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THE MIDDLE-SCALE ASYMPTOTICS OF WISHART MATRICES

BY DIDIER CHÉTELAT AND MARTIN T. WELLS1

École Polytechnique de Montréal and Cornell University

We study the behavior of a real p-dimensional Wishart random matrix
with n degrees of freedom when n,p → ∞ but p/n → 0. We establish the
existence of phase transitions when p grows at the order n(K+1)/(K+3) for
every K ∈ N, and derive expressions for approximating densities between
every two phase transitions. To do this, we make use of a novel tool we call
the F -conjugate of an absolutely continuous distribution, which is obtained
from the Fourier transform of the square root of its density. In the case of
the normalized Wishart distribution, this represents an extension of the t-
distribution to the space of real symmetric matrices.

1. Introduction. The real Wishart Wp(n, Ip/n) distribution is the law of the
symmetric matrix XtX/n, where X is a n × p matrix of independent standard
normal random variables. Such matrices have important applications in statisti-
cal modeling, such as for covariance matrix estimation, financial portfolio opti-
mization, as a prior in Bayesian models, as a model of multiple-input multiple-
output channels in telecommunication systems, in quantum computing and as a
real-valued analogue of random geometric graphs. Of particular interest are the
asymptotics of such random matrices when the parameter n tends to infinity. His-
torically, these were first studied holding the dimension parameter p fixed, dating
back to the classic work of Wishart (1928) and Bartlett (1933).

Starting from the work of Marčenko and Pastur (1967), it became common to
study Wishart asymptotics in the setting where p also grows to infinity as the
same rate as n, that is such that p,n → ∞ with p/n → c ∈ (0,1). This line of
work has proven important in the past two decades, as the rise of large-scale data
collection methodologies lead to an explosion of problems where the dimension
of the Wishart matrix is large compared to the sample size. Yet, this body of work
leaves open the question as to what happens to Wishart matrices when n,p → ∞
with p/n → 0. As these asymptotics lie between the classical regime where p

is fixed as n → ∞ and the high-dimensional regime where p/n → c ∈ (0,1),
we might refer to them as “middle-scale” regimes. Hence, one might ask: what
is the asymptotic behavior of a Wishart matrix Wp(n, Ip/n) in the middle-scale
regimes?
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To gain some intuition, it is instructive to look at the eigenvalues of a
Wp(n, Ip/n) Wishart matrix. In the classical regime where p is fixed as n → ∞,
they must all almost surely tend to 1 by the strong law of large numbers. In con-
trast, in the high-dimensional regime where both n,p → ∞ with p/n → c ∈
(0,1), they distribute themselves in the shape of a Marchenko–Pastur law with
parameter c. But if we let c → 0, the Marchenko–Pastur law converges weakly to
a Dirac measure with mass at 1, which suggests that in the middle-scale regimes,
the eigenvalues should converge almost surely to unity as in the classical case.

This kind of argument motivates a binary view of Wishart asymptotics. Since
the behavior of a Wishart matrix in the middle-scale regimes appears the same
as in the classical regime, there seems to be only two types of asymptotics: low-
dimensional where p/n → 0 and high-dimensional where p/n → c ∈ (0,1). This
view has concrete repercussions in applications. For example, in covariance esti-
mation, the binary view provides a useful rule of thumb: small p’s call for classical
covariance estimators, while large p’s call for high-dimensional covariance esti-
mators. Similar reasoning can be applied in other problems where Wishart matrices
are applied.

Recent results establish that this binary view is incorrect. Consider the Gaussian
orthogonal ensemble GOE(p), the distribution on p × p real symmetric matrices
whose diagonal elements follow a N(0,2) distribution, while the off-diagonal el-
ements are N(0,1), all independent. In the classical regime where p is fixed, the
central limit theorem implies that

√
n
[
Wp(n, Ip/n) − Ip

]⇒ GOE(p),

as n → ∞, where the arrow stands for weak convergence. In fact, something
better is known: recent work has extended this result to the case where p tends
to infinity. Recall that for two absolutely continuous distributions F1 and F2
with densities f1 and f2, their total variation distance is given by dTV(F1,F2) =
dTV(f1, f2) = ∫ |f1(x) − f2(x)|dx, while their Kullback–Leibler divergence is
given by dKL(f1‖f2) = ∫

log[f1(x)/f2(x)]f1(x) dx. With different approaches,
Jiang and Li (2015) and Bubeck et al. (2016) independently established that

dTV
(√

n
[
Wp(n, Ip/n) − Ip

]
,GOE(p)

)→ 0(1.1)

whenever p3/n → 0. Thus, when p3/n → 0, the same asymptotics hold as in
the p fixed case, and we might regard these regimes as belonging to the classical
setting.

It turns out that the converse is true. When p3/n � 0, results of Bubeck and
Ganguly (2018) and Rácz and Richey (2018) show that

dTV
(√

n
[
Wp(n, Ip/n) − Ip

]
,GOE(p)

)
� 0.(1.2)

Thus a phase transition occurs when p is of order 3
√

n. In fact, Bubeck and Ganguly
(2018) show that the statistic tr(X/

√
p)3 asymptotically distinguishes the distribu-

tions as n, p → ∞: they remark that, in Landau notation (Knuth (1976)), when X
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is a normalized Wishart matrix it has mean and variance of order �(

√
p3/n) and

�(1 + p2/n2), respectively, while for X a Gaussian orthogonal matrix it has zero
mean and variance of order �(1). This can be shown to imply equation (1.2) when
p3/n � 0.

This result raises the following question: if the normalized Wishart distribution
is not approximated by a Gaussian orthogonal ensemble in the gap between p

growing like 3
√

n and growing like n, how does it behave? The goal of this article
is to shed some light on this question.

Our first insight comes from studying a closely related quantity. For a given
Euclidean space, let F denote the Fourier transform, normalized to be an isometry
over square-integrable functions. Consider the following.

DEFINITION 1. The F -conjugate of an absolutely continuous distribution
F with density f on an Euclidean space is the distribution F ∗ with density
|F{f 1/2}|2.

This is always well defined, since f 1/2 is square integrable, so the positive func-
tion |F{f 1/2}|2 is well defined and must integrate to unity by the Plancherel the-
orem. For the normalized Wishart, this distribution turns out to belong to a novel
family that represents a generalization of the t-distribution to the real symmet-
ric matrices, which we consequently call the symmetric t-distribution. This trans-
formed distribution is simpler to manipulate than the normalized Wishart, which
allows us to compute quantities that appear intractable for the Wishart with cur-
rent tools. In particular, we were able to compute the exact asymptotics of the
Kullback–Leibler divergence between this distribution and the F -conjugate of the
Gaussian orthogonal ensemble. It turns out that this discrepancy measure not only
diverges when p3/n � 0, but in fact changes asymptotics whenever p is of order
n(K+1)/(K+3), for every K ∈ N. More precisely, we prove the following.

PROPOSITION 1. For any K ∈ N, there exists constants ak , bk such that we
have an asymptotic expansion

dKL
(
GOE(p)∗‖√n

[
Wp(n, Ip/n) − Ip

]∗)

=
K∑

k=1

ak

pk+2

nk
+

K∑
k=1

k even

bk

√
pk+2

nk
+ O

(
pK+3

nK+1

)

as p,n → ∞.

But since F -conjugates are a function of their parent distribution, this implies
that the behavior of the normalized Wishart distribution itself must vary in some
way as pK+3/nK+1

� 0 for every K ∈ N, a change that is then reflected in its F -
conjugate. Thus, we are led to conclude that p3/n � 0 cannot be the only phase
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FIG. 1. Abstract diagram of Wishart asymptotics. Each vertical bar represents a phase transition.
This contrasts with the binary view, where no phase transitions occur between p held constant and
p growing like n.

transition experienced by the normalized Wishart distribution: it must be the first of
an infinite sequence of phase transitions spanning the whole middle scale regimes,
and every regime such that limn→∞ logp/ logn < 1 must then sit between two
phase transitions. We refer to this grouping as the degree of the regime: a middle-
scale regime has degree K when limn→∞ logp/ logn ∈ [ K

K+2 , K+1
K+3). A diagram

is provided in Figure 1.
The middle-scale regimes of degree 0 correspond to the classical setting where

a GOE approximation holds for the normalized Wishart distribution in Equation
(1.1). In contrast, the middle-scale regimes of higher degree correspond to pre-
viously unknown behavior in equation (1.2). This raises the question whether
we can find approximations of the normalized Wishart density for such middle-
scale regimes. What are the extensions of the Gaussian orthogonal ensemble when
K > 0? We propose the following candidates.

DEFINITION 2. For n ≥ 3p − 3 and any K ∈ N, we define FK as the distribu-
tion on the space of real symmetric matrices with density fK(X),

∝
∣∣∣∣∣E
[

exp

{
i tr(XZ)√

8
− n

4

2K1∑
k=3

ik

k
tr
(√

2Z√
n

)k

+ p + 1

4

2K2∑
k=1

ik

k
tr
(√

2Z√
n

)k
}]∣∣∣∣∣

2

for Z ∼ GOE(p) and K1 = K + 1 + 1[K odd], K2 = K + 1[K > 0, even].

This definition provides us with the required approximation; namely, we can
prove the following.

THEOREM 1. For any K ∈ N, the distribution FK is well defined whenever
n ≥ 3p−3. Moreover, the total variation distance between the normalized Wishart
distribution

√
n[Wp(n, Ip/n) − Ip] and FK satisfies

dTV
(√

n
[
Wp(n, Ip/n) − Ip

]
,FK

)→ 0

as n → ∞ with pK+3/nK+1 → 0.
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In particular, since E[exp{i tr(XZ)/
√

8}]2 = exp{− trX2/4}, f0 is the Gaussian
orthogonal ensemble density, so Theorem 1 also provides as a special case an inde-
pendent proof of the classical GOE approximation when p3/n → 0. The results of
this paper can therefore be regarded as a generalization of the Wishart asymptotics
results of Jiang and Li (2015), Bubeck and Ganguly (2018), Bubeck et al. (2016)
and Rácz and Richey (2018).

These results undermine the binary view upon which the practical usage of
high-dimensional Wishart methodology relies. Consider, for example, a covari-
ance estimation problem with p = 250 and n = 400. If we are only aware of the
classical and high-dimensional asymptotics of a Wishart matrix, we might argue
that since p is rather large compared to n, this is a situation where a covariance
estimator based on high-dimensional asymptotics should be used for correct in-
ference. But the middle-scale asymptotics of the Wishart distribution makes this
reasoning untenable. For example, since logp/ logn ∈ [ 23

23+2 , 23+1
23+3), an estimator

exploiting the 23th-degree middle-scale asymptotics might make more sense, since
25023+2/40023 ≈ 1.26 is neither big nor small. Or since 25024+2/40024 ≈ 0.79 is
also neither big nor small, the 24th-degree middle-scale asymptotics should also
be reasonable. In general, a large family of nonequivalent asymptotics is plausi-
ble, and it becomes unclear which is the “proper” one for inference. At minimum,
this suggests the current methodology centered around a pair of classical and high-
dimensional covariance estimators might be suboptimal.

We might imagine using the approximations FK to develop better covariance
estimators, which, for example, could allow the construction of portfolios with the
same expected return but decreased risk. How exactly to build and choose such
estimators is at this point unclear, but this article provides a step in this direction
by providing the FK ’s.

We must mention that there exists regimes such that p/n → 0 and yet p /∈
O(n(K+1)/(K+3)) for all K ∈ N, that is, such that limn→∞ logp/ logn = 1. An
example is when p grows at the order n1−1/

√
logn. The results of our paper char-

acterize almost all middle-scale regimes in the sense that among those regimes
satisfying limn→∞ logp/ logn ≤ 1, those such that limn→∞ logp/ logn = 1 rep-
resent a negligible set, but we know little regarding those. A different approach
might be needed to make some progress on understanding their behavior.

The rest of this article is organized as follows. We define notation used
throughout the article in Section 2. We study the F -conjugate of the normalized
Wishart distribution, which can be regarded as a real symmetric matrix valued
t-distribution, in Section 3. We then prove in Section 4 the main results of this
paper, Proposition 1 and Theorem 1, and conclude in Section 5. Finally, we prove
the claims of Section 3 in the Appendix.

2. Notation and definitions. The transpose of a matrix is denoted t , and the
identity matrix of dimension p is Ip . As is standard, we take the trace operator to
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have lower priority than the power operator: thus for a matrix X, trXk means the
trace of Xk . We will write trk X when we mean the kth power of the trace of X.
The Kronecker delta is the symbol δkl = 1[k = l].

The space of all real-valued symmetric matrices is denoted Sp(R) = {X ∈
Mp(R)|X = Xt }. For a symmetric matrix X, we define the symmetric differen-
tiation operator ∇̃X by (∇̃X)kl = 1+δkl

2 ∂/∂Xkl . This operator has the property that
∇̃X tr(XY) = Y for any two symmetric matrices X, Y .

The space of symmetric matrices Sp(R) can be assimilated to R
p(p+1)/2 by

mapping a symmetric matrix to its upper triangle. By integration over Sp(R), we
mean integration with respect to the pullback Lebesgue measure under this iso-
morphism, that is,

∫
Sp(R) f (X)dX = ∫

Rp(p+1)/2 f (X)
∏p

i≤j dXij . We will write the

L1 and L2 norms with respect to this measure by ‖ · ‖L1 and ‖ · ‖L2 , respectively.
While studying the Wishart distribution, the expression n − p − 1 appears so

often that it makes sense to give it its own symbol so as to shorten the notation. We
will therefore write m = n − p − 1 throughout the paper.

3. F -conjugates and the symmetric t-distribution. In this section, we state
results relating to the notion of F -conjugate of a distribution, defined in the Intro-
duction, that will be used in Section 4 to show the main results of this article. So
as to not distract the reader from this goal, we relegate all proofs of this section to
the Appendix.

Our first result is a variant of the Kullback–Leibler inequality in terms of F -
conjugates, which forms a key tool in our proof of Theorem 1.

PROPOSITION 2 (Kullback–Leibler inequality for F -conjugates). Let F be
a distribution on Sp(R) with density f , and let ψ ∈ L2(Sp(R)). Then the L2-
distance between F{f 1/2} and ψ satisfy

d2
L2

(
F
{
f 1/2},ψ)≤ [‖ψ‖2

L2 − 1
]+ E

[
�Log

F{f 1/2}2(T )

ψ2(T )

]

+ 2‖ψ‖L2E
[∣∣∣∣�Log

F{f 1/2}2(T )

ψ2(T )

∣∣∣∣
]1/2

for T ∼ F ∗, where Log stands for the principal branch of the complex logarithm
and F ∗ the F -conjugate of F .

We will also need a closed-form expression for the density of the F -conjugate
of a normalized Wishart. A reference to the characteristic function of a Wishart
distribution with noninteger degrees of freedom yields the following.

PROPOSITION 3. Let n ≥ p − 2 and fNW be the density of the normalized
Wishart distribution

√
n[Wp(n, Ip/n) − Ip]. Then

F
{
f

1/2
NW
}2

(T ) = Ct exp{2i
√

n trT }
∣∣∣∣Ip + i

4T√
n

∣∣∣∣−
n+p+1

2
,
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where

Ct = 2
p(n+2p)

2

π
p(p+1)

2 n
p(p+1)

4

�2
p(

n+p+1
4 )

�p(n
2 )

.(3.1)

In particular, by taking the modulus of the above we conclude that when n ≥
p − 2, the F -conjugate of a normalized Wishart distribution must have a density
on Sp(R) given by

fNW∗(T ) = 2
p(n+2p)

2

π
p(p+1)

2 n
p(p+1)

4

�2
p(

n+p+1
4 )

�p(n
2 )

∣∣∣∣Ip + 16T 2

n

∣∣∣∣−
n+p+1

4
.(3.2)

When p = 1, this is the tn/2/
√

8 distribution, so it would be natural to interpret
this distribution as the parametrization of some generalization of the t-distribution
to real-valued symmetric matrices. We suggest the following definition.

DEFINITION 3 (Symmetric matrix variate t-distribution). We say a real sym-
metric p × p matrix T has the symmetric matrix variate t-distribution with
ν ≥ p/2 − 1 degrees of freedom and p × p positive-definite scale matrix 	, de-
noted Sym-tν(	), if it has density

fTn(	)(T ) = 2p(ν−1)�2
p(

ν+(p+1)/2
2 )

π
p(p+1)

2 ν
p(p+1)

4 �p(ν)
|	|−p+1

4

∣∣∣∣Ip + T 	−1T

ν

∣∣∣∣−
ν+(p+1)/2

2
.

With this definition, the F -conjugate of the normalized Wishart distribution is
the Sym-tn/2(Ip/8) distribution. The fact that this is indeed a density follows from
Hua (1963), Theorem 2.1.1, or by applying equation (3.2) with n = ν/2 for any
degrees of freedom ν. The rest of this section is focused on studying the asymptotic
behavior of the Sym-tn/2(Ip/8) distribution.

We start by studying the asymptotic behavior of its normalization constant Ct ,
defined in equation (3.1).

LEMMA 1. For every K ∈N, there exist constants ak , bk such that

logCt = logCGOE/4 +
K∑

k=1

ak

pk+2

nk
+

K∑
k=1

bk

pk+1

nk
+ O

(
pK+3

nK+1

)

as n, p → ∞, where the symbol CGOE/4 stands for the normalization constant of
GOE(p)/4 distribution.

Next, we study the empirical moments of the Sym-tn/2(Ip/8) distribution. For
any integer partition κ = (κ1, . . . , κq) in decreasing order κ1 ≥ · · · ≥ κq > 0, define
its associated power sum polynomial to be

rκ(Z) =
q∏

i=1

trZκi .(3.3)
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The norm of the partition κ is |κ| = κ1 + · · · + κq > 0, which should not be con-
fused with its length q(κ) = q (number of elements). By convention, we will as-
sume there also exists an empty partition ∅ = (·) with length q(∅) = 0, norm
|∅| = 0 and power sum polynomial r∅(Z) = 1. Recall the useful shorthand m =
n − p − 1. The following lemma expresses the moments of the Sym-tn/2(Ip/8)

distribution in terms of the moments of an inverse Wishart matrix.

LEMMA 2. Let T ∼ Sym-tn/2(Ip/8). Then for any k ∈ N, whenever n is large
enough so that n ≥ p + 8k + 6, the 2k-th moment of T can be written

E
[
trT 2k]= (−1)k

nk

∑
|κ|≤2k

bκ(n,m,p)E
[
rκ
(
Y−1)]

for a Y−1 ∼ W−1
p (n, Ip/n) and some polynomials bκ in n,m,p, indexed by integer

partitions κ , whose degrees satisfy degbκ ≤ 2k+1−q(κ). The sums are taken over
all partitions of the integers κ satisfying |κ| ≤ 2k, including the empty partition.

Our next step is to compute expected power sum polynomials of an inverse
Wishart, and there are two approaches in the literature. Letac and Massam (2004)
found an expression in terms of a different basis, the zonal polynomials, whose
expectations have a simple closed form. From this, they provided an algorithm for
computing expected power sum polynomials to arbitrary order. Matsumoto (2012)
found expressions of coordinate-wise moments in terms of modified Weingarten
orthogonal functions, from which expectations of power sum polynomials can be
computed. We follow the approach of Letac and Massam (2004) in our asymptotic
analysis.

For any integer partition κ , there exist coefficients cκ,λ (which depend solely on
κ and λ) such that

rκ
(
Y−1)= ∑

|λ|=|κ|
cκ,λCλ

(
Y−1),(3.4)

for Cλ the so-called zonal polynomials. For an overview of the topic with a focus
on random matrix theory, see Muirhead (1982), Chapter 7. From Muirhead (1982),
Theorem 7.2.13 and equation (18) on page 237, the expected zonal polynomials
for Y−1 ∼ W−1

p (n, Ip/n) are

E
[
Cλ

(
Y−1)]

= n|λ|

2|λ|∏q(λ)
i=1

m−i+1
2

Cλ(Ip)(3.5)

= 2|λ||λ|!∏q(λ)
i<j (2λi − 2λj − i + j)∏q(λ)

i=1 (2λi + q(λ) − i)!
n|λ|

q(λ)∏
i=1

λi−1∏
l=0

p + (1 − i + 2l)

m − (1 − i + 2l)
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for λ �= ∅, and E[C∅(Y−1)] = 1. From this, we can exactly compute E[rκ(Y−1)],
and thus E[trT 2k], as a function of p and n (or m). The idea is to express the mo-
ments as polynomials of p and p/m, and apply asymptotics from the two regimes
where random matrix theory is well understood: the classical regime where p is
held fixed as n → ∞, and the linear, high-dimensional regime where p grows
linearly with n. We obtain the following.

THEOREM 2. Let k ∈ N and T ∼ Sym-tn/2(Ip/8). The 2k-th moment of T

satisfies the asymptotics E[p−1 tr(T /
√

p)2k] = O(1) as p,n → ∞ with p/n → 0.

Although this result only characterizes the even moments, it can be leveraged
using an integration by parts argument to also characterize the odd moments.

COROLLARY 1. Let k ∈ N and T ∼ Sym-tn/2(Ip/8). The (2k + 1)-th moment
of T satisfies the asymptotics E[tr(T /

√
p)2k+1] = O(1) as p,n → ∞ with p/n →

0.

Together, these two results bound the rate of growth of all moments of the sym-
metric t-distribution and will be key to our proof of Theorem 1.

4. The middle-scale asymptotics of the Wishart distribution. In the previ-
ous section, we summarized supporting results concerning F -conjugates and the
t-distribution. In this section, we now use these results to prove the two claims of
the Introduction, which are the main goal of this article. The first result, Proposi-
tion 1, establishes the existence of middle-scale phase transitions for the normal-
ized Wishart.

PROOF OF PROPOSITION 1. We saw in Section 3 that the F -conjugate of
the normalized Wishart distribution is the Sym-tn/2(Ip/8) distribution with den-
sity given by equation (3.2). For an integrable function f on Sp(R), the Fourier
transform with kernel exp{−i tr(XT )}, normalized to be an L2-isometry, satisfies

F{f }(T ) = 2−p
2 π−p(p+1)

4
∫
Sp(R) e

−i tr(XT )f (X)dX. Thus, the F -conjugate den-
sity of the Gaussian orthogonal ensemble is given by

fGOE∗(T ) =
∣∣∣∣F
{exp{−1

8
∑p

i,j=1 X2
ij }

2p(p+3)/8πp(p+1)/8

}∣∣∣∣2(T )

= 1

2
p(p+7)

4 π
3p(p+1)

4

∣∣∣∣∣
∫
Sp(R)

e−i tr(XT ) exp

{
−1

8

p∑
i,j=1

X2
ij

}
dX

∣∣∣∣∣
2

= 2p(3p+1)/4

πp(p+1)/4 exp

{
−4

p∑
i,j=1

T 2
ij

}
,
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where we used the Fourier transform of a standard normal law (Stein and Weiss
(1971), Theorem 1.13). But this is the density of the GOE(p)/4 distribution, so
we conclude that the F -conjugate of the Gaussian orthogonal ensemble must be
GOE(p)∗ = GOE(p)/4. Then, by definition of the Kullback–Leibler divergence,

dKL
(
GOE(p)∗‖√n

[
Wp(n, Ip/n) − Ip

]∗)
(4.1)

= E
[
logCGOE/4 − 4 trT 2 − logCt + n + p + 1

4
log
∣∣∣∣Ip + 16T 2

n

∣∣∣∣
]

for a T ∼ GOE(p)/4, where CGOE/4 and Ct are the normalization constants of
the GOE(p)/4 and the Sym-tn/2(Ip/8) distributions, respectively. A change of

variables X = 4T and Lemma 1 yields that for some constants c
(1)
k , c

(2)
k and X ∼

GOE(p), the above equals

= E
[
−1

4
trX2 + n + p + 1

4
log
∣∣∣∣Ip + X2

n

∣∣∣∣
]

(4.2)

+
K∑

k=1

c
(1)
k

pk+2

nk
+

K∑
k=1

c
(2)
k

pk+1

nk
+ O

(
pK+3

nK+1

)
.

Consider the expectation. For any integer L and any real x, we have the inequality
|−1

2 log(1 + x2)−∑L
l=1(−1)lx2l/2l| ≤ x2L+2/(2L+ 2). Thus we have the bound∣∣∣∣∣E

[
−n + p + 1

4
log
∣∣∣∣Ip + X2

n

∣∣∣∣
]

− E

[
n + p + 1

2

K+1∑
k=1

(−1)k
trX2k

2knk

]∣∣∣∣∣
≤ n + p + 1

2

E[trX2(K+2)]
2(K + 2)nK+2 = O

(
pK+3

nK+1

)

as n,p → ∞, since E[trX2(K+2)] = O(pK+3) as p → ∞ by Anderson, Guionnet
and Zeitouni (2010), Lemma 2.1.6.

But in fact, induction on Theorem 2 of Ledoux (2009) shows that for any in-
teger k, the 2k-th moment of the Gaussian orthogonal ensemble can be written
E[trX2k] =∑k+1

l=0 c
(3)
k,l p

l for constants c
(3)
k,l . Thus we really have

E
[
n + p + 1

4
log
∣∣∣∣Ip + X2

n

∣∣∣∣
]

= n + p + 1

n

[
trX2

4
+

K+1∑
k=2

k+1∑
l=0

c
(4)
k,l

pl

nk−1

]
+ O

(
pK+3

nK+1

)

= n + p + 1

n

trX2

4
+

K∑
k=1

c
(5)
k

pk+2

nk
+

K∑
k=1

c
(6)
k

pk+1

nk
+ O

(
pK+3

nK+1

)
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for constants c
(4)
k,l , c

(5)
k , c

(6)
k . Plugging this back into equation (4.2) and using that

E[trX2] = p(2p2 + 1) yields that

dKL
(
GOE(p)∗‖√n

[
Wp(n, Ip/n) − Ip

]∗)

=
K∑

k=1

ak

pk+2

nk
+

K∑
k=1

c
(7)
k

pk+1

nk
+ O

(
pK+3

nK+1

)

for constants ak , c(7)
k . Writing pk+1/nk =

√
p2k+2/n2k , reindexing the second sum

and truncating at K concludes the proof. �

We now turn to the proof of the other main result, Theorem 1, which char-
acterizes the behavior of the normalized Wishart distribution between every two
middle-scale phase transitions.

PROOF OF THEOREM 1. Define the complex-valued functions

ψK(T ) =√
Ct exp

{
n

4

2K1∑
k=2

(
4i√
n

)k trT k

k
+ p + 1

4

2K2∑
k=1

(
4i√
n

)k trT k

k

}
,(4.3)

where Ct is the normalization constant of the Sym-tn/2(Ip/8) distribution and
K1 = K + 1 + 1[K odd], K2 = K + 1[K > 0, even]. Let fNW, ft and fGOE/4
denote the densities of the normalized Wishart, Sym-tn/2(Ip/8) and GOE(p)/4
distributions, respectively.

For K = 0, notice that |ψ2
0 (T )| = CtC

−1
GOE/4fGOE/4(T ) by definition. This

means that ψ0 is square-integrable and in fact, by Lemma 1, that

lim
n→∞‖ψ0‖2

L2 = lim
n→∞ exp

{
o(1)

}‖fGOE/4‖L1 = 1(4.4)

when p3/n → 0 as n → ∞. For K > 0, note that K1, K2 are always odd, and

for any x ∈ R and odd L ∈ N, −1
2 log(1 + x2) −∑L

l=1(−1)lx2l/2l = 1
2

∫ x2

0 [t/(1 +
t)]L+1 dt > 0. Thus |ψ2

K |(T ) ≤ ft (T ) for all K > 0, which is integrable whenever
n ≥ p − 2. In particular,

lim
n→∞‖ψK‖2

L2 ≤ ‖ft‖L1 = 1 for all K > 0(4.5)

when p/n → 0 as n → ∞.
We now show using Proposition 2 that the L2 distance between F{f 1/2

NW} and
ψK tends to zero as pK+3/nK+1 → 0. For any x ∈ R and L ∈ N,∣∣∣∣∣−1

2
log
(
1 + x2)− L∑

l=1

(−1)l
x2l

2l

∣∣∣∣∣≤ x2L+2

2L + 2
,(4.6)

∣∣∣∣∣atan(x) −
L∑

l=1

(−1)l−1 x2l−1

2l − 1

∣∣∣∣∣≤ x2L+1

2L + 1
.(4.7)
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Let Log stand for the principal branch of the complex logarithm. By Proposi-
tion 3, equation (4.6) and Theorem 2, for T ∼ Sym-tn/2(Ip/8), the real part of

LogF{f 1/2
NW}2/ψ2

K satisfies

E
[∣∣∣∣�Log

F{f 1/2
NW}2

ψ2
K

∣∣∣∣
]

≤ n

2
E

[∣∣∣∣−1

2
log
∣∣∣∣Ip + 16T 2

n

∣∣∣∣∣−
K1∑
k=1

(−1)k

2k
tr
[

4T√
n

]2k
∣∣∣∣∣
]

+ p + 1

2
E

[∣∣∣∣−1

2
log
∣∣∣∣Ip + 16T 2

n

∣∣∣∣∣−
K2∑
k=1

(−1)k

2k
tr
[

4T√
n

]2k
∣∣∣∣∣
]

(4.8)

≤ n

4
E
[

tr(4T/
√

n)2K1+2

K1 + 1

]
+ p + 1

4
E
[

tr(4T/
√

n)2K2+2

K2 + 1

]

= O

(
pK+3+1[K odd]

nK+1+1[K odd]
)

+ O

(
pK+3+1[K>0, even]

nK+1+1[K>0, even]
)

= O

(
pK+3

nK+1

)

as p,n → ∞ with p/n → 0.
For the imaginary part, notice that the projection P(−π,π ]x = x − 2π� x

2π
− 1

2�
satisfies �Log z = P(−π,π ]� log z for all branches of log z, as well as the inequality
|P(−π,π ]x| ≤ |x|. Using this mapping, as well as Proposition 3, equation (4.7) and
Corollary 1, we find for T ∼ Sym-tn/2(Ip/8) that

E
[∣∣∣∣�Log

F{f 1/2
NW}2

ψ2
K

∣∣∣∣
]

= E

[∣∣∣∣∣P(−π,π ]
[
−n + p + 1

2
tr atan

(
4T√

n

)
+ 2

√
n trT

+ n

2

K1−1∑
k=1

(−1)k

2k + 1
tr
[

4T√
n

]2k+1
+ p + 1

2

K2−1∑
k=1

(−1)k

2k + 1
tr
[

4T√
n

]2k+1
]∣∣∣∣∣
]

≤ n

2
E

[∣∣∣∣∣tr atan
(

4T√
n

)
− 2

√
n trT

n/2
−

K1∑
k=1

(−1)k−1 tr(4T/
√

n)2k−1

2k − 1

∣∣∣∣∣
]

(4.9)

+ p + 1

2
E

[∣∣∣∣∣tr atan
(

4T√
n

)
−

K2∑
k=1

(−1)k−1 tr(4T/
√

n)2k−1

2k − 1

∣∣∣∣∣
]

≤ n

2
E
[∣∣∣∣ tr(4T/

√
n)2K1+1

2K1 + 1

∣∣∣∣
]

+ p + 1

2
E
[∣∣∣∣ tr(4T/

√
n)2K2+1

2K2 + 1

∣∣∣∣
]
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= O

(√
p2K+3+21[K odd]
n2K+1+21[K odd]

)
+ O

(√
p2K+3+21[K>0, even]
n2K+1+21[K>0, even]

)

= O

(√
pK+3

nK+1

)

as p,n → ∞ with p/n → 0.
By equation (3.2), the Sym-tn/2(Ip/8) distribution is the F -conjugate of

the normalized Wishart distribution. Therefore, Proposition 2 with equations
(4.8)–(4.9) and (4.4)–(4.5) implies that limn→∞ d2

L2(F{f 1/2
NW},ψK) ≤ 0 when

pK+3/nK+1 → 0 as p,n → ∞.
We complete the proof by relating the ψK to the fK of Definition 2. First,

note that for K = 0, |ψ0| = CtC
−1
GOE/4f

1/2
GOE(p)/4 is proportional to the density of a

GOE(p)/
√

8 density, which is always integrable. In addition, |ψK | ≤ f
1/2
t for all

K > 0, and f
1/2
t is proportional to the density of a Sym-tm/4(

n
4m

Ip) distribution
with m = n − p − 1, itself integrable whenever n ≥ 3p − 3. Thus, in all cases ψK

is integrable whenever n ≥ 3p − 3, and recall that we had already shown ψK is
square-integrable whenever n ≥ p − 2. We can therefore use the Fourier inversion
theorem to conclude that |F−1{ψK}|2 ∝ fK , and in particular that fK is integrable,
whenever n ≥ 3p − 3 ≥ p − 2.

Define gK = F−1{ψK} so that fK = |gK |2/‖gK‖2
L2 . By the Plancherel theo-

rem, dL2(f
1/2
NW, gK) = dL2(F{f 1/2

NW},ψK) → 0 and so in particular we must have
limn→∞ ‖gK‖2

L2 = limn→∞ ‖ψK‖L1 = 1. From the triangle inequality, the reverse

triangle inequality and the limits dL2(F{f 1/2
NW},ψK) → 0 and ‖gK‖2

L2 → 1, we
can conclude that

lim
n→∞ dL2

(
f

1/2
NW, f

1/2
K

)≤ lim
n→∞ dL2

(
f

1/2
NW, |gK |)+ lim

n→∞ dL2
(|gK |, f 1/2

K

)
≤ lim

n→∞ dL2
(
f

1/2
NW, gK

)+ lim
n→∞

∣∣1 − ‖gK‖−1
L2

∣∣‖gK‖L2 = 0

when pK+3/nK+1 → 0 as p,n → ∞. But by the Cauchy–Schwarz inequality,

dTV(fNW, fK) = ∥∥(f 1/2
NW + f

1/2
K

)(
f

1/2
NW − f

1/2
K

)∥∥
L1

≤ ∥∥f 1/2
NW + f

1/2
K

∥∥
L2

∥∥f 1/2
NW − f

1/2
K

∥∥
L2 ≤ 2dL2

(
f

1/2
NW, f

1/2
K

)
,

so we conclude that the total variation distance dTV(fNW, fK) must tend to zero
when p,n → ∞ with pK+3/nK+1 → 0. This concludes the proof. �

5. Conclusion. In this paper, we show that the behavior of a Wishart ma-
trix when p,n → ∞ with p/n → 0, which we call the middle-scale asymptotics,
varies according to which interval [ K

K+2 , K+1
K+3) the ratio logp/ logn tends to, when
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smaller than one. We show this by associating to any distribution a closely related
distribution called its F -conjugate.

In the case of the normalized Wishart distribution
√

n[Wp(n, Ip/n) − Ip], this
closely related distribution happens to be a generalization of the t-distribution to
the real symmetric matrices. We show that the distance from the F -conjugate of the
normalized Wishart distribution to the F -conjugate of the Gaussian orthogonal en-
semble does not vary continuously with c = limn→∞ logp/ logn, but rather jumps
discontinuously as c increases, with discontinuities at the points (K + 3)/(K + 1)

for K ∈ N. Thus the Wishart distribution itself must exhibit phase transitions at
these discontinuities.

Moreover, in the same way that the Gaussian orthogonal ensemble approximates
the normalized Wishart distribution in the classical regimes, we derive approxima-
tions for all the higher degrees. In particular, we rederive the Gaussian orthogonal
ensemble approximation independently of the published proofs.

APPENDIX: PROOFS OF THE t-DISTRIBUTION RESULTS

In Section 3, results regarding F -conjugates and the t-distribution were merely
stated and not proven so as to not distract from the main results of this article. This
appendix contains the proofs of these claims.

These proofs themselves require technical lemmas, so we start by stating and
proving those. The first two concern repeated differentiation of expressions of the
form exp{a trZ}|Z|b for a symmetric matrix Z. Recall that ∇̃Z stands for the sym-
metric differentiation operator (∇̃Z)kl = 1+δkl

2 ∂/∂Zkl , where δ is the Kronecker
delta, and that we write m = n − p − 1.

LEMMA 3. For any indices 1 ≤ i1, . . . , i2l ≤ p and real symmetric matrix Z,
there exist polynomials aJ,s(n,m) in n and m, indexed by 0 ≤ s ≤ l and J =
(j1, . . . , j2l), such that

∇̃Zi2l i2l−1 · · · ∇̃Zi4i3∇̃Zi2i1 exp
{
−n

4
trZ

}
|Z|m

4

=
l∑

s=0

∑
J∈

{1,...,p}2l

aJ,s(n,m)

l∏
t=s+1

(Ip)j2t j2t−1

s∏
t=1

Z−1
j2t j2t−1

exp
{
−n

4
trZ

}
|Z|m

4 .

PROOF. To simplify notation, let

MJ,s(Z) =
l∏

t=s+1

(Ip)j2t j2t−1

s∏
t=1

Z−1
j2t j2t−1

exp
{
−n

4
trZ

}
|Z|m

4 ,

and let Ml = {MJ,s |J ∈ {1, . . . , p}2l , s ≤ l} be the set of all such terms “on 2l

indices”. Let 〈Ml〉 denote the linear span of Ml , that is, the space of all linear
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combinations of elements of Ml , with real polynomials in n and m as coefficients.
Then we are really claiming that

∇̃Zi2l i2l−1 · · · ∇̃Zi4i3∇̃Zi2i1 exp
{
−n

4
trZ

}
|Z|m

4 ∈ 〈Ml〉.(A.1)

To see this, let J = (j1, . . . , j2l−2) ∈ {1, . . . , p}2l−2 and define the extension
J

q
a,b = (j1, . . . , jq−1, a, b, jq+1, . . . , j2l−2) ∈ {1, . . . , p}2l to be J with indices a,

b inserted (in this order) at the qth position. Then using that

∇̃Zi2l i2l−1Z
−1
ab = −1

2

[
Z−1

ai2l
Z−1

i2l−1b
+ Z−1

ai2l−1
Z−1

i2lb

]
and

∇̃Zi2l i2l−1 exp
{
−n

4
trZ

}
|Z|m

4

=
[
m

4
Zi2l i2l−1 − n

4
(Ip)i2l i2l−1

]
exp

{
−n

4
trZ

}
|Z|m

4 ,

we conclude that

∇̃Zi2l i2l−1MJ,s(Z)

= −1

2

s∑
r=1

MJ 2r
i2l i2l−1

,s+1 − 1

2

s∑
r=1

MJ 2r
i2l−1i2l

,s+1

+ m

4
M

J 2s+1
i2l i2l−1

,s+1 − n

4
M

J 2s+1
i2l i2l−1

,s
∈ 〈Ml〉.

Thus, by linearity, ∇̃Zi2l i2l−1 maps 〈Ml−1〉 to 〈Ml〉. But by definition of 〈M0〉 we
have exp{−n

4 trZ}|Z|m/4 ∈ 〈M0〉, so by induction, equation (A.1) must then hold,
as desired. �

LEMMA 4. For any k ∈ N and any Z ∈ Sp(R),

tr
(∇̃k

Xe− n
4 trZ|Z|m

4
)= e− n

4 trZ|Z|m
4
∑

|κ|≤2k

bκ(n,m,p)rκ
(
Z−1)

for some polynomials bκ(n,m,p) with degbκ ≤ 2k + 1 − q(κ) and rκ as in equa-
tion (3.3). The sums on the right-hand sides are taken over all integer partitions κ

of norm at most 2k, including the empty partition.

PROOF. We give a spectral proof. Let λ1 ≥ · · · ≥ λp be the eigenvalues of Z

and OLOt its corresponding spectral decomposition, with diagonal matrix L =
diag(λ1, . . . , λp) and orthogonal matrix O , and notice that

∇̃ZijOhl = 1

2

p∑
a �=l

OhaO
t
ai

λl − λa

Ojl + 1

2

∑
a �=l

OhaO
t
aj

λl − λa

Oil, ∇̃Zijλh = OihOjh
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for any 1 ≤ i, j, h, l ≤ p. As a consequence, for any differentiable real-valued
functions F1(L), . . . ,Fp(L), we have

p∑
j=1

∇̃Zhj

( p∑
a=1

OjaFaO
t
ai

)
= 1

2

p∑
a,b

b �=a

Oha

Fb − Fa

λb − λa

Ot
ai +

p∑
a=1

Oha

∂Fa

∂λa

Ot
ai .

This suggests we define a new operator DL that maps the space of diagonal ma-
trices F(L) = diag(F1(L), . . . ,Fp(L)) that differentiably depends on L, to itself,
by

DL{F }a = 1

2

p∑
b �=a

Fb − Fa

λb − λa

+ ∂Fa

∂λa

so that
p∑

j=1

∇̃ZhjOFOt
ji = OFOt

ki.

In particular, we would then have

tr
(∇̃k

Xe− n
4 trZ|Z|m

4
)= trD2k

L

{
e− n

4 trZ|Z|m
4 Ip

}
.(A.2)

Let us look more closely at this operator DL. It satisfies the following:

(i) DL is linear, in the sense that for diagonals F(L), G(L) and constants a, b

with respect to L,

DL{aF + bG} = aDL{F } + bDL{G}.
(ii) DL satisfies a restricted product rule, in the sense that for a diagonal F(L)

of the form F(L) = f (L)Ip for some function f (L), and any diagonal G(L),

DL{FG} = DL{F }G + FDL{G}.
Moreover, from the definition of DL,

DL

{
e− n

4 trLIp

}= −n

4
e− n

4 trLIp, DL

{|L|m
4 Ip

}= m

4
|L|m

4 Ip,

DL

{
tr
(
L−s)Ip

}= −sL−(s+1) and

DL

{
L−s}= − s

2
L−(s+1) − 1

2

s∑
t=1

tr
(
L−[s+1−t])L−t .

Now define the spaces

Ml =
⎧⎪⎨
⎪⎩b(n,m,p)e− n

4 trL|L|m
4 rκ
(
L−1)L−s

∣∣∣∣∣
b(n,m,p) is a polynomial
with degree at most l −
q(κ), and κ and s satisfies
|κ| ≤ l − s.

⎫⎪⎬
⎪⎭

for l = 1, . . . ,2k, and let 〈Ml〉 denote the linear span of Ml , that is, the space of
all real linear combinations of elements of Ml . Moreover, for a partition κ , let
κ ± i denote κ with the integer i added or removed, respectively. For example,
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(3,1,1,1) + 2 = (3,2,1,1,1) and (3,2,1,1,1) − 1 = (3,2,1,1). Note that |κ ±
i| = |κ| ± i. Then, for any F ∈ Ml ,

DL{F } = DL

{
b(n,m,p)e− n

4 trL|L|m
4 rκ
(
L−1)L−s}

= b(n,m,p)DL

{
e− n

4 trLIp

}|L|m
4 rκ
(
L−1)L−s

+ b(n,m,p)e− n
4 trLDL

{|L|m
4 Ip

}
rκ
(
L−1)L−s

+ b(n,m,p)e− n
4 trL|L|m

4 DL

{
rκ
(
L−1)Ip

}
L−s

+ b(n,m,p)e− n
4 trL|L|m

4 rκ
(
L−1)DL

{
L−s}

=
[
−n

4
b(n,m,p)

]
e− n

4 trL|L|m
4 rκ
(
L−1)L−s

+
[
m

4
b(n,m,p)

]
e− n

4 trL|L|m
4 rκ
(
L−1)L−s

+
q(κ)∑
i=1

[−κib(n,m,p)
]
e− n

4 trL|L|m
4 rκ−κi

(
L−1)L−s

+
[
− s

2
b(n,m,p)

]
e− n

4 trL|L|m
4 rκ
(
L−1)L−(s+1)

+
s∑

t=1

[
−1

2
b(n,m,p)

]
e− n

4 trL|L|m
4 rκ+(s+1−t)

(
L−1)L−t .

Thus DL{F } ∈ 〈Ml+1〉. It follows by linearity that DL maps 〈Ml〉 to 〈Ml+1〉.
Now, e− n

4 trL|L|m
4 Ip ∈ M0, so by induction D2k

L {e− n
4 trL|L|m

4 Ip} ∈ 〈M2k〉.
Hence, for some polynomials bκ,s(n,m,p) of degree at most 2k − q(κ),

trD2k
L

{
e− n

4 trL|L|m
4 Ip

}
= ∑

|κ|+s≤2k

bκ,s(n,m,p)e− n
4 trL|L|m

4 rκ
(
L−1) tr

(
L−s)

= ∑
|κ ′|≤2k

bκ ′(n,m,p)e− n
4 trL|L|m

4 rκ ′
(
L−1)

for κ ′ = κ + s, bκ ′ = bκ,s when s �= 0, while κ ′ = κ , bκ ′ = pbκ,s when s = 0.
Notice that when s �= 0, the degree of the bκ ′ ’s is at most 2k−q(κ) = 2k−(q(κ ′)−
1), while when s = 0 it is at most 2k − q(κ) + 1 = 2k − q(κ ′) + 1. Thus in both
cases, degbκ ′ ≤ 2k − q(κ ′) + 1, which equation (A.2) shows the lemma. �

We will also need in our proofs a result about the asymptotics of inverse mo-
ments of the Wishart distribution.
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LEMMA 5. Let Y ∼ Wp(n, Ip/n) and s be any integer s ≥ 1. Then as long as
n ≥ p + 4s + 2, the s-th inverse moment satisfies the recursive bound(

1 − (p + 1)s

n

)
E
[
trY−s]≤ E

[
trY−(s−1)].

In particular, when n,p → ∞ such that limn→∞ p/n = α < 1, if s < α−1 then
E[trY−s] = O(p).

PROOF. For any differentiable function f :R →R such that (∂/∂Z−Z)f (Z)

is integrable when Z ∼ N(0,1), integration by parts yields that E[(∂/∂Z −
Z)f (Z)] = 0, a result also known as Stein’s lemma. Let Z be an n×p matrix of in-
dependent standard normal random variables, and let Y = 1

n
ZtZ ∼ Wp(n, Ip/n).

For any 1 ≤ α ≤ n and 1 ≤ β, i, j ≤ p, we have ∂/∂Zαβ = 2
n

∑p
i=1 Zαi∇̃Y iβ and

∇̃Y iβY−s
βj = −1

2

s∑
l=1

[
Y−l

βi Y
−(s−l+1)
βj + Y−l

ββ Y
−(s−l+1)
ij

]
,

so for δ the Kronecker delta,(
∂

∂Zαβ

− Zαβ

)(
ZY−s)

αβ

=
p∑

j=1

[
δβjY

−s
βj + 2

n

p∑
i=1

ZαjZαi∇̃Y iβY−s
βj − ZαβZαjY

−s
βj

]

(A.3)

= Y−s
ββ − 1

n

s∑
l=1

(
ZY l)

αβ

(
ZY−(s−l+1))

αβ

− 1

n

s∑
l=1

Y−l
ββ

(
ZY−(s−l+1)Zt )

αα − Zαβ

(
ZY−s)

αβ.

Let us first show that this expression is integrable. For any matrix X, we have
|Xij | ≤ ‖X‖2 = ‖XtX‖1/2

2 . Thus by equation (A.3),

E
[∣∣∣∣
(

∂

∂Zαβ

− Zαβ

)(
ZY−s)

αβ

∣∣∣∣
]

≤ E

[∥∥Y−s
∥∥

2 +
s∑

l=1

∥∥Y 2l+1∥∥ 1
2
2

∥∥Y 2s+2l−1∥∥ 1
2
2

+
s∑

l=1

∥∥Y−2l
∥∥ 1

2
2

∥∥Y−2s+2l
∥∥ 1

2
2 + n‖Y‖

1
2
2

∥∥Y−2s+1∥∥ 1
2
2

]
.
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As Y is positive definite, ‖Y±a‖2 ≤ trY±a for any a ∈ N, so by the Cauchy–
Schwarz inequality,

≤ E
[
trY−s]+ s∑

l=1

E
[
trY−2l+1] 1

2 E
[
trY−2s+2l−1] 1

2

+
s∑

l=1

E
[
trY−2l] 1

2 E
[
trY−2s+2l] 1

2 + nE[trY ] 1
2 E
[
trY−2s+1] 1

2 ,

which is finite for n ≥ p + 4s + 2. Moreover, (ZY−s)αβ can be expressed
using minors and determinants as a rational function of the entries of Z, so

limZαβ→±∞(ZY−s)αβe
−Z2

αβ/2 = 0. So all conditions are fulfilled to apply Stein’s
lemma to equation (A.3) and obtain

0 = E

[
1

n

n∑
α=1

p∑
β=1

(
∂

∂Zαβ

− Zαβ

)(
ZY−s)

αβ

]

(A.4)

= E

[
trY−s − s

n
trY−s − 1

n

s∑
l=1

tr
(
Y−l) tr

(
Y−(s−l))− trY−(s−1)

]
.

Now let λ1 ≥ · · · ≥ λp be the eigenvalues of Y . For any 1 ≤ l ≤ s, we have λ−l
p ≥

· · · ≥ λ−l
1 and λ

−(s−l)
p ≥ · · · ≥ λ

−(s−l)
1 , so Chebyshev’s sum inequality (Hardy, Lit-

tlewood and Pólya (1965), Theorem 43) entails tr(Y−s) tr(Y−(s−l)) ≤ p tr(Y−s).
Employing this result in equation (A.4), whose terms are all individually integrable
as n ≥ p + 4s + 2, then yields that(

1 − (p + 1)s

n

)
E
[
trY−s]≤ E

[
trY−(s−1)].(A.5)

This concludes the first part of the proof.
For the second part, if we let n → ∞ such that limn→∞ p

n
= α < 1, then eventu-

ally n ≥ p+4s +2 and n ≥ (p+1)s for n large enough. So by repeatedly applying
equation (A.5) and dividing by p, we obtain

s∏
l=1

(
1 − (p + 1)l

n

)
· 1

p
E
[
trY−s]≤ 1

p
E
[
trY−0]= 1.

Taking a limit in the above yields
s∏

l=1

(1 − αl) lim
n→∞

1

p
E
[
trY−s]≤ 1,

so for any s < α−1 we have

lim
n→∞

1

p
E
[
trY−s]≤ s∏

l=1

1

1 − αl
< ∞,(A.6)

as desired. �
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With these technical lemmas in hand, we now proceed to prove the claims of
Section 3, in order of appearance.

PROOF OF PROPOSITION 2. Let F{f 1/2} = φ to lighten the notation. We can
write

dL2(φ,ψ) = [‖ψ‖2
L2 − 1

]+ 2
∫
Sp(R)

[
1 − �

{
ψ1/2(T )

φ1/2(T )

}]
|φ|(T ) dT

= [‖ψ‖2
L2 − 1

]+ 2
∫
Sp(R)

[
1 − exp

{
R

2

}
cos
(

I

2

)]
|φ|(T ) dT

for R = �Log[φ(T )/ψ(T )] and I = �Log[φ(T )/ψ(T )]. Using the inequality
− cos(x) ≤ −1 + √

2|x|, this can be bounded by

≤ [‖ψ‖2
L2 − 1

]+ 2
∫
Sp(R)

[
1 − exp

{
R

2

}
+ exp

{
R

2

}
|I | 1

2

]
|φ|(T ) dT ,

which, by the inequality 1 − exp(x) ≤ −x and the Cauchy–Schwarz inequality,
can be further bounded by

≤ [‖ψ‖2
L2 − 1

]+ ∫
Sp(R)

R|φ|(T ) dT

+ 2
∫
Sp(R)

exp{−R}|φ|(T ) dT
1
2

∫
Sp(R)

|I ||φ|(T ) dT
1
2 .

But by definition of R, exp{−R} = |ψ |(T )/|φ|(T ). Plugging this back in the above
and simplifying yields the desired result. �

PROOF OF PROPOSITION 3. Let NW(n,p) = √
n[Wp(n, Ip/n) − Ip] denote

the normalized Wishart distribution. By a change of variables from the Wishart
density (Muirhead (1982), Theorem 3.2.1), the density of the normalized Wishart
is

fNW(n,p)(X) = n
p(2n−p−1)

4

2
np
2 �p(n

2 )
e
− n

2 tr[Ip+ X√
n
]
∣∣∣∣Ip + X√

n

∣∣∣∣
n−p−1

2
1
[
Ip + X√

n
> 0

]
,

where �p stands for the multivariate Gamma function. But

f
1/2
NW(n,p)(X) = 2

p(2n+p+1)
2 �p(

n+p+1
4 )

n
p(3n+p+1)

4 �p(n
2 )

f√
n[Wp(

n+p+1
2 , 2

n
Ip)−Ip](X),(A.7)

which is integrable when (n + p + 1)/2 > p − 1, that is, n ≥ p − 2 (Muirhead
(1982), Theorem 3.2.1 again and comment on page 87). For an integrable func-
tion f on Sp(R), the Fourier transform with kernel exp{−i tr(XT )}, normalized
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to be an L2-isometry, satisfies F{f }(T ) = 2−p
2 π−p(p+1)

4
∫
Sp(R) e

−i tr(XT )f (X)dX.
Thus, we obtain that

F
{
f

1/2
NW(n,p)

}
(T )

= 2
p(2n+p+1)

2 �p(
n+p+1

4 )

n
p(3n+p+1)

4 �p(n
2 )

ei
√

n trT F{fWp(
n+p+1

2 , 2
n
Ip)

}(√nT )

= 2
p(2n+p+1)

2 �p(
n+p+1

4 )

n
p(3n+p+1)

4 �p(n
2 )

ei
√

n trT

2
p
2 π

p(p+1)
4

∫
Sp(R)

e−i tr(XT )fWp(
n+p+1

2 , 2
n
Ip)

(X)dX

= 2
p(n+2p)

4

π
p(p+1)

4 n
p(p+1)

8

�p(
n+p+1

4 )

�
1/2
p (n

2 )
ei

√
n trT

∣∣∣∣Ip + i
4T√

n

∣∣∣∣−
n+p+1

4
,

using the characteristic function of the Wishart distribution (Muirhead (1982),
Theorem 3.2.3). Squaring this result yields the desired expression. �

PROOF OF LEMMA 1. By a change of variable in the GOE(p) density
2−p(p+3)/4π−p(p+1)/4 exp{− trX2/4}, we find that the normalizing constant of the
GOE(p)/4 distribution is CGOE/4 = 2p(3p+1)/4/πp(p+1)/4. Then by Stirling’s ap-
proximation as well as Muirhead (1982), Theorem 2.1.12,

logCt = p(3p + 1)

4
log 2 − p(p + 1)

4
logπ − p(p + 3)

4

+ 1

2

p∑
i=1

(
n − [2i − p − 1]) log

(
1 − 2i − p − 3

n

)
(A.8)

− 1

2

p∑
i=1

(n − i) log
(

1 − i − 1

n

)
+ o(1)

as n → ∞ with p/n → 0. We focus on the two sums in this expression. By Tay-
lor’s theorem applied to − log(1 − x) around x = 0,

−
p∑

i=1

n − i

2
log
(

1 − i − 1

n

)

=
K+1∑
k=1

p∑
i=1

n − i

2k

(
i − 1

n

)k

+ O

(
pK+3

nK+1

)

= p(p − 1)

4
+

K∑
k=1

c
(1)
k

pk+2

nk
+

K∑
k=1

c
(2)
k

pk+1

nk
+ O

(
pK+3

nK+1

)
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for some constants c
(1)
k , c

(2)
k , while

p∑
i=1

n − [2i − p − 1]
2

log
(

1 − 2i − p − 3

n

)

= −
K+1∑
k=1

p∑
i=1

n − [2i − p − 1]
2k

(
2i − p − 3

n

)k

+ O

(
pK+3

nK+1

)

= p +
K∑

k=1

c
(3)
k

pk+2

nk
+

K∑
k=1

c
(4)
k

pk+1

nk
+ O

(
pK+3

nK+1

)

for constants c
(3)
k , c

(4)
k . Filling these two expressions back in equation (A.8) yields

the desired result. �

PROOF OF LEMMA 2. Let fNW and ft stand for the densities of the normal-
ized Wishart

√
n[Wp(n, Ip/n)− Ip] and the Sym-tn/2(Ip/8) distributions, respec-

tively. Let R(X) = −X be the flip operator and � stand for the convolution. Since
f

1/2
NW is proportional to a

√
n[Wp(

n+p+1
2 , 2

n
Ip) − Ip] density [see equation (A.7)],

it is integrable. Therefore, f
1/2
NW � (f

1/2
NW ◦ R) is well defined and integrable as well.

But then, as fNW is real-valued,

2−p
2 π−p(p+1)

4 F
{
f

1/2
NW �

(
f

1/2
NW ◦ R

)}=F
{
f

1/2
NW
}
F
{
f

1/2
NW ◦ R

}
=F

{
f

1/2
NW
}
F
{
f

1/2
NW
}= ft

because the Sym-tn/2(Ip/8) is the F -conjugate of the normalized Wishart distri-
bution by Equation (3.2). The Fourier inversion formula then yields that

f
1/2
NW �

(
f

1/2
NW ◦ R

)
(X) =

∫
Sp(R)

ei tr(T X)ft (T ) dT .(A.9)

Thus the characteristic function of the Sym-tn/2(Ip/8) distribution is given by

f
1/2
NW � (f

1/2
NW ◦ R). As the derivatives of the characteristic function of a distribution

evaluated at zero provide its moments, up to a constant, we can try to repeatedly
differentiate f

1/2
NW � (f

1/2
NW ◦ R) at zero to compute E[trT 2k].

Unfortunately, the convolution is given by an integral whose domain makes it
difficult to directly interchange the differentiation and integration symbols. Be-
cause the integrand is orthogonally invariant, we found it easier to compute the
derivatives at zero by taking a limit over a sequence of decreasing positive-definite
matrices at both sides instead. In this spirit, define on the open set {0 < X < Ip} ⊂
Sp(R) the real-valued function

H(X) = (−1)k

nk
tr
(∇̃k

Xf
1/2
NW �

(
f

1/2
NW ◦ R

)
(
√

nX)
)
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for fixed k, p and n. Here, (∇̃X)ij = 1+δij

2 ∂/∂Xij is the symmetric differentiation
operator, as defined in Section 2, with the property that ∇̃X tr(XT ) = T for any
two symmetric matrices X, T . The

√
n scaling in the argument of H links the

convolution to an expectation with respect to an inverse Wishart distribution.
We can relate this function to the moments of the Sym-tn/2(Ip/8) distribution.

For any 1 ≤ l ≤ k, indices 1 ≤ i1, . . . , i2l ≤ p and X ∈ Sp(R),∣∣∇̃Xi2l i2l−1 · · · ∇̃Xi4i3∇̃Xi2i1e
i
√

n tr(T X)
∣∣= nl|Ti2l i2l−1 · · ·Ti4i3Ti2i1 |.(A.10)

We first show this expression is integrable for large enough n when T ∼
Sym-tn/2(Ip/8). This is not obvious, as when p = 1, asking if this expression is
integrable is the same as asking if the t-distribution with n/2 degrees of freedom
has an l-th moment, which is true only when l < n/2.

For any symmetric matrix T , |Tij | ≤ λ
1/2
1 (T 2) ≤ |Ip + T 2|1/2, where λ1(T

2) ≥
· · · ≥ λp(T 2) ≥ 0 are the ordered eigenvalues of the positive-definite matrix T 2.
Thus ∫

Sp(R)
nl|Ti2l i2l−1 · · ·Ti2i1 |ft (T ) dT

≤ n
3l
2

4l
Ct

∫
Sp(R)

∣∣∣∣Ip + 16T 2

n

∣∣∣∣−
(n−2l)+p+1

4
dT(A.11)

≤ n
3l
2 Ct

4l

(
n

n − 2l

)p(p+1)
4

∫
Sp(R)

∣∣∣∣Ip + 16T 2

n − 2l

∣∣∣∣−
(n−2l)+p+1

4
dT .

When n − 2l ≥ p − 2, the last integrand is proportional to the density of a
Sym-tn/2−l(Ip/8) distribution, so the integral is finite. Thus, when n ≥ p+2k −2,
the right-hand side of equation (A.10) is an integrable function for all 1 ≤ l ≤ k

and 1 ≤ i1, . . . , i2l ≤ p. By equation (A.9), and repeated differentiation under the
integral sign justified by the integrability bounds given by equations (A.10) and
(A.11), we find that

H(X) =
∫
Sp(R)

trT 2kei
√

n tr(T X)ft (T ) dT(A.12)

for any X ∈ Sp(R) and any n ≥ p + 2k − 2.

Now let us relate H to the definition of f
1/2
NW � (f

1/2
NW ◦ R) as a convolution. This

is where restricting H to small positive-definite matrices becomes useful. From
the definition of the Wishart density (e.g., Muirhead (1982), Theorem 3.2.1), the
expression equals

f
1/2
NW �

(
f

1/2
NW ◦ R

)
(
√

nX)

=
∫
Sp(R)

f
1/2
NW(Z)f

1/2
NW(Z − √

nX)dZ
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= n
np
2

2
np
2 �p(n

2 )

∫
Y+X>0,Y>0

e− n
4 tr(Y+X)|Y + X|m

4 e− n
4 trY |Y |m

4 dY

using the change of variables Y = Ip + Z/
√

n − X with dZ = n
p(p+1)

4 dY . For
X > 0, we have 1[Y + X > 0, Y > 0] = 1[Y > 0], and thus H satisfies

(A.13) H(X) = (−1)k

nk
tr
(
∇̃k

X

∫
Y>0

e− n
4 tr(Y+X)|Y + X|m

4
n

np
2 e− n

4 tr(Y )|Y |m
4

2
np
2 �p(n

2 )
dY

)
.

We would now like to interchange the integral and differentiation signs. From
Lemma 3, for any indices 1 ≤ l ≤ k and 1 ≤ i1, . . . , i2l ≤ p, and any symmetric
matrices X,Y ∈ Sp(R), we must have some crude bound∣∣∇̃Xi2l i2l−1 · · · ∇̃Xi4i3∇̃Xi2i1e

− n
4 tr(Y+X)|Y + X|m

4
∣∣

≤
l∑

s=0

∑
J∈

{1,...,p}2l

∣∣aJ,s(n,m)
∣∣ l∏
t=s+1

∣∣(Ip)j2t j2t−1

∣∣

×
s∏

t=1

∣∣(Y + X)−1
j2t j2t−1

∣∣e− n
4 tr(Y+X)|Y + X|m

4

for some polynomials aJ,s that do not depend on X or Y . This can be uniformly
bounded for all 0 ≤ X ≤ Ip by

≤ C(n,m,p)

l∑
s=0

trs
(
Y−1)e− n

4 trY [1 + trY ]mp
4(A.14)

for some constant C(n,m,p) that does not depend on X or Y . But for any n ≥
p − 2 and l ≥ 0,∫

Y>0
C(n,m,p)

l∑
s=0

trs
(
Y−1)e− n

4 trY [1 + trY ]mp
4

n
np
2

2
np
2 �p(n

2 )
e− n

4 trY |Y |m
4 dY

= n
np
2 C(n,m,p)

2
np
2 �p(n

2 )

l∑
s=0

∫
Y>0

[1 + trY ]mp
4 trs

(
Y−1)e− n

4 trY |Y | n+p+1
4 −p+1

2 dY

=
(

n

2

)mp
4 �p(

n+p+1
4 )

�p(n
2 )

E
[
(1 + trY)

mp
4 trs

(
Y−1)]

for a Y with a Wishart distribution Wp(
n+p+1

2 , n
2 Ip). The Cauchy–Schwarz in-

equality then entails the bound

≤
(

n

2

)mp
4 �p(

n+p+1
4 )

�p(n
2 )

E
[
(1 + trY)

mp
2
] 1

2 E
[
tr2s(Y−1)] 1

2 .(A.15)
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The first expectation is always finite when n ≥ p − 2. Since tr2s(Y−1) can be
written as a sum of zonal polynomials indexed by partitions of the integer 2s, the
results of Muirhead (1982), Theorem 7.2.13, imply that the second expectation is
finite whenever (n + p + 1)/4 > 2s + (p − 1)/2, or n ≥ p + 8s − 2. Thus, in
equation (A.13) with l ≤ k, whenever n ≥ p + 8k − 2 we are justified in repeat-
edly differentiating under the integral sign by the integrability bounds given by
equations (A.14) and (A.15), and obtain

(A.16) H1(X) = (−1)k

nk

∫
Y>0

tr
(∇̃k

Xe− n
4 tr(Y+X)|Y + X|m

4
)nnp

2 e− n
4 trY |Y |m

4

2
np
2 �p(n

2 )
dY.

Let us now look at how H(X) behaves as X → 0. On one hand, for any sym-

metric matrix T we have | trT k| ≤
√

p trT 2k ≤ √
p|Ip + T 2|k/2, so we must have

the bound

∣∣trT 2kei
√

n tr(T X)ft (T )
∣∣≤ nkCt

16k

∣∣∣∣Ip + 16T 2

n

∣∣∣∣−
(n−4k)+p+1

4

holding uniformly in X. But the right-hand side is proportional to the
Sym-t(n−4k)/2(Ip/8) density, so is integrable whenever (n − 4k)/2 ≥ p/2 − 1,
or n ≥ p + 4k − 2. Thus, by the dominated convergence theorem and equation
(A.12),

(A.17) lim
X→0

0<X<Ip

H(X) =
∫
Sp(R)

trT 2k lim
X→0

0<X<Ip

ei
√

n tr(T X)ft (T ) dT = E
[
trT 2k]

for a T ∼ Sym-tn/2(I/8).
On the other hand, the integrand at equation (A.16) takes a particularly simple

form. Lemma 4 establishes by induction that there must be polynomials bκ in n,
m and p with degbκ ≤ 2k + 1 − q(κ) such that

H(X) = (−1)k

nk

∫
Y>0

∑
|κ|≤2k

b(1)
κ (n,m,p)rκ

([Y + X]−1)e− n
4 tr(Y+X)|Y + X|m

4

(A.18)

× n
np
2 e− n

4 trY |Y |m
4

2
np
2 �p(n

2 )
dY

for any 0 < X < Ip and n ≥ p + 8k − 2. The sum is taken over all partitions of
the integers κ satisfying |κ| ≤ 2k, including the empty partition. But for any κ , the
bound

rκ
([Y + X]−1)e− n

4 tr(Y+X)|Y + X|m
4 ≤ tr|κ|(Y−1)e− n

4 trY [1 + trY ]mp
4

holds uniformly in 0 ≤ X ≤ Ip . Thus for |κ| ≤ 2k, the right-hand side is integrable
for n ≥ p + 8k + 6, by the same argument as for equation (A.15). Thus for such n,
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by the dominated convergence theorem and equation (A.18), we obtain that

lim
X→0

0<X<Ip

H(X) = (−1)k

nk

∫
Y>0

lim
X→0

0<X<Ip

∑
|κ|≤2k

b(1)
κ (n,m,p)rκ

([Y + X]−1)
(A.19)

× e− n
4 tr(Y+X)|Y + X|m

4
n

np
2 e− n

4 trY |Y |m
4

2
np
2 �p(n

2 )
dY,

where Y follows a Wp(n, Ip/n) distribution. Combining equation (A.17) with
equation (A.19) and Lemma 4 concludes the proof. �

PROOF OF THEOREM 2. Recall the expected zonal polynomial of an inverse
Wishart W−1

p (n, Ip/n) is given by equation (3.5). Based on the previous calcula-
tions, it is tempting to define

c′
λ = 2|λ||λ|!∏q(λ)

i<j (2λi − 2λj − i + j)∏q(λ)
i=1 (2λi + q(λ) − i)!

,

Rλ(m) =
q(λ)∏
i=1

λi−1∏
l=0

m

m − (1 − i + 2l)
,(A.20)

Pλ(m,p) =
q(λ)∏
i=1

λi−1∏
l=0

(
p

m
+ 1 − i + 2l

m

)

so that E[Cλ(Y
−1)] = c′

λn
|λ|Rλ(m)Pλ(m,p). With these expressions, the expected

power sum polynomials can be written

E
[
rκ
(
Y−1)]= p∑

|λ|=|κ|
cκ,λc

′
λn

|κ|
( ∏

|μ|=|κ|
Rμ(m)

∏
|μ|=|κ|
μ�=λ

R−1
μ (m)

)
Pλ(m,p)

(A.21)

= n|κ|

m|κ| R
′|κ|(m)P ′|κ|(m,p),

where

R′|μ| =
∏

|μ|=|κ|
Rμ(m),

P ′|λ|(m,p) = m|κ| ∑
|λ|=|κ|

cκ,λc
′
λ

∏
|μ|=|κ|
μ�=λ

R−1
μ (m)Pλ(m,p).

(A.22)

But R−1
μ (m) =∏q(λ)

i=1
∏λi−1

l=0 (1− 1−i+2l
m

) is a polynomial in 1/m, while Pλ(m,p) =∏q(λ)
i=1

∏λi−1
i=1 (

p
m

+ 1−i+2l
m

) is a polynomial in p/m and 1/m, both of degree at most
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|μ| = |λ| = |κ|. Thus,

P ′|κ|(m,p) ≡ m|κ| ∑
|λ|=|κ|

cκ,λc
′
λ

∏
|μ|=|κ|
μ�=λ

R−1
μ (m)Pλ(m,p)

= m|κ|
|κ|∑
i=0

|κ|∑
j=0

bij

(
p

m

)i 1

mj

(A.23)

for some coefficients bij that do not depend on m, p (or n). Define the polynomials

fj (α) =∑|κ|
i=0 bijα

i , so that

P ′|κ|(m,p) = m|κ|
|κ|∑

j=0

f

(
p

m

)
m−j .(A.24)

Let us show that for all 0 ≤ j < |κ| − q(κ), the polynomial fj must be identically
zero over the interval α ∈ (0,1/max(|κ|−2,0)). Indeed, say this was not the case,
and let 0 ≤ j0 < |κ| − q(κ) be the smallest j with the property that fj0(α0) �= 0
for some α0 ∈ (0, 1

max(|κ|−2,0)
). As fj0 is a polynomial, by continuity it must be

nonzero in a neighborhood of α0, so we may as well assume α0 is rational without
loss of generality. Now look at what happens to E[rκ(Y−1)] as p grows to infinity
at the very specific linear rate p = � α0

1+α0
(n − 1)�. Since α0 is rational, there must

be a subsequence nl such that pl is exactly an integer (e.g., if α0 = a/b with a,
b integers, we can take nl = (a + b)l + 1). Then for pl = α0

1+α0
(nl − 1), we have

exactly pl = α0ml .
Since α0 < 1

max(|κ|−2,0)
, then |κ| < 1 + (

α0
1+α0

)−1. Thus by Hölder’s inequality
and Lemma 5,

lim
l→∞

1

m
|κ|−q(κ)−j0
l

· 1

p
q(κ)
l

E
[
rκ
(
Y−1)]≤ 0 · lim

l→∞
1

pl

E
[
trY−|κ|]= 0.

On the other hand, by equations (A.21) and (A.24), the definition of j0 and the fact
that R|κ|(m) → 1 as m → ∞,

lim
l→∞

1

m
|κ|−q(κ)−j0
l

· 1

p
q(κ)
l

E
[
rκ
(
Y−1)]

= lim
l→∞

(
nl

ml

)|κ|
R′|κ|(ml)

(
ml

pl

)q(κ) |κ|∑
j=j0

fj (α0)m
j0−j
l

= (1 + α0)
|κ|α−q(κ)

0 fj0(α0).

As α0 > 0, fj0(α0) must therefore equal zero, a contradiction. Hence, as claimed,
the polynomials fj (α) for 0 ≤ j < |κ| − q(κ) all vanish over the interval
(0, 1

max(|κ|−2,0)
).
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But a polynomial can have an infinite number of zeros only if all its coefficients
are zero, so we conclude that

bij = 0 for 0 ≤ j < |κ| − q(κ).

Thus, from equations (A.21) and (A.23) we have

E
[
rκ
(
Y−1)]= (

n

m

)|κ|
mq(κ)R′|κ|(m)P ′′

κ (m,p),

where

P ′′
κ (m,p) =

|κ|∑
i=0

|κ|∑
j=|κ|−q(κ)

bij

(
p

m

)i 1

mj−|κ|+q(κ)
.

Plugging the above in Lemma 2 yields for n ≥ p + 8k + 6 that

E
[
trT 2k]= m2k+1

nk
R′

2k(m)Qκ(m,p),(A.25)

where

Qκ(m,p) = (−1)k
∑

|κ|≤2k

(
1 + p

m
+ 1

m

)|κ| R′|κ|(m)

R′
2k(m)

bκ(n,m,p)

m2k+1−q(κ)
P ′′

κ (m,p).

Now, for any a ≤ b, we can associate a partition μ of norm |μ| = a with the
partition μ∗ = (μ1 + b − a,μ2, . . . ,μq(μ)) of norm |μ∗| = b, which satisfies

q(μ∗)∏
i=1

μ∗
i −1∏

j=0

(
1 − 1 − i + 2j

m

)
=

q(μ)∏
i=1

μi−1∏
j=0

(
1 − 1 − i + 2j

m

) μ1+b∏
j=μ1
−a−1

(
1 − 2j

m

)
.

By definition for the Rμ(m)’s at equation (A.20), this means that every factor
that appears in R−1

μ (m) appears in R−1
μ∗ (m), so by definition of the R|μ|(m)’s at

equation (A.22), Ra(m)R−1(m) is a polynomial in 1
m

. Moreover, as the bκ are
polynomials of degrees d(κ) ≡ 2k + 1 − q(κ), there exists coefficients cij l such
that

bκ(n,m,p)

m2k+1−q(κ)
= 1

md(κ)

d(κ)∑
i=0

d(κ)−i∑
j=0

d(κ)−i−j∑
l=0

cij lm
injpl

=
d(κ)∑
i=0

d(κ)−i∑
j=0

d(κ)−i−j∑
l=0

cij l

md(κ)−i−j−l

(
1 + p

m
+ 1

m

)j(p

m

)l

.

As d(−i − j − l ≥ 0), j, l ≥ 0, we conclude that this expression is a polynomial
in p

m
and 1

m
. Therefore, looking back at (A.25), we conclude that the Qκ(m,p)’s
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are polynomials in p
m

and 1
m

. In other words, when n ≥ p + 8k + 6 there must be
polynomials gi(p) =∑i

j=0 aijp
j and a large enough integer D such that

E
[
trT 2k]= (

m

n

)k

R2k(m)

D∑
i=0

gi(p)

mi−k−1 .(A.26)

We will now proceed to show that the gi must vanish on N for 0 ≤ i0 < k +
1. Observe first that E[trT 2k] must have a finite limit as n → ∞ with p held
fixed. Indeed, since 16T 2/n is positive definite, |Ip + 16T 2/n|−(n−p−1)/4 < |Ip +
16T 2/n|−n/4 and so we have the bound

E
[
trT 2k]≤ Ct

∫
Sp(R)

trT 2k

∣∣∣∣Ip + 16T 2

n

∣∣∣∣−
n
4
dT .

But for p fixed, limn→∞ Ct = CGOE/4, the normalization constant of the
GOE(p)/4 distribution, by Lemma 1. Moreover, |Ip + 16T 2/n|− n

4 = ∏p
i=1[1 +

λi(4T 2)/(n/4)]− n
4 for λ1(4T 2) ≥ · · · ≥ λp(4T 2) ≥ 0 the eigenvalues of 4T 2, and

(1 + x/n)−n is monotone decreasing toward exp(x). Therefore, for a fixed dimen-
sion p, we can apply the monotone convergence theorem to obtain that

(A.27) lim
n→∞ E

[
trT 2k]≤ CGOE/4

∫
Sp(R)

trT 2ke−4 trT 2
dT = E

[
trZ2k]< ∞

for a Z ∼ GOE(p)/4.
We can use this to show that gi must vanish on N for 0 ≤ i0 < k + 1 as follows.

Say the first statement was not true, and let 0 ≤ i0 < k + 1 be the smallest i such
that for some p0 ∈ N, gi0(p0) �= 0. Then by equation (A.26) and the definition of
i0, the limit of E[trT 2k] as n → ∞ with p fixed at p0 satisfies

lim
n→∞

E[trT 2k]
mk+1−i0

= 1k · 1 · lim
n→∞

D∑
i=i0

gi(p0)m
i0−i = gi0(p0).

But m = n−p − 1 tends to infinity as n tends to infinity, and since k + 1 − i0 > 0,
equation (A.27) means that E[trT 2k]/mk+1−i0 must tend to zero. Thus, gi0(p0)

has to equal zero, which contradicts our assumption. Thus, for every 0 ≤ i < k +1,
the polynomial gi must vanish on N. But a polynomial can only have an infinite
number of zeroes if its coefficients are all zero, so we must have aij = 0 for 0 ≤
i < k + 1.

Now say that p/n → 0 as n → ∞. Then eventually n ≥ p + 8k + 6, so by
equation (A.26) and the above,

lim
n→∞

1

pk+1 E
[
trT 2k]

= lim
n→∞

(
m

n

)k

R2k(m)

D1∑
i=k+1

i∑
j=0

aij

pj−(k+1)

mi−(k+1)
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= 1k · 1 · lim
n→∞

[
D∑

i=k+1

k∑
j=0

aij

mi−(k+1)p(k+1)−j

+
D∑

i=k+1

i∑
j=k+1

(
p

m

)j−(k+1) aij

mi−j

]

=
k∑

j=0

ak+1

(limp→∞ p)k+1−j
+ a(k+1)(k+1) < ∞,

as desired. �

PROOF OF COROLLARY 1. Let ft be the density of the Sym-tn/2(Ip/8) dis-
tribution, and define for L ∈ N,

hL(T ) = n + p + 1

n
tr
[(

Ip + 16T 2/n
)−1

(4T )2L+1]

−
[

2L tr(4T )2L−1 +
2L−1∑
l=0

tr(4T )l tr(4T )2L−1−l

]
1[L > 0].

Then

−1

2
h2

L(T )ft (T )

= hL(T )
(
tr
[
(4T )2k∇̃4T ft (T )

]+ tr
[∇̃4T (4T )2k]ft (T )

)
(A.28)

= tr ∇̃4T

[
(4T )2khL(T )ft (T )

]− tr
[
(4T )2k∇̃4T hL(T )

]
ft (T )

But when n + p > 16L + 3, for any 1 ≤ α ≤ β ≤ p,∫
Sp(R)

(∇̃4T )αβ

[
(4T )2LhL(T )ft (T )

]
βα dT

= 1 + δαβ

8

∫
R

p(p+1)
2 −1

[([4T ]2L)
βαhL(T )ft (T )

]4Tαβ=∞
4Tαβ=−∞

∏
i≤j

�=(α,β)

dTij = 0

since T 2LhL(T )ft (T ) is integrable for n+p+1
4 > 4L + 1. Using the notation ‖ · ‖T

for the L2-norm under T ∼ Sym-tn/2(Ip/8), we find from equation (A.28) that

1

p2k+1

∥∥hL(T )
∥∥2
T

= 0 + 2

p2k+1 tr E
[
(4T )2k∇̃4T hL(T )

]

= E

[
2(2L + 1)

n + p + 1

n

p

n

1

p
tr
[(

Ip + 16T 2

n

)−1( 4T√
p

)4L+2]
(A.29)



MID-SCALE WISHART ASYMPTOTICS 2669

+ 2(2L − 1)
n + p + 1

n

1

p
tr
[(

Ip + 16T 2

n

)−1( 4T√
p

)4L]

− 4L(2L − 1)
1

p2 tr
(

4T√
p

)4L−2

−
2L−1∑
l=0

1

p
tr
(

4T√
p

)2L−1−l 1

p
tr
(

4T√
p

)2L−1+l
]

= O(1)

as p,n → ∞ with p/n → 0, using that x2l/(1 + 16x2/n) ≤ x2l∀l ∈ N and Theo-
rem 2.

To show the corollary, we proceed by induction on L and assume that
‖ tr(4T/

√
p)2l+1‖T = O(1) for every 0 ≤ l < L. If we take equation (A.29) with

L = k + 1 and multiply it by p/n, we find by the triangle inequality that∥∥∥∥n + p + 1

n

p

n
tr
[(

Ip + 16T 2

n

)−1( 4T√
p

)2k+3]
− 2

p + k

n
tr
(

4T√
p

)2k+1∥∥∥∥
T

≤ p

n

∥∥∥∥
2k∑
l=1
odd

tr
(

4T√
p

)l 1

p
tr
(

4T√
p

)2k+1−l

(A.30)

+
2k∑
l=1
even

1

p
tr
(

4T√
p

)l

tr
(

4T√
p

)2k+1−l∥∥∥∥
T

+ O

(
p

n

)
= o(1)

by Theorem 2 and the inductive hypotheses. But since(
Ip + 16T 2

n

)−1( 4T√
p

)2k+1
=
(

4T√
p

)2k+1
− p

n

(
Ip + 16T 2

n

)−1( 4T√
p

)2k+3
,

we can conclude that∥∥∥∥n + p + 1

n
tr
(

4T√
p

)2k+1
− 2

p + k

n
tr
(

4T√
p

)2k+1∥∥∥∥
T

≤
∥∥∥∥n + p + 1

n

p

n
tr
[(

Ip + 16T 2

n

)−1( 4T√
p

)2k+3]
− 2

p + k

n
tr
(

4T√
p

)2k+1∥∥∥∥
T

+
∥∥∥∥

2k−1∑
l=0
odd

tr
(

4T√
p

)l 1

p
tr
(

4T√
p

)2k−1−l

+
2k−1∑
l=0
even

1

p
tr
(

4T√
p

)l

tr
(

4T√
p

)2k−1−l∥∥∥∥
T

+ O(1),
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that is, from equation (A.30), Theorem 2 and the inductive hypotheses,∥∥∥∥tr
(

4T√
p

)2k+1∥∥∥∥
T

≤
(

n + p + 1

n
− 2

p + k

n

)−1(
o(1) + O(1) + O(1)

)= O(1),

as desired. �
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