,�2δ{max1≤h<j≤p(n−1
�1

θ̂�1hj +n−1
�2

θ̂�2hj )−1(r̂�1hj −r̂�2hj )2>s(n�1 ,n�2 ,p)},

with {ω�1,�2,1 ≤ �1 < �2 ≤ K} being a vector of weights.
For simplicity, we focus on the asymptotic distribution of Mn,K .
We first present a key lemma as follows.

LEMMA 3.1. Assume that Assumptions (a) and (b) hold for � = 1, . . . ,K .
Then, {tr[(R̂�1 − R̂�2)

2]−μA�1�2,1 ≤ �1 < �2 ≤ K} are asymptotically distributed
as a multivariate normal distribution. Moreover, we have{

tr
[
(R̂�1 − R̂�2)

2] − μA�1�2, tr
[
(R̂�3 − R̂�4)

2] − μA�3�4

} L→ N(02,�),

where � = {γAuu′ }2
u,u′=1 with γA11 = σA�1�2 , γA22 = σA�3�4 and

γA12 =
{
σA�1�2�3�4, �1 < �2 = �3 < �4;
0, �1, �2, �3, �4 are all unequal.

Moreover, μA�1�2 , μA�3�4 and γAuu′ have closed forms and will be given in the
Appendix.
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Based on Lemma 3.1, we can establish the asymptotic null distribution of Mn,K

as follows.

THEOREM 3.4. Under the same assumptions of Lemma 3.1 and H0K , we con-
clude that:

(III.1) ν
−1/2
K

∑
1≤�1<�2≤K ω�1,�2{tr[(R̂�1 − R̂�2)

2] − μz�1�2} L→ N(0,1).

(III.2) ν
−1/2
K [Mn,K − ∑

1≤�1<�2≤K ω�1,�2μz�1�2] L→ N(0,1) under some addi-
tional conditions, including s(n�1, n�2,p) − 4 logp → +∞ and (C1), (C2) and

(C3) of Cai, Liu and Xia (2013) for R and z(�)
i , where νK = 4[tr(R2)]2uK is given

by

uK = ∑
1≤�1<�2≤K

ω2
�1�2

[
(n�1 − 1)−1 + (n�2 − 1)−1]2

+ 2
∑

1≤�1<�2=�3<�4≤K

ω�1�2ω�3�4(n�2 − 1)−2

+ 2
∑

1≤�1<�3<�2=�4≤K

ω�1�2ω�3�4(n�2 − 1)−2

+ 2
∑

1≤�1=�3<�2<�4≤K

ω�1�2ω�3�4(n�1 − 1)−2,

and μz�1�2 can be similarly defined as μz12.

REMARK 3.3. There are two important issues associated with Mn,K . The first
one is to determine the weights ω�1,�2 . Since the asymptotic variance of tr[(R̂�1 −
R̂�2)

2] − μz�1�2 is equal to 4[(n�1 − 1)−1 + (n�2 − 1)−1]2[tr(R2)]2, a reasonable
choice of ω�1,�2 is ω�1,�2 = [(n�1 − 1)−1 + (n�2 − 1)−1]−1 for 1 ≤ �1 < �2 ≤ K .
The second one is to estimate the asymptotic mean and variance under H0K , since
we do not know what the true R is. A good estimate of p−1 tr(R2) is

∑K
�=1(n� −

1)(n1 +· · ·+nK −K)−1â�, where â� was defined in Remark 3.2. Then the estimate
of νK ,

ν̂K =
K∑

�=1

(n� − 1)(n1 + · · · + nK − K)−1pâ�uK.

Furthermore, the estimate μ̂z�1�2 can be obtained by replacing 1 and 2 by �1 and
�2 in μ̂z12 in Remark 3.2. The C0 is the same as C0,2 in Remark 3.1. The threshold
s(n�1, n�2,p) is obtained by replacing 1 and 2 by �1 and �2 in s(n1, n2,p) in
Remark 3.2.

4. Estimation of the kurtosis β1. To estimate β1 in Theorems 2.1 and 3.1,
we consider two cases as follows.
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Case 1: When R1 is unknown, the covariance matrix �1 is unknown. We may
use an estimator of β1 by Zheng et al. (2018) as follows:

β̃1 = n1V̂ − 2{(n1 − 1) tr(S2
1) − [tr(S1)]2}

n1
∑p

j=1 s2
1jj

,

where S1 = (s1�j )
p
�,j=1 and

V̂ = (n1 − 1)−1
n1∑
i=1

{(
z(1)
i − z̄(1))T (

z(1)
i − z̄(1))

− n−1
1

n1∑
i=1

[(
z(1)
i − z̄(1))T (

z(1)
i − z̄(1))]}2

.

Case 2: For R1 = R∗ for a prespecified correlation matrix R∗, we may estimate
β1 as follows:

β̂1 = p−1
p∑

�=1

[
(n1 − 1)−1 ∑n1

i=1(ξ�i − ξ̄�)
2 − 2ξ̄2

�

ξ̄2
�

∑p
j=1(r∗ 1

2 �j
)4

]
,

where ξ�i = (x
(1)
�i − x̄

(1)
� )2, ξ̄� = n−1

1
∑n1

i=1 ξ�i , and R1/2∗ = (r∗ 1
2 �j

)
p
�,j=1.

The following lemma gives the consistency of the estimator β̂1 under the null
hypothesis H01 : R1 = R∗.

LEMMA 4.1. Suppose that E[(z(1)
�1 )8] ≤ c holds for all � = 1, . . . , p, where c

is a positive constant. Under the null hypothesis H01 and Assumptions (a)–(b), we
have

β̂1 = β1 + op(1).

PROOF. Without loss of generality, assume Ez
(1)
�1 = 0 and Var(z(1)

�1 ) = 1 for all
�. Let e� be the �th column of the p×p identity matrix. We can show the following
results:

n−1
1

n1∑
i=1

z
(1)
�i = op(1),(4.1)

n−1
1

n1∑
i=1

(
z
(1)
�i

)2 = E
(
z
(1)
�1

)2 + op(1),(4.2)

n−1
1

n1∑
i=1

(
z
(1)
�i

)4 = E
(
z
(1)
�1

)4 + op(1),(4.3)
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where op(1) is uniform for � = 1, . . . , p. For instance, to prove (4.1), we have

E

[(
n−1

1

n1∑
i=1

z
(1)
�i − Ez

(1)
�1

)2]
= n−1

1 E
(
z
(1)
�1 − Ez

(1)
�1

)2

= n−1
1 eT

� �∗e� ≤ n−1
1 c = o(1),

where o(1) is uniform for all � = 1, . . . , p. It follows that

ξ̄� = n−1
1

n1∑
i=1

(
z
(1)
�1

)2 −
[
n−1

1

n1∑
i=1

z
(1)
�i

]2

= eT
� �∗e� + op(1),

n−1
1

n1∑
i=1

ξ2
�i = E

(
z
(1)
�1

)4 + op(1).

Therefore, we have

(n1 − 1)−1
n1∑
i=1

(ξ�i − ξ̄�)
2/ξ̄2

� = E(z
(1)
�1 )4 − (eT

� �∗e�)
2

(eT
� �∗e�)2

+ op(1)

= 2 + β1

p∑
j=1

[
eT
j R1/2∗ e�

]4 + op(1),

which yields β̂1 = β1 + op(1). This completes the proof of Lemma 4.1. �

5. Simulation studies. In this section, we carried out simulation studies to
evaluate the finite-sample performance of the proposed test statistics in terms of
the empirical test size and power. We consider both one sample testing prob-
lem and two sample testing problem. For the one sample testing problem, we
set the dimension p to be p = 50,100,200,500 and 1000 and the sample size
n1 to be n1 = 100,120,200 and 300. The data were generated according to
z(1)
i = R1/2w(1)

zi for i = 1, . . . , n1, where the elements of w(1)
zi were independently

and identically generated from Gaussian population N(0,1) or Gamma(4,2) − 2.
For the two sample testing problem, we set p = 50,100,200,500 and 1000
and (n1, n2) = (100,100), (150,150), (200,200). The data were generated ac-
cording to z(�)

i = R1/2
� w(�)

zi for i = 1, . . . , n� and � = 1,2, where the elements

of w(�)
zi were independently and identically generated from Gaussian population

N(0,1) or Gamma(4,2) − 2. For the three sample testing problem, we set p =
50,100,200,500 and 1000 and (n1, n2, n3) = (100,100,100), (100,100,100),
(100,100,200) and (100,200,200). The data were generated according to z(�)

i =
R1/2

� w(�)
zi for i = 1, . . . , n� and � = 1,2,3, where the elements of w(�)

zi were
independently and identically generated from Gaussian population N(0,1) or
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Gamma(4,2) − 2. We set the nominal size to be 5%, run 2000 replications for
empirical sizes and 1000 replications for empirical powers for each setting.

We consider nine different sets of population correlation matrices for R�. For
the two sample testing problem, we compare our tests denoted as “FDS” for Mn,2
and “MAX” for M ′

n,2 with the extreme statistic test, denoted as “CZ” in Cai and
Zhang (2016). However, for the one sample testing problem, we cannot find any
competing method when R∗ is not an identity matrix, so we do not include any
alternative method. When R∗ is an identity matrix, we compare our test “FDS”
for Mn,1 and “MAX” for M ′

n,1 with “GHPY” in Gao et al. (2017) and “LX” in
Li and Xue (2015). For the three-sample testing problem, since we cannot find
any competing method, we do not include any alternative method. For the sake of
space, we selectively present some key results in Tables 1–3 and include additional
results in the Supplementary Material [Zheng et al. (2018)]. The first three models
are designed for the one sample testing problem, whereas the middle four ones are
for the two sample testing problem and the last three ones are for the three-sample
testing problem. The ten different models of population correlation matrices are
summarized as follows.

• Model 1.1: The population correlation matrix is set as R1 = R∗ = (ρ|j ′−j |)pj ′,j=1,
where ρ is taken as 0.0 and 0.5.

• Model 1.2: The population correlation matrix is set as R1 = R∗ + ε0.02(1p1T
p −

Ip)+ (1 − ε)2.5
√

(logp)/n(e2eT
1 + e1eT

2 ), where R∗ = Ip , 1p is a p × 1 vector
of ones and ek is the kth column of the p × p identity matrix. When ε = 1, the
signal pattern of R1 − R∗ is dense. When ε = 0, the signal pattern of R1 − R∗
is sparse.

• Model 1.3: The population correlation matrix is set as R1 = R∗+ε
√

logp logn ×
(e2eT

1 + e1eT
2 ), where R∗ = (0.25|i−j |)pi,j=1 and ε = 0.09 and 0.12. In this case,

the signal pattern of R − R∗ is sparse.
• Model 2.1: The population correlation matrices are set as R1 = R2 =

{ρ|j ′−j |}pj ′,j=1 with ρ = 0.00,0.25,0.50 and 0.75. The simulation results for
ρ = 0.25 and 0.75 are included in the Supplementary Material [Zheng et al.
(2018)].

• Model 2.2: The population correlation matrices are set as R1 = (0.5|j ′−j |)pj ′,j=1

and R2 = R1 + ε(1p1T
p − Ip) with ε = 0.05 and 0.08. In this case, the signal

pattern of R2 − R1 is dense.
• Model 2.3: The population correlation matrices are set as R1 = (ρ|j ′−j |)pj ′,j=1

and R2 = R1 + εp(e2eT
1 + e1eT

2 ) with ρ = 0.05,0.08,0.10, and 0.12 and εp =
exp(0.008p)/[1 + exp(0.008p)]. In this case, the signal pattern of R2 − R1 is
sparse. The simulation results for ρ = 0.05,0.10 and 0.12 are included in the
Supplementary Material [Zheng et al. (2018)].

• Model 2.4: The population correlation matrices are set as R1 = Ip and R2 =
(ρ|j ′−j |)pj ′,j=1 with ε = 0.2,0.225,0.25 and 0.275. In this case, the signal pat-
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TABLE 1
Empirical sizes in Model 1.1 and empirical powers in Models 1.2–1.3 for H01 (in percentage)

wij ∼ N(0,1) wij ∼ Gamma(4,2) − 2

ε n Methods p = 50 100 200 500 1000 50 100 200 500 1000

Empirical sizes in Model 1.1
0.0 100 FDS 6.20 4.75 5.90 5.75 6.25 5.45 6.25 6.60 6.55 5.90

MAX 4.25 3.25 3.50 3.10 3.30 4.60 5.00 4.30 4.60 4.75
GHPY 4.85 4.15 4.70 4.10 5.10 4.85 4.50 4.70 5.75 4.90

LX 3.15 1.90 1.70 0.90 0.90 4.35 4.55 3.55 3.10 3.10

200 FDS 6.15 5.15 5.90 6.05 5.95 5.70 5.55 6.35 5.55 5.85
MAX 4.40 3.40 5.05 4.10 3.80 4.85 4.45 5.10 4.75 4.65
GHPY 5.80 4.80 4.90 4.85 4.95 5.20 4.35 5.35 4.80 5.10

LX 5.35 3.40 3.55 2.15 2.00 5.20 4.90 5.40 4.90 5.00

300 FDS 5.15 4.60 5.15 5.65 5.05 6.25 6.05 6.50 5.85 6.40
MAX 3.90 3.80 3.80 4.45 3.50 4.55 4.40 5.10 4.15 4.75
GHPY 4.45 5.20 4.65 5.10 5.25 4.95 5.50 5.65 4.80 5.85

LX 5.25 4.25 3.90 2.80 2.75 5.15 5.20 6.05 5.15 5.65

0.5 100 FDS 5.50 5.25 5.90 5.95 6.35 5.75 6.00 5.70 5.80 5.95
MAX 5.20 4.80 5.50 5.65 5.15 5.10 4.45 4.55 4.75 4.10

200 FDS 5.25 6.00 5.30 5.05 6.25 5.60 5.40 5.75 5.45 5.10
MAX 4.60 4.65 4.45 4.45 4.90 4.65 4.55 4.20 3.85 4.35

300 FDS 5.85 6.00 5.00 5.75 5.05 4.50 5.75 6.35 5.80 6.05
MAX 5.05 4.25 4.60 4.20 4.00 3.70 4.65 5.10 4.30 4.30

Empirical powers in Model 1.2
1.0 100 FDS 28.9 59.4 90.8 99.9 100.0 28.1 58.1 92.1 100.0 100.0

MAX 21.0 49.8 86.8 99.8 100.0 20.4 49.6 88.3 99.9 100.0
GHPY 19.6 49.5 86.9 100.0 100.0 20.4 46.9 87.4 99.3 100.0

LX 7.10 7.6 8.9 15.7 23.3 10.7 13.4 16.1 24.4 34.3

200 FDS 58.9 93.3 100.0 100.0 100.0 55.8 92.9 99.9 100.0 100.0
MAX 48.9 90.8 100.0 100.0 100.0 48.8 90.2 99.8 100.0 100.0
GHPY 51.6 90.4 99.9 100.0 100.0 50.9 89.8 100.0 100.0 100.0

LX 17.8 28.3 49.7 86.90 97.55 22.9 34.0 54.0 85.9 96.8

300 FDS 83.4 99.9 100.0 100.0 100.0 81.9 99.7 100.0 100.0 100.0
MAX 77.4 99.5 100.0 100.0 100.0 75.6 99.5 100.0 100.0 100.0
GHPY 78.8 99.6 100.0 100.0 100.0 77.3 99.0 100.0 100.0 100.0

LX 33.6 59.0 90.6 99.8 100.0 37.2 62.8 89.6 99.4 100.0

0.0 100 FDS 75.0 79.0 85.2 90.0 94.6 74.5 81.6 85.5 92.1 95.3
MAX 81.6 84.4 90.1 93.3 96.8 82.2 87.0 90.1 94.9 97.2
GHPY 7.6 6.2 5.5 4.6 5.5 9.0 5.9 5.1 5.7 5.1

LX 85.4 88.1 92.2 94.7 97.4 87.3 90.0 92.8 95.8 97.9

200 FDS 71.4 78.7 79.9 84.6 88.2 72.0 76.4 80.3 84.5 88.4
MAX 77.9 84.8 84.3 88.4 91.7 78.9 82.3 86.1 89.3 91.6
GHPY 10.4 6.2 5.5 5.3 4.9 10.1 5.6 6.4 5.1 5.5

LX 83.3 88.3 88.1 90.6 93.7 83.7 86.3 88.7 91.8 93.0
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TABLE 1
(Continued)

wij ∼ N(0,1) wij ∼ Gamma(4,2) − 2

ε n Methods p = 50 100 200 500 1000 50 100 200 500 1000

300 FDS 71.2 76.6 80.8 84.3 87.5 71.9 76.8 80.4 85.7 86.4
MAX 77.2 81.6 86.0 88.8 90.5 77.5 82.7 85.4 88.9 90.4
GHPY 8.4 7.0 5.2 5.3 5.1 9.2 6.7 6.8 4.7 5.1

LX 83.2 85.0 88.2 90.7 92.7 82.6 86.6 88.4 91.6 92.5

Empirical powers in Model 1.3
0.09 100 FDS 44.8 44.1 47.0 46.8 47.2 38.4 39.7 38.5 38.0 38.6

MAX 53.8 53.4 55.0 54.2 54.5 46.3 47.3 46.1 44.3 44.4

200 FDS 99.2 99.8 99.8 99.9 99.9 97.0 97.3 97.4 97.5 98.1
MAX 99.4 99.6 99.9 99.9 100.0 98.3 98.5 98.3 98.2 98.7

300 FDS 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0
MAX 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0

0.12 100 FDS 93.6 94.6 96.0 96.0 96.3 84.9 84.5 82.6 78.8 78.5
MAX 96.2 96.7 97.5 97.5 97.3 89.4 88.5 84.4 82.5 82.3

200 FDS 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.7 99.3 99.3
MAX 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.9 99.6 99.6

300 FDS 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MAX 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

tern of R2 − R1 is between dense case and sparse case. The simulation results
are included in the Supplementary Material [Zheng et al. (2018)].

• Model 3.1: The three population correlation matrices are taken as R1 = R2 =
R3 = Ip . The model is used for evaluating the empirical performance on Type I
errors of the proposed test Mn,3.

• Model 3.2: The three population correlation matrices are taken as R1 = R2 = Ip

and R3 = Ip + 0.03(11T − Ip)
p
i,j=1. Here, R3 − R1 or R3 − R2 is dense.

• Model 3.3: The three population correlation matrices are taken as R1 = R2 = Ip

and R3 = (δ{i=j} + 0.2δ{|i−j |=1})pi,j=1. Here, R3 − R1 or R3 − R2 is a little
sparse.

Overall, the Type I error rates for our tests “FDS” and “MAX” are relatively
accurate for all sample sizes, for all dimensions, for all correlation matrices, and
for the two different distributions of error terms. For the one sample testing prob-
lem, “FDS” and “MAX” can deal with an arbitrary correlation matrix R∗, whereas
other test statistics “GHPY” and “LX” cannot. It seems that both ρ and p have
some minor impact on its Type I error rates. The proposed tests ‘FDS” and “MAX”
perform very well for both sparse and dense alternatives. Consistent with our ex-
pectations, the statistical powers for rejecting the null hypothesis increase as ε, n

and p increase. It seems that “MAX” has a little better performance than “FDS.”
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TABLE 2
Empirical sizes in Model 2.1 and empirical powers in Models 2.2–2.3 for H02 (in percentage)

wij ∼ N(0,1) wij ∼ Gamma(4,2) − 2

ε (n1, n2) Methods p = 50 100 200 500 50 100 200 500

Empirical sizes in Model 2.1
0.0 (100, 100) FDS 5.85 6.00 6.20 6.85 4.85 4.65 5.15 5.50

MAX 4.65 5.15 4.90 5.05 3.50 3.45 3.85 4.10
CZ 5.00 5.10 5.85 5.25 3.25 3.70 3.55 3.10

(150, 150) FDS 5.85 6.45 5.50 5.50 4.85 5.55 4.80 4.65
MAX 4.70 5.55 5.10 5.15 4.00 4.35 4.25 3.55

CZ 4.40 4.45 4.80 5.05 3.35 3.95 4.25 2.80

(200, 200) FDS 5.30 5.20 5.25 5.80 4.85 4.95 5.40 5.25
MAX 4.25 4.55 4.45 4.75 3.60 3.70 4.00 4.20

CZ 4.20 5.45 4.50 4.70 3.60 4.00 3.00 3.35

0.5 (100, 100) FDS 6.15 6.75 5.60 6.25 5.30 4.20 5.50 5.40
MAX 5.30 5.75 5.00 5.60 3.45 4.15 4.60 4.55

CZ 5.55 5.45 5.50 5.55 4.00 4.40 4.15 3.95

(150, 150) FDS 6.10 5.95 6.70 6.25 5.40 5.75 5.70 5.05
MAX 5.30 4.75 5.85 4.85 4.05 4.04 4.20 4.45

CZ 5.60 5.55 4.75 5.00 3.75 3.60 3.85 4.00

(200, 200) FDS 5.20 6.30 6.30 6.90 5.45 4.90 6.10 5.15
MAX 4.20 5.30 5.05 5.95 4.50 3.65 5.65 4.30

CZ 4.20 4.55 4.95 5.30 4.15 3.70 4.30 4.05

Empirical powers in Model 2.2
0.05 (100, 100) FDS 49.6 83.6 99.2 100.0 48.6 82.8 99.9 100.0

MAX 42.5 78.8 98.7 100.0 41.1 77.6 99.9 100.0
CZ 9.8 10.4 12.6 14.3 9.7 9.8 10.3 10.7

(150, 150) FDS 71.8 96.7 100.0 100.0 70.8 97.3 100.0 100.0
MAX 64.7 94.9 99.9 100.0 62.2 95.5 100.0 100.0

CZ 14.4 15.0 16.8 16.6 11.5 11.8 14.1 14.3

(200, 200) FDS 84.9 99.6 100.0 100.0 82.4 99.8 100.0 100.0
MAX 79.5 99.2 100.0 100.0 77.3 99.5 100.0 100.0

CZ 14.9 17.5 19.5 23.6 14.6 15.5 17.9 20.6

0.08 (100, 100) FDS 87.7 99.8 100.0 100.0 90.1 99.4 100.0 100.0
MAX 84.2 99.7 100.0 100.0 85.8 99.3 99.9 100.0

CZ 18.4 21.8 24.1 30.1 19.3 20.5 21.6 26.1

(150, 150) FDS 98.5 100.0 100.0 100.0 97.9 100.0 100.0 100.0
MAX 97.5 100.0 100.0 100.0 97.2 100.0 100.0 100.0

CZ 31.4 32.8 40.2 43.4 26.0 31.0 36.6 40.1

(200, 200) FDS 99.7 100.0 100.0 100.0 99.8 100.0 100.0 100.0
MAX 99.5 100.0 100.0 100.0 99.6 100.0 100.0 100.0

CZ 37.6 45.4 53.8 62.3 37.3 42.8 49.6 58.7
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TABLE 2
(Continued)

wij ∼ N(0,1) wij ∼ Gamma(4,2) − 2

ε (n1, n2) Methods p = 50 100 200 500 50 100 200 500

Empirical powers in Model 2.3
0.08 (100, 100) FDS 65.5 86.8 99.6 99.6 61.8 78.5 97.6 96.5

MAX2 72.8 90.6 99.8 99.8 68.6 83.3 98.8 97.5
CZ 78.7 93.2 99.9 99.9 76.0 87.7 99.5 98.3

(150, 150) FDS 94.1 99.4 100.0 100.0 92.6 98.5 99.9 100.0
MAX 96.5 99.6 100.0 100.0 95.2 99.3 99.9 100.0

CZ 97.7 99.9 100.0 100.0 97.0 99.5 99.9 100.0

(200, 200) FDS 99.5 100.0 100.0 100.0 99.1 99.9 100.0 100.0
MAX 99.9 100.0 100.0 100.0 99.5 100.0 100.0 100.0

CZ 99.9 100.0 100.0 100.0 99.7 100.0 100.0 100.0

For the two- and three-sample testing problems, “FDS” and “MAX” also can
deal with arbitrary correlation matrices. It seems that ρ, p, and the error distri-
bution have little impact on its Type I error rates. The proposed tests “FDS” and
“MAX” perform reasonably well for sparse alternatives, dense alternatives, and
between sparse and dense alternatives. It seems that “MAX” is slightly better than
“FDS.”

TABLE 3
Empirical test sizes in Model 3.1 and empirical powers in Models 3.2 and 3.3 for H03 (in

percentage)

wij ∼ N(0,1) wij ∼ Gamma(4,2) − 2

(n1, n2, n3) p = 50 100 200 500 1000 50 100 200 500 1000

Empirical test sizes in Model 3.1
(50, 100, 100) FDS 6.10 6.60 5.95 6.20 6.60 5.45 5.50 6.00 5.85 5.30
(100, 100, 100) FDS 6.30 5.90 5.20 5.85 5.35 5.90 4.85 5.15 5.90 5.60
(100, 100, 200) FDS 4.70 5.60 5.65 5.75 5.25 5.00 5.35 4.80 5.35 5.15
(100, 200, 200) FDS 5.85 5.45 5.60 5.70 4.55 5.75 4.85 5.40 4.90 5.25

Empirical powers in Model 3.2
(50, 100, 100) FDS 18.5 44.9 86.4 100.0 100.0 14.4 36.3 81.6 100.0 100.0
(100, 100, 100) FDS 22.1 52.5 91.8 100.0 100.0 18.6 50.1 91.0 100.0 100.0
(100, 100, 200) FDS 28.8 74.1 99.6 100.0 100.0 26.8 71.2 98.9 100.0 100.0
(100, 200, 200) FDS 38.9 88.2 99.9 100.0 100.0 39.2 85.8 99.8 100.0 100.0

Empirical powers in Model 3.3
(50, 100, 100) FDS 39.7 37.4 37.1 40.3 53.1 30.1 28.8 32.1 33.3 35.8
(100, 100, 100) FDS 47.2 45.9 47.7 50.4 50.1 40.6 43.2 41.5 45.1 46.8
(100, 100, 200) FDS 68.1 69.8 70.3 73.6 73.1 64.2 65.2 65.6 68.8 67.8
(100, 200, 200) FDS 84.5 87.5 87.2 89.3 88.8 83.2 85.0 85.1 86.3 86.1
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6. Real data analysis.

6.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. “Data used
in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator,
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.”5

We consider 749 T1 weighted images collected at the baseline of ADNI1, con-
sisting of 206 normal subjects, 364 mild cognitive impairment (MCI) subjects
and 179 Alzheimer’s disease (AD) subjects. These scans were performed on a
1.5T MRI scanners using a sagittal MPRAGE sequence and the typical proto-
col includes the following parameters: repetition time (TR) = 2400 ms, inversion
time (TI) = 1000 ms, flip angle = 8◦, and field of view (FOV) = 24 cm with
a 256 × 256 × 170 mm3 acquisition matrix in the x, y and z dimensions, which
yields a voxel size of 1.25 × 1.26 × 1.2 mm3.

The T1-weighted images were processed using the Hierarchical Attribute
Matching Mechanism for Elastic Registration (HAMMER) pipeline. The process-
ing steps include anterior commissure and posterior commissure correction, skull-
stripping, cerebellum removal, intensity inhomogeneity correction and segmenta-
tion. We performed automatic regional labeling by labeling the template and by
transferring the labels following the deformable registration of subject images. Fi-
nally, we labeled 93 regions of interest (ROIs) and computed their volumes for
each subject.

6.2. Group comparisons. We are interested in characterizing differences
among the three correlation matrices of ROI volumes for normal subjects, MCI
subjects and AD subjects, which are denoted as RNC, RMCI and RAD, respectively.
Statistically, we test three two sample testing problems, including RNC = RMCI,
RNC = RAD and RMCI = RAD, and one three sample testing problem, that is,
RNC = RMCI = RAD.

We applied the test statistics Mn,2 and Mn,3 to carry out these tests as follows.
First, for each ROI, we fitted a linear regression model with its ROI volume as
response and age, gender and whole brain volume as covariates by using data ob-
tained from all subjects. Second, for each group, we calculated its correlated matrix
based on the residuals of all ROIs obtained from the first step. Figure 1 presents the

5ADNI manuscript citation guidelines. https://adni.loni.usc.edu/wp-content/uploads//how_to_
apply/ADNI_DSP_Policy.pdf

http://www.adni-info.org
https://adni.loni.usc.edu/wp-content/uploads//how_to_apply/ADNI_DSP_Policy.pdf
https://adni.loni.usc.edu/wp-content/uploads//how_to_apply/ADNI_DSP_Policy.pdf
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FIG. 1. Graphical display of correlation matrices of normal subjects, MCI subjects and AD sub-
jects.

sample correlation matrices corresponding to the three groups. Figure 2 presents
the difference of the sample correlation matrices among the three groups. Then we
clustered the 93 ROIs according to the correlation matrix of the normal control
group. For example, Cluster 1 includes the large area of prefrontal cortex, and its
functions span over the frontoparietal control network (orbitofrontal cortex, mid-
dle frontal gyrus), default node network and ventral attention network. This region
has been implicated in decision making, complex cognitive behavior, processing
of higher information, decision making, personal expression, social behavior mod-
erating, attention, memory, recognizing faces, characters, etc. Third, we calculated
the p-value of testing RNC = RMCI, that of RNC = RAD, and that of RMCI = RAD
as 1.23×10−9, 0 and 1.78×10−11, respectively. Fourth, we calculated the p-value
of testing RNC = RMCI = RAD as 0.

APPENDIX A: SOME EXPRESSIONS

Let r∗khj be the (h, j) entry of Rk∗ and r�khj be the (h, j) entry of Rk
� for k =

1/2,1,3/2,2,3. Let ej be the j th column of the p × p identity matrix.

A.1. Expressions of μzA, μz0 and σ 2
zA for one population in Theorem 2.1

and 2.2. Expression of μzA and μz0:

μzA = [
n1(n1 − 1) + 2

]
(n1 − 1)−2 tr

(
R2

1
) + (

n2
1 − n1 − 1

)
p2n−1

1 (n1 − 1)−2

+ β1n1p(n1 − 1)−2 − 2 tr(R1R∗) + tr
(
R2∗

)
− 4n1(n1 − 1)−2

[
2 tr

(
R2

1
) + β1

p∑
h=1

p∑
j=1

r1 3
2 hj

(r1 1
2 hj

)3

]

+ 2n1(n1 − 1)−2

[
2 tr(R1R∗) + β1

p∑
h=1

p∑
j=1

eT
j R1/2

1 R∗eh(r1 1
2 hj

)3

]
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FIG. 2. Graphical display of difference between correlation matrices of normal subjects, MCI subjects and AD subjects.
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+ 2n1(n1 − 2)(n1 − 1)−3

[
2 tr

(
R2

1
) + β1

p∑
h=1

r12hh

p∑
j=1

(r1 1
2 hj

)4

]

− 1.5n1(n1 − 1)−2

[
2 tr(R1R∗) + β1

p∑
j=1

eT
j R1R∗ej

p∑
h=1

(r1 1
2 hj

)4

]

+ n1(n1 − 2)(n1 − 1)−3
p∑

j=1

p∑
j ′=1

(r11jj ′)2

×
[

2(r11jj ′)2 + β1

p∑
h=1

(r1 1
2 hj

)2(r1 1
2 hj ′)2

]

− 0.5n1(n1 − 1)−2
p∑

j=1

p∑
j ′=1

(r11jj ′)(r∗1jj ′)

×
[

2(r11jj ′)2 + β1

p∑
h=1

(r1 1
2 hj

)2(r1 1
2 hj ′)2

]
.

When R1 = R∗, we have

μz0 = μzA

= (
n2

1 − n1 − 1
)
p2n−1

1 (n1 − 1)−2 − [
2n2

1 + n1 + 1
]
(n1 − 1)−3 tr

(
R2∗

)
+ (n2

1 − 3n1)

(n1 − 1)3

p∑
j ′=1

p∑
j=1

(r∗1jj ′)4 + β1

[
n1p(n1 − 1)−2

− 2n1(n1 − 1)−2
p∑

h=1

p∑
j=1

(r∗ 3
2 hj

)(r∗ 1
2 hj

)3

+ 0.5
(
n2

1 − 5n1
)
(n1 − 1)−3

p∑
j=1

(r∗2jj )

p∑
h=1

(r∗ 1
2 hj

)4

+ 0.5
(
n2

1 − 3n1
)
(n1 − 1)−3

p∑
j=1

p∑
j ′=1

(r∗1jj ′)2
p∑

h=1

(r∗ 1
2 hj

)2(r∗ 1
2 hj ′)2

]
.

Expression of σ 2
zA:

σ 2
zA = 8n−1

1 tr
[
(R1R∗)2] + 4β1n

−1
1

p∑
j=1

(
eT
j R1/2

1 R∗R1/2
1 ej

)2

+ 4n−1
1

p∑
j=1

p∑
j ′=1

eT
j R1R∗ej eT

j ′R1R∗ej ′
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×
[

2(r11jj ′)2 + 4β1

p∑
h=1

(r1 1
2 hj

)2(r1 1
2 hj ′)2

]

+ 4n−1
1

[
2 tr

(
R4

1
) + β1

p∑
j=1

(r12jj )
2

]
+ 4

[
n−1

1 tr
(
R2

1
)]2

+ 4n−1
1

p∑
j=1

p∑
j ′=1

(r12jj )(r12j ′j ′)

[
2(r11jj ′)2 + β1

p∑
h=1

(r1 1
2 hj

)2(r1 1
2 hj ′)2

]

− 8n−1
1

p∑
j=1

eT
j R1R∗ej

[
2eT

j R1R∗R1ej + β1

p∑
h=1

(r1 1
2 hj

)2eT
h R1/2

1 R∗R1/2
1 eh

]

− 8n−1
1

[
2 tr

(
R3

1R∗
) + β1

p∑
j=1

eT
j R1/2

1 R∗R1/2
1 ej (r12jj )

]

+ 8n−1
1

p∑
j=1

(r12jj )

[
2eT

j R1R∗R1ej + β1

p∑
h=1

(r1 1
2 hj

)2eT
h R1/2

1 R∗R1/2
1 eh

]

+ 8n−1
1

p∑
j=1

eT
j R1R∗ej

[
2(r13jj ) + β1

p∑
h=1

(r1 1
2 hj

)2(r12hh)

]

− 8n−1
1

p∑
j=1

p∑
j ′=1

eT
j R1R∗ej (r12j ′j ′)

[
2(r11jj ′)2 + β1

p∑
h=1

(r1 1
2 hj

)2(r1 1
2 hj ′)2

]

− 8n−1
1

p∑
j=1

(r12jj )

[
2r13jj + β1

p∑
h=1

(r1 1
2 hj

)2(r12hh)

]
.

When R1 = R∗, we have σ 2
zA = 4[n−1

1 tr(R2∗)]2.

A.2. Expressions of μA�1�2 , μz�1�2 , σ 2
A�1�2

and σA�1�2�2�3 in Theorems 3.1–
3.4.

μA�1�2

= −2 tr(R�1R�2) +
2∑

i=1

a�i

{(
n2

�i
− n�i

+ 2
)
n−1

�i
tr

(
R2

�i

)
+ (

n2
�i

− n�i
− 1

)
p2n−2

�i
+ β�i

p

− 4

[
2 tr

(
R2

�i

) + β�i

p∑
h=1

p∑
j=1

(r
�i

3
2 hj

)(r
�i

1
2 hj

)3

]
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+ 2

[
2 tr(R�1R�2) + β�i

p∑
h=1

p∑
j=1

eT
h R1/2

�i
R{�1,�2}\{�i}ej (r�i

1
2 hj

)3

]

+ 2(n�i
− 2)(n�i

− 1)−1

[
2 tr

(
R2

�i

) + β�i

p∑
j=1

(r�i2jj )

p∑
h=1

(r
�i

1
2 hj

)4

]

− 1.5
p∑

h=1

eT
h R�1R�2eh

[
2 + β�i

p∑
j=1

(r
�i

1
2 hj

)4

]

+ (n�i
− 2)(n�i

− 1)−1

×
p∑

h=1

p∑
j=1

(r�i1hj )
2

[
2(r�i1hj )

2 + β�i

p∑
j ′=1

(r
�i

1
2 hj ′)2(r

�i
1
2 jj ′)2

]

− 0.5
p∑

h=1

p∑
j=1

(r�11hj )(r�21hj )

[
2(r�i1hj )

2 + β�i

p∑
j ′=1

(r
�i

1
2 hj ′)2(r

�i
1
2 jj ′)2

]}
,

where a�i
= n�i

/[(n�i
− 1)2], r�ikhj is the (h, j) entry of (R�i

)k for k =
1/2,1,3/2,2,3 and R{�1,�2}\{�1} = R�2 , R{�1,�2}\{�2} = R�1 .

When R�1 = R�2 = R, we have

μzk1�2 = μAz1z2

=
2∑

i=1

n�i

(n�i
− 1)3

[
(n2

�i
− n�i

− 1)p2(n�i
− 1)

n2
�i

− (2n2
�i

+ n�i
+ 1)

n�i

tr
(
R2)

+ (n�i
− 3)

p∑
h=1

p∑
j=1

(r01hj )
4 + β�i

p(n�i
− 1) − 2β�i

(n�i
− 1)

×
p∑

h=1

p∑
j=1

(r0 3
2 hj

)(r0 1
2 hj

)3 + 0.5(n�i
− 5)β�i

p∑
h=1

(r02hh)

p∑
j=1

(r0 1
2 hj

)4

+ 0.5(n�i
− 3)β�i

p∑
h=1

p∑
j=1

(r01hj )
2

p∑
j ′=1

(r0 1
2 hj ′)2(r0 1

2 jj ′)2

]
,

where r0khj is the (h, j) entry of Rk for k = 1/2,1,3/2,2,3. We have σ 2
A�1�2

=
aA�1�2 + bA�1�2 where

aA�1�2 = 8n−1
�1

tr
[
(R�1R�2)

2] + 4β�1n
−1
�1

p∑
h=1

(
eT
h R1/2

�1
R�2R1/2

�1
eh

)2

+ 4n−1
�1

p∑
h=1

p∑
j ′=1

eT
h R�1R�2eheT

j ′R�1R�2ej ′
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×
[

2(r�11hj ′)2 + 4β�1

p∑
j=1

(r
�1

1
2 hj

)2(r
�1

1
2 jj ′)2

]

+ 4n−1
�1

[
2 tr

(
R4

�1

) + β�1

p∑
h=1

(r�12hh)
2

]
+ 4

[
n−1

�1
tr

(
R2

�1

)]2

+ 4n−1
�1

p∑
h=1

p∑
j ′=1

(r�12hh)(r�12j ′j ′)

×
[

2(r�11hj ′)2 + β�1

p∑
j=1

(r
�1

1
2 hj

)2(r
�1

1
2 jj ′)2

]

− 8n−1
�1

p∑
h=1

eT
h R�1R�2eh

[
2eT

h R�1R�2R�1eh

+ β�1

p∑
j=1

(r
�1

1
2 hj

)2eT
j R1/2

�1
R�2R1/2

�1
ej

]

− 8n−1
�1

[
2 tr

(
R3

�1
R�2

) + β�1

p∑
h=1

eT
h R1/2

�1
R�2R1/2

�1
eh(r�12hh)

]

+ 8n−1
�1

p∑
h=1

(r�12hh)

[
2eT

h R�1R�2R�1eh

+ β�1

p∑
j=1

(r
�1

1
2 hj

)2eT
j R1/2

�1
R�2R1/2

�1
ej

]

+ 8n−1
�1

p∑
h=1

eT
h R�1R�2eh

[
2(r�13hh) + β�1

p∑
j=1

(r
�1

1
2 hj

)2(r�12jj )

]

− 8n−1
�1

p∑
h=1

p∑
j ′=1

eT
h R�1R�2eh(r�12j ′j ′)

×
[

2(r�11hj ′)2 + β�1

p∑
j=1

(r
�1

1
2 hj

)2(r
�1

1
2 jj ′)2

]

− 8n−1
�1

p∑
h=1

(r�12hh)

[
2(r�13hh) + β�1

p∑
j=1

(r
�1

1
2 hj

)2(r�12jj )

]
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and

bA�1�2 = 8n−1
�2

tr
[
(R�1R�2)

2] + 8

n�2n�1

[
tr(R�1R�2)

]2

+ 4β�2n
−1
�2

p∑
h=1

(
eT
h R1/2

�2
R�1R1/2

�2
eh

)2

+ 4n−1
�2

p∑
h=1

p∑
j ′=1

eT
h R�2R�1eheT

j ′R�2R�1ej ′

×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

+ 4n−1
�2

[
2 tr

(
R4

�2

) + β�2

p∑
h=1

(r�22hh)
2

]
+ 4

(
n−1

�2
tr R2

�2

)2

+ 4n−1
�2

p∑
h=1

p∑
j ′=1

(r�22hh)(r�22j ′j ′)

×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

− 8n−1
�2

p∑
h=1

eT
h R�2R�1eh

[
2eT

h R�2R�1R�2eh

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�1R1/2

�2
ej

]

− 8n−1
�2

[
2 tr

(
R3

�2
R�1

) + β�2

p∑
h=1

eT
h R1/2

�2
R�1R1/2

�2
eh(r�22hh)

]

+ 8n−1
�2

p∑
h=1

(r�22hh)

[
2eT

h R�2R�1R�2eh

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�1R1/2

�2
ej

]

+ 8n−1
�2

p∑
h=1

eT
h R�2R�1eh

[
2(r�23hh) + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r�22jj )

]

− 8n−1
�2

p∑
h=1

p∑
j ′=1

eT
h R�2R�1eh(r�22j ′j ′)
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×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

− 8n−1
�2

p∑
h=1

(r�22hh)

[
2(r�23hh) + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r�22jj )

]
.

When R�1 = R�2 = R, we have aA�1�2 = 4[n−1
�1

tr(R2)]2, bA�1�2 = 8n−1
�1

n−1
�2

×
[tr(R2)]2 + 4[n−1

�2
tr(R2)]2 and σ 2

A�1�2
= 4(n−1

�1
+ n−1

�2
)2[tr(R2)]2.

For �1 �= �2 �= k3, we have

σA�1�2�2�3

= 4n−1
�2

[
2 tr(R�1R�2R�3R�2)

+ β�2

p∑
j=1

eT
j R1/2

�2
R�1R1/2

�2
ej eT

j R1/2
�2

R�3R1/2
�2

ej

]

+ 4n−1
�2

p∑
h=1

p∑
j ′=1

eT
h R�2R�1eheT

j ′R�2R�3ej ′

[
2(r�21hj ′)2

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

+ 4n−1
�2

[
2 tr

(
R4

�2

) + β�2

p∑
h=1

(r�22hh)
2

]
+ 4

[
n−1

�2
tr

(
R2

�2

)]2

+ 4n−1
�2

p∑
h=1

p∑
j ′=1

(r�22hh)(r�22j ′j ′)

×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

− 2n−1
�2

p∑
h=1

eT
h R�2R�3eh

[
2eT

h R�2R�1R�2eh

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�1R1/2

�2
ej

]

− 2n−1
�2

p∑
h=1

eT
h R�2R�1eh

[
2eT

h R�2R�3R�2eh
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+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�3R1/2

�2
ej

]

− 4n−1
�2

[
2 tr

(
R3

�2
R�1

) + β�2

p∑
h=1

eT
h R1/2

�2
R�1R1/2

�2
eh(r�22hh)

]

− 4n−1
�2

[
2 tr

(
R3

�2
R�3

) + β�2

p∑
h=1

eT
h R1/2

�2
R�3R1/2

�2
eh(r�22hh)

]

+ 4n−1
�2

p∑
h=1

(r�22hh)

[
2eT

h R�2R�1R�2eh

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�1R1/2

�2
ej

]

+ 4n−1
�2

p∑
h=1

(r�22hh)

[
2eT

h R�2R�3R�2eh

+ β�2

p∑
j=1

(r
�2

1
2 hj

)2eT
j R1/2

�2
R�3R1/2

�2
ej

]

+ 4n−1
�2

p∑
h=1

eT
h R�2R�1eh

[
2(r�23hh) + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r�22jj )

]

+ 4n−1
�2

p∑
h=1

eT
h R�2R�3eh

[
2(r�23hh) + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r�22jj )

]

− 4n−1
�2

p∑
h=1

p∑
j ′=1

eT
h R�2R�1eh(r�22j ′j ′)

×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

− 4n−1
�2

p∑
h=1

p∑
j ′=1

eT
h R�2R�3eh(r�22j ′j ′)

×
[

2(r�21hj ′)2 + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r
�2

1
2 jj ′)2

]

− 4n−1
�2

p∑
h=1

(r�22hh)

[
2(r�23hh) + β�2

p∑
j=1

(r
�2

1
2 hj

)2(r�22jj )

]
.
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When R�1 = R�2 = R�3 = R, we have σA�1�2�2�3 = 4[n−1
�2

tr(R2)]2.
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